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TOWARDS A NEW SPEECH EVENT DETECTION APPROACH FOR LANDMARK-BASED
SPEECH RECOGNITION

Stefan Ziegler, Bogdan Ludusan, Guillaume Gravier

CNRS-IRISA, Campus de Beaulieu, 35042 Rennes, France

ABSTRACT

In this work, we present a new approach for the classification
and detection of speech units for the use in landmark or event-
based speech recognition systems. We use segmentation to
model any time-variable speech unit by a fixed-dimensional
observation vector, in order to train a committee of boosted
decision stumps on labeled training data. Given an unknown
speech signal, the presence of a desired speech unit is esti-
mated by searching for each time frame the corresponding
segment, that provides the maximum classification score.
This approach improves the accuracy of a phoneme classifi-
cation task by 1.7%, compared to classification using HMMs.
Applying this approach to the detection of broad phonetic
landmarks inside a landmark-driven HMM-based speech rec-
ognizer significantly improves speech recognition.

Index Terms— speech event detection, landmark-driven
ASR

1. INTRODUCTION

In state-of-the-art hidden Markov model-based (HMM) au-
tomatic speech recognition (ASR), speech is modeled as a
sequence of phone-segments, often referred to as the beads-
on-a-string model of speech [1]. In contrast to that, acoustic-
phonetic or event-based approaches to speech recognition
model speech as a stream of asynchronous phonetic events,
which have to be further processed to obtain a higher level
speech representation [2, 3, 4, 5]. Many of these approaches
require the detection of phonetic events as time instances,
referred to as landmarks.

There are numerous studies concerning the detection of
phonetic events in the speech signal, which can be divided
into two general groups. The first group uses expert knowl-
edge to derive detection rules from various signal represen-
tations (e.g., [2]). The second group uses a classification
and detection approach, where labeled data is converted into
the desired phonetic feature representation and classifiers are
trained to map acoustic observations onto phonetic speech
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units (e.g., [3, 4]). Employing these classifiers sequentially
on the speech signal results in detection functions indicating
the presence of the desired speech units. These classifiers op-
erate usually on a frame basis, extracting a fixed-dimensional
observation vector for each frame, eventually considering a
small context window. On the one hand, this fixed observa-
tion space enables the use of non-linear and non-parametric
classifiers like support vector machines [3, 4] or multilayer
perceptrons for classification, which possess good discrimi-
nation abilities and can be trained efficiently. On the other
hand, predicting speech units by observing a fixed-size frac-
tion of the speech signal does only partly model time-variable
speech units, including phonemes and many articulatory fea-
ture units.

We are interested in the problem of extracting a fixed-
dimensional observation vector from time-variable speech
units, to discriminate them using a classifier that requires a
fixed number of observations. To obtain this observation vec-
tor, we use a maximum-likelihood segmentation method, to
force each labeled speech unit into three spectrally homoge-
neous parts from which the observation vector is extracted. In
our work, this observation vector is used to train speech units
with boosted decision trees and to predict unknown segments
during testing. To obtain a detection function, indicating the
locations of a speech event by its local maxima, we search
for each frame the segment that maximizes the classification
score at this frame. This method is applied to a recently pro-
posed landmark-driven ASR framework, that uses phonetic
landmarks to guide the search in an HMM-based ASR system
[6].

The paper is organized as follows. First, we present the
details of our proposed method and review boosting with an
ensemble of weak learners, as well as landmark-driven ASR.
Evaluation is carried out on a phoneme classification task and
on landmark-driven speech recognition experiments and we
conclude with an outlook on future work.

2. PROPOSED SYSTEM FOR SPEECH EVENT
DETECTION

In event-based speech recognition, phonetic speech units are
often trained and classified at the frame level. The classifica-
tion scores of successively predicted frames correspond to a
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Fig. 1. Diagram of the proposed method of using segmenta-
tion to extract a fixed-dimensional observation vector from a
labeled speech unit (training) or an unknown segment (test-

ing).

detection function, that indicates the presence of the speech
event, usually by its magnitude. Landmarks, corresponding
to single time instances marking the most salient points of
speech events, are then obtained by post-processing the detec-
tion profiles, varying from simple peak-picking to processing
with statistical models (e.g. [3]). To capture spectral transi-
tions and temporal information, usually a concatenation of
parametrized speech frames create a fixed-dimensional ob-
servation space for each frame for classification. But since
speech units are commonly modeled as time-variable seg-
ments, a fixed number of frames will either capture only frac-
tions of the spectral information of the speech unit or contain
misleading information about previous or following speech
events. If the detection function is obtained by inaccurate
modeling of the desired speech event, it is difficult to re-
cover the loss in information by post-processing noisy and
erroneous detection profiles.

