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3Centre IRD de Nouméa, Nouvelle Calédonie
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Abstract

One main purpose of BOUM experiment was to give evidence of the possible impact
of submesoscale dynamics on biogeochemical cycles. To this aim physical as well
as biogeochemical data were collected along a zonal transect through the western
and eastern basins. Along this transect 3 day fixed point stations were performed5

within anticyclonic eddies during which microstructure measurements were collected
over the first 100 m. We focus here on the characterization of turbulent mixing induced
by internal wave breaking. The analysis of microstructure measurements revealed a
high level of turbulence in the seasonal pycnocline and a moderate level below with
energy dissipation mean values of the order of 10−6 W kg−1 and 10−8 W kg−1, respec-10

tively. Fine-scale parameterizations developed to mimic energy dissipation produced
by internal wavebreaking were then tested against these direct measurements. Once
validated a parameterization has been applied to infer energy dissipation and mixing
over the whole data set, thus providing an overview over a latitudinal section of the
Mediterranean sea. The results evidence a significant increase of dissipation at the15

top and base of eddies associated with strong near inertial waves. Vertical turbulent
diffusivity is increased both in these regions and in the weakly stratified eddy core.

1 Introduction

During the last two decades increasing evidence has shown that dynamical vertical
transport is a key factor controlling biogeochemical fluxes in the ocean, which need to20

be accurately quantified in order to represent adequately biogeochemical processes
(Lewis, 1986; Denman and Gargett, 1983; Klein and Lapeyre, 2008). Two main pro-
cesses account for vertical transport, upwelling resulting from divergent Ekman trans-
port and turbulent mixing. Wind shear and convection are the main sources of turbulent
mixing in the mixed layer, whereas breaking internal waves are responsible for most of25

mixing in the stratified ocean (Munk and Wunsch, 1998; Thorpe, 2004). An adequate
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representation of these processes is of particular importance in oligotrophic regions
where vertical transport generates an upward nutrient flux that directly sustains pri-
mary production in the depleted euphotic zone.

Among oligotrophic environments anticyclonic eddies have focused much attention
since intrinsic processes locally enhance the vertical transport of nutrients in the eu-5

photic layer (McGillicudy et al., 1999; Ledwell et al., 2008). In these regions upward
doming of seasonal thermocline (and downward doming of the permanent thermocline)
known as eddy pumping generates an uplift of nutrients enriched deeper layer, a pro-
cess which can be enhanced from the secondary circulation generated by interactions
between wind driven surface currents and eddy motion (Martin and Richards, 2001).10

Finally Ledwell et al. (2008) suggest that increased shear and mixing could result from
near inertial wave trapping.

The Mediterranean sea is an oligotrophic environment affected by a significant
mesoscale dynamics, and more specifically by anticyclonic eddies (Moutin et al., 2011).
Regarding internal wave energy sources, the Mediterranean sea is also a specific re-15

gion since energy mainly comes from the atmospheric forcing due to a weak tidal
forcing. A main overall goal of the BOUM (Biogeochemistry from the Oligotrophic to
the Ultraoligotrophic Mediterranean) is “the representation of the interactions between
planktonic organisms and the cycle of biogenic elements, considering scales from sin-
gle process to the whole Mediterranean Sea” (Moutin et al., 2011). A large part of20

the experiment was dedicated to the precise characterization of biogeochemical pro-
cesses within three oligotrophic environments namely anticyclonic eddies (eddies A, B,
C). During the experiment special effort was made to determine physical forcing and
more specifically the vertical mixing which impacts most of biogeochemical processes
studied and modeled within BOUM project (Bonnet et al., 2011; Mauriac et al., 2011).25

To our knowledge estimates of vertical mixing from in situ measurements are very
scarce in the Mediterranean sea. In a pioneering study, Woods and Wiley (1972) re-
ported some estimation of mixing based on temperature microstructure measurements
in the upper 100 m of Malta coastal waters. Very recently Gregg et al. (2011) performed
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intensive microstructure measurements in the Cycladic plateau. However mixing pro-
cesses reported in these studies are quite specific to the continental slope. In this
paper we focus on the characterization of turbulent dissipation and mixing resulting
from internal wave breaking within anticyclonic eddies in deeper areas of the Mediter-
ranean sea. Turbulent processes are characterized from microstructure measurements5

in the upper 100 m which are used to validate a parametrization of energy dissipation
based on fine scale internal wave shear and strain. This parametrization is then applied
in order to characterize vertical mixing within eddies full depth range and the results
are discussed in relationship with the specificity of internal wave dynamics in these
environments. Finally vertical mixing is inferred from deep fine scale measurements all10

along the Mediterranean East-West transect thus providing a first insight of the impact
of internal wave mixing at the basin scale.

2 Data and methods

The BOUM cruise took place in summer of 2008 (16 June–20 July) aboard the French
Research Vessel l’Atalante. A 3000 km West-East transect was surveyed from the15

Rhône river mouth in the western part of the Mediterranean Sea to the Eratosthenes
seamount in the eastern part (Fig. 1). Details of the measurements are provided in
the introductory article by Moutin et al. (2011). We focus in this paper on turbulence
and hydrographic measurements and their interpretation in the context of internal wave
dynamics and mixing. Analysis of the eddy water masses and structure is given in the20

introductory article to this session by Moutin et al.

2.1 Hydrographic and current measurements

Conductivity Temperature Depth (CTD) measurements were performed for each us-
ing a SeaBird SBE911 instruments. Data were averaged over 1 m bin to filter spuri-
ous salinity peaks. Simultaneously currents were measured from a 300 kHz Lowered25
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broadband Acoustic Current Profiler (LADCP). LADCP data were processed using the
Visbeck inversion method and provided current vertical profiles at 8 m resolution. Thirty
CTD/LADCP profiles were collected along the BOUM transect down to the bottom
during short duration (SD) station at an horizontal spatial resolution of '100 km (see
Fig. 1). In addition intensive measurements (every '3 h over 3 days) were realized5

down to 500 m depth for each of the 3 long duration (LD) stations within anticyclonic
eddies A, B and C (Fig. 1).

