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ABSTRACT 

 

This work attempts to reconcile in a common and comprehensive framework the various conflicting 

results found in the literature regarding Indian Summer Monsoon (ISM) rainfall-Sea Surface 

Temperature (SST) relationships, especially the links with El-Niño Southern Oscillation (ENSO) and 

the Indian Ocean Dipole (IOD). 

 

To do so, we first examine the linear relationships between ISM rainfall and global SST anomalies 

during 1950-1976 and 1979-2006 periods. Our results highlight the existence of significant 

modulations in SST teleconnections and precursory patterns between the first (June-July, JJ) and 

second part (August-September, AS) of the monsoon. This JJ-AS rainfall dichotomy is more 

pronounced after the 1976-77 climate regime shift and tends to blur the global ISM-ENSO signal 

during the recent period, leading to an apparent weakening of this relationship at the seasonal time 

scale. Although ISM rainfall in JJ and AS is still strongly linked to ENSO over both periods, the lead-

lag relationships between ENSO and AS Indian rainfall has changed during recent decades. Indeed, 

ENSO variability in the preceding boreal winter has now a significant impact on rainfall variability 

during the second half of ISM. 

 

To evaluate in more details the impact of this JJ-AS dichotomy on the ISM-ENSO-IOD relationships, 

ISM correlations are also examined separately during El Niño and La Niña years. Results indicate that 

the early onset of El Niño during boreal spring causes deficient monsoon rainfall in JJ. In response to 

weaker monsoon winds, warm SST anomalies appear in the west equatorial IO, generating favorable 

conditions for the development of a positive IOD in AS. Local air-sea processes triggered by the SST 

anomalies in the eastern node of IOD seem, in turn, to have a more active role on AS rainfall 

variability, as they may counteract the negative effect of El Niño on ISM rainfall via a modulation of 

the local Hadley circulation in the eastern IO. The JJ-AS rainfall dichotomy and its recent 

amplification may then result from an enhancement of these IO feedbacks during recent El Niño years. 

This explains why, although El Niño events are stronger, a weakening of the ISM-ENSO relationship 

is observed at the seasonal scale after 1979. Results during La Niña years are consistent with this 

hypothesis although local processes in the Southeast IO now play a more prominent role and act to 

further modulate ISM rainfall in AS. 

Finally, our results highlight the existence of a biennal rhythm of the IOD-ENSO-ISM system during 

the recent period, according to which co-occurring El Niño and positive IOD events tend to be 

followed by a warming of the IO, a wet ISM during summer and, finally, a La Niña event during the 

following boreal winter. 

 

Keywords: Indian Summer Monsoon; Sea Surface Temperature; ENSO;Indian Ocean Dipole.  
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1. Introduction 

 

Interannual variability of the Indian Summer Monsoon (ISM) rainfall has a great impact on 

the economy of India and surrounding countries. Long-range forecasting of ISM rainfall is 

thus a matter of great concern for the people of South Asia, but is still a challenging scientific 

problem (Gadgil et al., 2005). To achieve this goal, a proper understanding of how external 

slow boundary forcings modulate ISM variability is required. It is with this aim that many 

works have examined the links between ISM rainfall and various modes of variability in the 

Indo-Pacific region, since the seminal works of Blanford (1884) and Walker (1924). 

 

In most of these past studies, a strong statistical relationship has been observed between ISM 

rainfall and El Niño-Southern Oscillation (ENSO) (Rasmusson and Carpenter, 1983; Webster 

and Yang, 1992; Shukla, 1987; Webster et al., 1998; Wang, 2006). Although ENSO accounts 

for only about 30% of ISM variability (see the correlations in Table 2 for further details), it 

has been shown that El Niño (La Niña) events tend to favor deficit (excess) ISM rainfall 

(Shukla and Paolino, 1983; Ju and Slingo, 1995). However, the relationship between ENSO 

and ISM is complex and not systematic (Krishna Kumar et al., 1999, 2006; Kinter el al., 

2002; Annamalai and Liu, 2005; Kucharski et al., 2007, 2008; Wang et al., 2008). As a 

notable example, the 1997-98 El Niño event, despite its intensity, produced only marginal 

rainfall anomalies over India, while the much weaker 2002 El Niño was associated with a 

very severe drought (see Fig. 1; Slingo and Annamalai, 2000; Gadgil et al., 2007). In addition, 

it has been noticed that ISM variability during recent decades may be more significantly 

influenced by the decaying phase of El Niño and the warming of the Indian Ocean (IO) which 

follows El Niño events in the late boreal winter and spring (Yang et al., 2007; Du et al., 2009; 

Park et al., 2010; Boschat et al., 2010). As an illustration, ISM rainfall was above normal in 

1973, 1983 and 1988 following the El Niño events of 1972-73, 1982-83 and 1986-87 (see Fig. 

1). In other words, the links between ENSO and ISM are not yet properly understood, 

particularly in the context of global warming (Gershunov et al., 2000; Ashrit et al., 2003; 

Annamalai et al., 2007; Kucharski et al., 2007, 2008, 2009; Abram et al., 2008; Cai et al., 

2009a). 

 

Faced with observations of a recent weakening of the ISM–ENSO relationship, more and 

more studies have focused on the role played by the IO on ISM variability (Ashok et al., 

2001, 2004; Gadgil et al., 2004, 2005, 2007; Krishnan et. al., 2003; Krishnan and Swapna, 
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2009; Clark et al., 2000; Terray et al., 2003, 2005, 2007; Yang et al., 2007; Izumo et al., 2008; 

Park et al., 2010; Boschat et al., 2010). Although Sea Surface Temperature (SST) anomalies 

over the equatorial IO are not statistically associated with ISM rainfall (Gadgil et al., 2004, 

2005, 2007; Ihara et al., 2007), a lot of attention has been paid to the Indian Ocean Dipole 

(IOD) over the years, with debate regarding its existence as an intrinsic mode of IO 

variability, its dependence with ENSO (Chang et al., 2006), as well as its relationship with 

ISM (Ashok et al., 2001, 2004; Gadgil et al., 2004, 2005, 2007; Loschnigg et al., 2003; Terray 

et al., 2005; Kulkarni et al., 2007; Drbohlav et al., 2007; Hong et al., 2008). However, even 

the most recent studies have obtained quite contradictory results on this subject. Indeed, while 

some authors, like Ashok et al. (2004) or Krishnan and Swapna (2009) suggest the existence 

of a positive relationship between positive IOD events and strong ISMs (as in the years 1961 

and 1994, see Fig. 1), others insist on the fact that the IOD-ISM relationship is closely tied 

with the Tropical Biennial Oscillation (TBO; Meehl et al., 2002, 2003; Loschnigg et al., 2003; 

Terray et al., 2005; Drbohlav et al., 2007; Webster and Hoyos, 2010). In this scenario, 

positive IOD events are associated with a deficient monsoon during the current year, but the 

warm SST anomalies associated with these positive IOD events may contribute to the 

development of a stronger than normal monsoon during the next summer. The years 1982-83 

and 1987-88 are good examples of this biennial rhythm (Fig. 1). However, as of today, the 

impact of IOD events, co-occurring with El Niño development in the Pacific, is still not well 

understood. For instance, the two strongest El Niño events of the last century, in 1982-83 and 

1997-98, were both associated with IOD events, but ISM rainfall was deficient in 1982 and 

above normal in 1997 (Fig. 1). Therefore, an understanding of the role of IOD events on the 

ISM is also critical for improving ISM rainfall prediction (Gadgil et al., 2004, 2005, 2007). 

