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Abstract In this paper we consider a wide class of generalized Lipschitz extension
problems and the corresponding problem of finding absolutely minimal Lipschitz ex-
tensions. We prove that if a minimal Lipschitz extension exists, then under certain
other mild conditions, a quasi absolutely minimal Lipschitz extension must exist as
well. Here we use the qualifier “quasi” to indicate that the extending function in
question nearly satisfies the conditions of being an absolutely minimal Lipschitz ex-
tension, up to several factors that can be made arbitrarily small.
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1 Introduction

In this paper we attempt to generalize Aronsson’s result on absolutely minimal Lips-
chitz extensions for scalar valued functions to a more general setting that includes a
wide class of functions. The main result is the existence of a “quasi-AMLE,” which
intuitively is a function that nearly satisfies the conditions of absolutely minimal Lip-
schitz extensions.

Let E ⊂ Rd and f : E→ R be Lipschitz continuous, so that

Lip( f ;E), sup
x,y∈E
x 6=y

| f (x)− f (y)|
‖x− y‖

< ∞.
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The original Lipschitz extension problem then asks the following question: is it pos-
sible to extend f to a function F : Rd → R such that

F(x) = f (x), for all x ∈ E,

Lip(F ;Rd) = Lip( f ;E).

By the work of McShane [11] and Whitney [24] in 1934, it is known that such an F
exists and that two extensions can be written explicitly:

Ψ(x), inf
y∈E

( f (y)+Lip( f ;E)‖x− y‖), (1)

Λ(x), sup
y∈E

( f (y)−Lip( f ;E)‖x− y‖). (2)

In fact, the two extensions Ψ and Λ are extremal, so that if F is an arbitrary minimal
Lipschitz extension of f , then Λ ≤ F ≤Ψ . Thus, unless Λ ≡Ψ , the extension F is
not unique, and so one can search for an extending function F that satisfies additional
properties.

In a series of papers in the 1960′s [2–4], Aronsson proposed the notion of an
absolutely minimal Lipschitz extension (AMLE), which is essentially the “locally
best” Lipschitz extension. His original motivation for the concept was in conjunction
with the infinity Laplacian and infinity harmonic functions. We first define the prop-
erty of absolute minimality independently of the notion of an extension. A function
u : D→ R, D⊂ Rd , is absolutely minimal if

Lip(u;V ) = Lip(u;∂V ), for all open V ⊂⊂ D, (3)

where ∂V denotes the boundary of V , V ⊂⊂ D means that V is compact in D, and
V is the closure of V . A function U is an AMLE for f : E → R if U is a Lipschitz
extension of f , and furthermore, if it is also absolutely minimal on Rd \E. That is:

U(x) = f (x), for all x ∈ E,

Lip(U ;Rd) = Lip( f ;E),

Lip(U ;V ) = Lip(U ;∂V ), for all open V ⊂⊂ Rd \E.

The existence of an AMLE was proved by Aronsson, and in 1993 Jensen [7] proved
that AMLEs are unique under certain conditions (see also [6,1]).

Since the work of Aronsson, there has been much research devoted to the study
of AMLEs and problems related to them. For a discussion on many of these ideas,
including self contained proofs of existence and uniqueness, we refer the reader to
[5].

There are, though, several variants to the classical Lipschitz extension problem.
A general formulation is the following: let (X,dX) and (Z,dZ) be two metric spaces,
and define the Lipschitz constant of a function f : E→ Z, E ⊂ X, as:

Lip( f ;E), sup
x,y∈E
x 6=y

dZ( f (x), f (y))
dX(x,y)

.
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Given a fixed pair of metric spaces (X,dX) and (Z,dZ), as well as an arbitrary func-
tion f : E → Z with Lip( f ;E) < ∞, one can ask if it is possible to extend f to a
function F : X→ Z such that Lip(F ;X) = Lip( f ;E). This is known as the isometric
Lipschitz extension problem (or property, if it is known for a pair of metric spaces).
Generally speaking it does not hold, although certain special cases beyond X = Rd

and Z =R do exist. For example, one can take (X,dX) to be an arbitrary metric space
and Z = R (simply adapt (1) and (2)). Another, more powerful generalization comes
from the work of Kirszbraun [10] (and later, independently by Valentine [21]). In his
paper in 1934, he proved that if X and Z are arbitrary Hilbert spaces, then they have
the isometric Lipschitz extension property. Further examples exist; a more thorough
discussion of the isometric Lipschitz extension property can be found in [22].