2.2 Dissipation measurements and Kz estimates

For each long duration station repeated profiles with a temperature gradient microstruc-
ture profiler, Self-Contained Autonomous Microstructure Profiler (SCAMP; Precision10

Measurements Engineering, www.PME.com), enabled estimates of energy dissipation
rate (ε) and vertical diffusivity of temperature (Kz) to be made (e.g. Ruddick et al.,
2000). SCAMP is limited to 100 m depth and operates at a slow optimal free fall ve-
locity of 0.1–0.2 m s−1. SCAMP was deployed only under calm weather conditions (low
wind and swell) and between the CTD/LADCP profiles, therefore the total number of15

SCAMP profiles was limited to 21. Estimation of dissipation is based on Batchelor
curve fitting of the temperature gradient spectrum (Ruddick et al., 2000). The maxi-
mum likelihood method of Ruddick et al. (2000) implemented in SCAMP software is
used for the curve fitting. However we customize the algorithm by:

– including the improvement on the estimation of χT (the rate of destruction of20

temperature variance by molecular diffusion (◦C s−1)2) proposed by Steinbuck et
al. (2009).

– switching to the least square fit method of Luketina et al. (2000) for very low χT .
In this method the high wavenumber part of the spectrum dominated by noise is
simply discarded rather than modeled and included as part of the fit, this appeared25

to be more efficient when noise variance was larger than χT .
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The rate of cross-isopycnal turbulent mixing or diapycnal diffusivity Kturb, is commonly
inferred from kinetic energy dissipation using the Osborn (1980) relationship:

Kturb =ΓεN−2 (1)

where Γ is a mixing efficiency defined as the ratio between buoyancy flux and turbulent
production and N is the buoyancy frequency. Following Osborn (1980) Γ is generally5

set to 0.2 which corresponds to the critical flux Richardson number Rcrit =0.17.
Recently in a numerical study, Shih et al. (2005) have shown that Osborn relationship

could lead to overestimates of Kturb for turbulent flows characterized by turbulent inten-
sity ε/νN2 larger than 100. They proposed a new parameterization for this regimes:

10

Kturb =2ν
(

ε
νN2

) 1
2

(2)

with ν=1.9×10−6 m2 s−1.
Shih et al. also show that turbulent diffusion is inefficient below ε/νN2.
Therefore, following Shih et al. (2005) we apply Eq. (2) for ε/νN2 > 100 and Os-

born relationship for 7<ε/νN2 <100, whereas turbulent diffusion is considered null for15

ε/νN2 <7. Note that a background molecular diffusion equal to the molecular diffusion
of heat κT =1×10−7 m2 s−1 is always present, so that the final expression of diapycnal
diffusivity including both turbulent and molecular diffusion reads Kz =Kturb+κT .

2.3 Fine scale parameterization

In the absence of microstructure measurements, energy dissipation is classically in-20

ferred from fine-scale parameterization which relates the characteristics of the internal
wave field to energy dissipation. Basically, this relationship depends on the dynamics
of the internal wave field that controls energy transfers toward small scales. Typically,
as underlined by D’Asaro and Lien (2000), energy dissipation, ε, will scale like the
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energy, E , of the internal wave field, when the energy level is “high”, namely the char-
acteristic timescale of energy transfers comparable or smaller than the period of the
waves, whereas ε will scale like the energy squared, E2, for a weakly non linear in-
ternal wave field. This latter class of parameterizations has been chosen here as the
energy level of the IGW field is comparable to the reference energy level as detailed in5

the following.
Away from the boundaries, in the stratified ocean interior, the internal wave contin-

uum is “reasonably” well represented by the GM79 spectrum (Garrett and Munk, 1979).
Therefore parameterizations of energy dissipation, ε, based on this model of a weakly
non linear internal field in which energy transfers are driven by resonant interactions,10

were developed (e.g. Henyey et al., 1986). In these parameterizations ε is formulated
in terms of larger-scale parameters e.g. shear (vertical derivative of horizontal velocity)
and/or strain (vertical derivative of isopycnal displacement) variances in the wavenum-
ber range of internal waves. It is noteworthy to mention that these parameterizations
are able to reproduce the observed levels of dissipation within a factor of two for con-15

ditions close to the GM79 model (Gregg et al., 1989). This is consistent with the main
assumption, that of a weakly nonlinear internal wave field. We present here the popu-
lar incarnation of the original Henyey et al. (1986) parameterization proposed by Gregg
(1989) (G89 hereafter):

εIW =1.8×10−6
[
f cosh−1

(
N0

f

)](
N2

N2
0

)(
S4

10

S4
GM

)
(3)20

where N0 is the canonical GM buoyancy frequency, S10 m is the shear inferred by differ-

entiation over 10 m and SGM the GM shear, with S4
GM =1.66×10−10

(
N2/N2

0

)2
.

The main drawback of the G89 parameterization is its under-estimate of ε values
in the ocean interior. There, as internal wave breaking comes into play as well, the
higher frequency part of the wave field, for which strain dominates over shear, is not25

properly taken into account. Therefore, as in Kunze et al. (2006) and Gregg et al. (2003)
8967
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parameterizations, we introduced in G89 the additional factor:

h(Rω)=
3(Rω+1)

2
√

2Rω
√
Rω−1

(4)

that takes into account the shear to strain ratio so that the the parameterization we
proposed reads:

εparam =h(Rω)εIW (5)5

However in the upper part of the water column z >25 m the shear is not properly mea-
sured by LADCP, therefore following Kunze et al. (2006) we estimate shear from strain

as S2
10 = 〈Rω〉

(
ξ2

z

)
10

where (ξz)10 is the 10 m smoothed strain and 〈Rω〉 is the shear to

strain ratio averaged over the lower part of the water column [20–100] m. Note that near
the surface, for z > 20 m, the parameterization should be considered with caution due10

to the lack of shear measurements and to the strong deviation from GM79 conditions.
Finally we consider the effect of noise contamination in the computation of shear.

