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ABSTRACT

Changes in the global water cycle are expected as a result of anthropogenic climate change, but large

uncertainties exist in how these changes will be manifest regionally. This is especially the case over the tropical

oceans, where observed estimates of precipitation and evaporation disagree considerably. An alternative

approach is to examine changes in near-surface salinity. Datasets of observed tropical Pacific and Atlantic

near-surface salinity combined with climate model simulations are used to assess the possible causes and

significance of salinity changes over the late twentieth century. Two different detection methodologies are

then applied to evaluate the extent to which observed large-scale changes in near-surface salinity can be

attributed to anthropogenic climate change.

Basin-averaged observed changes are shown to enhance salinity geographical contrasts between the two

basins: the Pacific is getting fresher and the Atlantic saltier. While the observed Pacific and interbasin-averaged

salinity changes exceed the range of internal variability provided from control climate simulations, Atlantic

changes are within the model estimates. Spatial patterns of salinity change, including a fresher western Pacific

warm pool and a saltier subtropical North Atlantic, are not consistent with internal climate variability. They

are similar to anthropogenic response patterns obtained from transient twentieth- and twenty-first-century

integrations, therefore suggesting a discernible human influence on the late twentieth-century evolution of the

tropical marine water cycle. Changes in the tropical and midlatitudes Atlantic salinity levels are not found to

be significant compared to internal variability. Implications of the results for understanding of the recent and

future marine tropical water cycle changes are discussed.

1. Introduction

Evidence is building that human-induced climate

change is changing the global water cycle (Zhang et al.

2007; Santer et al. 2007; Willett et al. 2007) and pre-

cipitation frequency, intensity, and spatial distribution

with consequences on hydrological extreme events such

as floods and droughts (Trenberth 2011; Dai 2010; Min

et al. 2011). Increased heating will enhance land evapo-

ration and surface drying, leading to more severe droughts,

while increased air moisture due to an increase in satura-

tion vapor pressure with temperature will produce more

intense precipitation, enhancing the risks of floods. While

much uncertainty still remains regarding the prediction

of how much warming will occur through greenhouse gas

buildup, observed and projected changes in the hydro-

logical cycle have recently been undergoing increased

levels of scrutiny. While there appear to be robust
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physical controls on the global hydrological cycle changes

due to atmosphere energy balance constraints (Allen

and Ingram 2002; Held and Soden 2006; Richter and

Xie 2008; Stephens and Ellis 2008), it is much more

problematic to project how regional precipitation and

evaporation patterns might be altered within the con-

text of climate change. This is particularly relevant for

the tropical oceans where projected hydrological cycle

trends appear to be influenced by spatial variations of

sea surface temperature (SST) change in addition to the

wet get wetter and dry get drier pattern associated with

quasi-uniform tropical SST warming (Xie et al. 2010).

Despite common features among projected spatial pat-

terns of SST change, deviations from uniform tropical

SST warming differ between models leading to large

uncertainty with regard to the future distribution of

tropical precipitation and evaporation changes. Further-

more, early detection and attribution of these changes

is also hampered by the difficulty and lack of long-term

freshwater flux observations over the oceans and their

high space and time variability. Present evidence for

a changing tropical marine hydrological cycle must then

be searched for elsewhere. It is now well established

that surface ocean salinity provides nature’s largest

possible rain gauge and can be efficiently used as an

indicator of the changing marine water cycle (Schmitt

2008). Large-scale salinity variations are mainly shaped

by the evaporation minus precipitation patterns and

oceanic circulation. While the former mechanism acts

to create salinity contrasts, ocean circulation and small-

scale mixing act to attenuate them. Furthermore and in

contrast with SST, there are to first order no strong direct

and local feedbacks between sea surface salinity (SSS)

and surface freshwater fluxes. This is in particular rel-

evant for the tropical oceans where SSS seasonal to

decadal variability mainly reflects to first order the fresh-

water flux changes linked to dominant variability modes

such as El Niño–Southern Oscillation (ENSO) and the

Pacific decadal oscillation (PDO) for the Pacific Ocean

(Delcroix 1998; Delcroix et al. 2007). SSS thus appears

to be an efficient integrated indicator of the marine hy-

drological changes. Here, we use observed SSS datasets

and large ensembles of climate model simulations to

identify possible human-induced changes in the tropi-

cal marine hydrological cycle evolution over the past few

decades. The observed and model data used in this study

are briefly described in the following section. Section 3

details the two detection methodologies applied to infer

the nature of the surface salinity changes. Section 4 then

reviews and compares the observed and simulated (past

and future) changes in tropical surface salinity. Section 5

examines the question of the anthropogenic influences on

the recent SSS changes. This section begins by comparing

the signal-to-noise ratio between SSS and freshwater

fluxes. It then compares the basin-averaged and interbasin

observed SSS with model estimates of internal variability.

It further examines the relevance of the pattern scaling or

scalability assumption for the changes in response to an-

thropogenic forcing. Finally, two detection methods are

applied to assess whether a human influence can be de-

tected in the recently observed SSS changes. The paper

concludes with a brief summary and a discussion of the

results within the context of the future marine water cycle

and ocean changes.

2. Observed and model data

a. Observed salinity data

For this investigation, we use a compilation of Pacific

(308S–308N, 1950–2008) and Atlantic (308S–508N, 1970–

2002) SSS datasets, which consist of in situ salinity ob-

servations gridded on a monthly basis on a 18 3 18 grid

[see Reverdin et al. (2007) and Delcroix et al. (2011) for full

details about the various data sources and postprocessing].

Due to the use and mix of multiple instruments, observed

sea surface salinity in this study is representative of near-

surface salinity, meaning the 0–10-m depth-averaged sa-

linity. Given that 90% of the time the observed vertical

gradient of salinity in the upper 10 m is less than 0.05

(Hénocq et al. 2010) and taking into consideration our

data processing and large-scale averaging, the mix of in-

struments and 0–10-m depth sampling is highly unlikely

to bias the present trend analysis. An optimal interpo-

lation analysis is applied to the quality controlled SSS

data to produce a monthly SSS gridded field at 18 res-

olution. The algorithm solves a local problem at each grid

point by using closely located data and accounting for

the spatial and temporal scales of the physical variable.

In addition to the SSS values, the algorithm also yields

an error field at each grid point, which is given as

a percentage of the interannual variance. This allows us

to estimate at least qualitatively the confidence we can

have when computing multidecadal trends. Complete

description of the datasets and optimal interpolation

methodologies, as well as additional references, can be

found online (http://www.legos.obs-mip.fr/observations/

sss). We only consider data with sufficient coverage and

reasonable error estimates. We use observed SSS data

from the full observational period, meaning January

1950–December 2008 and January 1970–December

2002 for the Pacific and Atlantic, respectively. We use

SSS monthly means only at locations where data are

present with an SSS error that is less than 90% of the

SSS standard deviation. For the mean SSS climatology,

we only consider grid cells that have at least 20% time

coverage. For the overlapping 1970–2002 period trend
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estimation, we only use grid cells containing at least five

SSS observations during each of the seven pentads. This

leads to the definition of an observational spatial mask,

which is then used in the trend detection analysis. For the

temporal detection analysis, we use regionally averaged

SSS annual means constructed from the selected monthly

means. Parts of the southeastern tropical Pacific, as well as

a large area of the southern Atlantic, are poorly sampled

and are therefore excluded from the detection analysis.