In the following, we present a method that overcomes this
shortcomings by extracting a fixed-dimensional observation
vector x from a given time-variable sequence of parametrized
speech Y = yi,...,¥: (section 2.1), corresponding to any
desired speech unit. We are able to keep a fixed-dimensional
observation space, since we reduce every speech segment to
three subsegments, similar to a three-state HMM. This ob-
servation vector enables the use of any desired classification
method, while generalizing all time-variable speech units. In
our case, we apply a committee of boosted decision stumps to
train a classier F'(x) (section 2.2). F'(x) is then used to gen-
erate a detection function dy, = dj1,...,dy for k desired
speech units, with the profile of d, indicating the presence of
this speech unit in the unknown signal. For each k-th detec-
tion function, a set of [;, time instances Ly, = {t1,...,%;, } is
extracted, representing the exact locations of the speech event
associated with speech unit & (section 2.3).

2.1. Maximum-likelihood segmentation applied to speech
units

In the following, we apply the maximum-likelihood speech
segmentation approach described in [7] to the segmentation of

speech units. Given the parametrized frame-based represen-
tation of a labeled speech unit Y =y, ..., ¥y, for example
a sequence of Mel-frequency cepstral coefficients (MFCCs)
vectors, where n corresponds to the length in frames of the
speech unit, we aim at finding the segment borders b, and b3
which segment the unit into ¢ = 3 segments (¥p,, - - -, Yby—1)s
(szﬂ ce 7yb3*1) and (Yb37 ce 7Yn)’ with by = 1.

The optimal segment borders are considered to be the bor-
ders minimizing the intra-segment distortion of each segment.
As proposed in [7], we measure the intra-segment distortion
as the accumulation of distances from each frame inside the
segment to the segment-centroid p;. Using the euclidean dis-
tance between frames as a distance measure, the task is to
find the two frames by and b3 given by = land by = n+ 1
according to

3 biy1—1
b, by = arg minz Z lyn — pill; b1 =1,b4 = n+1.
2,03 i=1 n=b;

(D
This corresponds to a shortest-path problem, which can be
solved for each segment using dynamic programming.

The observation vector x for each speech unit is obtained
by first concatenating the centroids of the obtained segments
(1f, 13, 13 ]. Additional attributes added to x are the length
of each segment, to capture temporal information, and the
three intra-segment distortion measures ij;r;_l llyn — il
to measure the homogeneity of each segment.

2.2. Boosting for speech unit classification

Having extracted a fixed-dimensional observation vector for
each variable-length speech unit, speech unit models can be
trained using the desired classifier. In this work, we boost
decision stumps with the multiclass AdaBoost. MH algorithm
[8].

Boosting is an ensemble learning method that iteratively
learns weak learners h,,(x) to classify instances, that were
for the most part misclassified by the previous learner. The
error of learner h,,(x) determines its weight «;,,. The out-
puts of m weak learners h(x) are combined to a strong clas-
sifier H(x), providing a score for every class k with H(x) =

A set of weak learners provides a very flexible framework
during prediction, since the trade-off between computation
time and precision can be adapted by changing the number
of weak learners. Furthermore, the use of decision trees al-
lows to insert nominal attributes in the future, like information
about gender or bandwidth.

The training data used in this work includes over 200
hours of speech, or about 8.5 million labeled speech units.
Training on the entire data set is usually not feasible, since
most algorithms need the data to fit into memory and training
time increases non-linearly. We follow the approach proposed
in [9], which is to divide our training set into .J partitions and
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Fig. 2. Simplified example illustrating the extraction of a de-
tection function d; from a given set of segments. Each seg-
ment is displayed with its prediction score. The maximum
scores at each frame ¢ are mapped onto dy, ;.

to train a classifier H;(x) on each partition. The final clas-
sification consists in averaging the output scores of the full
committee of classifiers:
J
> =1 H;(x)

2.3. From classification to detection

As stated in the introduction of section 2, F(x) is used to
obtain a detection function dy = dj1,...,dk . If F(x)is
trained to predict single frames y; of parametrized speech,
dy,; directly corresponds to the prediction score of class k at
frame ¢. Since our classifier provides segment and not frame-
based prediction scores, we provide a new method to generate
detection profiles from a collection of predicted segments.