Since noise velocity is white in wavenumber (Pinkel, 1985) the noise shear spectrum
shows a k2

z wavenumber dependance and it may overcomes the physical shear sig-
nal for high wavenumber. This is particulary critical for deep measurements in low15

stratification environments and away from internal wave energy sources.
To turn around this problem low pass filtering of the signal is generally applied by

either smoothing the LADCP signal using a running average (Alford and Gregg, 2001)
or by truncating the shear spectra at some threshold wavenumber kc above which
the signal to noise ratio is not acceptable (Kunze et al., 2006). Here we determined20

the noise contamination by fitting the experimental shear spectra with a composite GM
and k2

z shape. Both the energy level of noise and GM shaped spectrum are determined
numerically from the fitting process. This allows to determine the wavenumber knoise
at which the noise spectra intersect the fitted GM shape and will strongly influence the
measured shear. Figure 2a and b shows examples of mean shear spectra computed25
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in the upper (z < 500 m) and lower (z > 500 m) parts of the water columns of deep
isolated LADCP profiles performed during short duration stations. Spectra in the upper
500 m are marginally affected by noise in contrast with spectra at larger depths for
which we determined knoise/2π = 2×10−2 cpm due to a much lower shear level. The
LADCP profiles were low pass filtered using a numerical Finite Impulse response Filter5

(FIR) with cut off wavenumber W ' 2π/knoise. Note that we used FIR filter rather than
smoothing because it has a much sharper cut off. The filtered signal is then used to
compute 10m shear in Eq. (3). Because some high wavenumber energy is removed
from the experimental signal in this smoothing process we also smooth the stratification
profile N(z) in the computation of S4

GM. This is roughly equivalent to the truncation of10

spectrum to kc in the computation of experimental and GM shear variance in Kunze
et al. (2006) parameterization. The underlying hypothesis in both cases is that the
ratio of experimental to GM shear remains constant if both are low passed at the same
wavenumber.

Figure 2c, d and e shows examples of mean shear spectra for the three long stations15

in eddies A, B and C. In this case the shear level is much above the noise level and
noise is not an issue. As will be shown in the next section, this strong shear at stations A
and C results from energetic near inertial waves in the eddies.

3 Observations-direct estimation of dissipation and validation of a fine scale
parameterization20

3.1 Stratification and dynamics at the three long duration stations

Three day stations were performed within three anticyclonic eddies with a three hour
time sampling. This 3 h interval between profile allows both to characterize the back-
ground state- the low-pass stratification and currents, typically with filtering super-
inertial oscillations, as well as the lower frequency band of the internal wave spectrum25

whose frequencies range within [f ,N] (Fig. 3). The mean surface stratification presents
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a sharp pycnocline at ∼15 m depth with values ∼3.10−3 rad s−1 which is typical of sum-
mer stratification in the Mediterranean Sea (Fig. 3g–i). Stratification next decreases
and reaches minimum values in the core of the eddy. The best evidence is given by
eddy C with a pycnostad over [100,350] m (Fig. 3g). This region of weaker stratifica-
tion clearly defines the eddy core. Interestingly eddy C is fully sampled as opposed to5

eddy B for instance whose upper core extension is around 200 m and extends beyond
500 m depth (Fig. 3h). Eddy A in contrast displays a limited core within [100,200] m
(Fig. 3i). The stratification presents two regions of strong gradients in the upper layer
and at the base of the eddy which constitute robust barriers limiting vertical transfers
of mass and nutrients. It is insightful to examine the dynamics in these regions as high10

frequency and/or small scale motions can provide a significant source of turbulence.
As well the “mean” currents will provide information on the velocity field within the eddy
and on the location of the Atalante with respect to the eddy center. Currents within
eddies B and C are fairly constant along the vertical within the eddy core and evidence
an anticyclonic rotation with a direction varying from NW to N and NE in eddy C and15

from NE to E and SE in eddy B. Within eddy A, typically around 150 m depth, the cur-
rent rotates from SW to NE. Thus all profiles have been performed within the eddies
at some distance from the center. We next examined temporal variability at higher fre-
quencies. The dominance of the variability at the inertial frequency is visualized on the
total current time- depth sections. Oscillations with sloping iso-phases indicate baro-20

clinic waves. Interestingly these waves are localized at the top and base of the eddy
(e.g. Fig. 3a and d) leading to significant shear in these well stratified regions.

In order to characterize the internal wave spectrum we have computed shear spec-
tra (Fig. 4). Note that only part of the internal wave range is resolved by our 3 h sam-
pling profiles since the maximum frequency of these waves, the buoyancy frequency N25

reaches values up to o(0.1) rad s−1, also the spectral resolution limited by the duration
of the stations is of ±0.15 f for eddies B and C and of ±0.13 f for eddy A. A main peak
around the inertial frequency is evidenced at stations A and C which is consistent with
the time depth plots of the currents described in Fig. 3. The peak is largely shifted to
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0.8 f for eddy A in the first 100 m which shows the existence of subinertial waves.
A peak around the semi diurnal tidal frequency is also evidenced below 100 m depth

for these stations. The shape of the spectra corresponds fairly well to that predicted
by the G79 model, the reference internal wave spectrum, although spectra at station B
shows a flatter slope. The spectra level is below the GM level in the upper layer for5

the three stations (red curves in Fig. 4) and slightly above the GM level at the base of
eddies C and A (black in Fig. 4) where a strong near inertial signal is observed. Over-
all the experimental spectra are comparable to GM and we shall test in the following
section fine-scale parameterizations of energy dissipation that have been developed in
this context of weakly nonlinear internal waves.10