The practical salinity scale (pss-78) is used throughout the

paper, meaning that the salinity is a ratio and does not

have physical units (Millero 1993).

b. Model data

The modeled data used in this study are those of the

coupled general circulation models archived by the World

Climate Research Programme’s (WCRP) Coupled Model

Intercomparison Project, Phase 3 (CMIP3), dataset

(available online at http://www-pcmdi.llnl.gov/). The

three datasets used here are referred to by the Program

for Climate Model Diagnosis and Intercomparison

(PCMDI) as the picntrl, 20c3m, and sresa1b multimodel

experiments (see Table 1 to see the model list and in-

tegrations used). The sresa1b simulations followed the

Special Report Emission Scenario (SRES) A1B scenario

for the anthropogenic forcing evolution. The 20c3m sim-

ulations have a wide variety of anthropogenic influences

(such as well-mixed greenhouse gases, ozone, sulfate, and

black carbon aerosols). Roughly half of them also include

changes in natural forcings (including total solar irradi-

ance and stratospheric aerosols following volcanic erup-

tions). The picntrl or control integrations have constant

and preindustrial values for the anthropogenic and natural

forcings. We consider only one realization from each of

the 23 models under these experiments. It is worth

noting that not all 23 models contribute to all calculated

TABLE 1. Summary of the various models and experiments used together with the relevant lengths of the control integrations: X, model

experiment used; N, no model data available. Here picntrl is a control simulation with constant preindustrial external forcings, 20c3m is

a twentieth-century simulation with observed historical forcings, and sresa1b is a twenty-first-century simulation with the Special Report

Emission Scenario A1B scenario for anthropogenic forcings.

CMIP3 model picntrl 20c3m sresa1b CMIP3 model picntrl 20c3m sresa1b

Bergen Climate Model,

version 2 (BCM2.0)

250 X X Flexible Global Ocean–Atmosphere–Land

System Model (FGOALS)

350 X X

Canadian Centre for

Climate Modelling

and Analysis (CCCma)

Coupled General Circulation

Model, version 3.1 (CGCM3.1)

1001 X X Istituto Nazionale di Geofisica e

Vulcanologia (INGV) ECHAM4

100 X X

CGCM3.1-T63 400 X X L’Institut Pierre-Simon Laplace Coupled

Model, version 4 (IPSL CM4)

500 X X

Centre National de Recherches

Météorologiques Coupled

Global Climate Model,

version 3 (CNRM-CM3)

500 X X Model for Interdisciplinary Research on

Climate 3.2, high-resolution version

[MIROC3.2(hires)]

100 X X

CSIRO Mark version 3.0

(CSIRO-MK3.0)

380 X X MIROC 3.2, medium-resolution version

[MIROC3.2(medres)]

500 X X

CSIRO Mark version 3.5

(CSIRO-MK3.5)

950 X X Meteorological Institute of the

University of Bonn, ECHO-G

Model (MIUBECHOG)

341 X X

Geophysical Fluid Dynamics

Laboratory Climate Model,

version 2.0 (GFDL-CM2.0)

500 X X Max Planck Institute (MPI) ECHAM5 N X X

GFDL CM, version 2.1

(GFDL-CM2.1)

300 X X Meteorological Research Institute

Coupled General Circulation Model,

version 2.3.2a (MRI CGCM2.3.2a)

350 X X

Goddard Institute for Space

Studies Atmosphere–Ocean

Model (GISS-AOM)

251 X X CCSM3.0 455 X X

GISS Model E-H (GISS-EH) 400 X X National Center for Atmospheric

Research (NCAR) Parallel Climate

Model (PCM)

N X X

GISS Model E-R (GISS-ER) 500 X X HadCM3 422 X X

Hadley Centre Global

Environmental Model

(HadGEM)

70 X N CCSM3.0 N N 40 mem.
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quantities studied in this paper when relevant data are

missing or a specific subset of models is being examined.

We also use a 40-member ensemble for the period 2000–

61 performed with the Community Climate System Model

version 3 (CCSM3) forced by the SRES A1B greenhouse

gas emission and stratospheric ozone recovery scenarios

(Branstator and Teng 2010). Each member undergoes

the same external forcing and starts from the same ocean,

land, and sea ice initial conditions given by those on

1 January 2000 from a single twentieth-century CCSM3

integration. All members have different atmospheric

initial conditions taken from days during December

and January 2000 from the same CCSM3 integration,

and simulation differences are thus only due to the model

internal variability.

We only analyze model data between 308S and 508N

to fit the observational geographical domain. To ease

the analysis, all model SSS results have been first in-

terpolated onto a common regular grid (similar to the

observational 18 3 18 grid) accounting for the model

differences in the land–sea mask. Before the trend

analysis and detection part of the process, observed and

simulated SSS data were further gridded onto a common

58 3 58 grid in order to remove the small-scale noise and

variability present in both the observations and simula-

tions. Model data were then processed in the same way as

were the observations, so that the model values are only

used at the same places as those indicated by the obser-

vational mask.

c. Freshwater flux observed estimates

We only use one precipitation and one evaporation

dataset. The monthly mean precipitation totals from the

Global Precipitation Climatology Project dataset ver-

sion 2.1 are based on both satellite and gauge datasets

and cover the 1979–2008 period (Huffman et al. 2009).

Monthly mean evaporation results from the Objectively

Analyzed air–sea Fluxes (OAFlux) objective analysis

dataset are based on a blending of satellite retrievals and

three atmospheric reanalyses, as well as on the version 3.0

of the Coupled Ocean–Atmosphere Response Experi-

ment (COARE) bulk algorithm, for the estimation of the

turbulent fluxes and cover the 1958–2008 period (Yu and

Weller 2007). Here, we use data over the period 1979–2008

to get the maximum overlap between the two datasets.