For pairs of metric spaces with the isometric Lipschitz extension property, one can
then try to generalize the notion of an AMLE. Given that an AMLE should locally be
the best possible such extension, the appropriate generalization for arbitrary metric
spaces is the following. Suppose we are given a function f : E → Z and a minimal
Lipschitz extension U : X→ Z such that Lip(U ;X) = Lip( f ;E). The function U is an
AMLE if for every open subset V ⊂⊂X\E and every Lipschitz mapping Ũ : X→ Z
that coincides with U on X\V , we have

Lip(U ;V )≤ Lip(Ũ ;V ). (4)

When (X,dX) is path connected, (4) is equivalent to (3). When (X,dX) is an arbitrary
length space and Z = R, there are several proofs of existence of AMLE’s [13,8,19]
(some under certain conditions). The proof of uniqueness in this scenario is given in
[16].

Extending results on AMLE’s to non scalar valued functions presents many diffi-
culties, which in turn has limited the number of results along this avenue. Two recent
papers have made significant progress, though. In [15], the authors consider the case
when (X,dX) is a locally compact length space, and (Z,dZ) is a metric tree; they are
able to prove existence and uniqueness of AMLE’s for this pairing. The case of vector
valued functions with (X,dX) = Rd and (Z,dZ) = Rm is considered in [18]. In this
case an AMLE is not necessarily unique, so the authors propose a stronger condition
called tightness for which they are able to get existence and uniqueness results in
some cases.

In this paper we seek to add to the progress on the theory of non scalar valued
AMLE’s. We propose a generalized notion of an AMLE for a large class of isometric
Lipschitz extension problems, and prove a general theorem for the existence of what
we call a quasi-AMLE. A quasi-AMLE is, essentially, a minimal Lipschitz extension
that comes within ε of satisfying (3). We work not only with general metric spaces,
but also a general functional Φ that replaces the specific functional Lip. In our setting
Lip is an example of the type of functionals we consider, but others exist as well. For
example, one can also take α-Hölder functions in which Φ = Lipα , where

Lipα( f ;E), sup
x,y∈E
x 6=y

dZ( f (x), f (y))
dX(x,y)α

, α ∈ (0,1].
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An isometric extension with Φ = Lipα is possible for certain pairs of metric spaces
and certain values of α (see, once again, [22]).

A completely different type of functional is given in [20]. If we consider the clas-
sic Lipschitz extension problem as the zero-order extension, then for the first order
extension we would want an extension that minimizes Lip(∇F ;Rd). In this case, one
is given a subset E ⊂ Rd and a 1-field PE = {Px}x∈E ⊂P1(Rd ,R), consisting of
first order polynomials mapping Rd to R that are indexed by the elements of E. The
goal is to extend PE to a function F ∈C1,1(Rd) such that two conditions are satis-
fied: 1.) for each x ∈ E, the first order Taylor polynomial JxF of F at x agrees with
Px; and 2.) Lip(∇F ;Rd) is minimal. By a result of Le Gruyer [20], such an extension
is guaranteed to exist with Lipschitz constant Γ 1(PE), assuming that Γ 1(PE) < ∞

(here Γ 1 is a functional defined in [20]). The functional Γ 1 can be thought of as
the Lipschitz constant for 1-fields. By the results of this paper, one is guaranteed the
existence of a quasi-AMLE for this setting as well.

2 Setup and the main theorem

2.1 Metric spaces

Let (X,dX) and (Z,dZ) be metric spaces. We will consider functions of the form
f : E→ Z, where E ⊂ X. For the range, we require:

1. (Z,dZ) is a complete metric space.

For the domain, (X,dX), we require some additional geometrical properties:

1. (X,dX) is complete and proper.
2. (X,dX) is midpoint convex. Recall that this means that for any two points x,y∈X,

x 6= y, there exists a third point m(x,y) ∈ X for which

dX(x,m(x,y)) = dX(m(x,y),y) =
1
2

dX(x,y).

Such a point m(x,y) is called the midpoint and m : X×X→ X is called the mid-
point map. Since we have also assumed that (X,dX) is complete, this implies that
(X,dX) is a geodesic (or strongly intrinsic) metric space. By definition then, ev-
ery two points x,y ∈ X are joined by a geodesic curve with finite length equal to
dX(x,y).

3. (X,dX) is distance convex, so that for all x,y,z ∈ X, x 6= y,

dX(m(x,y),z)≤ 1
2
(dX(x,z)+dX(y,z)).

Note that this implies that (X,dX) is ball convex, which in turn implies that every
ball in (X,dX) is totally convex. By definition, this means that for any two points
x,y lying in a ball B ⊂ X, the geodesic connecting them lies entirely in B. Ball
convexity also implies that the midpoint map is unique, and, furthermore, since
(X,dX) is also complete, that the geodesic between two points is unique.