3.2 Dissipation measurements in the upper oceanic layer and validation of the
fine scale parameterization

Figure 5 shows the first 50 m of individual profiles of dissipation recorded by the
SCAMP during each long station A, B, C in the background fine scale strain internal
wave field. The strongly intermittent nature of ε is clearly apparent on these profiles15

with values spanning several orders of magnitude [10−11,5.10−6] W kg−1. A neat in-
crease of dissipation [10−8,5.10−6] W kg−1 is observed between 10 and 20 m depth.
This depth range typically corresponds to variation of the pycnocline location under in-
ternal waves heaving for the three stations (Fig. 5) and it will be referred hereafter as the
pycnocline region. The few values recorded above 10 m in the mixed layer were com-20

parable to pycnocline values but were not considered further in the analysis because
of the specific physics of the mixed layer (out of the scope of this paper) and possible
ship contamination. Below 20 m depth low values of dissipation (< 10−9 W kg−1) are
recorded with some sporadic events of high dissipations reaching 10−6 W kg−1. On
Fig. 5 the strain appears clearly related to internal waves induced isopycnal displace-25

ment, this is most obvious for station C where a strong near inertial signal is observed.
As observed for dissipation the strain values are generally maximum in the pycno-
cline region which suggests internal wave strain importance in breaking processes as
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already noted by several authors (Alford and Pinkel, 2000; Alford and Gregg, 2001;
Alford, 2010). Still, no clear phase relationship is apparent between internal waves
strain and dissipation here. A similar situation was observed by Alford (2010) for tidal
and near inertial internal waves in the Mendocino escapement which suggests that
dissipation results in this case from a cascading process as assumed by fine scale5

parameterization of dissipation (Sect. 2.3) rather than through direct breaking events
of the dominant internal waves.

The question of the appropriate way to average such an intermittent variable as ε
or Kz using experimentally limited number of samples has long been debated. Nu-
merous observations of turbulent dissipation distribution in geophysical stratified flows10

are quite close to lognormal (Baker and Gibson, 1987; Gregg et al., 1993; Davis,
1996), which means that the logarithm of these variables is approximately normally
distributed. Baker and Gibson (1987) argue that Lognormal distribution of dissipation
observed in oceanic environments can indeed be explained within the framework of
homogeneous isotropic turbulence (Kolmogoroff, 1967) multiplicative cascades for ho-15

mogeneous isotropic turbulence. Therefore Baker and Gibson (1987) suggest to use
Maximum Likelihood Estimates of the mean dissipation expected for a lognormal dis-
tribution which reads:

〈ε〉MLE =exp
(
µ+

1
2
σ2
)

(6)

where µ= 〈log(ε)〉 and σ = std(log(ε)).20

Davis (1996) and Gregg et al. (1993) criticize Baker and Gibson (1987) approach,
considering that oceanic observations of turbulence are far from fulfilling isotropic
and homogeneous turbulence assumptions and can only be approximately lognormal.
Given these caveats, Davis (1996) suggests that a simple arithmetic mean is the most
reliable estimate. However as outlined by Gargett (1999) arithmetic mean will strongly25

be affected by infrequent outliers. Sometimes a geometric mean (equivalent to the ex-
ponential of the mean of the logarithm of dissipation) is computed in order to reduce
the dispersion of dissipation data (Gargett, 1999; Smyth et al., 1997).
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The statistical distribution of dissipation for all data and each station separately is
represented as a Probability Density Function (PDF) of ε in Fig. 6. Regions between
10 and 20 m depth referred to hereafter as the pycnocline region which corresponds to
the depth range of variation of the seasonal pycnocline under internal waves heaving
(Fig. 5) and below 20 m depth were distinguished. The PDF were truncated below5

10−11 W kg−1 and above 10−5 W kg−1 which represents the upper and lower bound of
the SCAMP resolution. A lognormal distribution truncated at these resolution bounds
was fitted to each PDF by Maximum Likelihood. An estimate of the mean was then
obtained from the fit by Eq. (6). This MLE of the mean as well as the arithmetic and
geometric mean and their confidence interval are given in Table 1.10

For all stations, the PDF show two dynamical regions, for data in the pycnocline
region the most probable value (mode value) is ∼ 2.10−7 W kg−1 which characterizes
highly dissipative processes, whereas it is close to a fairly low dissipation value of
10−10 W kg−1 below. Below the pycnocline, the PDF is rather close to a lognormal
distribution for station C, but is more skewed and spiky for stations B and A, which may15

results partially from lack of convergence of experimental PDF. The lack of sampling in
the limited pycnocline region does not allow to state whether distributions of dissipation
are lognormal there.

All in all the arithmetic mean and MLE fit mean are quite close below the pycnocline
for all stations with values ∼ 10−8 W kg−1 (Table 1). These mean values are almost20

two orders of magnitude larger than the most probable value which illustrates the large
intermittency of the data. The geometric mean largely underestimates the dissipation
with a value ∼10−10 W kg−1 which is closer to the mode value. In the pycnocline region,
the mean dissipation is almost two orders of magnitude higher. Arithmetic mean of
dissipation is lower at station C ∼10−7 W kg−1 than at stations B and A ∼10−6 W kg−1.25

Figure 7 shows PDF of Kz truncated in the range [10−7,10−3] m2 s−1. The PDF
also shows two dynamical regions, a flat distribution with a mode value of Kz ∼
3.10−7 m2 s−1 is observed below 20 m and a highly spiked distribution with mode
value of ∼ 5.10−5 m2 s−1 is found in the pycnocline region. Below the pycnocline some
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reasonable agreement is found between the MLE lognormal fit and Kz distribution for
station C, elsewhere no lognormal behavior could be evidenced. The arithmetic mean
of Kz below the pycnocline is ∼1.10−5 m2 s−1 for all stations, whereas MLE estimate at
station C reaches 1.9×10−5 m2 s−1. In the pycnocline region depth arithmetic mean Kz
values are higher by a factor ∼5. Geometric means largely underestimate Kz by nearly5

2 order of magnitudes below the pycnocline, but agrees within a factor of 3 above
20 m. The increase of Kz in the pycnocline region observed here is unusual because
the larger stratification generally prevents the increase of mixing. It results here from
high mean dissipation reaching ∼ 6.6×10−6 W kg−1 in the pycnocline region and its
dramatic decrease below the seasonal pycnocline.10

From this analysis we also find that MLE of ε from a lognormal distribution when
applicable and arithmetic mean gave similar results, therefore following Davis (1996)
advise we will simply consider arithmetic mean in the following.