Intuitively, in order to obtain dj ;, one has to search for
the segment containing ¢, that maximizes the likelihood of
the given speech unit at frame ¢. Given a collection of over-
lapping segments, with each segment corresponding to a
hypothetical speech unit, we can directly compare the score
of variable-length segments, using our proposed observation-
vector. A collection of segments does not correspond to a
graph, so that single segments might not have a connection to
preceding or subsequent segments (see simplified example in
Figure 2). With this work being a preliminary study, we do
not consider the task of finding a collection of suitable prior
segments, which is desirable to reduce the computational
costs for generating dy, ;. Instead, we use an exhaustive col-
lection of segments by predicting the observations extracted
from all possible segments inside the speech signal, up to a
maximum segment length of 300ms. Using fast classifica-
tion like boosting, and an effective implementation for the
solution of equation 1, this stays computationally feasible.
The value of the detection function dj, ; at ¢ is calculated as
follows:

dpt = max Fi(X(s.e)); s <t<ee—s>i—1. (3)

Fy.(x) is the score of the k-th detection function given the
observation x. s and e correspond to the first and last frame of

a segment and X, ) to the observation vector extracted from
this segment. The minimum number of frames in a segment
ist=3.

The obtained detection function indicates the positions of
the k-th speech event in the speech signal by its local max-
ima. Since we put most effort into the accurate modeling of
the speech units, we expect clear indications of the speech
events, without requiring sophisticated post-processing. The
following simple peak picking algorithm can be applied to
a system of discrete speech units, like phonemes or broad
phonetic classes (BPCs). Given the detection functions for
k speech units, we extract landmarks in three steps:

1. We first collect the time instances corresponding to lo-
cal maxima for each detection function d;, and asso-
ciate each local maximum ¢ with its magnitude dj, ;.
Since a local maximum corresponds to a segment of at
least three frames, the central frame ¢ of a segment is
always selected as the time instance ¢ of the local max-
imum.

2. If several units k share the same local maximum ¢, only
the landmark with the highest magnitude dy, ; is kept at
t.

3. Some of the remaining landmarks might correspond to
a local maximum at a very low magnitude. Therefore,
at each landmark, all units £ with a score dj, ; bigger
than the landmark magnitude are also activated at that
time instance. Afterwards, each set Ly = {t1,...,t;, }
contains the final collection of [; discrete time in-
stances signaling the presence of the k-th speech event.

If a local maximum ¢ of speech unit k already corresponds
to the highest score dy, ; at that time frame, step 3 will have
no effect. If not, this step will merge several speech units into
broader units, effectively signaling the possible presence of
several units at the same time.

3. LANDMARK-DRIVEN HMM-BASED ASR

We use the presented speech event detection approach to
extract broad phonetic landmarks for a recently proposed
landmark-driven HMM-based ASR framework [6]. In this
framework, broad phonetic landmarks are used to guide the
Viterbi decoding of the first pass of a HMM-based speech
recognizer, which we briefly summarize in the following.

The Viterbi algorithm searches the best path reaching state
(4, t) by computing a score

S(]v t) = IH?X S(la t_1)+log(a2])+log(p((y)t |J))+R(j’ t)v

“)
where log(a;;) is the transition probability and log(p(y:|7))
corresponds to the acoustic likelihood. R (j,t) enhances
paths through states j that are compatible with phonetic land-
marks by R (j,t) = Aj+ - Rmas. With states corresponding



to triphones, checking the compatibility is trivial, since each
state can be directly linked to one BPC. \; ; is a binary indica-
tor, that becomes 1 if state j is compatible with the landmark
at time ¢ and O if there is no landmark at all. R,,,, limits the
influence of landmarks onto the overall score and has to be
determined experimentally.

4. EXPERIMENTS

Our experiments focus on two objectives. First, we are inter-
ested in evaluating whether our proposed approach can cap-
ture the acoustic information of speech units and compare the
classification performance to existing approaches. Second,
the proposed approach will be used to extract broad phonetic
landmarks to guide the search of an HMM-ASR system as
described in section 3.