 

Meanwhile, there have also been suggestions of significant extratropical influence on ISM 

variability, whether it be from the North Pacific (Peings et al., 2009), the North and South 

Atlantic (Srivastava et al., 2002; Kucharski et al., 2007, 2008 and 2009; Rajeevan and 

Sridhar, 2008) or the South IO (Terray et al., 2003, 2005, 2007). As an illustration, the Indian 

Ocean Subtropical Dipole (IOSD) mode (Behera and Yamagata, 2001) has been shown to 

play a significant role in influencing ISM, IOD and ENSO (Terray et al., 2005, 2007; Fischer 

et al., 2005; Terray, 2010; Yoo et al., 2010), particularly after the so-called 1976-77 climate 

shift (Terray and Dominiak, 2005). This climate shift refers to the alteration of the North 

Pacific SSTs associated with a deepening of the Aleutian low pressure system after 1977 

(Nitta and Yamada, 1989). SSTs across the tropics have consistently risen since 1976-77, 
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particularly in the IO (Terray, 1994), accompanied by notable changes in ENSO 

characteristics (Wang, 1994). The ENSO-ISM relationship has also been shown to weaken 

around this time (Kinter et al., 2002), which calls to question the potential impact of this 

climate shift on the teleconnection between ISM and IO SSTs.  

 

Altogether, these recent studies have thus suggested the existence of significant precursory 

SST signals in the tropical and extra-tropical regions before the ISM onset (Boschat et al., 

2010). Nevertheless, we need to bear in mind that a majority of these works have focused on a 

recent time-period, e.g. the period from the late 1970s onwards, which has benefitted from 

satellite coverage, and, hence, greater reliability in observational data. Therefore, can we 

really be certain of the robustness of these precursory signals and their validity for other time 

periods? This question is particularly relevant since ENSO precursors have already been 

shown to change significantly following the 1976-77 climate shift (Wang, 1995; Terray and 

Dominiak, 2005). In the context of a weakened ISM-ENSO relationship, it thus seems 

legitimate to ask ourselves whether ISM precursors have changed in a similar way during the 

recent period. Besides, a closer inspection of their mutual interaction could also eventually 

lead to a better ISM seasonal prediction. Note that these issues are particularly at stake, after 

the failure of the Indian Meteorological Department or international centres operational 

forecasts for the recent severe droughts of 2002, 2004 and 2009 (Gadgil et al., 2005; Rajeevan 

et al., 2006; Francis and Gadgil, 2010). 

Overall, the purpose of the present study is thus to question the time-dependence and spatial 

robustness of previous findings, as far as ISM is concerned. Besides, more emphasis must 

also be given to the association between global SST patterns and ISM rainfall inside of the set 

of El Niño (or La Niña) events in order to examine probable causes for the collapse of the 

ISM-ENSO relationship during recent decades. 

 

The paper is organized as follows: the datasets used are described in Section 2. Section 3 

examines statistical relationships with ISM over the 1950-1976 and 1979-2006 periods, based 

on correlation analyses between ISM rainfall and various SST indices. These correlation 

analyses are then extended in Section 4, in order to assess the robustness of global ISM 

teleconnection and precursory patterns, before and after the 1976-77 climate shift. Finally, 

Section 5 aims to explore the association between these global SST patterns and ISM rainfall 

within the sets of El Niño and La Niña years. All the results are then summarized and 

discussed in Section 6.  
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2. Data and Methods 

 

In this study, we use the ISM rainfall data derived from the rain gauge in situ observations 

(Parthasarathy et al., 1995). This dataset is updated routinely by the Indian Institute of 

Tropical Meteorology and consists of an area-weighted average of 306 rain gauges distributed 

across India. The ISM rainfall time series is computed over the whole June to September 

(JJAS) season, as well as separately during the early part in June-July (JJ) and later part of the 

season in August-September (AS), following the results of Boschat et al. (2010). 

 

To examine the SST anomalies associated with ISM variability, our analysis makes use of the 

Hadley Centre sea ice and sea surface temperature dataset (HadISST1.1) available from 1871 

to 2007 (Rayner et al. 2003). To examine the associated atmospheric patterns, we also use Sea 

Level Pressure (SLP) time series from the monthly Hadley Center analyses, available from 

1850 to 2005 (Allan and Ansell, 2006). Note that we have intentionally not used any 

reanalysis product in our study, as data assimilation systems have their limits due to changes 

in the assimilated data stream in the reanalysis (i.e. with the introduction of satellite data after 

1979). This would certainly introduce some biases in our comparison of the ISM precursory 

signals before and after the climate shift observed in the late 1970s (Kinter et al., 2004). Note, 

however, that the Hadley center SST and SLP datasets may also have problems and flaws, but 

the results shown here are reproducible with the other reanalyses currently available (Hurrel 

and Trenberth, 1999).  

 

Besides, the analysis of long-term SST time series has shown that the IO has undergone a 

significant secular variation associated with a 0.3° or 0.5°C shift to a warmer state during the 

20
th

 century (Nitta and Yamada, 1989; Terray, 1994; Clark et al., 2000; Alory et al., 2007). In 

order to remove this global warming effect from the SST and SLP timeseries, a preprocessing 

step is applied to the full period of each dataset. We use the STL additive scheme (Seasonal-

Trend decomposition procedure based on Loess), developed by Cleveland et al. (1990) for 

this purpose, as it allows us to extract the interannual signal from the potentially noisy and 

non-stationary SST and SLP observations. Interannual anomalies are then defined as 

deviations from a (non-linear) long-term trend and a “local” annual cycle estimated by the 

STL scheme (for further detail see Terray, 2010). Note that our results are robust and remain 

unchanged by the use of different parameters in the STL filtering procedure.  
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Once the preprocessing step completed, this study then focuses more specifically on two 

periods: 1950-1976 and 1979-2006. However, results shown here are not sensitive to the 

choice of this break point year around the 1976-77 climate shift (not shown). Simple 

correlation and regression analyses are used to assess the associations between ISM rainfall 

and SST modes during the two periods. The significance of the cross-correlation coefficients 

is assessed by the phase-scrambling bootstrap test described in Ebisuzaki (1997).  

 

3. Robustness of predictive relationships between ISM rainfall and key SST indices in 

the Indo-Pacific region 

  

In this section, we wish to test the robustness of statistical relationships, which have been 

established in Boschat et al. (2010), between ISM rainfall and various modes of SST 

variability in the Indo-Pacific region during the recent decades (1979-2007). The aim is thus 

to extend this correlation anlaysis to the period before the 1976-77 climate shift. Before doing 

so, the variability of ISM rainfall is examined and compared during 1950-1976 and 1979-

2006, in order to justify the choice of these two time periods in the following analyses.  

 

Table 1 summarizes the spatio-temporal definitions of the key-SST indices used here to 

represent various modes of variability over the Indo-Pacific region, as well as the references 

in the literature which have first proposed to use these “classical” time series. Note that these 

indices are computed from the detrended SST dataset over the two time periods. In light of 

previous findings, we have chosen to use the Niño3.4 index to represent ENSO. Nevertheless, 

results in this section remain unchanged by the use of the Niño3, Niño4 or Niño3.4 timeseries, 

which suggests that the spatial pattern of SST in the tropical Pacific does not significantly 

affect the ISM-ENSO teleconnection, in line with the results of Rajeevan and Pai (2007).  

 

 a) ISM rainfall time series during 1950-1976 and 1979-2006 

 

In order to compare the variability of ISM rainfall during 1950-1976 and 1979-2006, 

standardized rainfall time series for the full ISM (JJAS), as well as the first (JJ) and second 

(AS) parts of ISM are shown in Figs. 2a and b. In these figures, the dashed horizontal lines 

designate the +/- one standard deviation and help to identify anomalous ISM years during 
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each period. The phase relationship with ENSO is also examined by simple comparison with 

the JJAS Niño3.4 standardized SST time series (dashed black curve in Fig. 2). 