We next look at the ensemble averaged vertical profiles of ε and compare them with
the parameterization proposed in Sect. 2.3. In order to reduce dispersion of ε and15

Kz values and to allow better comparison with parameterization based on 10 m scale
shear, ε and Kz profiles were first smoothed using a 10 m running average. Depth
average profiles of ε and Kz were then computed (Fig. 8 and 9). When averaged over
all profiles, dissipation decreases from high values of 10−6 W kg−1 to moderate values
of 10−8 W kg−1 between 10 m and 40 m depth. Below dissipation remains around a20

pretty constant value of 10−8 W kg−1. This dissipation level is comparable with the GM
reference level εGM that mostly falls within the 95 % confidence interval below 40 m,
but overcomes εGM from more than one order of magnitude in the pycnocline [10 m,
20 m].

Station average profiles show larger variability at depth that likely results from the25

lack of statistics as illustrated by the largest confidence intervals. Station B however
shows a neat low dissipation ' 10−10 W kg−1 below εGM between 50 and 70 m depth
which is one order of magnitude smaller than GM level.
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The parameterized dissipation εparam shows a fairly good agreement with SCAMP
measurements. When the average of the whole set of profiles is considered 〈εparam〉
falls within the 95 % interval of SCAMP measurements over 85 % of the profile depth
range. The agreement is also good when average is performed independently for
each station, the overall shape of the SCAMP average profile is well reproduced by5

the parameterization, notably the decrease of dissipation in the first thirty meters and
the lower dissipation at station B around 55 m depth. However large discrepancies
exceeding one order of magnitude are punctually observed, but those occur mostly for
stations B and A where a very small number of profiles is available.
Kz depth averaged profiles are shown in Fig. 9 the whole profile set average shows10

decreasing values from 5.10−5 m2 s−1 to 10−6 m2 s−1 between 10 m and 40 m depth and
then slowly increasing values up to to 5.10−5 m2 s−1 at 95 m depth. Top and bottom
values are significantly higher than the nearly constant GM value of 5.10−6 m2 s−1,
whereas the local minimum at 40 m depth is lower. Station average evolve in the same
range with a noticeable minimum of ' 10−6 m2 s−1 for station B between 45 and 70 m15

depth. For station A, Kz remains highly variable in the range 10−6 m2 s−1 5.10−5 m2 s−1

due to the lack of statistics.
The proportion of the different diffusion regimes found according to Shih et al. (2005)

classification (Sect. 2.2) is also shown in Fig. 8 and 9. Intermediate and strong tur-
bulence regime dominates in the pycnocline, whereas molecular diffusion dominates20

below 25 m depth, the minimum of turbulent diffusion around 40 corresponds to region
where molecular diffusion regime is found for 80 % of the samples.

Overall average of parameterized Kz are close to experimental values and falls within
the experimental confidence interval over 90 % of the profile depth range. However the
local minima around 40 m depth is not reproduced.25

8975

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/8961/2011/bgd-8-8961-2011-print.pdf
http://www.biogeosciences-discuss.net/8/8961/2011/bgd-8-8961-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 8961–8998, 2011

Turbulence and
validation of

fine-scale
parametrization

Y. Cuypers et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4 Dissipation and turbulent mixing inferred from fine-scale parameterization

The modified G89 parameterization, validated by SCAMP measurements, was applied
to the full dataset. Time depth plots of ε and Kz are displayed for the three LD stations
in Fig. 10 whereas the stations averaged profiles are shown in Fig. 11. The domain
of variation is large within [10−12,10−5] W kg−1 for ε and within [10−7,10−3] m2 s−1 for5

Kz. The eddy core is characterized by weak values of dissipation, o(10−10 W kg−1), as
shown in Fig. 10a to c, with the most striking evidence for eddy C which has the largest
vertical extension. In contrast the highest values are observed at the base (eddy C
and eddy A) and at the top of the eddies (C, B and A). This increase in dissipation can
be related to the high shear values at the boundaries of the eddies that results both10

from the mean current profile and from strong near-inertial internal waves for eddies A
and C. This impact of near inertial internal waves on dissipation is best evidenced
in eddy C within [400–500] m depth and between 160 m and 300 m for eddy A. The
spatial distribution of vertical diffusivities differ from that of ε since stratification comes
into play: regions of the weakest stratification, typically the eddy cores (see eddies C15

and B), are characterized by relatively large values of Kz, ' 10−4 m2 s−1 locally, which
are of the same order as those at the base of the eddy associated with waves.

The parameterization was also applied to the deep stations performed all along the
BOUM transect thus providing a snap shot of dissipation and mixing (Fig. 12). Fig-
ure 12 also shows the evolution of shear and stratification along the transect. The20

signature of eddies A, B and C is evidenced by a depression of upper isopycnes as
well as local region of minimum stratification in Fig. 12. Same feature is observed for
the Ierapetra anticyclonic eddy in the south of Crete that was also sampled during a
SD station.

Highest shear and dissipation values are found in the upper 500 m and up to 1500 m25

above the bottom while these variables are generally minimum in a region between
500 m and 1500 m depth. As for LD stations data high shear and dissipation are found
at the base of eddies A and C (at x = 433, and 3130 km), but some enhancement
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is also evidenced around 600 m at the base of eddy B (x = 1810 km) which was not
sampled by LD stations profiles. Similarly high shear and dissipation are found at the
base of Ierapetra eddy (x = 2478 km, z ' 170 m). Another noticeable feature is the
large enhancement of shear and dissipation at x= 1478 km in the strait of Sicily which
is likely associated with topographic effect (internal tides and/or bottom shear).5

Kz values rapidly increase with decreasing stratification, therefore the dominant trend
is an increase with depth. At large depth close to the bottom slight enhancement of
dissipation and very weak stratification combine to give the largest vertical turbulent
diffusion reaching locally 10−3 m2 s−1.