3. Detection methods

To assess the extent to which significant SSS changes

may be detected as being significantly different from

those expected from internal variability, we apply two

different optimal detection methodologies. The first

one, the optimal fingerprint approach (OF hereafter),

has already been extensively used to detect changes in

atmospheric temperature and precipitation among other

parameters (Allen et al. 2006; Hegerl et al. 2007). Here,

we use the OF approach to compare quantitatively cur-

rent and future trends in observed and simulated SSS,

respectively. The second approach, named here the

temporal optimal detection approach (TOD thereafter),

is a recently developed alternative to the standard opti-

mal fingerprint analysis (Ribes et al. 2010). It consists of

searching for a smooth temporal pattern in the obser-

vations. While any pattern can theoretically be used,

we focus here on temporal patterns best suited to rep-

resenting the mean response of the upper tropical and

subtropical ocean to anthropogenic forcing. Consider-

ation of the two approaches is interesting as they make

very different assumptions and use different ways of

enhancing the signal-to-noise ratio.

a. Optimal fingerprint methodology

The OF method can be simply described as an optimal

regression of the response guess patterns (the finger-

prints) to some given external forcings against the cor-

responding observed patterns. Here, we are focusing

on one (anthropogenic) signal. The optimal fingerprint

method then assumes the following statistical model:

Cs,t 5 C0
s 1 bXs,t 1 Fs,t, (1)

where C is an observed climate variable (here annual

mean SSS) and C0 its climatological mean, X is the re-

sponse to anthropogenic forcing, F is a centered noise

term representing internal variability, and s 5 1, . . . , S

and t 5 t0, . . . , T are the spatial and temporal indices,

respectively. The observations are thus represented as

the sum of a scaled simulated response to anthropogenic

forcing and internal variability. The fingerprints and

observations are a priori depending on space and time.

Due to the relatively short length of the tropical ob-

served SSS record, we follow the common procedure

and mask the time dimension by using linear trend and

epoch difference spatial patterns for the observations

and fingerprints, respectively. The observed patterns are

taken to be 33-yr SSS linear trends over the 1970–2002

period, thereby masking the time dimension from (1).

Using a scalability hypothesis (see below), the finger-

print patterns are taken as multimodel ensemble mean

epoch differences between the last 30 yr of the twenty-

first century (2070–99) and that of the twentieth century

(1970–99). To account for sampling noise not only in the

observations but also in the signal estimates, the total

least squares (TLS) approach is used to derive unbiased

estimates of the scaling regression coefficients and con-

fidence intervals (Allen et Stott 2003).
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The optimal detection also requires two independent

estimates of internal variability needed for optimization

(C
n1

) and significance testing (C
n2

). Simulated and ob-

served spatial patterns are then projected onto a reduced

space spanned by the leading p empirical orthogonal

functions of Cn1 (see the appendix). The optimal de-

tection then calculates the scaling factor (regression co-

efficient) by which the simulated response guess pattern

can be scaled up or down while remaining consistent

with the observed pattern. The 5th–95th percentile un-

certainty range in the scaling factor is then assessed from

the independent internal variability estimate Cn2 and the

anthropogenic forcing response pattern is detected if the

scaling factor is found to be positive and inconsistent with

zero at the 10% significance level.

b. Temporal detection methodology

The statistical model behind the temporal optimal

detection approach can be written as

Cs,t 5 C0
s 1 gsmt 1 Fs,t, (2)

with the same definitions as above. Within this approach,

the climate change signal is decomposed as a product

gsmt, where m and g are the climate change temporal

and spatial patterns, respectively, and therefore use the

scalability assumption. The idea behind the TOD ap-

proach is to assume that m is known from model simu-

lations, while g is estimated from the observations via

generalized regression. The TOD approach can then be

seen as a two-step process: first, one needs to estimate mt.

Here, rather than using the global mean surface air

temperature (Ribes et al. 2010), we prefer to use an

oceanic integrated variable that can better reflect upper-

ocean thermal changes linked to changes in radiative

forcing. The second step is the statistical test of the null

hypothesis H0: gs 5 0 against H1: gs 6¼ 0 assuming

knowledge of mt (see Ribes et al. 2010). TOD also uses

one assumption on the nature of F, namely that F is

a stationary autoregressive process of order one in time

[AR(1) or red noise, Fs,t 5 aFs,t21 1 Qs,t, with Qs,t

independent identically distributed random variables].

The TOD hypothesis testing procedure requires T $ S 1 2,

implying that it cannot be applied over the global scale

taking each individual grid point into account. Instead,

we consider a small number of regions in each basin (see

section 5 and Fig. 9a) based on the mean SSS distribution

and data availability and use the spatially averaged an-

nual mean SSS over these regions as pseudogridpoints in

the detection test. Results from the TOD approach are

presented in terms of the p value, which is the probability

of obtaining a value of the test statistic more extreme than

that actually observed under the null hypothesis H0. The

time evolution of the p value is presented in order to il-

lustrate the evolution of the anthropogenic signal and its

emergence. The p value for a given date, say 1990, is then

the p value of the detection test applied to the data over

the periods 1956–90 and 1970–90 for the Pacific and At-

lantic, respectively.

4. Observed and future salinity changes

a. Observed and recent salinity changes

SSS changes over the past decades exhibit a strong

Pacific freshening and Atlantic salinity increase leading

to a strengthening of the mean SSS interbasin contrast,

which reflects to a large extent the mean pattern of

freshwater fluxes (Fig. 1). The salty Atlantic due to net

evaporation contrasts with a low-salinity Pacific associ-

ated with a net input of freshwater. Regional SSS changes

of large amplitude seem to follow the rich gets richer

paradigm: the warm and fresh pool of the western Pacific

has freshened (Cravatte et al. 2009) whereas the salty

subtropical North Atlantic has become saltier (Gordon

and Giulivi 2008). The western equatorial Pacific and

South Pacific convergence zone (SPCZ) salinity fronts

have both migrated eastward during the last decades,

leading to a spatial extension of the Pacific fresh pool

(Cravatte et al. 2009). Salinity increases occurred in the

western Coral Sea and the southeastern and central

North Pacific. Atlantic changes show more contrast with

freshening of the deep tropical central and north-western

part and saltier waters over the northern subtropics and

southern regions. Whether the equatorial band freshen-

ing is due to decadal variability or represent a lower-

frequency signal is still a matter of debate (Grodsky et al.

2006). Although the density of SSS observations is scarce

in the South Atlantic, the available data show increased

salinity on the eastern and western sides. The main spatial

features of the tropical SSS trend seem to be robust to

the inclusion or not of the recent Argo profiling float

data (Hosoda et al. 2009; Durack and Wijffels 2010).

Furthermore, the recent (2003–08) Argo-derived South

Atlantic positive SSS anomaly suggests that the corre-

sponding low-frequency signal has a basin spatial scale.

Further examination of Argo data also suggests that the

recent salinity changes are not restricted to the surface

layer and extend at depth, in particular in the subtropical

Atlantic (Von Schuckmann et al. 2009; Durack and

Wijffels 2010).

The observed SSS evolution thus shows intensified

spatial contrasts, suggesting an increase in the marine

tropical hydrological cycle strength. These SSS changes

have been documented in recent studies using related

or independent datasets (Curry et al. 2003; Boyer et al.
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2005; Bindoff et al. 2007; Reverdin et al. 2007; Cravatte

et al. 2009; Durack and Wijffels 2010). However, none of

these studies has tried to formally detect an anthropo-

genic fingerprint in the observed tropical SSS changes. A

first attempt using a one-model detection and attribu-

tion study has recently been done and focused only on

the Atlantic, using as detection vector SSS zonal means

from a coarser observed dataset (Stott et al. 2008).