 

During 1950-1976, ISM rainfall anomalies show a rather strong coherency inside the 

monsoon season, and rainfall variability in JJAS, AS and JJ are highly correlated with a cross 

correlation of 0.78 between JJAS and JJ and of 0.88 between JJAS and AS rainfall time series 

(Fig. 2a). Indeed, during extreme monsoon years, the positive and negative rainfall peaks in 

JJAS coincide well with maxima and minima of rainfall in both JJ and AS and this is 

particularly true for the drought years (eg 1965, 1972 and 1974). Another remarkable 

characteristic of this period is the quite steady and out-of-phase relationship between ISM 

rainfall and the JJAS Niño3.4 SST time series with a correlation of -0.64 significant at the 

99% confidence level. Many wet ISMs coincide with La Niña events in JJAS (eg 1956, 1975), 

and most dry ISMs with El Niño conditions (eg 1951, 1957, 1965, 1972) during this period. 

Note however that there are exceptions to this rule, as in 1961. This wet ISM year, which is 

the strongest monsoon on record for the full 1950-2006 period (see Fig. 1), is also identified 

as one of the strongest IOD episodes and more specifically one of the two positive IOD events 

(with 1967), which occurred in the absence of an El Niño before the 1976-77 climate shift 

(see Fig. 1; Fischer et al., 2005). The 1967 IOD event, however, is not associated with any 

significant ISM rainfall anomalies in JJAS, JJ or AS (Fig. 2a). 

 

The evolution of ISM rainfall seems to be substantially different during the 1979-2006 period, 

with both a stronger variability within the ISM season and a weaker synchronous relationship 

with ENSO (Fig. 2b). Unlike what is observed before 1976, extreme ISM years generally 

coincide with a peak in ISM rainfall either in JJ or AS, but rarely with both at the same time. 

Interestingly, severe droughts seem to be mostly associated with rainfall anomalies in JJ (eg 

1982, 1987, 2002) whereas 3 of the 4 strong ISMs are due to highly positive rainfall 

anomalies during AS (eg 1983, 1988, 1990). Consistent with this weaker persistence of 

rainfall anomalies, the JJ and AS rainfall time series are now generally decorrelated with an 

insignificant correlation of 0.11, as opposed to the higher significant value of 0.38 obtained 

from the earlier period. The rainfall evolution has sometimes even conflicting tendencies 

within the summer season as in 1992, 1998 and 2001: in these cases, JJAS ISM rainfall 

anomaly simply results from a compensation of opposite rainfall tendencies during JJ and AS.  
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In line with this apparent erratic behavior, the relationship between JJAS ISM rainfall and 

Niño3.4 SST time series has also become quite ambiguous (correlation of -0.40) and although 

both time series remain out-of-phase during the beginning of the period, a more chaotic ISM-

ENSO relationship seems to set in by the early 90s (Fig. 2b). Indeed, although many dry ISM 

events still coincide with El Niño conditions in JJAS (1982, 1987 and 2002), the 1997 El 

Niño, on the other hand, is associated with slightly above normal ISM rainfall, while other 

recent drought years like 2004 are not even characterized by any warming in the Pacific 

during summer (Fig. 2b). Similarly, the wet ISM years of 1983 and 1994 are not linked to La 

Niña episodes and it seems that wet ISMs are generally more associated with the decaying 

phase of El Niño events as in 1983, 1988 and 1998. Note that in these cases, the positive 

rainfall anomalies are also restricted to the second half of ISM (eg AS). 

 

Links with IOD events may also be suggested here, reflecting the complexity of recent ISM-

ENSO-IOD relationships. Indeed, the 1994 ISM stands out both as one of the strongest wet 

ISM year of the recent decades and a strong positive IOD, which occurs independently from 

ENSO during boreal summer and fall (see Figs. 1 and 2b; Fischer et al., 2005; Drbohlav et al., 

2007). However, this 1994 IOD event is associated with rainfall anomalies in JJ rather than 

AS as we would expect if IOD is influencing the monsoon. The positive rainfall anomalies 

observed in the boreal summer of the 1997 El Niño event have also been linked to the 

occurrence in fall of a positive IOD event (Slingo and Annamalai, 2000; Ashok et al., 2001). 

However, El Niño and IOD events also co-occured in 1982, 1987 and 2002, but all of these 

years are marked by highly deficient rainfall over India (Fig. 2a). 

 

Overall, the analysis of these ISM rainfall time series thus suggests a potentially different 

behavior of ISM rainfall during the two time periods,which can justify a separate examination 

of the pre-1976 and post-1976 periods in the following sections. It has also suggested a more 

erratic behavior of rainfall variability within the JJAS season during recent decades, which is 

consistent with a weaker ISM-ENSO relationship despite the fact that 1982-83 and 1997-98 

were two of the strongest events in the 20
th

 century. The possible causes for this recent 

collapse of the synchronous ISM-ENSO relationship will be discussed in Section 5. 

 

 b) Robustness of predictive relationships 
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In this section, we examine the epochal variations in the linear relationships of ISM rainfall 

with modes of interannual variability over the Indo-Pacific region. Table 2 shows results from 

a correlation analysis between ISM rainfall indices (in JJAS, JJ and AS) and key SST indices 

for the 1950-1976 and 1979-2006 periods. To facilitate the comparison with previous 

findings, we use the same spatio-temporal definitions as in Boschat et al. (2010) for the 

selected SST indices (see Table 1). Among these time series, four precede ISM and may thus 

have a potential for ISM rainfall long-range forecasting: the IOD(-1) index defined during the 

previous fall in September-October-November (SON), the Niño(-1) during the previous 

winter in December-January (DJ), the SEIO in February-March (FM) and the IOB in April-

May (AM). Two of these indices are also considered after the ISM in order to test the biennial 

nature of their relationships with ISM rainfall: the IOD(0) defined during the following fall 

(in SON), and the Niño(0) during the following winter (in DJ). These two time series are 

plotted in Fig.1. The eastern and western nodes of IOD have also been taken into account in 

this analysis. This will provide a clearer understanding of the possible linkages, if any, 

between IOD and ISM variability in the framework of the TBO. 

 

To begin with, results on a seasonal scale (e.g. JJAS) show that ISM rainfall is most 

significantly correlated with SEIO and Niño(0) time series during both time periods (Table 2). 

However, correlation values are generally weaker after 1979, and the most important decrease 

is recorded with the Niño(0) index, from -0.64 during 1950-1976 to -0.40 during 1979-2006: 

a result in line with recent studies (Kinter et al., 2002; Kucharski et al., 2007 among others). 

In contrast, the SEIO index is strongly correlated with ISM rainfall in the following summer 

during both periods. Note however that this significant SEIO-ISM relationship is exclusively 

restricted to the AS season, which is consistent with the higher predictability of the late ISM 

season already suggested by Terray et al. (2003), Park et al. (2010) and Boschat et al. (2010). 

 

Meanwhile, our analysis also highlights the complexity of the ISM-ENSO relationship if we 

look more carefully at the relationships within the ISM (e.g. in JJ and AS). Before 1976-77, 

ISM rainfall in JJAS, JJ or AS is strongly associated with Niño(0), but the relationships with 

Niño(-1) are always insignificant. This suggests that a weak (strong) ISM occurs during the 

developing year of El Niño (La Niña), but is not related to the previous ENSO state. After 

1976-77, the association of ISM rainfall in JJ or AS with Niño(0) becomes insignificant and 

the correlation with Niño(-1) reaches a significant maximum of 0.50 for the AS rainfall time 

series. These results thus suggest a „phase shift‟ rather than a weakening of the ENSO-ISM 
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relationship during recent decades, since AS rainfall is now significantly related to the state of 

the Pacific in the previous boreal winter. The statistical importance of the Niño(-1) index after 

1979 was already noted by Boschat et al. (2010) and may reflect the influence of the strong 

1982-83 and 1997-98 El Niño events on the recent ISM rainfall variability. Besides, our 

analysis also confirms the parallel evolution of the Niño(-1) and IOB indices evoked in 

previous studies (Yang et al., 2007; Du et al., 2009; Boschat et al., 2010), as both indices are 

marked by comparable correlation values with ISM rainfall in AS during both periods. Since 

the IOB SSTs act largely in response to ENSO, the IOB-ISM rainfall correlations in Table 2 

are entirely consistent with the speculation of a phase shift rather than a weakening of the 

ENSO-ISM relationship after 1976. 