5 Discussion10

Lacking dedicated physical measurements of dissipation previous biogeochemistry ori-
ented studies have considered rough estimates of dissipation as a constant value in
the computation of vertical turbulent diffusion ignoring large variations resulting from
the fine scale internal wave field (Moutin and Raimbault, 2002; Copin-Montegut, 2000).

For instance Moutin and Raimbault (2002) considered a constant value of ε =15

7.10−10 W kg−1 to estimate vertical diffusion and nutrients fluxes in the upper 100 m
during the MINOS cruise along the Mediterranean Sea. This value corresponds to a
GM level dissipation at a reference stratification N0 = 3 cph at the top of the pycno-
cline in G89 parameterization. As noted by Moutin and Raimbault (2002) this value
is nearly two orders of magnitude smaller than the constant value of 5×10−8 W kg−1

20

(derived form Denman and Gargett, 1983) considered by Copin-Montegut (2000) in
North Western Mediterranean sea. Clearly fluxes estimations could drastically change
depending on the chosen value for ε. The slightly adapted G89 parametrization we
propose here will improve significantly estimation of mixing compared to these previ-
ous rough estimates.25

Parameterized ε estimated here from SD LADCP/CTD profiles along the Mediter-
ranean transect show a mean value '1.5×10−9 W kg−1 below the seasonal pycnocline
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and 100 m depth which is slightly higher than Moutin and Raimbault (2002) value.
Higher dissipation was however found within eddies where the average dissipa-
tion directly estimated from SCAMP measurements and parameterization reaches
' 8.5×10−9 W kg−1 for the same depth range which is in between Copin-Montegut
(2000) and Moutin and Raimbault (2002) values. The increase of ε and derived Kz in5

eddies is even more obvious in region of high near inertial shear at the base of eddies A
and C.

These results suggest a strong influence of anticyclonic eddies on near inertial waves
dynamics and mixing. Indeed anticyclonic eddies induce a negative background vor-
ticity which influence inertial waves propagation. L. Prieur (personal communication)10

estimated eddies vorticity from an analysis of drifting mooring trajectories deployed dur-
ing BOUM (data not shown here). He finds the strongest negative vorticity for eddy A
which reaches ζ =−0.397f , a slightly weaker vorticity for eddy C reaching ζ =−0.32f
and a weaker vorticity of −0.297f for eddy B. Negative background vorticity can result
in a trapping of near inertial waves and explain enhanced near inertial shear. Indeed15

as shown by the theoretical work of Kunze (1985) anticyclonic mesoscale vorticity ζ in-
duces locally a slight decrease of the effective inertial frequency feff = f +ζ/2, therefore
near inertial waves which evolve in the frequency band [feff,N] will encounter their turn-
ing points when propagating away from anticyclonic eddy centers (Bouruet-Aubertot
et al., 2005) and remained trapped in the eddy core. Numerical studies by Lee and20

Niiler (1998), have also shown some increase of near inertial shear resulting from the
interaction of near inertial waves with frontal structures or eddies validating partially
the mechanism proposed by Kunze (1985). Evidence of a subinertial peak is indeed
found at feff = 0.8f at station A in the first 100 m which is in agreement with a shift
of 0.5ζ . Although spectral analysis (Sect. 3.1) did not reveal a subinertial peak at25

stations B and C, slightly subinertial waves can not be ruled out for theses stations
because of the coarse resolution of ±0.15 f and the weaker vorticity of these eddies.
The spectacular increase of near inertial shear at the base of eddy A and C may result
more particulary from the vertical trapping of near inertial waves specific to baroclinic
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anticyclonic structures where vorticity and thus feff increases with depth (Kunze, 1985).
This mechanism was experimentally observed in a warm core ring (anticyclonic) of the
Gulf Stream (Kunze, 1995) together with a (10–100) increase of dissipation. Another
possible mechanism is a radiation of near inertial waves from a baroclinic adjustment
of the eddy. Further work is needed to get insight of this near inertial waves generation5

at the eddy base.
Vertical mixing estimate within eddies in BOUM can be compared with previous stud-

ies of mixing within eddies based on tracer release experiments. Such tracer exper-
iments integrates vertical transport processes over a large spatial scale (typically a
region below the seasonal pycnocline and above 100 m depth) and temporal scale (a10

few days). Regarding turbulent mixing it is an advantage because it avoids problems
related to the under sampling of highly intermittent turbulent mixing processes, but it
also precludes a dynamical characterization of intermittent internal wave breaking as
done here. Kim et al. (2005) and Ledwell et al. (2008) found Kz ' 3.10−5 m2 s−1 be-
tween the base of a shallow seasonal mixed layer and 100 m depth in North Atlantic15

anticyclonic eddies (46◦ N) and in the Sargasso sea (31◦ N) respectively. Whereas one
order of magnitude higher values were found by Law et al. (2001) also in a North At-
lantic anticyclonic eddy (59◦ N). In BOUM experiment the overall averaged Kz found
within eddies A, B and C pycnocline base and 100 m depth is '10−5 m2 s−1 which is
two times the GM value but is still three times smaller than Kim et al. (2005) and Ledwell20

et al. (2008) estimates. However wind forcing was pretty weak during BOUM, whereas
all the experiments cited above were affected by the passage of storms (Law et al.,
2001; Ledwell et al., 2008) or strong wind gusts (Kim et al., 2005) that likely increased
internal waves energy and induced dissipation. It should also be noted that Greenan
(2008) provides smaller Kz estimates than Ledwell et al. (2008) from Gregg-Henyey25