We remark that the (X,dX) is path connected by these assumptions, and so (4) is
equivalent to (3) for all of the cases that we consider here.
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2.2 Notation

Set N , {0,1,2, . . .}, N∗ , {1,2,3, . . .}, and R+ , [0,∞). Let S be an arbitrary sub-
set of X, i.e., S ⊂ X, and let S̊ and S denote the interior of S and the closure of S,
respectively. For any x ∈ X and S⊂ X, set

dX(x,S), inf{dX(x,y) | y ∈ S}.

For each x ∈ X and r > 0, let B(x;r) denote the open ball of radius r centered at x:

B(x;r), {y ∈ X | dX(x,y)< r}.

We will often utilize a particular type of ball: for any x,y ∈ X, define

B1/2(x,y), B
(

m(x,y);
1
2

dX(x,y)
)
.

By F (X,Z), we denote the space of functions mapping subsets of X into Z:

F (X,Z), { f : E→ Z | E ⊂ X}.

If f ∈F (X,Z), set dom( f ) to be the domain of f . We shall use E = dom( f ) inter-
changeably depending on the situation. We also set K (X) to be the set of all compact
subsets of X.

2.3 General Lipschitz extensions

Definition 1 Given f ∈F (X,Z), a function F ∈F (X,Z) is an extension of f if

dom( f )⊂ dom(F) and F(x) = f (x), for all x ∈ dom( f ).

We shall be interested in arbitrary functionals Φ with domain F (X,Z) such that:

Φ : F (X,Z)→F (X×X,R+∪{∞})
f 7→Φ( f ) : dom( f )×dom( f )→ R+∪{∞}.

In order to simplify the notation slightly, for any f ∈F (X,Z) and x,y ∈ dom( f ), we
set

Φ( f ;x,y), Φ( f )(x,y).

We also extend the map Φ( f ) to subsets D⊂ dom( f ) as follows:

Φ( f ;D), sup
x,y∈D
x 6=y

Φ( f ;x,y).

The map Φ serves as a generalization of the standard Lipschitz constant Lip( f ;D)
first introduced in Section 1. As such, one can think of it in the context of minimal
extensions. Let FΦ(X,Z) ⊂F (X,Z) denote those functions in F (X,Z) for which
Φ is finite, i.e.,

FΦ(X,Z), { f ∈F (X,Z) |Φ( f ;dom( f ))< ∞}.

We then have the following definition.
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Definition 2 Let f ∈FΦ(X,Z) and let F ∈ FΦ(X,Z) be an extension of f . We say
F is a minimal extension of the function f if

Φ(F ;dom(F)) = Φ( f ;dom( f )). (5)

One can then generalize the notion of an absolutely minimal Lipschitz extension
(AMLE) in the following way:

Definition 3 Let f ∈FΦ(X,Z) and let U ∈FΦ(X,Z) be a minimal extension of f .
We say that U is an absolutely minimal Lipschitz extension of the function f if

Φ(U ;V ) = Φ(U ;∂V ), for all open V ⊂⊂ X\dom( f ). (6)

Note, since (X,dX) is implicitly assumed to be a geodesic metric space, the open set
V cannot also be closed. Thus ∂V is nonempty.

In this paper we prove the existence of a function U that is a minimal exten-
sion of f , and that “nearly” satisfies (6). In order to make this statement precise, we
first specify the properties that Φ must satisfy, and then formalize what we mean by
“nearly.” Before we get to either task, though, we first define the following family of
curves.

Definition 4 For each x,y ∈ X, x 6= y, let Γ (x,y) denote the set of curves

γ : [0,1]→ B1/2(x,y),

such that γ(0) = x, γ(1) = y, γ is continuous, and γ is monotone in the following
sense:

If 0≤ t1 < t2 ≤ 1, then dX(γ(0),γ(t1))< dX(γ(0),γ(t2)).

The required properties of Φ are the following (note that (P1) has already been
stated as a definition):

(P0) Φ is symmetric and nonnegative:
For all f ∈F (X,Z) and for all x,y ∈ dom( f ),

Φ( f ;x,y) = Φ( f ;y,x)≥ 0.

(P1) Pointwise evaluation:
For all f ∈F (X,Z) and for all D⊂ dom( f ),

Φ( f ;D) = sup
x,y∈D
x 6=y

Φ( f ;x,y).

(P2) Φ is minimal:
For all f ∈FΦ(X,Z) and for all D ⊂ X such that dom( f ) ⊂ D, there exists an
extension F : D→ Z of f such that

Φ(F ;D) = Φ( f ;dom( f )).
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(P3) Chasles’ inequality:
For all f ∈ FΦ(X,Z) and for all x,y ∈ dom( f ), x 6= y, such that B1/2(x,y) ⊂
dom( f ), there exists a curve γ ∈ Γ (x,y) such that

Φ( f ;x,y)≤ inf
t∈[0,1]

max{Φ( f ;x,γ(t)),Φ( f ;γ(t),y)} .