  

On the other hand, results with the IOD index reflect rather well the conflicting theories found 

in the literature on this subject. Extreme IOD events occurred repeatedly in the more recent 

periods (see Fig. 1), and have been suggested as a major cause for the weakening of the 

“historical” ENSO-ISM relationship (Ashok et al., 2001, 2004, Abram et al., 2008). However, 

correlations with the IOD(0) index are systematically weak over the two periods, as much on 

a seasonal scale as within the season, and the values obtained are always negative. Indeed, it 

has been argued that when a positive IOD event occurs, both poles of the IOD contribute to 

the surplus rainfall over India (Ashok et al., 2001, 2004). But, the results in Table 2 suggest 

only a significant but reversed contribution from the western node of the IOD during early 

boreal summer (correlation of -0.47 with JJ rainfall before 1979 and -0.34 after), while 

correlation with the eastern node of IOD is near zero and insignificant for all the rainfall 

indices, and fails to reproduce a clear out-of-phase relationship with the western node. These 

results suggest that the ENSO signal dominates the SST variability over the IO, which is in 

line with previous analyses (Gadgil et al., 2004, 2005; Ihara et al., 2007). However, this does 

not rule out the possibility that the IOD contributes to neutralize the ENSO-induced 

anomalous subsidence over India when IOD and El Niño co-occur (see Section 5). 

 

Meanwhile, results with the IOD(-1) index are in better agreement with its possible role in the 

framework of the TBO, but only for the recent period. The moderate, but significant, 0.38 

correlation obtained between IOD(-1) and AS rainfall after 1979 is almost exclusively due to 

the western node of the IOD (0.51 correlation). However, no definite conclusion can be drawn 

at this point regarding the statistical robustness of this IOD(-1)-ISM relationship, nor its 

underlying causes. Indeed, correlation with the IOD(-1) index is weak before 1979, 
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throughout the ISM season and with both nodes, implying again that statistics after 1979 may 

be biased and linked to the strong El Niño/IOD events of this period. As a result, we still need 

to investigate whether the western node of IOD actually plays a significant precursory role in 

the variability of the following ISM, or whether these anomalies are merely part of the slow 

IO warming which occurs after an El Niño and are thus intrinsically linked to the IOB and 

Niño(-1) indices (Drbohlav et al., 2007; Sooraj et al., 2009; Hong et al., 2010). The parallel 

evolution of the correlations of AS rainfall with the IOB, Niño(-1) and the western node of 

the IOD(-1) in Table 2 supports this last hypothesis. Note, besides, that this strengthening of 

the ISM in the following year concerns essentially the second part of the season (e.g. AS, see 

Table 2), which once again points to a higher predictability of the AS rainfall. This is the case 

in 1973, 1983, 1988 and 1998, when AS rainfall is highly positive following the co-

occurrence of IOD and El Niño events in 1972, 1982, 1987 and 1997 (see Figs. 1 and 2).  

 

Altogether, results from this section suggest a recent „phase shift‟ in the ISM-ENSO 

relationship rather than a weakening, with an apparently stronger influence of the inter-related 

Niño(-1), IOB and IOD(-1) indices on the ISM after 1979, especially in AS. Table 2 also 

highlights the increasing significance of IO precursory signals after 1979, and in particular of 

the IOD(-1), IOB and SEIO indices. 

 

4. Global teleconnections and precursory SST signals associated with ISM rainfall 

during 1950-1976 and 1979-2006 

 

In an attempt to examine more objectively the statistical relationships with ISM rainfall, a 

correlation analysis is now carried out with global SST and SLP anomalies rather than pre-

defined SST indices in the Indo-Pacific region. In light of previous results, these correlations 

are computed separately with ISM rainfall in JJ (Figs. 3 and 4) and AS (Figs. 5 and 6). The 

SST and SLP teleconnections and precursory patterns associated with each part of the 

monsoon season are then compared over the 1950-1976 and 1979-2006 periods.  

 

 a) Correlations with ISM rainfall in JJ: 

 

Overall, results for the JJ rainfall time series stress the importance of ENSO. Indeed, Figs. 3 

and 4 indicate that, during both time periods, deficient (excess) JJ rainfall is significantly 

linked to the development of El Niño (La Niña) conditions in the tropical Pacific Ocean, 



 13 

where warm (cold) SST anomalies appear in boreal spring and consistently grow until the end 

of the year, in relation to a dry (wet) JJ season over India. Significant SLP anomalies are also 

observed over the tropical Indo-Pacific region during boreal summer, as part of the Southern 

Oscillation pattern, and illustrate the influence of El Niño (La Niña) on ISM through the 

eastward (westward) shift of the Walker circulation (Fig. 4). There are also suggestions that 

ISM rainfall in JJ may be linked to an earlier onset of ENSO during both periods, as 

significant SST anomalies appear as early as in FM in the tropical Pacific (Fig. 3). 

 

Although this ISM-ENSO relationship in JJ seems quite robust over both time periods, the 

characteristics of the ENSO signal displayed in Figs. 3 and 4 seem to differ from one period 

to another. First, the ENSO-related SST and SLP anomalies are generally weaker during 

1979-2006, in line with the theory of a weakening of the ISM-ENSO relationship in recent 

decades. Note also that the negative SLP anomalies over the north IO develop in JJ, one 

season after the positive SLP anomalies over the tropical Pacific Ocean during the recent 

period, whereas both poles of this tropical SLP oscillation appear simultaneously in AM 

during the earlier period. Finally, another noteworthy characteristic of the recent ISM-ENSO 

relationship, as far as JJ rainfall is concerned, is that SST anomalies appear in a rather central 

region of the tropical Pacific, recalling suggestions of a link between recent ISM rainfall 

variability and „Modoki-type‟ El Niños (Ratnam et al., 2010). However, this cold central 

Pacific pattern is only flanked by warm anomalies on its western side. This central ENSO 

signal then propagates eastwards, in contrast with the more westward propagation observed 

during the 1950-1976 period (Federov and Philander, 2000, 2001; Wang and An, 2002; 

Trenberth et al., 2002; Mc Phaden and Zhang, 2009).  

 

In spite of these altered characteristics, the ISM-ENSO teleconnection stands out as a 

dominant feature during the first part of the ISM season for both periods. On the other hand, 

there are no hints of any IOD-related SST or SLP patterns in the boreal fall either preceding 

or following the ISM season during both periods (Figs. 3 and 4). 

 

Focusing now on SST precursory patterns before ISM onset, there are suggestions of 

significant relationships with SST anomalies between northern Australia and Indonesia 

(Nicholls, 1995) or with an anomalous SST dipole in the North Atlantic (Srivastava et al., 

2002) persisting from ON to FM during 1950-1976 (Fig. 3). But, these ISM precursory SST 

signals are generally weak and scarcely significant after 1979. The implications of these 
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results in terms of JJ rainfall predictability are thus rather pessimistic. However, a more robust 

SST signal is found in the North Pacific Ocean during boreal spring (Peings et al., 2009). 

These SST anomalies are collocated with significant SLP anomalies in the form of a North 

Pacific Oscillation (NPO) SLP pattern from DJ to AM during 1950-1976 and in AM after 

1979 (Fig. 4). The NPO is a well-known precursor of ENSO, and may thus influence ISM 

rainfall variability via its forcing on ENSO. In Figs. 3 and 4, the anomalous SST and SLP 

patterns are consistent with the “seasonal footprinting mechanism” which was proposed to 

explain this NPO-ENSO teleconnection (Vimont et al., 2003 and 2009; Alexander et al., 

2010). In this scenario, the positive (negative) SLP anomalies forming the southern node of 

the NPO pattern (Fig. 4) are associated with an increase (reduction) of the trade winds in the 

subtropical North Pacific (not shown); this imparts a cold (warm) local SST „footprint‟ (Fig. 