(1989) parameterization of dissipation for the same experiment (EDDIES).
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6 Concluding remarks

In this study we proposed a slightly adapted G89 parameterization for dissipation which
was validated against microstructure estimates in the first 100 m of the water column.
The energy sources for internal waves are weak in summer in the Mediterranean sea,
therefore the background parameterized dissipation found from deep SD stations along5

the transect is relatively weak below the base of the seasonal pycnocline and away from
the bottom leading to weak vertical turbulent diffusion ' 10−5 m2 s−1 in these regions.
A contrasting situation was found in eddies where large near inertial at eddy top and
bottom is associated with dissipation exceeding the canonical GM level. Turbulent
diffusion increased in these regions of high shear and dissipation but also within the10

eddy core because of a much weaker stratification within this homogenous mass of
water. The spectacular increase of near inertial shear found in eddies likely result
from trapping or channeling of near inertial energy input at the surface, a mechanism
highlighted in several numerical and experimental studies (Kunze, 1985, 1995; Lee and
Niiler, 1998; Bouruet Aubertot et al., 2005).15

Further studies implicating BOUM experimental results and numerical model will al-
low to characterize thoroughly the impact of mesoscale eddies on biogeochemical pro-
cesses. Statistical distribution of vertical diffusion may notably be used to reproduce
the impact of the strong intermittency of turbulence in one-dimensional biogeochem-
ical model already available (Mauriac et al., 2011). However, regarding the impact20

on nutrients fluxes, Bonnet et al. (2011) have shown that vertical dinitrogen turbulent
fluxes determined from Kz values obtained in eddies still balance only a small fraction
of the nitrogen fixation fluxes resulting from primary production suggesting a main con-
tribution from atmospheric deposition. Vertical advection was not considered in this
study and may as well provide significant vertical transport of nutrients as suggested25

in previous studies (Ledwell, 2008).
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Table 1. Mean SCAMP ε estimations (W kg−1) from various methods, arithmetic mean, MLE
of the lognormal distribution mean, geometric mean.

Range Eddy εarith εMLE εgeom

[20–100] m

All 8.5 [6.0 10.] (×1e−9) 7.0 [3.1 16.] (×1e−9) 1.5 [1.3 1.7] (×1e−10)
C 6.0 [3.2 8.0] (×1e−9) 5.9 [2.3 13.] (×1e−9) 1.5 [1.3 1.8] (×1e−10)
B 13. [7.0 19.] (×1e−9) 16. [2. 170] (×1e−9) 1.7 [1.3 2.1] (×1e−10)
A 8.0 [3.6 12.] (×1e−9) 4.0 [0.4 50.] (×1e−9) 1.3 [1.0 1.8] (×1e−10)

[10–20] m

All 6.6 [4.4 9.0] (×1e−7) 9.5 [2.4 4.4] (×1e−6) 4.3 [3.0 6.0] (×1e−8)
C 1.9 [1.4 2.3] (×1e−7) 1.6 [0.4 6.9] (×1e−6) 2.3 [1.7 6.6] (×1e−8)
B 12. [7.0 18.] (×1e−7) NA 13. [8.0 25.] (×1e−8)
A 8.0 [3.5 13.] (×1e−7) NA 3.0 [1.7 6.6] (×1e−8)
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Table 2. Mean Kz estimations (m2 s−1) from various methods, arithmetic mean, MLE of the
lognormal distribution mean, geometric mean.

Range Eddy Kz,arith Kz,MLE Kz,geom

[20–100] m

All 1.3 [1.1 1.5] (×1e−5) NA 7.3 [6.6 6.4] (×1e−7)
C 1.0 [0.8 1.3] (×1e−5) 1.9 [0.6 6.0] (×1e−5) 9.2 [8.3 9.3] (×1e−7)
B 1.7 [1.3 2.2] (×1e−5) NA 6.2 [5.0 5.4](×1e−7)
A 1.5 [0.9 1.9] (×1e−5) NA 3.5 [2.9 5.0] (×1e−7)

[10–20] m

All 4.7 [4.0 5.5] (×1e−5) NA 1.0 [0.6 1.3] (×1e−5)
C 3.0 [2.6 3.6] (×1e−5) 7.0 [3.6 14.] (×1e−5) 0.8 [0.3 1.0] (×1e−5)
B 6.9 [5.0 8.6] (×1e−5) NA 2.1 [1.2 3.0] (×1e−5)
A 5.2 [3.3 7.7] (×1e−5) NA 0.7 [0.4 1.3] (×1e−5)
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Figure 1: Bathymetric map of the Mediterranean sea, short duration stations (SD) pro�les are
marked by black dots, long duration LD stations (A,B,C) at the eddy centers are marked by red
dots
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Fig. 1. Bathymetric map of the Mediterranean sea, short duration stations (SD) profiles are
marked by black dots, long duration LD stations (A, B, C) at the eddy centers are marked by
red dots.
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Figure 2: Upper row: wavenumber vertical shear spectrum for deep SD stations LADCP pro�les
(a) 0 < z < 500 m (b) z > 500m and lower row ensemble averaged wavenumber vertical shear
spectra for LD stations LADCP pro�les at (c) Eddy C (d) Eddy B and (e) Eddy A. The blue line,
magenta dashed line, black dashed line, cyan dashed line and the red line represent respectively
raw data shear spectrum, the GM level shear spectrum, the �tted GM shear spectrum, the noise
�tted spectrum, and the composite of noise and GM �tted spectra
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Fig. 2. Upper row: wavenumber vertical shear spectrum for deep SD stations LADCP profiles
(a) 0<z < 500 m; (b) z > 500 m and lower row ensemble averaged wavenumber vertical shear
spectra for LD stations LADCP profiles at (c) eddy C; (d) eddy B and (e) eddy A. The blue line,
magenta dashed line, black dashed line, cyan dashed line and the red line represent respec-
tively raw data shear spectrum, the GM level shear spectrum, the fitted GM shear spectrum,
the noise fitted spectrum, and the composite of noise and GM fitted spectra.
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(i) stratification profiles N(z) for each LD station.