To support the idea that recent tropical SSS evolution

may reflect changes in the tropical marine hydrological

cycle, we compare recent observed trends in freshwater

flux estimates with that of SSS. As we recognize that

there are still large uncertainties regarding the recent

evolution of the two main components of the ocean

freshwater flux, we are only interested in the presence

or lack thereof of qualitative agreement with SSS changes.

Consequently, we view differences in observed SSS and

freshwater trend estimates as indicative of observed

datasets biases and/or the importance of ocean circula-

tion changes in addition to that of the freshwater forcing.

Coherent changes with recent SSS evolution include in-

creased freshwater fluxes in the western Pacific and along

the south and intertropical convergence zones, as well

as decreased ones in the central equatorial Pacific and

central-eastern subtropics (Fig. 2). The observed salinity

increase along the east Australian coast seems to be

partly related to an increase in evaporation combined

with reduced precipitation. Changes in precipitation

usually dominate evaporation ones in particular in the

convergence zones. The much larger zonal and me-

ridional extents of the negative SSS anomalies in the

western Pacific may be explained through the spread of

SSS anomalies due to the influence of mean advection,

including the Ekman divergent drift near the equator and

weakening of the south equatorial current (Huang et al.

2005). The comparison is even more difficult for the At-

lantic as the overlap period between the SSS and fresh-

water component datasets is smaller and the decadal

variability is strong in particular in the tropics, which

raises questions concerning the use of a linear trend to

represent the observed changes. Nevertheless, both fresh-

water components seem to contribute to more saline

surface waters in the northern subtropics and midlatitudes

and to a freshening in the western tropical Atlantic.

b. Projected and future salinity changes

Before formally addressing the detection question,

we first compare observed SSS trends with twenty-first-

century climate model simulations. A first guess of the

SSS response to anthropogenic forcing is simply the

changes over the twenty-first century as simulated by

the CMIP3 multimodel average. The multimodel mean

SSS change displays large-scale features very similar to

the observed trend with an increased interbasin contrast,

as well as a fresher western Pacific warm pool and a saltier

subtropical North Atlantic (Figs. 3a,b). Main differences

are located in the equatorial and midlatitude North

Atlantic as well as in the equatorial and subtropical

FIG. 1. Observed SSS trends and means. (a) The 33-yr (1970–2002) linear surface salinity

trend (century21) computed from monthly anomalies. White grid boxes indicate regions with

insufficient or no data and stippling denotes areas where trends are statistically significant from

0 at the 5% level using a two-sided Student’s t test. (b) Climatological mean observed surface

salinities estimated over 1950–2008 and 1970–2002 for the Pacific and Atlantic, respectively.

Geographical masks were applied in order to prevent mixing of data across the land boundaries.
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central Pacific. The projected twenty-first-century

equatorial Atlantic salinity increase and midlatitude

freshening suggests that the recent and corresponding

observed trend may not necessarily reflect the long-term

response to anthropogenic forcing. We further note that

most individual models consistently exhibit quite simi-

lar large-scale spatial patterns, suggesting that the mul-

timodel mean can be used as a robust estimate of the

response to anthropogenic forcing, at least in the

tropical and subtropical oceans (Figs. 3 and A1). Although

most models indicate freshening north of 508N, it has

been suggested that the twenty-first-century evolution of

the North Atlantic SSS may not be necessarily linear due

to the competing influences between the advection of

saltier water from the tropics and local precipitation and

evaporation changes (Stott et al. 2008). Finally, there is no

systematic difference in the projected SSS changes be-

tween models with and without freshwater flux correc-

tions, suggesting that they can both be used to characterize

the response to anthropogenic forcing. This also indicates

that there is no clear relationship between model skill

levels in simulating the mean state and in capturing the

response to anthropogenic forcing (Santer et al. 2009).

c. Evaluation of model performance in simulating
variability

Most detection studies use climate model control

simulations in which there is no change in forcing as

FIG. 2. Observed freshwater flux trends: 30-yr (1979–2008) linear trends using annual means

for (a) evaporation from OAFlux and (b) precipitation from the Global Precipitation Clima-

tology Project (GPCP). (c) Total freshwater flux defined as precipitation minus evaporation.

Units are mm day21 century21.
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pseudo-observations to provide an estimate of the dis-

tribution of the detection statistic under scrutiny under

the null hypothesis of no anthropogenic change. It then

would be relevant to assess the confidence in the realism

of the model representation of internal climate variability.

However, the SSS observed period is marked by in-

creasing external forcing precluding any direct compari-

son with model internal variability. Here, we prefer to

evaluate the model’s ability to realistically simulate

tropical SSS variability (see also Delcroix et al. 2011).

We compare observed and twentieth-century-simulated

SSS changes averaged over three different regions char-

acterized by large observed monthly and interannual

variabilities. The first two are in the western Pacific and

characterize the variations of the western equatorial and

SPCZ salinity fronts, which exhibit variability at all time

scales due to natural modes such as ENSO and PDO. The

third one is located in the subtropical North Atlantic and

is under the influence of the North Atlantic Oscillation

(NAO) and Atlantic decadal variability. The model-

average temporal standard deviation is actually close to

(similar in the SPCZ front and underestimated by a ma-

jority of models in the western equatorial Pacific) or even

larger (Atlantic) than the observed variability (Fig. 4).

There is no sign of a systematic model underestimation

of the monthly to interannual variability nor is there any

sign of a uniform bias across models in term of the mean

state. However, the model spread is large, suggesting that

FIG. 3. Twenty-first-century SSS changes. (a) Recently (1970–2002) observed SSS trends and (b) multimodel average

SSS changes (century21) between the end of the twenty-first and twentieth centuries (2070–99 and 1970–99). Simulated

changes for individual models: (c),(d),(e),(f) without freshwater flux adjustments and (g),(h),(i),( j) with freshwater flux

adjustments. The individual models without flux adjustments are the ones selected in Delcroix et al. (2011).
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a number of models suffer from mean state biases pos-

sibly due to inadequate freshwater fluxes. A majority of

models underestimate the variability in the South Pacific

region likely due to a misrepresentation of the SPCZ

mean and shifts related to ENSO or PDO. Interestingly,

we find there is sign agreement between the multimodel

average and the observed trends. While there is no

indication of a systematic bias in low-frequency trend

amplitude for the equatorial Pacific and Atlantic re-

gions, most models have smaller trend amplitudes than

are observed (Figs. 4b,d,f). As expected from independent

model initialization and internal variability, the modeled

Pacific trends show a large spread while most models

agree on a salinity increase trend (with different am-

plitudes) for the Atlantic. The similarity of the observed

trend values with different ending dates illustrates that

FIG. 4. Observed and simulated twentieth-century SSS mean and variability. Comparison of simulated and ob-

served means, variabilities, and trends for SSS averaged over three tropical regions: (a),(b) western South Pacific

(208–108S, 1608E–1808) over the 1950–99 period, (c),(d) western equatorial Pacific (58S–58N, 1708E–1708W) over the