3) which modulates the wind variability in the equatorial western Pacific, and leads to the 

development of a La Niña (El Niño) event through the generation of oceanic Kelvin waves. 

 

 b) Correlation with ISM rainfall in AS: 

 

Correlations of SST and SLP fields with AS rainfall timeseries yield results that are 

substantially different to those observed in JJ, and highlight the existence of a certain JJ-AS 

dichotomy in ISM-SST and ISM-SLP relationships, especially during the recent period (Figs. 

5 and 6).  

 

During the 1950-1976 period, results in AS show a robust ISM-ENSO relationship but point 

towards much more significant SLP and SST precursors for Indian rainfall in AS than JJ.  

Indeed, Figs. 5 and 6 (left panels) recapture a significant and very comparable ISM-ENSO 

relationship to that observed in JJ for the same period. This is consistent with the maximum 

correlation values obtained with Niño(0) before 1976-77 in Table 2 (-0.47 in JJ and -0.59 in 

AS). However, significant SST anomalies in other regions seem to have gained importance 

for AS rainfall variability and predictability. This is the case in the tropical Atlantic Ocean, 

where warm (cold) SST anomalies persist from ON to FM in relation to a wet (dry) AS ISM 

season before 1976 (Fig. 5). However, this SST signal is opposite to the summer Atlantic-

ISM relationship proposed by Kucharski et al. (2007, 2008 and 2009), and the lack of 

significant SLP anomalies in this region sheds a doubt on its potential impact on AS rainfall 

variability (Fig. 6). Meanwhile, an anomalous SST dipole is also observed from ON to AM in 

the south IO, associated with a significant modulation of the intensity of the Mascarene High 
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during FM (Figs. 5 and 6). This is consistent with the occurrence of a subtropical dipole event 

in the south IO (Behera and Yamagata, 2001). The persistent warm (cold) anomalies in the 

southeastern IO associated with these subtropical dipole events have been shown to play a 

significant role on ISM variability, via a modulation of the inter-hemispheric moisture 

transport or the position of the Mascarene High in the IO (Terray et al., 2003, 2007; Boschat 

et al., 2010). In Fig. 6, the northward propagation of negative (positive) SLP anomalies in the 

Indian sector from AM to AS is consistent with the dynamical processes detailed in these 

earlier studies. Note that these results are also in line with the increased influence of the SEIO 

index in AS in Table 2 (0.16 correlation in JJ and 0.49 in AS during 1950-1976). Besides, it 

seems important to point out that the anomalous SST and SLP dipoles associated with the 

NPO also prevail as highly significant and therefore robust precursors for AS rainfall during 

the 1950-1976 period (Figs. 5 and 6). Altogether, the persistence and emergence of these 

significant precursory signals in both the North Pacific and Indian oceans thus reflect the 

higher predictability of AS rainfall, while also introducing a certain JJ-AS dichotomy in ISM-

SST statistical relationships during the 1950-1976 period. 

 

This JJ-AS dichotomy is even more pronounced during the 1979-2006 period, as this time, 

correlation patterns in AS (Figs. 5 and 6, right panels) differ more substantially from results in 

JJ (Figs. 3 and 4), as well as more generally from those observed during the same AS season 

of the 1950-1976 period (Figs. 5 and 6, left panels). In line with the hypothesis of a „phase-

shift‟ of the ISM-ENSO relationship (see Table 2, in AS), Figs. 5 and 6 show that ISM 

rainfall in AS is now significantly linked to the decaying phase of ENSO rather than its 

development. This intense precursory signal in the tropical Pacific is a unique characteristic of 

the recent period and of the AS season as it is not seen during the 1950-1976 period nor 

during JJ of the recent period. Nevertheless, we must be careful about the implications of 

these results for ISM rainfall predictability, as composites of extreme ISM events during this 

period (not shown) indicate that this dominant signal in AS is largely due to the wet 

monsoons of 1983 and 1998, which followed the two strongest El Niño events of the 20
th

 

century (see Boschat et al., 2010). Based on results shown in Figs. 5 and 6, it thus seems that 

the most robust precursory signals for AS Indian rainfall stem from extratropical regions in 

the North Pacific and South IO, as these significant patterns are seen to persist during both 

periods, several months before the ISM onset, and concern both the weak and strong ISMs.  

 

Correlation patterns in AS during 1979-2006 also illustrate a biennial rhythm of the IOD-
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ENSO-ISM system, according to which an El Niño event tends to be preceded by decreased 

AS rainfall during boreal summer, a positive IOD pattern during fall, and followed by a basin-

wide warming of the tropical IO which persists until the next spring and, eventually, leads to 

enhanced AS rainfall and a La Niña event in the following year. The SST and SLP anomalies 

in Figs. 5 and 6 are consistent with these time and phase relationships, as well as the 

dynamical processes which have been shown to feed this biennial system, and influence the 

late ISM season (for further details see Yang et al., 2007; Sooraj et al., 2009; Boschat et al., 

2010; Hong et al., 2010). Note that this biennial tendency is also consistent with the 

significant correlation values obtained with the IOD(-1), Niño(-1) and IOB indices in AS for 

the recent period in Table 2.  

 

5. Modulation of ISM rainfall during El Niño and La Niña years (1950-2006) 

 

Overall, our previous analyses have shed a light on the existence of significant modulations in 

ISM teleconnections and precursory signals between the first (JJ) and second part (AS) of the 

monsoon season, and this especially after the 1976-77 climate shift. ISM rainfall variability is 

strongly linked to ENSO during both 1950-1976 and 1979-2006 time periods as the 

relationship with ENSO is still highly significant for JJ and AS rainfall averages separately. 

However, the increased JJ-AS dichotomy observed after 1979 seems to blur the global ISM-

ENSO signal, leading to an apparent weakening of these relationships at the seasonal time 

scale during the recent decades. 

So far, this weakening has been attributed to a broad range of phenomena, ranging from 

changes in atmospheric fields due to global warming (Krishna Kumar et al., 1999), to changes 

in tropical Pacific SST patterns (Krishna Kumar et al, 2006) or tropical Atlantic during boreal 

summer (Kucharski et al., 2007, 2008, 2009), to the more frequent co-occurrence of positive 

IODs and El Niño events during recent decades (Ashok et al., 2001, 2004; Krishnan and 

Swapnan, 2009), possibly also due to global warming (Abram et al., 2008; Ihara et al., 2008, 

2009; Cai et al., 2009b, 2009c). Collectively, these studies suggest that more emphasis must 

be given to the association between global SST patterns and ISM rainfall inside of the set of 

El Niño (or La Niña) events, to examine probable causes for the failure of the ISM-ENSO 

relationship during the developing year of specific events. However, none of these works 

have drawn particular attention to the JJ-AS rainfall dichotomy observed during recent 

decades and evaluated its link to the recent modulation of the ISM-ENSO relationship. 
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In the following paragraphs, a correlation analysis is thus carried out between JJ and AS ISM 

rainfall and global SST and SLP fields inside of the sets of El Niño and La Niña years, in 

order to analyze what may cause a modulation at the 2
nd

 order of ISM rainfall during each 

phase of ENSO. The El Niño (La Niña) years entering in this correlation analysis are selected 

over the entire 1950-2006 period, upon a 0.5 (-0.5)  of the Niño3.4 index in DJ. These wider 

criteria and extended period allow us to gather a larger amount of years for the analysis and 

therefore obtain more robust results. 

 

a) El Niño years 

 

To begin with, the SST and SLP composites during JJ and AS computed from 16 selected El 

Niño years (1951, 1957, 1963, 1965, 1968, 1969, 1972, 1976, 1977, 1982, 1986, 1987, 1991, 

1994, 1997 and 2002) display the development of well-known El Niño SST and SLP patterns 

in co-occurrence with a positive IOD pattern in the equatorial IO (Fig. 7a). Correlation 

analyses of ISM rainfall, separately in JJ and AS, with global SST and SLP anomalies are 

then carried out during these El Niño years. 