(P4) Continuity of Φ :
Let f ∈FΦ(X,Z). For each x,y ∈ dom( f ), x 6= y, and for all ε > 0, there exists
η = η(ε,dX(x,y))> 0 such that

For all z ∈ B(y;η)∩dom( f ), |Φ( f ;x,y)−Φ( f ;x,z)|< ε.

(P5) Continuity of f :
If f ∈FΦ(X,Z), then f : dom( f )→ Z is a continuous function.

2.4 Examples of the metric spaces and the functional Φ

Before moving on, we give some examples of the metric spaces (X,dX) and (Z,dZ)
along with the functional Φ .

2.4.1 Scalar valued Lipschitz extensions

The scalar valued case discussed at the outset is of course one such example. Indeed,
one can take X=Rd and dX(x,y) = ‖x−y‖, where ‖·‖ is the Euclidean distance. For
the range, set Z = R and dZ(a,b) = |a−b|. For any f : E→ R, where E ⊂ X, define
Φ as:

Φ( f ;x,y) = Lip( f ;x,y),
| f (x)− f (y)|
‖x− y‖

,

Φ( f ;E) = Lip( f ;E), sup
x,y∈E
x 6=y

Lip( f ;x,y).

Clearly (P0) and (P1) are satisfied. By the work of McShane [11] and Whitney
[24], (P2) is also satisfied. (P3) is satisfied with γ(t) = (1− t)x+ ty, and (P4) and (P5)
are easy to verify.

2.4.2 Lipschitz mappings between Hilbert spaces

More generally, one can take (X,dX) =H1 and (Z,dZ) =H2, where H1 and H2 are
Hilbert spaces (note, since we assume that (X,dX) is proper, there are some restric-
tions on H1). Then for any f : E→H2, with E ⊂H1, define Φ as:

Φ( f ;x,y) = Lip( f ;x,y),
‖ f (x)− f (y)‖H2

‖x− y‖H1

,

Φ( f ;E) = Lip( f ;E), sup
x,y∈E
x 6=y

Lip( f ;x,y).



8 Matthew J. Hirn, Erwan Le Gruyer

Clearly (P0) and (P1) are satisfied. By the work of Kirszbraun [10] and later
Valentine [21], (P2) is also satisfied. (P3) is satisfied with γ(t) = (1− t)x+ ty, and
(P4) and (P5) are easy to verify.

2.4.3 Lipschitz-Hölder mappings between metric spaces

More generally still, one can take any pair of metric spaces (X,dX) and (Z,dZ) sat-
isfying the assumptions of Section 2.1. We can also define a slightly more general
Lipschitz-Hölder constant with a parameter 0<α ≤ 1. In this case, for any f : E→ Z,
E ⊂ X, define Φ = Φα as:

Φα( f ;x,y) = Lipα( f ;x,y),
dZ( f (x), f (y))

dX(x,y)α
,

Φα( f ;E) = Lipα( f ;E), sup
x,y∈E
x 6=y

Lipα( f ;x,y).

Clearly (P0), (P1), (P4), and (P5) are satisfied. For (P3), we can take γ ∈ Γ (x,y)
to be the unique geodesic between x and y. All that remains to check, then, is (P2),
the existence of a minimal extension. Such a condition is not satisfied between two
metric spaces in general, although special cases beyond those already mentioned do
exist. We highlight the following examples, taken from [22]:

1. Take (X,dX) to be any metric space, take (Z,dZ) = `∞
n , and take α = 1. Note,

we set `∞
n to denote Rn with the norm ‖x‖∞ , max{|x j| | j = 1, . . . ,n}. See [22],

Theorem 11.2, Chapter 3, as well as the discussion afterwards. See also [14,9].
2. Let H be a Hilbert space, take (X,dX) = (Z,dZ) = H , and let α ∈ (0,1]. See

[22], Theorem 11.3, Chapter 3, as well as [12,17].
3. Take (X,dX) to be any metric space and let (Z,dZ) = Lp(N ,ν), where (N ,ν) is

a σ -finite measure space and p ∈ [1,∞]. Set p′ , p/(p−1). Using [22], Theorem
19.1, Chapter 5, we have that property (P2) holds when:
(a) 2≤ p < ∞ and 0 < α ≤ 1/p.
(b) 1 < p≤ 2 and 0 < α ≤ 1/p′.

2.4.4 1-fields

Let (X,dX) = Rd endowed with the Euclidean metric. Set P1(Rd ,R) to be the
set of first degree polynomials (affine functions) mapping Rd to R. We take Z =
P1(Rd ,R), and write each P ∈P1(Rd ,R) in the following form:

P(a) = p0 +D0 p ·a, p0 ∈ R, D0 p ∈ Rd , a ∈ Rd .