1950–99 period, and (e),(f) subtropical North Atlantic (158–308N, 708–508W) over the 1970–99 period. Scatterplots

show the relationships between the temporal standard deviation of unfiltered SSS monthly means anomalies and the

climatological annual mean SSSs in (a),(c), and (e), and the temporal standard deviation of 2-yr-filtered SSS monthly

mean anomalies and 50-yr (30 yr) linear trends in SSS over 1950 (1970)–1999 for the Pacific (Atlantic) regions in (b),

(d), and (f). All standard deviations were estimated from linearly detrended data. The dashed lines indicate the

location of the observed values to ease the visual comparison of observed and simulated values. The multimodel

average values are indicated by an open circle and the observed values by an open square. In (b),(d), and (f) addi-

tional trend observed values (open triangles) over periods with the same initial date but ending in 2002 (both basins)

and 2008 (Pacific only) have been added.
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the 1998 ENSO is not strongly impacting the low-

frequency trends. Furthermore, the Pacific regions have

very similar observed SSS trends while their linearly de-

trended and 2-yr filtered time series are actually nega-

tively correlated at an interannual time scale [correlation

of 20.57 significant at the 1% level using a phase-

scrambling bootstrap test accounting for time series

autocorrelation; Davison and Hinkley (1997)]. This

suggests that the two regional SSS trends may be caused

by a common low-frequency mechanism different from

those related to ENSO or PDO. Alternatively, this in-

verse relationship between the different time scales could

also indicate a change in the ENSO-related SSS pattern

due to instance to an increased frequency of central

Pacific El Niño events, which could occur in response to

global warming (Yeh et al. 2009).

5. Detection of human influences on salinity
changes

a. Signal-to-noise ratio: Salinity versus
freshwater fluxes

In studying the human influences on the tropical water

cycle, it is relevant to first consider the question of the

signal-to-noise ratio between different climate variables.

Here, we compare a simple measure of the signal-to-

noise ratio for SSS, freshwater flux, and its different

components. We use the 40-member CCSM3 ensemble

to assess the signal-to-noise ratios associated with a linear

trend diagnostic applied to the different variables of the

marine hydrological cycle. Here, the signal refers to the

SSS forced response to the anthropogenic forcing and is

estimated by the 40-member ensemble mean linear trend.

The noise refers to pure internal variability and is esti-

mated by the ensemble dispersion of individual trends.

As all members share the same ocean and land initial

conditions, it is possible that the ensemble provides a bi-

ased low estimate of internal variability. However, pre-

vious analysis of the 40-member ensemble has suggested

that the memory associated with the ocean initial condi-

tions is lost within less than a decade (Branstator and

Teng 2010). To account for this effect in the signal-to-

noise ratio analysis, we use annual means and calculate

50-yr linear trends covering the 2011–60 period (similar

results are obtained if epoch differences are used). The

left panel of Fig. 5 shows the forced response for pre-

cipitation; evaporation; total freshwater flux, defined

here as precipitation minus evaporation; and sea sur-

face salinity. There is a good spatial correspondence

between regions of decreasing salinity with regions

with an increased total freshwater flux (and vice versa),

FIG. 5. Signal-to-noise ratio: SSS vs freshwater fluxes. (left) CCSM3 40-member ensemble mean 50-yr linear trend

(2011–60) and (right) minimum number of ensemble members needed to detect a nonzero ensemble mean trend

(taken as the forced response) at the 5% level at each grid point. Shown are (a),(b) precipitation, (c),(d) evaporation,

(e),(f) precipitation minus evaporation, and (g),(h) SSS. In (a),(c),(e), and (g), stippling indicates 50-yr linear trends

significantly different from 0 at the 5% confidence level relative to the spread of the 40 50-yr linear trends using a two-

sided Student’s t test. In (b),(d),(f), and (h), white areas indicate locations where the 40-member ensemble mean

response is not significantly different from 0 at the 5% confidence level. Units in (a),(c), and (e) are mm day21

(50 yr)21 and 50 yr21 in (d).
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in particular over the western Pacific, the tropical

Atlantic, and the Indian Ocean. The SSS change also

exhibits a much larger spatial scale pattern than the

freshwater fluxes, suggesting the influences of ocean

circulation in spreading the freshwater anomaly. Statis-

tical significance of the forced response is reached over

a large fraction of the tropical oceanic regions for the four

variables. Yet the precipitation and total water flux ex-

hibit a significantly larger area with no significant forced

response other than evaporation or surface salinity. This

is more clearly seen in the right panel of Fig. 5, which is

shown as a simple measure of the signal-to-noise ratio,

Nmin, the minimum number of members needed to detect

a significant forced response (meaning a nonzero en-

semble mean trend). The value of Nmin is computed by

inverting the formula for the standard error of the mean:

Nmin ; 8/(X/s)2, where X is the ensemble mean trend

and s is the standard deviation of the 40 individual trends

(Deser et al. 2012). Only a few members (Nmin , 3) are

needed to detect a significant SSS response over the

quasi-majority of the tropical oceans while precipitation

and total freshwater flux generally present lower signal-

to-noise ratios or no detectable response, in particular

over the western Pacific, the tropical Atlantic, and the

equatorial Indian Ocean.

b. Observed and internal variability basin-averaged
salinity trends

A first simple approach to the detection question is to

assess whether the recent SSS trends are outside of the

range due to internal variability alone. Here, we use the

CMIP3 control simulations to provide a trend distribu-

tion estimate purely based on the internal variability.

We deliberately focus on a few integrated SSS signals:

the Atlantic and Pacific basin averages and the basins

contrast. We consider averages over the entire obser-

vation domain for each basin to estimate the mean basin

and interbasin contrast SSS time series. We then seek

evidence for the rejection of the null hypothesis that

the observed basin average and interbasin contrast SSS

trends could be due to internal variability alone. As

several models exhibit significant nonlinear drifts, we

first detrend the control simulations by systematically

removing a second-order polynomial trend to each grid-

point time series to prevent artificially inflating the width

of the distribution. We then calculate the three annual

mean time series from each CMIP3 model.

From each model, the distribution of 33-yr trends is

obtained by fitting linear trends to all 33-yr overlapping

segments (years 1–33, 2–34, . . .). We then pool the re-

sults from the various models to form a multimodel

distribution of unforced trends. The control simulations

used here compose a total of 8620 years of unforced

data. This yields 7914 nonindependent samples of

overlapping 33-yr linear trends only driven by internal

variability. Assuming that the model-generated internal

variability is reliable, it is unlikely to be the sole factor of

the observed mean Pacific SSS decrease and increase in

SSS interbasin contrast, as very few of the unforced

trends exceed the observed 1970–2002 trend (Fig. 6).