 

Results show that ISM rainfall in JJ (Fig. 8a) is quite significantly influenced by the early 

development of El Niño conditions, compared to a “canonical” El Niño evolution (Fig. 7a), 

since correlations are significant and negative with SSTs over the central Pacific during the 

whole boreal summer. These correlations suggest that an early (late) El Niño onset causes 

deficient (excessive) ISM in JJ, associated with high (low) SLP anomalies and anomalous 

subsidence (ascent) over a large area extending from the Maritime Continent, to the North IO 

and the Asian continent (Fig. 8a). The correlation patterns between JJ rainfall and IO SSTs 

during these El Niño years mainly reflect the warming of the equatorial western IO in 

response to reduced evaporative heat loss and upwelling associated with weaker monsoon 

winds: this suggests that IO SST anomalies play a passive role during the first part of the ISM 

season. However, these correlation patterns also reveal interesting features about the 

dynamics of the ENSO-ISM-IOD relationships since the mean SST gradient across the 

equatorial IO is anomalously positive to the west in AS following an early El Niño and a dry 

ISM in JJ. This may induce an anomalous zonal positive SLP gradient to the east and promote 

anomalous westward zonal wind stress across the equatorial IO. In other words, these changes 

provide very favorable conditions for a positive IOD to develop during the second half of 

ISM and following months as suggested by (Loschnigg et al., 2003). 
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The same correlation analysis for the AS season (Fig. 8b) shows that the relationships of AS 

rainfall with SST and SLP anomalies are entirely different. IO SSTs have more influence on 

the monsoon than vice-a-versa during the second half of the season. Indeed, Fig. 8b indicates 

that, unlike results in JJ, the most significant anomalies associated with the second part of 

ISM are not located in the tropical Pacific, but in the southeast IO: a region where important 

air-sea feedbacks have been shown to operate during boreal summer (see Li et al., 2003). 

Indeed, the persistent cold anomalies along the coasts of Java and Sumatra are associated with 

positive SLP anomalies (Fig. 8b). Also, a significant anomalous cyclonic center is noted over 

the Arabian Sea and India during AS in relation to positive rainfall anomalies. This is 

consistent with a strengthening of the Bay of Bengal branch of ISM and a modulation of the 

local Hadley circulation over the eastern IO which can induce anomalous ascent and, hence, 

positive rainfall anomalies over the Indian subcontinent in AS. The positive correlations with 

SSTs in the south central IO are also consistent with an enhanced anticyclonic circulation 

over the eastern IO, as this circulation may reduce the intensity of the south-east trades in the 

Southern Hemisphere and, thus, decrease the evaporative heat loss (Terray et al., 2007). Put 

together, the SST and SLP patterns in Fig. 8b thus suggest that the anomalous anticyclone 

over the eastern node of the IOD may play a role in reducing the ENSO-induced subsidence 

over India during the second half of ISM. 

 

In order to quantify the potential impact of these IOD-related anomalies in terms of ISM 

rainfall, a regression analysis between ISM rainfall and IOD-related time series in September-

October-November is also carried out during the same El Niño years. Results in Table 3 

confirm that the west (east) node of the IOD has a significant association with JJ (AS) ISM 

rainfall (-17 mm/month compared to a mean value of -12.06 mm/month in JJ and -11.9 

mm/month compared to a mean value of -16.72 mm/month in AS, respectively). Altogether, 

the two IOD nodes are thus playing opposite roles (passive for the west and and active for the 

east) with regards to ISM rainfall, while operating at different times. This can, at least partly, 

account for the JJ-AS dichotomy observed in ISM rainfall (consistent opposite values 

obtained in JJ and AS with the IOD time series in Table 3), as well as the rather conflicting 

results found in the literature on the IOD-ISM relationship (see Introduction of this paper). 

 

Note, besides, that no significant correlations are observed over the tropical Atlantic Ocean 

during El Niño years (Fig. 8), even though the entire 1950-2006 period is considered: this 
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result is not consistent with a possible contribution of Atlantic SSTs to the interdecadal 

modulation of the ENSO-ISM relationship (Kucharski et al., 2007, 2008, 2009) . 

 

b) La Niña years 

 

Similar analyses are now carried out during the negative phase of ENSO. The SST and SLP 

composites computed from 18 selected La Niña years (in 1950, 1954, 1955, 1964, 1966, 

1967, 1970, 1973, 1975, 1983, 1984, 1985, 1988, 1995, 1998, 1999, 2000 and 2005) are 

characterized by reversed SLP and SST patterns in the Pacific during summer: however, 

anomalies in the IO differ from El Niño conditions as they feature the development of a SST 

dipole in the south IO rather than an IOD pattern (Fig. 7b). Note also that among these 18 La 

Niña events, 9 follow the decaying phase of El Niño events while the 9 others correspond to 

lingering La Niña conditions in the Pacific. 

 

The correlation with ISM rainfall in JJ and AS during these La Niña years (Fig. 9) shows 

patterns which are generally of the same sign as the SST and SLP composites in Fig. 7b. 

These correlations may thus be interpreted as a global modulation (ie enhancement or 

damping) of La Niña conditions during boreal summer, without any significant spatial 

modification of the “canonical” patterns (Fig. 7b). As during El Niño years, the first part of 

the ISM season seems to be mainly influenced by the state of the Pacific in JJ (Fig. 9a). Note 

however that, based on the years selected for this correlation analysis, this JJ ENSO signal 

may oppose years with an early onset of La Niña to those characterized by a late withdrawal 

of El Niño episodes. 

 

On the other hand, results in AS highlight again the importance of IO anomalies and local 

coupled ocean-atmosphere processes during the second part of ISM, with the most significant 

SST anomalies observed in the north IO and in the form of a south IO dipole (Fig. 9b). 

Consistent with the existence of a JJ-AS dichotomy, the warming of the tropical IO in JJ 

enhances ISM rainfall in AS. In the south IO, the amplification from JJ to AS of negative SLP 

anomalies associated with the SST dipole is consistent with a strengthening of the trade-winds 

and an enhanced evaporation over the south central IO (Fig. 9b); both of which may enhance 

the interhemispheric moisture transport and, ultimately lead to positive ISM rainfall 

anomalies in AS (Terray et al., 2007; Boschat et al., 2010). 
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Altogether, the modulation of ISM rainfall during La Niña years (compared to a “canonical” 

La Niña) occurs again through distinct processes in JJ and AS, although both act to enhance 

rainfall activity over India. The first part of the ISM season is mostly influenced by the early 

appearance of La Niña conditions, whereas local processes, particularly in the southeast IO, 

are at play during the second part of the season and amplify AS rainfall. Note that this JJ-AS 

dichotomy in ISM rainfall has also been observed during the decaying phase of El Niño 

events during recent decades (Boschat et al., 2010). 

 

In conclusion, the existence of a JJ-AS dichotomy is observed inside both the sets of El Niño 

and La Niña years. Local interactions in the IO are mainly responsible for the modulation of 

ISM response in AS, although these physical processes differ among El Niño (La Niña) years. 

In constrast, the extratropical regions and Atlantic Ocean seem to play only a secondary role. 

 

6. Conclusion and discussion 

 

For years, many works have examined the links between ISM rainfall and various modes of 

interannual variability, such as ENSO or IOD (Webster et al., 1998; Wang, 2006). However, 

so far, these studies have obtained quite different, and at times contradictory results. Besides, 

no general consensus has yet been reached, as to explain the weakening of the ISM-ENSO 

relationship observed during recent decades (Krishna Kumar et al., 1999, 2006; Gershunov et 

al., 2000; Kinter et al., 2002; Ashok et al., 2004; Kucharski et al., 2009). This work builds 

upon these earlier studies and attempts to reconcile in a common and comprehensive 

framework the various conflicting results found in the litterature on ISM-SST relationships. 