For any P,Q ∈P1(Rd ,R), we then define dZ as:

dZ(P,Q), |p0−q0|+‖D0 p−D0q‖,

where | · | is just the absolute value, and ‖ · ‖ is the Euclidean distance on Rd .
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For a function f ∈F (X,Z), we use the following notation (note, as usual, E ⊂X):

f :E→P1(Rd ,R)
x 7→ f (x)(a) = fx +Dx f · (a− x),

where fx ∈ R, Dx f ∈ Rd , and a ∈ Rd is the evaluation variable of the polynomial
f (x). Define the functional Φ as:

Φ( f ;x,y) = Γ
1( f ;x,y), 2 sup

a∈Rd

| f (x)(a)− f (y)(a)|
‖x−a‖2 +‖y−a‖2 ,

Φ( f ;E) = Γ
1( f ;E), sup

x,y∈E
x 6=y

Γ
1( f ;x,y).

Using the results contained in [20], one can show that for these two metric spaces
and for this definition of Φ , that properties (P0)-(P5) are satisfied; the full details are
given in Appendix A. In particular, there exists an extension U : Rd →P1(Rd ,R),
U(x)(a) = Ux +DxU · (a− x), such that U(x) = f (x) for all x ∈ E and Φ(U ;Rd) =
Φ( f ;E). Furthermore, define the function F : Rd → R as F(x) = Ux for all x ∈ Rd .
Note that F ∈C1,1(Rd), and set for each x ∈ Rd , JxF(a) , F(x)+∇F(x) · (a− x) ∈
P1(Rd ,R) to be the first order Taylor expansion of F around x. Then F satisfies the
following properties:

1. JxF = f (x) for all x ∈ E.
2. Lip(∇F) = Γ 1( f ;E).
3. If F̃ ∈C1,1(Rd) also satisfies JxF̃ = f (x) for all x ∈ E, then Lip(∇F)≤ Lip(∇F̃).

Thus F is the extension of the 1-field f with minimum Lipschitz derivative (see [20]
for the proofs and a complete explanation). The 1-field U is the corresponding set of
jets of F . For an explicit construction of F when E is finite we refer the reader to
[23].

2.4.5 m-fields

A similar result for m-fields, where m ≥ 2, is an open problem. In particular, it is
unknown what the correct corresponding functional Φ = Γ m is. It seems plausible,
though, that such a functional will satisfy the properties (P0)-(P5).

2.5 Main theorem

The AMLE condition (6) is for any open set off of the domain of the initial function
f . In our analysis, we look at subfamily of open sets that approximates the family of
all open sets. In particular, we look at finite unions of open balls. The number of balls
in a particular union is capped by a universal constant, and furthermore, the radius of
each ball must also be larger than some constant. For any ρ > 0 and N0 ∈ N, define
such a collection as:

O(ρ,N0),

{
Ω =

N⋃
n=1

B(xn;rn) | xn ∈ X, rn ≥ ρ, N ≤ N0

}
.
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Note that as ρ→ 0 and N0→∞, O(ρ,N0) contains all open sets if (X,dX) is compact.
We shall always use Ω to denote sets taken from O(ρ,N0). For any such set, we use
R(Ω) to denote the collection of balls that make up Ω :

R(Ω) =

{
B(xn;rn) | n = 1, . . . ,N, Ω =

N⋃
n=1

B(xn;rn)

}
.

We also define, for any f ∈F (X,Z), any open V ⊂ dom( f ), and any α > 0, the
following approximation of Φ( f ;V ):

Ψ( f ;V ;α), sup{Φ( f ;x,y) | B(x;dX(x,y))⊂V, dX(x,∂V )≥ α} .

Using these two approximations, our primary result is the following:

Theorem 1 Let (X,dX) and (Z,dZ) be metric spaces satisfying the assumptions of
Section 2.1, let Φ be a functional satisfying properties (P0)-(P5), and let X ∈K (X).
Given f ∈FΦ(X ,Z), ρ > 0, N0 ∈N, α > 0, and σ0 > 0, there exists U =U( f ,ρ,N0,α,σ0)∈
FΦ(X ,Z) such that

1. U is a minimal extension of f to X; that is,

dom(U) = X ,

U(x) = f (x), for all x ∈ dom( f ),

Φ(U ;X) = Φ( f ;dom( f )).