4.1. Experimental setup

The speech corpus used in the experiments corresponds to ra-
dio broadcast news in the French language from the ESTER2
broadcast transcription evaluation campaign [10]. Our train-
ing set consists of over 200 hours of speech, the development
set of 3 hours and the test set of 4.5 hours from 4 broadcast
shows (radio Africal, radio Inter, radio RFI, radio TVME).
The test set is divided into J = 12 non-overlapping partitions
for a committee of 12 classifiers. Classification experiments
are run on the development set, while speech recognition is
carried out on the test set. Speech labels are obtained by
forced-alignment.

The speech recognizer used for recognition experiments is
a two-pass system, with the first pass generating a word graph
and the second pass rescoring the previously obtained graph
using more complex models. We use the tool bonzaiboost!
for the training of the ensemble of weak classifiers .

4.2. Phoneme classification

While landmark detection is primarily used for the detection
of phonetic events, our proposed method is designed to learn
any time-variable speech unit. This includes phonetically mo-
tivated units, as well as phonemes. We decided to do classi-
fication experiments on a phoneme classification task, since
this is a challenging task, considering the fine acoustic dis-
tinctions between phonemes. Our French phoneme alphabet
consists of 40 phonemes, including 5 non-speech events.
HMM-monophone models serve as the baseline phoneme
classifier, because of their time warping ability, which makes
them perfectly suitable for discriminating time varying speech
units. The models employed correspond to monophone 3-
state left-to-right HMMs with 64 diagonal-covariance Gaus-
sian components per state. HMMs are trained on the full

!developed by Christian available at

http://bonzaiboost.gforge.inria.fr

Raymond,

Fig. 4. Proposed observation vector for the phoneme classi-
fication experiments. On the left, the observation vector ex-
tracted for each phoneme as proposed in this paper (classifier
2, 3, 4 and 6). On the right, the observation vector as a con-
catenation of subsequent speech frames at the center of each
phoneme (classifier 1).

trained on 1/12 of training set

# classifier accuracy
1 | boosting, concatenated frames (depth=2) 55.7
2 boosting, proposed (depth=1) 57.8
3 boosting, proposed (depth=2) 63.0
4 boosting, proposed (depth=3) 62.8
trained on full training set
# classifier accuracy
5 HMM (64 gaussians) 65.9
6 | committee, proposed (J = 12, depth=2) 67.6

Table 1. Classifiers of the phoneme classification task. The
classifier is described by its classification method (e.g. boost-
ing) and observation vector (e.g. proposed).

training set using the same speech parametrization as the
boosted ensembles, which are 39-dimensional MFCC vec-
tors, composed of 13 MFCC coefficients with first and second
order derivations. To compare the abilities of the classifiers
to capture the acoustic properties of each phoneme, we eval-
uate on a pure classification task, i.e. all observation vectors
were extracted using the known phoneme borders obtained
by forced alignment, either for training or predicting the as-
sociated phoneme. HMM-classification was performed by
force-aligning each model to the known phoneme borders
and comparing the obtained likelihoods.

First, we trained four classifiers on only one partition (i.e.
1/12-th) of the training data for comparison, before creating
the full committee of 12 classifiers. The first classifier uses
the three concatenated frames at the temporal center of each
phoneme as observation vector x for training and testing (see
Figure 4). Training and predicting only the center of each
phoneme is supposed to minimize errors due to coarticulation
effects. We compare this approach to our proposed method,
which we run using weak learners of different depth (classi-



ke
=3
=
=
ey

10 20 an 40
glide

® 1] , ........... ............ ............ ....... -
“ - . l\l : L D A;‘L;

20 ad 40

plosive woiced
N I:I ......................................
5_14\ __________________________________________________
et _2 ....................................................

3 A

10 20 a0
fricative voiced

scare

frames

| wvow | v vow| gl [pv] gl | vow |

SCore

scare

10 20 a0 40

sCcare

10 20 a0 40

scare

frames

| wvow | v vow| gl [pv] gl | vow |

Fig. 3. Detection profiles of the four broad phonetic units vowels, glides, plosives (voiced) and fricatives (voiced) for the french
word aujourd’hui (uttered during a broadcast news show) and its corresponding broad phonetic annotation. On the left, every
frame of the detection function was predicted using classifier 1 (see Table 1). On the right, the proposed method was used
to generate the detection score at each frame (using classifier 3). While vowels, plosive and fricative are well indicated for
both classifiers, the detection function for classifier 1 is more noisy, especially for the vowels. Glides seem to be more clearly
represented on the right side, which can be due to the fact, that glides correspond to slow articulatory movements, which can be

difficult to capture by concatenated frames.

fier 2, 3 and 4). For all experiments the number of boosting
rounds was limited to 3000. Table 1 displays the classifica-
tion accuracy on the development set as the percentage of
correctly classified phonemes. Using the proposed observa-
tion vector for boosting increases the performance by 7.3%
(using decision trees with depth=2) compared to training on
concatenated frames. While boosting on one partition of the
training set does not outperform the accuracy of HMMs, ap-
plying the committee of 12 boosted weak ensembles improves
by 1.7% compared to HMMs.