8989

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/8961/2011/bgd-8-8961-2011-print.pdf
http://www.biogeosciences-discuss.net/8/8961/2011/bgd-8-8961-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
8, 8961–8998, 2011

Turbulence and
validation of

fine-scale
parametrization

Y. Cuypers et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

10
0

10
−6

10
−4

10
−2

Eddy C
S

he
ar

 P
S

D
((

s−
2 /c

pd
)

cpd

f SD

 

 

10
0

10
−6

10
−4

10
−2

Eddy B

cpd

SDf

10
0

10
−6

10
−4

10
−2

Eddy A

cpd

f

SD

0.8f

Figure 4: Frequency spectra of LADCP vertical shear for the three eddies averaged over di�erent
depth intervals, in blue [30-500]m, in red [30-100]m, in black [400-500]m for eddy C and [200-
300]m for eddy A. A two decades shift was applied between each curve. The reference spectrum,
the GM model, is displayed as well for comparison in dashed lines. Vertical dashed lines mark
the near inertial frequency (f) and Semi-Diurnal (SD) tide frequency
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Fig. 4. Frequency spectra of LADCP vertical shear for the three eddies averaged over different
depth intervals, in blue [30–500] m, in red [30–100] m, in black [400–500] m for eddy C and
[200–300] m for eddy A. A two decades shift was applied between each curve. The reference
spectrum, the GM model, is displayed as well for comparison in dashed lines. Vertical dashed
lines mark the near inertial frequency (f ) and Semi-Diurnal (SD) tide frequency.
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Figure 5: Strain in gay scale, 0.03kg/m3 iso-density contours in the mixed layer in red
lines, 0.2kg/m3 iso-density contours below the mixed layer in black and dissipation pro�les in
Log10(W.kg−1) in colored square marks, station C upper panel, station B middle panel, station
A lower panel
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Fig. 5. Strain in gay scale, 0.03 kg m−3 iso-density contours in the mixed layer in red lines,
0.2 kg m−3 iso-density contours below the mixed layer in black and dissipation profiles in Log10
(W kg−1) in colored square marks, station C upper panel, station B middle panel, station A lower
panel. 8991
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Figure 6: Experimental PDF of Log10(ϵ(W.kg.−1)) in grenn for 10m<z<20m in blue for
20m<z<100m, in red MLE �t of a lognormal PDF
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Fig. 6. Experimental PDF of Log10(ε(W kg.−1)) in grenn for 10 m<z <20 m in blue for 20 m<
z <100 m, in red MLE fit of a lognormal PDF.
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Figure 7: Experimental PDF of Log10(Kz(m
2.s.−1)) in blue for 10m<z<20m in blue for

20m<z<100m in red MLE �t of a lognormal PDF
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Fig. 7. Experimental PDF of Log10(Kz(m2 s.−1)) in blue for 10 m< z <20 m in blue for 20 m<
z <100 m in red MLE fit of a lognormal PDF.
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Figure 8: Panel 1 proportion of the various di�usion regimes (strong, intermediate, molecular)
found from SCAMP dissipation measurements. Panel 2,3,4,5 Overall and station averaged pro-
�les of dissipation from SCAMP in blue plain line, parameterization in black, and reference GM
level in magenta dashed lines
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Fig. 8. Panel 1 proportion of the various diffusion regimes (strong, intermediate, molecular)
found from SCAMP dissipation measurements. Panel 2, 3, 4, 5 overall and station averaged
profiles of dissipation from SCAMP in blue plain line with 95 % confidence interval in gray
shading, parameterization in black, and reference GM level in magenta dashed lines.
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Figure 9: Panel 1 proportion of the various di�usion regimes (strong, intermediate, molecular)
found from SCAMP dissipation measurements. Panel 2,3,4,5 overall and station averaged pro�les
of Kz from SCAMP in blue plain line, parameterization in black, and reference GM level in
magenta dashed lines
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Fig. 9. Panel 1 proportion of the various diffusion regimes (strong, intermediate, molecular)
found from SCAMP dissipation measurements. Panel 2, 3, 4, 5 overall and station averaged
profiles of Kz from SCAMP in blue plain line with 95 % confidence interval in gray shading,
parameterization in black, and reference GM level in magenta dashed lines.
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Figure 10: Parameterized energy dissipation (a) and diapycnal di�usion coe�cient (b) as a
function of time and depth for the three stations.
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Fig. 10. Parameterized energy dissipation (a) and diapycnal diffusion coefficient (b) as a func-
tion of time and depth for the three stations.
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Figure 11: First row: arithmetic mean (blue) and GM pro�les (dashed magenta) of ϵ for the
three LD stations. Second row same for Kz
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Fig. 11. First row: arithmetic mean (blue) and GM profiles (dashed magenta) of ε for the three
LD stations. Second row same for Kz.
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Figure 12: Buoyancy frequency squared (N2)(a), shear squared (b), dissipation rate (c) and
diapycnal di�usivity (d) along the BOUM transect. The abscissae x is expressed as the distance
along the transect from the �st station in the Rhone river mouth (not represented). SD stations
position are marked by dots, black cross indicate approximate positions of the base of eddy A,
B, C and Ierapetra eddy. Black lines represent isopycne 28.5 28.9 29.1 kg/m−3
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Fig. 12. Buoyancy frequency squared (N2) (a), shear squared (b), dissipation rate (c) and
diapycnal diffusivity (d) along the BOUM transect. The abscissae x is expressed as the distance
along the transect from the fist station in the Rhone river mouth (not represented). SD stations
position are marked by dots, black cross indicate approximate positions of the base of eddy A,
B, C and Ierapetra eddy. Black lines represent isopycne 28.5 28.9 29.1 kg m−3.
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