2. The following quasi-AMLE condition is satisfied on X:

Ψ(U ;Ω ;α)−Φ(U ;∂Ω)< σ0, for all Ω ∈ O(ρ,N0), Ω ⊂ X \dom( f ). (7)

We call such extensions quasi-AMLEs, and view them as a first step toward prov-
ing the existence of AMLEs under these general conditions. We note that there are
essentially four areas of approximation. The first is that we extend to an arbitrary,
but fixed compact set X ⊂ X as opposed to the entire space. The second was already
mentioned; rather than look at all open sets, we look at those belonging to O(ρ,N0).
Since X is compact, as ρ → 0 and N0 → ∞, O(ρ,N0) will contain all open sets in
X . Third, we allow ourselves a certain amount of error with the parameter σ0. As
σ0 → 0, the values of the Lipschitz constants on Ω and ∂Ω should coincide. The
last part of the approximation is the use of the functional Ψ to approximate Φ on
each Ω ∈ O(ρ,N0). While this may at first not seem as natural as the other areas of
approximation, the following proposition shows that in fact Ψ works rather well in
the context of the AMLE problem.

Proposition 1 Let f ∈ FΦ(X,Z). For any open V ⊂⊂ dom( f ) and α ≥ 0, let us
define

Vα , {x ∈V | dX(x,∂V )≥ α}.
Then for all α > 0 and for all open V ⊂⊂ dom( f ),

Φ( f ;Vα)≤max{Ψ( f ;V ;α),Φ(u;∂Vα)}, (8)

and
Φ( f ;V ) = max{Ψ( f ;V ;0),Φ( f ;∂V )}. (9)
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Proof See Appendix B.

Proposition 1, along with the discussion immediately preceding it, seems to indi-
cate that if one were able to pass through the various limits to obtain U( f ,ρ,N0,α,σ0)→
U( f ) as ρ→ 0, N0→∞, α→ 0, and σ0→ 0, then one would have a general theorem
of existence of AMLEs for suitable pairs of metric spaces and Lipschitz-type func-
tionals. Whether such a procedure is in fact possible, though, is yet to be determined.

The proof of Theorem 1 is given in Section 3, with the relevant lemmas stated and
proved in Section 4. The main ideas of the proof are as follows. Using (P2), we can
find a minimal extension U0 ∈FΦ(X ,Z) of f with dom(U0)=X . If such an extension
also satisfies (7), then we take U =U0 and we are finished. If, on the other hand, U0
does not satisfy (7), then there must be some Ω1 ∈ O(ρ,N0), Ω1 ⊂ X \ dom( f ),
for which Ψ(U0;Ω1;α)−Φ(U0;∂Ω1) ≥ σ0. We derive a new minimal extension
U1 ∈FΦ(X ,Z) of f from U0 by correcting U0 on Ω1. To perform the correction, we
restrict ourselves to U0|∂Ω1 , and extend this function to Ω1 using once again (P2). We
then patch this extension into U0, giving us U1. We then ask if U1 satisfies (7). If it
does, we take U =U1 and we are finished. If it does not, we repeat the procedure just
outlined. The main work of the proof then goes into showing that the repetition of
such a procedure must end after a finite number of iterations.

It is also interesting to note that the extension procedure itself is a “black box.”
We do not have any knowledge of the behavior of the extension outside of (P0)-(P5),
only that it exists. We then refine this extension by using local extensions to correct
in areas that do not satisfy the quasi-AMLE condition. The proof then is not about
the extension of functions, but rather the refinement of such extensions.

3 Proof of Theorem 1: Existence of quasi-AMLE’s

In this section we outline the key parts of the proof of Theorem 1. We begin by
defining a local correction operator that we will use repeatedly.

3.1 Definition of the correction operator H

Definition 5 Let X ∈K (X), f ∈FΦ(X ,Z), and Ω ∈ O(ρ,N0) with Ω ⊂ dom( f ).
By (P2) there exists a F ∈FΦ(X ,Z) with dom(F) = Ω such that

F(x) = f (x), for all x ∈ ∂Ω ,

Φ(F ;Ω) = Φ( f ;∂Ω). (10)

Given such an f and Ω , define the operator H as:

H( f ;Ω)(x), F(x), for all x ∈Ω . (11)



12 Matthew J. Hirn, Erwan Le Gruyer

3.2 A sequence of total, minimal extensions

Fix the metric spaces (X,dX) and (Z,dZ), the Lipschitz functional Φ , the compact
domain X ∈K (X), as well as f ∈FΦ(X ,Z), ρ > 0, N0 ∈ N, α > 0, σ0 > 0. Set:

K , Φ( f ;dom( f )).

Using (P2), let U0 ∈FΦ(X ,Z) be a minimal extension of f to all of X ; recall that
this means:

dom(U0) = X ,

U0(x) = f (x), for all x ∈ dom( f ),

Φ(U0;X) = Φ( f ;dom( f )).

We are going to recursively construct a sequence {Un}n∈N of minimal extensions of
f to X . First, for any n ∈ N, define

∆n , {Ω ∈ O(ρ,N0) |Ψ(Un;Ω ;α)−Φ(Un;∂Ω)≥ σ0, Ω ⊂ X \dom( f )}.