However, the null hypothesis cannot be rejected for the

Atlantic where the observed trend is well within internal

variability estimates. This is coherent with the sign dif-

ferences noted previously between recent observed and

future simulated Atlantic SSS trends in response to an-

thropogenic forcing. This lack of evidence for the At-

lantic does not rule out the possible detection of a spatial

pattern instead of an integrated measure such as a basin

average.

c. The scalability hypothesis

Our implementation of both detection approaches

relies upon the scalability hypothesis, namely saying that

the spatial structure of the transient forced response is

quasi-invariant with time given a homothetic trans-

formation (note that this hypothesis is likely too severe

for very long time scales, as in stabilization experiments,

where the slow adjustment of long memory components

such as the deep ocean and ice sheets will usually lead to

different response patterns). While it may seem to be

a rather strong hypothesis, it is possible to test its validity

for the twentieth- and twenty-first-century transient in-

tegrations using the CMIP3 data. Figure 7 shows that

the hypothesis is fairly reasonable for tropical SSS.

The centered spatial patterns of the different epoch

changes are similar, which is to be expected if the

scalability hypothesis holds. We further note that it is

likely to be also the case for surface air temperature, as

suggested by the simple scaling relating patterns of

simulated temperature change between different SRES

scenarios (Meehl et al. 2007). Consideration of global

SSS maps shows that this assumption is more doubtful

for subpolar latitudes due to nonlinearities in particular

linked to strong sea ice melting. It is also worth pointing

out that the simulated mean tropical Atlantic (aver-

aged over 308S–508N) across the twentieth and twenty-

first centuries is continuously getting saltier while the

Pacific (with the same latitudinal average) is getting

fresher.

d. Internal variability and temporal pattern
estimation

We now examine some assumptions of the nature of

internal variability in the two detection methodologies.

We also describe the rationale behind the choice of the

temporal patterns within the TOD framework.
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1) OPTIMAL FINGERPRINT

The two noise covariance matrices (C
n1

and C
n2

) are

provided by sampling 33-yr linear trends from CMIP3

control simulations with constant preindustrial forc-

ings. As was done previously, we first detrend and then

divide each of the CMIP3 control integrations into

nonoverlapping 33-yr samples, which yields a set of 254

unforced linear trends of 33-yr duration. We then split

the control integrations in such a way that every model

is evenly represented in the covariance matrix estimates

Cn1 and Cn2. We want to assess if model uncertainty is

biasing our estimates of internal variability as repre-

sented by the Cn1 and Cn2 matrices. We compare the

main modes of the SSS 33-yr linear trend variability

due to pure internal variability deduced from the 40-

member CCSM3 ensemble with those estimated from

the C
n1

and C
n2

matrices. We use the period 2021–53 to

calculate the set of 40 trends from each individual

CCSM3 member. An empirical orthogonal function

(EOF) analysis based on an area-weighted covariance

matrix is then computed on the set of 40 trend maps

separately for each ocean basin. We note that due to

the removal of the ensemble mean trend in the EOF

analysis, the first EOF modes depict the dominant

patterns of the internal variability component of the

trends. A similar EOF analysis is also applied to the set

of 254 SSS 33-yr linear trends from the Cn1 and Cn2

matrices. The leading modes have similar structures in

the two sets for each basin, suggesting that the model

uncertainty is not strongly biasing our noise estimates

(Fig. 8). The spatial structure of the Pacific dominant

noise pattern is reminiscent of meridional (zonal)

displacements of the ITCZ (SPCZ) while that of the

Atlantic shows a dipolar structure between the tropical

and subtropical regions and the midlatitudes.

 
FIG. 6. Distribution of unforced basin-average SSS trends:

comparison of observed SSS trends (century21) with model simu-

lations of unforced trends for (a) the interbasin SSS contrast, (b)

the basin-averaged (308S–308N8) Pacific SSS, and (c) the basin-

averaged (308S–508N8) Atlantic SSS. The red line indicates the

observed values. The sampling distribution of the unforced 33-yr

SSS trends was calculated as described in the text. The left and right

vertical axes indicate the numbers and percentages of trend oc-

currences for each bin, respectively. The number given in the top-

left box is the percentage of simulated trends smaller (Pacific) or

greater (interbasin or Atlantic) than the observed value. Using

a two-sided test leads to p values that are twice as large (0.024 and

0.092 for the Pacific and interbasin trends).
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2) TEMPORAL DETECTION METHOD

Internal variability in the TOD method is assumed to

have an AR(1) structure. It is first required to estimate

the persistence parameter, that is, the a parameter. The

choice of the a value is addressed by using the CMIP3

control simulations and fitting AR(1) processes to grid-

point annual mean SSS for each model. Figure 9a shows

the spatial distribution of the ensemble mean value for

a. Low values are present in the deep tropics while the

subtropics and midlatitudes are characterized by higher

values (thus greater persistence). However, and as men-

tioned in section 3b, TOD is applied to a small set of

spatial domains (Fig. 9a) rather than at the gridpoint

scale. Table 2 provides a multimodel mean estimate of a

over the 12 regional domains involved into the analysis.

Based on these results, we choose to use the a 5 0.7

value for the analysis over the full domain. The next

question is whether such a parametric model for internal

climate variability allows us to properly account for the

multidecadal variability or for a potential long-range

memory effect in SSS variability. To address this ques-

tion, we verify that over 33-yr periods (the period used

in our full tropical analysis), the internal variability from

the CMIP3 control simulations is consistent with the

one assumed in the TOD method. This is shown in Fig.

9b, by estimating the distribution of the p values ob-

tained by applying the TOD method to the full set of

overlapping 33-yr periods taken from CMIP3 control

simulations. If the TOD’s assumptions are appropriate,

this distribution is expected to be uniform (within sam-

pling errors) over the [0, 1] interval. If the internal vari-

ability is underestimated (overestimated) in the TOD

method, then the probability to find small p values will

be increased (decreased). Figure 9b shows that our as-

sumption is fairly reasonable, with a multimodel distri-

bution that is close to uniform. However, it must be

noted that this multimodel mean result is somewhat

model dependent, with some individual models simu-

lating a lower (higher) persistence and then a conserva-

tive (permissive) testing procedure with the a 5 0.7 value

(not shown). Similar diagnoses have been performed to

estimate appropriate values of a when the analysis is

applied over different domains (such as those used in

Fig. 10; see legend).

We now examine the choice of the temporal pattern

mt. As suggested by recent studies (Palmer et al. 2007,

2009), we choose the mean temperature between the

surface and the 148C isotherm as our proxy for upper-

ocean warming (Tiso14). Using Tiso14 filters out part of

the internal variability from climate simulations and bet-

ter captures the externally forced component of tropical

and subtropical upper-ocean temperature evolution over

the twentieth century. We then calculate mt using sim-

ulated annual mean values of Tiso14 from the CMIP3

twentieth-century integrations with anthropogenic forc-

ing only and impose a smoothing constraint using four

degrees of freedom in the minimization procedure, as in

Ribes et al. 2010 (Fig. 10). The smoothness constraint

allows us to filter out a large part of the remaining internal

variability, thereby further increasing the signal-to-noise

ratio. The patterns have similar shapes, namely a very

slow increase for the first 70 yr followed by a sharp rise

over the last three decades. Note that the detection test

does not depend on the mean or amplitude of mt but

only on its shape.