 

First, our results indicate the existence of a strong and steady ISM-ENSO relationship before 

the so-called 1976-77 climate shift. However, tropical Pacific SSTs do not provide any 

significant precursory signal for ISM rainfall during this 1950-1976 period. Instead, 

anomalous SST and SLP dipoles are observed during the previous boreal winter and spring in 

the North Pacific and South IO. These significant extratropical patterns are identified as 

potential ISM precursors but essentially for the second part of the monsoon season (eg. AS), 

which points to a certain dichotomy between the first and second parts of ISM as far as ISM 

predictability is concerned. Over the North Pacific, NPO-related SST and SLP patterns are 

detected before extreme ISM years. Further analysis suggests that this NPO-ISM predictive 

relationship is due to the apparent active role of the NPO in ENSO variability through the 
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modulation of wind anomalies in the western Pacific (Vimont et al., 2003). These significant 

anomalies may thus be classified as “ENSO precursors” and signal the likely ENSO evolution 

during the following months. Local SST anomalies in the South IO during boreal winter and 

spring have also a significant relationship with ISM rainfall, but seem to evolve independently 

from ENSO during this period (Terray and Dominiak, 2005). Finally, it is important to stress 

that the Atlantic and equatorial IO (eg IOD) are devoid of any robust precursory SST signals 

during boreal fall and winter preceding ISM. Thus, they cannot provide any information on 

the type of ISM that may follow during this first epoch. 

 

This distinction between the first (JJ) and second (AS) parts of the ISM season is even more 

pronounced after the 1976-77 climate shift. The SST and SLP teleconnection patterns 

associated with rainfall anomalies in AS are also very different, in many aspects, from those 

observed in the first period. Moreover, our results strongly support the hypothesis that the 

recent weakening of the ISM-ENSO relationship at the seasonal time scale may be an artefact 

of this increased subseasonal rainfall variability, since the relationship with ENSO is still 

highly significant for JJ and AS rainfall averages separately. Indeed, correlation results in AS 

suggest a „phase shift‟ rather than a weakening of this ISM-ENSO relationship after 1979, 

with the appearance of an intense precursory signal for AS Indian rainfall in the tropical 

Pacific (and IO) during the previous boreal winter and spring, linked in particular to the 

decaying phase of the two strong El Niño events of 1982-83 and 1997-98. Our analysis of the 

recent period also confirms the importance of extratropical forcing on the whole ENSO-

monsoon system, with precursory signals stemming from the North Pacific and South IO for 

AS rainfall (Terray et al., 2005; Peings et al., 2009). Besides, results in AS also highlight a 

more biennal tendency in the ENSO-ISM-IOD system during recent decades, according to 

which co-occurring El Niño and positive IOD events are followed by a warming of the IO, a 

wet ISM in the next summer and, finally, a La Niña event during the following winter (Meehl 

et al., 2003; Hong et al., 2010). Note however that this TBO signal may be also largely 

influenced by the 1982-83 and 1997-98 El Niño events. On the other hand, changes in the 

date of El Niño/La Niña onsets are probably the main factor contributing to ISM rainfall 

variability during JJ. 

 

Altogether, these analyses have thus shown that ISM is strongly linked to ENSO over both 

time periods. However, the increased JJ-AS dichotomy observed after 1979 tends to blur the 

ISM-ENSO signal, leading to an apparent weakening of this relationship at the seasonal time 
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scale during the recent period. Note that this JJ-AS dichotomy may be linked to many factors, 

and may even be due to large intraseasonal variability which is being aliased by our 

bimonthly averaging. In order to gain a better understanding of this JJ-AS rainfall dichotomy 

and its link to the recent modulation of the ISM-ENSO relationship, we have finally examined 

the association between ISM rainfall and global SST and SLP fields, separately inside of the 

sets of El Niño and La Niña years. 

 

The most notable features for the El Niño and La Niña years are (i) the sensitivity of ISM 

rainfall during JJ to the timing of ENSO onset and (ii) the importance of local air-sea 

feedbacks in the IO during the second half of boreal summer as key-factors for understanding 

the variability of ISM rainfall anomalies observed inside each set of events.  

 

Our analysis suggests the following scenario as an important factor for modulating ISM 

response during El Niño events: an early onset of an El Niño causes a more deficient 

monsoon in JJ, which feeds back onto the IO by inducing warmer SST anomalies in the 

western equatorial IO associated with the reduced monsoon winds and Somali jet. These SST 

changes over the western IO provide, however, a very favourable environment for positive 

IOD development during the second half of ISM (Loschnigg et al., 2003). The local air-sea 

feedbacks associated with the SST anomalies in the eastern node of the IOD seem, in turn, to 

have a more active role on the second half of the monsoon, as they may counteract the effect 

of El Niño on ISM rainfall through a modulation of the local Hadley circulation over the 

eastern IO. In other words, the IO seems to play a passive role during the first part of ISM, but 

a more active role during the second part. Interestingly, this scenario provides a plausible 

explanation for the existence of a JJ-AS rainfall dichotomy during the El Niño developing 

year, and may also justify why most dry ISM years are associated with a dry JJ season during 

the recent period (see Fig. 2b).  

 

Our results are thus partly consistent with the mechanism proposed by (Ashok et al., 2001, 

2004) whereby the IOD is able to counteract the effect of El Niño on ISM rainfall – bearing in 

mind that the modulations we have described occur only at a second level during El Niño 

years. These authors argued that the anomalous convergence over the western pole of IOD 

induced by a positive IOD, enhanced the atmospheric circulation towards India and led to 

increased ISM rainfall; while the anomalous divergence over the eastern pole decreased the 

effect of El Niño-induced subsidence over India, by strengthening the meridional circulation 
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over the eastern IO. However, we here suggest that only the eastern node of the IOD plays an 

active role in the modulation of ISM rainfall and, only, during the second half of ISM, 

whereas SST anomalies in the western node may be interpreted as a passive response to the 

atmospheric signal of an early developing El Niño and ensuing weak monsoon in JJ. We 

suspect that Ashok et al. (2001, 2004) were unable to reproduce this atmospheric forcing in 

the IO, as their results are derived from an atmospheric circulation model forced by observed 

SSTs (Krishna Kumar et al., 2005; Wang et al., 2005).  

Yet, our results stress the key-importance of local ocean-atmosphere interactions for 

enhancing or counteracting the effect of El Niño on ISM rainfall, consistent with the second 

mechanism proposed by Ashok et al. (2004). The JJ-AS dichotomy observed more 

distinctively in recent El Niño events may then result from an enhancement of these IO 

feedbacks, with a more frequent occurrence of positive IODs. This, in turn, may explain why, 

although El Niño events are stronger, a global weakening of the ISM-ENSO relationship may 

be observed at the seasonal scale during recent decades.. 

 

A similar analysis for the La Niña years illustrates again the combined effects of ENSO and 

IO anomalies on wet ISMs. Indeed, results suggest that ISM rainfall anomalies in JJ are also 

influenced by the early onset of La Niña conditions in the Pacific, while local IO processes, 

particularly in the southeast, play an important role in the enhancement of ISM rainfall in AS 

(Terray et al., 2007; Park et al., 2010; Boschat et al., 2010). Note that these processes are 

consistent with recent results from Boschat et al. (2010), where the decaying phase of El Niño 

is considered. Indeed, they show that, during the 1979-2007 period, the mature phase of El 

Niño causes a delayed ISM onset and an anomalously deficient ISM in JJ, whereas local 

feedbacks particularly in the south IO enhance ISM rainfall activity in AS. In other words, the 

ocean-atmosphere interactions in the IO may also be responsible for a JJ-AS dichotomy in the 

set of the La Niña years or decaying El Niño years. This scenario also explains why most wet 

ISM events are associated with anomalously wet AS season during the recent period (Fig. 2b). 