The set ∆n contains all admissible open sets for which the extension Un violates the
quasi-AMLE condition. If ∆n = /0, then we can take U =Un and we are finished.

If, on the other hand, ∆n 6= /0, then to obtain Un+1 we take Un and pick any Ωn+1 ∈
∆n and set

Un+1(x),
{

H(Un;Ωn+1)(x), if x ∈Ωn+1,
Un(x) if x ∈ X \Ωn+1,

where H was defined in Section 3.1. Thus, along with {Un}n∈N, we also have a se-
quence of refining sets {Ωn}n∈N∗ such that Ωn ∈ O(ρ,N0), Ωn ⊂ X \ dom( f ), and
Ωn ∈ ∆n−1 for all n ∈ N∗.

Since dom(U0) = X , and since Ωn ⊂ X \ dom( f ), we see by construction that
dom(Un) = X for all n ∈N. By the arguments in Section 4.1 and Lemma 3 contained
within, we see that each of the functions Un is also a minimal extension of f .

3.3 Reducing the Lipschitz constant on the refining sets {Ωn}n∈N∗

Since each of the functions Un is a minimal extension of f ∈FΦ(X ,Z), we have

Φ(Un;X) = K, for all n ∈ N. (12)

Furthermore, since Ωn+1 ∈ ∆n, we have by definition,

Ψ(Un;Ωn+1;α)−Φ(Un;∂Ωn+1)≥ σ0. (13)

Using the definition of the operator H and (13), we also have for any n ∈ N∗,

Φ(Un;Ωn) = Φ(H(Un−1;Ωn);Ωn) = Φ(Un−1;∂Ωn)≤Ψ(Un−1;Ωn;α)−σ0. (14)

Furthermore, combining (12) and (14), and using property (P1) as well as the defini-
tion of Ψ , one can arrive at the following:

Φ(Un;Ωn)≤ K−σ0, for all n ∈ N∗. (15)
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Thus we see that locally on Ωn, the total, minimal extension Un is guaranteed to have
Lipschitz constant bounded by K−σ0. In fact we can say much more.

Lemma 1 The following property holds true for all p ∈ N∗:

∃Mp ∈ N∗ : ∀n > Mp, Φ(Un;Ωn)< K− p
σ0

2
. (Qp)

The property (Qp) is enough to prove Theorem 1. Indeed, if ∆n 6= /0 for all n ∈N,
then by (Qp) one will have Φ(Un;Ωn) < 0 for n sufficiently large. However, by the
definition of Φ one must have Φ(Un;Ωn)≥ 0, and so we have arrived at a contradic-
tion. Now for the proof of Lemma 1.

Proof We prove (Qp) by induction. By (15), it is clearly true for p = 1. Let p≥ 2 and
suppose that (Qp−1) is true; we wish to show that (Qp) is true as well. Let Mp−1 be
an integer satisfying (Qp−1) and assume that ∆Mp−1 6= /0. Let us define the following
sets:

Ap,n ,
⋃
{Ωm |Mp−1 < m≤ n},

Ap,∞ ,
⋃
{Ωm |Mp−1 < m},

R̃(Ap,∞), {B(x;r) | ∃m > Mp−1 with B(x;r) ∈R(Ωm)}.

The closure of each set Ap,n is compact and the sequence {Ap,n}n>Mp−1 is mono-
tonic under inclusion and converges to Ap,∞ in Hausdorff distance as n→ ∞. In par-
ticular, for ε > 0, there exists Np > Mp−1 such that

δ (Ap,Np ,Ap,∞)≤ ε,

where δ is the Hausdorff distance.
Now apply the Geometrical Lemma 6 to the sets Ap,n and Ap,∞ with β = α− ε .

One obtains Nε ∈ N such that

∀B(x;r), if r ≥ α− ε and B(x;r)⊂Ap,∞, then B(x;r− ε)⊂Ap,Nε
. (16)

Take Mp , max{Np,Nε}. One can then obtain the following lemma, which is essen-
tially a corollary of (16).

Lemma 2 For all n > Mp and for all B(x;r)⊂ Ωn with dX(x,∂Ωn)≥ α and r < α ,
we have

if B(x;r) 6⊂Ap,Mp , then r ≥ α− ε.

Proof Let B(x;r) be a ball that satisfies the hypothesis of the lemma and suppose
B(x;r) 6⊂Ap,Mp . Since dX(x,∂Ωn)≥α and B(x;r)⊂B(x;α)⊂Ωn, we have B(x;α) 6⊂
Ap,Mp . On the other hand, B(x;α) ⊂ Ap,∞ and (trivially) α ≥ α − ε , so by (16),
B(x;α− ε)⊂Ap,Mp . Therefore r ≥ α− ε . ut

Now let us use the inductive hypothesis (Qp−1). Let n > Mp and let x,y ∈ Ωn
such that B(x;dX(x,y))⊂Ωn with dX(x,∂Ωn)≥ α .
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Case 1 Suppose that B(x;dX(x,y))⊂Ap,Mp . In this case we apply the Customs Lemma
5 with A = Ap,n−1. Since n > Mp > Mp−1, we are assured by the inductive hypoth-
esis that

Φ(U j;Ω j)< K− (p−1)
σ0

2
, for all j = Mp−1 +1, . . . ,n−1.