e. Detection results

We estimate the effects of anthropogenic forcing on

observed SSS evolution first over both basins together

and then separately. When considering the full Atlantic-

Pacific domain, the SSS response to anthropogenic forcing

is detected using the OF method (Fig. 11a; p value ’

10%), but not detected with the TOD method (Fig. 11b;

p value $ 20%). Such a difference may be explained as

follows: in addition to the temporal information used

FIG. 7. Validity of the scalability hypothesis: time evolution of

the multimodel climate change spatial distribution defined as the

centered pattern difference between three 50-yr periods: (a) 1950–

99, (b) 2000–49, and (c) 2050–99 and 1900–50. The Atlantic and

Pacific SSS changes are further normalized by the mean SSS change

averaged over the Atlantic and Pacific (308S–508N) domains,

respectively.
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in both methods, OF also uses the expected spatial

pattern of change, which is very similar to the observed

trends (see Fig. 3). In such a case, OF does a better job

of discriminating between anthropogenic change and

internal variability, while TOD is expected to be effi-

cient when the expected spatial pattern of change is

inaccurately estimated. This result from the OF method

suggests that anthropogenic forcing acts to increase the

interbasin SSS contrast, which is confirmed by the TOD

results when TOD is applied to only two large boxes

covering the Pacific and Atlantic basins (Figs. 11c,d).

These results also confirm the simple linear trend distri-

bution analysis (Fig. 6). An anthropogenic influence upon

Pacific SSS alone can also be detected with both ap-

proaches (Figs. 11a,e). Furthermore, residual and in-

ternal variability are found to be consistent within the OF

framework, and the two-basin and Pacific scaling factors

are found to be consistent with one another, indicating

consistency between the simulations and observations

(Allen and Tett 1999; Allen et al. 2006). The temporal

approach suggests that the anthropogenic signal is ro-

bustly detected in the Pacific starting in the late 1990s.

Applying the temporal approach to individual tropical

Pacific regions shows robust detection in the whole

western Pacific fresh pool (regions 1–3; see Fig. 9a) and

no detection in other regions. No anthropogenic forcing

response can yet be robustly detected in the observed SSS

for the full Atlantic domain (Figs. 11a,f). The scaling

factor 5%–95% uncertainty range includes 0, meaning

that one cannot reject the null hypothesis. Further in-

sights can be gained using the temporal approach. While

p values are below the 10% confidence threshold during

the 1980s, that is no longer the case for the most recent

period where they are very close to or above it. This holds

with most temporal patterns due to their similarity over

the 1970–2002 period. It is worth noting that the third

climate configuration of the Met Office Unified Model

(HadCM3) temporal pattern (which is the lowest value

in the model range in Fig. 11f) is detected at the end of

the period although not very strongly, in agreement

with a previous detection study (Stott et al. 2008). How-

ever, we find that an anthropogenic forcing response can

be detected for the subtropical North Atlantic alone

(Figs. 11a,g) or in combination with the Pacific while de-

tection fails for the other regions when taken separately

(not shown). These results are coherent with our previous

findings regarding the influence of internal decadal vari-

ability upon the recent observed Atlantic trends and the

spatial differences between the observed trends and pro-

jected twenty-first-century changes.

6. Summary and discussion

Together with previous related studies on atmospheric

water vapor (Santer et al. 2007) and surface humidity

(Willett et al. 2007), our findings suggest that there is an

emerging anthropogenic signal in the recent evolution of

FIG. 8. Model uncertainty and internal variability leading modes: the leading EOF of SSS 33-yr trends (50 yr21)

from (a),(b) the 40-member CCSM3 ensemble and (c),(d) the 254-member trend set from the control CMIP3 sim-

ulations ensemble. The analysis is done separately for the two basins.
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the tropical marine hydrological cycle. The main results

of our study can be summarized as follow:

(i) Near-surface salinity observations during recent

decades show a tropical Pacific freshening and

Atlantic salinity increase, which suggests an en-

hanced interbasin salinity contrast. The mean-basin

SSS 33-yr trends are significantly different from

what is expected from internal variability alone

for the Pacific and interbasin contrast while they

are indistinguishable for the Atlantic.

(ii) Twenty-first-century projected SSS changes in

response to anthropogenic forcing display a fresh-

ening of the western tropical Pacific and a wide-

spread tropical and subtropical Atlantic salinity

increase. Two regions have changes that contrast

with the mean basin trend: the southeast Pacific

is getting saltier while the midlatitude Atlantic is

getting fresher.

(iii) Anthropogenic forcing contributed significantly to

the observed tropical Pacific freshening and to the

subtropical Atlantic salinity increase. The robust-

ness of the detection is suggested by the consistency

of the results from two different methodologies. This

enhanced SSS contrast is consistent with the pro-

jected enhanced moisture transport from the tropical

North Atlantic to the Pacific under increased green-

house gas forcing (Richter and Xie 2010).

(iv) The spatial patterns of observed and projected SSS

changes reflect the rich get richer paradigm (Held

and Soden 2006). The Pacific fresh pool and the

subtropical North Atlantic experience the largest

SSS changes, in agreement with projections of fresh-

water atmospheric forcing (Seager et al. 2010). The

observed and projected extension of the western

Pacific fresh pool likely involves additional influ-

ences from ocean dynamics, including changes in the

South Equatorial Current, divergent Ekman flows,

and poleward western boundary currents (Huang

et al. 2005).

These results may have important implications on the

future evolution of climate variability modes. A fresher

and warmer western Pacific pool may potentially lead to

changes in mixed layer depth and barrier layer thickness

although quantitative estimates require consideration

of additional factors such as mixing induced by wind

changes (Carton et al. 2008). These potential changes in

FIG. 9. Temporal detection method. (a) Mean (across the 22

CMIP3 models) value of the coefficient a of the AR(1) process

fitted to annual mean SSS grid point time series derived from the

CMIP3 control integrations. The black boxes indicate regions

where annual mean SSS values were spatially averaged before

being used in the detection test of the temporal detection approach.

(b) Distribution of the p values provided by the TOD procedure

when applied to all overlapping 33-yr periods from CMIP3 control

simulations, with the same parameters (a and mt) as for the ob-

servations.

TABLE 2. Mean (across the 21 CMIP3 models) value of the co-

efficient a of the AR(1) process fitted to the time series of the

annual mean SSS averaged over the 12 regions defined in Fig. 9a,

derived from the CMIP3 control integrations.