 

Altogether, our results thus highlight the importance of local processes for understanding the 

changes in the ISM-ENSO relationship during the recent period. But why are the IO ocean-

atmosphere interactions stronger in recent decades? Terray and Dominiak (2005) argued that 

this may be related to the sustained warming of the IO. Besides, several works have suggested 

a more frequent occurrence of extreme IOD events, possibly due to global warming (Abram 

et al., 2008; Ihara et al., 2008, 2009; Cai et al., 2009b, 2009c) or a natural decadal fluctuation 
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of the tropical system (Zheng et al., 2010), developing in association with strong El Niño 

events. The causes for such changes in ENSO and IOD properties, cannot obviously be 

detected by our simple statistical analyses. The mechanims proposed in this work regarding 

the modulation of ISM rainfall variability, as well as the possible causes of these decadal 

fluctuations, need to be tested and validated through numerical experiments with coupled 

ocean-atmosphere models. 
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Figure 1: Standardized time series of ISM rainfall in JJAS (blue curve), IOD in SON (green 

curve) and Niño3.4 in DJ (red curve) during 1950-2006. The one standard deviation line (in 

black) is also added to this figure as it helps identify the extreme years.  

 

Figure 2: Standardized time series of ISM rainfall in JJAS (blue curve), JJ (green curve) and 

AS (red curve) superimposed with the standardized Niño3.4 time series in JJAS (black dotted 

curve) during (a) 1950-1976 and (b) 1979-2006. The one standard deviation line (in black) is 

also added to this figure as it helps identify the extreme years. 

 

Figure 3: Global correlation between ISM rainfall in JJ and bimonthly SST anomalies from 

the boreal fall preceding (ON
-1

) to that following (ON) the ISM season during (a) 1950-1976 

and (b) 1979-2006 time periods. Correlation coefficients that are above the 90% confidence 

level estimated with a phase-scrambling bootstrap test with 999 samples are encircled. 
 

 

Figure 4: Global correlation between ISM rainfall in JJ and bimonthly SLP anomalies from 

the boreal fall preceding (ON
-1

) to that following (ON) the ISM season during (a) 1950-1976 

and (b) 1979-2006 time periods. Correlation coefficients that are above the 90% confidence 

level estimated with a phase-scrambling bootstrap test with 999 samples are encircled.  

 

Figure 5: Global correlation between ISM rainfall in AS and bimonthly SST anomalies from 

the boreal fall preceding (ON
-1

) to that following (ON) the ISM season during (a) 1950-1976 

and (b) 1979-2006 time periods. Correlation coefficients that are above the 90% confidence 

level estimated with a phase-scrambling bootstrap test with 999 samples are encircled.  

 

Figure 6: Global correlation between ISM rainfall in AS and bimonthly SLP anomalies from 

the boreal fall preceding (ON
-1

) to that following (ON) the ISM season during (a) 1950-1976 

and (b) 1979-2006 time periods. Correlation coefficients that are above the 90% confidence 

level estimated with a phase-scrambling bootstrap test with 999 samples are encircled. 

 

Figure 7:  Composite SST (top panels) and SLP (bottom panels) anomalies in JJ and AS 

during (a) the 16 El Niño years (in 1951, 1957, 1963, 1965, 1968, 1969, 1972, 1976, 1977, 

1982, 1986, 1987, 1991, 1994, 1997 and 2002) and (b) 18 La Niña years (in 1950, 1954, 

1955, 1964, 1966, 1967, 1970, 1973, 1975, 1983, 1984, 1985, 1988, 1995, 1998, 1999, 2000 

and 2005). The composite anomalies significant at the 90% confidence level are encircled. 
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The statistical significance has been determined by the method outlined in Terray et al. 

(2003).  

 

Figure 8: Correlation of summer SST (top panels) and SLP anomalies (bottom panels) with 

(a) ISM rainfall in JJ and (b) ISM rainfall in AS, during the 16 El Niño years (in 1951, 1957, 

1963, 1965, 1968, 1969, 1972, 1976, 1977, 1982, 1986, 1987, 1991, 1994, 1997 and 2002). 

Correlations significant at the the 90% confidence level according to a two-tailed student‟t 

test are encircled. 

 

Figure 9: Correlation of summer SST (top panels) and SLP anomalies (bottom panels) with 

(a) ISM rainfall in JJ and (b) ISM rainfall in AS, during the 18 La Niña years (in 1950, 1954, 

1955, 1964, 1966, 1967, 1970, 1973, 1975, 1983, 1984, 1985, 1988, 1995, 1998, 1999, 2000 

and 2005). Correlations significant at the the 90% confidence level according to a two-tailed 

student‟t test are encircled. 
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Table captions: 

 

Table 1: Description of the different indices used in this study as well as their first references 

in the literature. Note that these key indices are computed from the detrended SST dataset 

separately over each time period (1950-1976 and 1979-2006). 

 

Table 2:  Cross-correlations between the key SST indices (defined in Table 1) and the ISM 

rainfall (ISMR) averaged in seasonal (JJAS) and bimonthly mean (JJ and AS), for both the 

1950-1976 (blue values) and 1979-2006 (red values) time periods. The coefficients exceeding 

the 10%, 5% and 5‰ confidence levels according to the phase-scrambling bootstrap test of 

Ebisuzaki (1997) with 999 samples are followed by one asterisks (*), two asterisks (**) and 

three asterisks (***), respectively. 

 

Table 3:  Regression between ISM rainfall in JJ, AS and JJAS, and the IOD, IOD-west node 

and IOD-east node time series in SON during the 16 El Niño years (in 1951, 1957, 1963, 

1965, 1968, 1969, 1972, 1976, 1977, 1982, 1986, 1987, 1991, 1994, 1997 and 2002). 

Regression coefficient are given in mm/month by standard deviation of the IOD time series. 

The last line shows the mean composite values (in mm/month) of ISM rainfall in JJ, AS and 

JJAS during the same El Niño years. 
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Table 1: 

 

Index 

name 
Reference 

Geographical 

domain 
Peaking season 

Nino Nino3.4 index 

 

170°W-120°W 

5°N-5°S 

 

December-January  

(DJ) 

IOB 

 

Indian Ocean Basin Mode 

(Yang et al., 2007) 

 

40°-110°E 

20°S-20°N 

April-May  

(AM) 

SEIO 

 

South East Indian Ocean index 

(Terray and Dominiak, 2005) 
 

90°-122°E 

5°-45°S 

February-March  

(FM) 

IOD 
Indian Ocean Dipole Mode  

(Saji et al., 1999) 

West box  

(60°E-80°E 

10°N-10°S) 
- East box 

(90°E-110°E 

10°S-0°S) 

September to November  
(SON) 

 

 

Table1



Table 2: 

 

 

 ISMR (JJAS) ISMR (JJ) ISMR (AS) 

IOB 0.24 0.19 -0.01 -0.15 0.36
*
 0.45

**
 

Nino(-1) 0.20 0.18 -0.03 -0.20 0.32 0.50
**

 

SEIO 0.41
**

 0.39
**

 0.16 0.06 0.49
**

 0.54
***

 

Nino(0) -0.64
***

 -0.40
**

 -0.47
**

 -0.30 -0.59
***

 -0.30 

IOD(0) -0.22 -0.16 -0.24 -0.16 -0.14 -0.07 

IOD(0) – West box -0.45
**

 -0.18 -0.47
**

 -0.34
*
 -0.30 0.08 

IOD(0) – East  box -0.15 0.10 -0.14 -0.01 -0.11 0.17 

IOD(-1) -0.04 0.24 -0.15 -0.02 0.06 0.38
**

 

IOD(-1) – West box 0.12 0.37
*
 0.02 0.06 0.16 0.51

**
 

IOD(-1) – East box 0.19 -0.07 0.27 0.07 0.08 -0.17 
 

*:P<0.1 ; **:P<0.05 ; ***:P<0 .005 
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Table 3:  

 

 

 

 ISMR (JJAS) ISMR (JJ) ISMR (AS) 

IOD (SON) 2.97 -3.27 9.20 

IOD – West node (SON) -8.43 -17.00 0.15 

IOD – East node (SON) -10.83 -9.75 -11.90 

Composite anomalies -14.39 -12.06 -16.72 

 
 

 

Table3