4.3. Landmark-driven ASR

To use our phoneme classifier for broad phonetic landmark
detection, we simply derived a collection of detection func-
tions d; for j = 7 BPCs vowels, nasals, glides, fricatives
(voiced and unvoiced) and plosives (voiced and unvoiced) by
scoring every frame d; ; with the score d, ; of the phoneme £,

classifier
1 [ 3 ] 6
number of landmarks 1,352k | 574k | 608k
phoneme errors [%] 67.7 20.2 | 18.0
missed phonemes [%] 4.6 12.0 8.8
AVG BPC size [phonemes] 13 20 20

Table 2. Statistics of extracted landmarks on the whole devel-
opment set for three classifiers. AVG BPC size corresponds to
the average number of phonemes provided at each landmark.

that has the maximum score among all phonemes of this BPC
at frame ¢.

We extracted landmarks as proposed in section 2.3 for
classifiers 3 and 6 from Table 1. For classifier 1 we equally ex-
tracted landmarks, but using the detection function obtained
by predicting each individual frame. Figure 3 compares de-



broadcast | WER baseline | WER landmark-driven
Inter 18.7 18.6
RFI 17.6 17.3
TVME 24.2 23.8
Africal 31.5 30.8

Table 3. Speech recognition performance driven by broad
phonetic landmarks. Landmarks are extracted using classifier
6.

tection profiles obtained by predicting single frames using
classifier 1 and by employing our proposed method (classifier
3). Table 2 contains information about the landmark accuracy.
A phoneme error corresponds to a phoneme with at least one
landmark that misclassifies this phoneme. As one can expect,
directly extracting local maxima from frame based detection
functions leads to more than twice as much landmarks com-
pared to the proposed method, because of the noisy detection
profile (see also Figure 3), resulting in many incorrect land-
marks. It should be noted, that this is partly due to our land-
mark extraction algorithm, which is designed to avoid any
post processing, like smoothing or heuristic peak-picking al-
gorithms. The high average number of active phonemes at
each landmark is due to many landmarks that consist of sev-
eral merged BPCs.

For the landmark-driven ASR experiments according to
section 3, we used the landmarks obtained with classifier
6. First, the development set was used to tune R,,,, (see
equation 4). The optimal R,,,, was then employed for the
landmark-driven decoding on the test set. The results in Ta-
ble 3 show an improvement for all 4 broadcast shows tested,
compared to the baseline which does not include landmarks.
The improvement in word-error-rate (WER) varies from 0.1
(radio Inter) to 0.7 (radio Africal). The overall WER of the
test set was 23.1%, compared to a 23.5% baseline, and a
Wilcoxon signed rank showed it to be significant at the 5%
level. Compared to the WER obtained by the phonetically
guided decoding presented in [6], where BPCs were trained
on selected frames and decoding was guided by predicting
the BPC of every frame, no broadcast show of the test set was
degraded by the use of broad phonetic information.

5. CONCLUSIONS

In this work, we presented a new method for the detection of
variable-length speech units. We used segmentation to obtain
a fixed-dimensional observation vector for each speech unit
to train a committee of boosted decision stumps for speech
unit classification. To detect speech units in an unknown
signal, we searched for each time frame the corresponding
segment, that provides the maximum classification score for
the desired speech unit. This approach improved the accuracy
of a phoneme classification task compared to HMM-phoneme

classification, as well as the WER of a hybrid HMM-based
landmark-driven ASR framework, compared to its HMM-
based baseline.

With the promising results we were able to obtain by em-
ploying our proposed framework, there are several directions
for future research. First, the proposed fixed-dimensional ob-
servation space could be refined, by considering different seg-
mentation and attribute-extraction strategies. Second, the step
from classification to detection by evaluating all possible seg-
ments should be replaced by an efficient search for a suitable
collection of prior segments. While boosting decision stumps
performed well on the presented classification task, applying
other classification techniques might further improve speech
unit classification and detection.
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