No. Atlantic Pacific

1 0.73 0.50

2 0.80 0.55

3 0.64 0.54

4 0.61 0.47

5 0.68 0.67

6 0.55

7 0.44

FIG. 10. Estimates of the temporal patterns mt (in K) derived

from annual mean Tiso14 from individual models using the CMIP3

twentieth- and twenty-first integrations with 1900 as a time refer-

ence for all curves. We only consider models with only anthropo-

genic forcings prescribed during the twentieth century (no natural

forcings). The black line shows the multimodel temporal pattern.
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FIG. 11. (a) Results from detection analysis of SSS 33-yr trends. Scaling factor best estimates and their 5%–95% uncertainty ranges are

given from one-signal (anthropogenic) fingerprint analysis using the TLS approach for different regions: the full domain (FDO), the

tropics (TRO, 308S–308N), Pacific (PAC, 308S–308N), western Pacific (WPAC, 1208E–1608W), eastern Pacific (EPAC, 1608–808W), At-

lantic (ATL, 308S–508N), subtropical North Atlantic (NATL, 208–408N), and equatorial Atlantic (EATL, 208S–208N). Filled black dots

indicate when the residual consistency test passes with a truncation of 16, whereas open circles indicate a needed higher truncation to pass

the test. (b) Results from the temporal detection analysis applied to the observed annual mean SSS for the entire Pacific and Atlantic

regions (with a 5 0.7). (c) Results from two basin-scale regions, over the entire Atlantic and Pacific domains (with a 5 0.75). (d) As in (c),

but with centered data. (e) For the entire Pacific region (a 5 0.65). (f) For the entire Atlantic region (a 5 0.75). (g) For the subtropical

Atlantic (region 2) only (a 5 0.8). In (b)–(g), the statistical test p value is shown for the multimodel temporal pattern by a solid black line.

Shading shows the minimum and maximum of the p value range of all model temporal patterns. The dashed black line indicates the 10%

significance threshold and rejection of H0 for a given model is achieved when the associated curve is below this line. Note that the time axis

differs between the Pacific only and other regions.
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upper-ocean stratification may influence Pacific vari-

ability modes such as ENSO. A saltier subtropical At-

lantic Ocean suggests that increasing northward salinity

transport may influence the meridional overturning

circulation (MOC) multidecadal variability and compete

with an externally forced or internal variability high-

latitude enhanced freshwater input (Pardaens et al.

2008). As the time scales of these processes may be

different and vary among climate models, there is still

a large uncertainty as to the future MOC evolution. Our

study also suggests that sea surface salinity is a good can-

didate for further detection and attribution of an anthro-

pogenic fingerprint in the oceans and marine hydrological

cycle changes, including the Indian Ocean. The Argo

salinity program as well as ongoing (Soil Moisture and

Ocean Salinity, SMOS) and future (the National Aero-

nautics and Space Administration’s planned AQUARIUS

project) remote sensing measurements will be key players

in documenting current and future salinity variations on

a global scale (Lagerloef et al. 2010). However, one of the

forthcoming challenges will be to design a multidecadal

salinity dataset that minimizes the effects of spatiotemporal

nonhomogeneity associated with the use of the different

data sources. This highlights the strong need for the

continuation and extension of existing long time series

based on weather ships and repeat hydrographic lines,

which currently are the only data sources with the ca-

pability of providing observed records of multidecadal

salinity changes.
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APPENDIX

Optimal Fingerprint Methodology

a. Signal coherency in multimodel estimates

Figure A1 shows the signal estimates for the CMIP3

models not included in Fig. 3. Although there are im-

portant intermodel differences as far as regional fea-

tures of the simulated changes, the main large-scale

changes (freshening of the western Pacific and salinity

increase in the tropical and subtropical Atlantic) are

present in all models apart from two of the Goddard

Institute for Space Studies (GISS) models.

b. Choice of the truncation space

Guidance on the number p of EOFs to retain in the

optimal fingerprint analysis can be obtained by per-

forming a residual consistency test (Allen and Tett

1999). As mentioned in Allen et al. (2006), there is al-

ways ambiguity when interpreting the results from these

consistency tests. We thus do not use them as an es-

sential constraint on our analysis. We prefer focusing

on the signal detection and then we use the consistency

tests to specify the range over which uncertainty esti-

mates are likely to be biased. Carrying out the detection

analysis on the full domain gives robust and positive de-

tection results when p is greater than 12. Figure A2 shows

that the observed and model variability are consistent at

the 10% significance level within the p 5 13–16 EOF

range. More than 80% (90%) of the observation (signal

and noise) variance is retained at the truncation p 5 16,

which is then used in detection tests for the other do-

mains. At this truncation, the analysis over almost all

domains shows consistency between the simulated and

observed internal variabilities. Two domains, the full

and subtropical North Atlantic, needed a larger trun-

cation (p 5 42) in order to pass the test, suggesting that

more modes are needed in the North Atlantic to rep-

resent a large amount of SSS internal variability as the

major low-frequency modes (ENSO, NAO) only ex-

plain a small part of the total variance (Reverdin et al.

2007).

c. Model uncertainty bias in signal estimates

Use of a single-model ensemble mean to derive the

forced signal has often been adopted in classical de-

tection and attribution studies. The simple rationale

behind it is that it allows us to reduce the bias in the

signal estimate due to internal variability. However,

even averaging across a large set of model members

will not lead to a fully unbiased estimate of the forced

signal due to the always finite ensemble size. A
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conservative and standard approach is thus to use the

total least squares (TLS) algorithm, which accounts for

uncertainty in the signal estimates due to internal vari-

ability. Even when the ensemble size is large (say greater

than four to six), use of TLS is still advised as it gives

a more realistic estimate of the upper uncertainty range

for the scaling coefficients. Recent studies have also

suggested that the use of a multimodel ensemble is also

beneficial to the specification of various climate re-

sponses to anthropogenic forcing due to the reduced

multimodel bias compared to individual model ones

(Gillett et al. 2002). However, this also introduces

further complications as the signal estimate is then also

influenced by the structural uncertainty associated with

the model error in the response patterns. A slight modi-

fication of the total least squares algorithm (the error-

in-variables variant) has recently been suggested to

account for the two sources of bias in the signal estimates

(Huntingford et al. 2006). Nevertheless, the standard

total least squares approach can still be used based on

the assumption that the covariance structure of the

structural (model error) uncertainty is reasonably similar

to that of the internal variability. We thus implicitly

FIG. A1. Twenty-first-century SSS changes. (a) Full CMIP3 multimodel average SSS change (century21) between the end of the twenty-first

and twentieth centuries (2070–99 and 1970–99). (b)–(o) Simulated changes as above for CMIP3 individual models not included in Fig. 3.

FIG. A2. Scaling factor best estimates (dots) and their 5%–95%

uncertainty ranges (bars) are given from one-signal (anthropogenic)

fingerprint analysis using the TLS approach for the full domain as

a function of EOF truncation. Black dots indicate no detection

while red and blue dots indicate a positive detection result. Simu-

lated and observed residual variabilities are consistent for p 5 13–16

(red dots) while simulated internal variability is overestimated for

p greater than 16 (blue dots).
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assume that intermodel fluctuations about a common

mean signal are mostly due to purely internal variability

and not to different and plausible representations of the

response to anthropogenic forcing. To ensure that this is

a reasonable hypothesis, we compare the intermodel

variability in the CMIP3 model-derived signals with

various pure internal variability estimates and find no

obvious and systematic differences (Fig. A3). The regions

of intermodel maximum variance always have a counter-

part in one or several of the internal variability estimates.

Furthermore, the signal intermodel variability modes are

closely related to the main modes of internal variability

(Fig. 8).
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