Thus we can conclude from the Customs Lemma that

Φ(Un−1;x,y)≤ K− (p−1)
σ0

2
. (17)

That completes the first case.

Case 2 Suppose that B(x;dX(x,y)) 6⊂Ap,Mp . By Lemma 2, we know that dX(x,y)≥
α− ε . Thus, by (16), we have B(x;dX(x,y)−2ε)⊂Ap,Mp .

Let γ ∈ Γ (x,y) be the curve satisfying (P3) and set

y1 , ∂B(x;dX(x,y)−2ε)∩ γ.

Write Φ(Un−1;x,y) in the form:

Φ(Un−1;x,y) = Φ(Un−1;x,y)−Φ(Un−1;x,y1)+Φ(Un−1;x,y1).

Using (P4) and the fact that dX(x,y)≥α−ε , there exists a constant C(ε,α) satisfying
C(ε,α)→ 0 as ε → 0 such that

Φ(Un−1;x,y)−Φ(Un−1;x,y1)≤C(ε,α). (18)

Moreover, since B(x;dX(x,y1))⊂Ap,Mp , we can apply the Customs Lemma 5 along
with the inductive hypothesis (Qp−1) (as in the first case) to conclude that

Φ(Un−1;x,y1)≤ K− (p−1)
σ0

2
. (19)

Combining (18) and (19) we obtain

Φ(Un−1;x,y)≤ K− (p−1)
σ0

2
+C(ε,α).

Since we can choose ε such that C(ε,α)≤ σ0/2, we have

Φ(Un−1;x,y)≤ K− p
σ0

2
+σ0. (20)

That completes the second case.

Now using (17) in the first case and (20) in the second case we obtain

Ψ(Un−1;Ωn;α)≤ K− p
σ0

2
+σ0. (21)

Combining (14) with (21) we can complete the proof:

Φ(Un;Ωn)≤Ψ(Un−1;Ωn;α)−σ0 ≤ K− p
σ0

2
.

ut



A general theorem of existence of quasi absolutely minimal Lipschitz extensions 15

4 Lemmas used in the proof Theorem 1

4.1 The operator H preserves the Lipschitz constant

In this section we prove that the sequence of extensions {Un}n∈N constructed in Sec-
tion 3.2 are all minimal extensions of the original function f ∈FΦ(X ,Z). Recall that
by construction, U0 is a minimal extension of f , and each Un is an extension of f , so
it remains to show that each Un, for n ∈ N∗, is minimal. In particular, if we show that
the construction preserves or lowers the Lipschitz constant of the extension from Un
to Un+1 then we are finished. The following lemma does just that.

Lemma 3 Let F0 ∈FΦ(X ,Z) with dom(F0) = X and let Ω ∈O(ρ,N0). Define F1 ∈
FΦ(X ,Z) as:

F1(x),
{

H(F0;Ω)(x), if x ∈Ω ,
F0(x), if x ∈ X \Ω .

Then,
Φ(F1;X)≤Φ(F0;X).

Proof We utilize properties (P1) and (P3). By (P1), it is enough to consider the eval-
uation of Φ(F1;x,y) for an arbitrary pair of points x,y ∈ X . We have three cases:

Case 1 If x,y ∈ X \Ω , then by the definition of F1 and (P1) (applied to F0) we have:

Φ(F1;x,y) = Φ(F0;x,y)≤Φ(F0;X).

Case 2 If x,y∈Ω , then by the definition of F1, the definition of H, and property (P1),
we have:

Φ(F1;x,y) = Φ(H(F0;Ω);x,y)≤Φ(F0;∂Ω)≤Φ(F0;X).

Case 3 Suppose that x ∈ X \Ω and y ∈Ω . Assume, for now, that B1/2(x,y)⊂ X . By
(P3) there exists a curve γ ∈ Γ (x,y) such that

Φ(F1;x,y)≤ inf
t∈[0,1]

max{Φ(F1;x,γ(t)),Φ(F1;γ(t),y)}.

Let t0 ∈ [0,1] be such that γ(t0) ∈ ∂Ω . Then, utilizing (P3), the definition of F1, the
definition of H, and (P1), one has:

Φ(F1;x,y)≤max{Φ(F1;x,γ(t0)),Φ(F1;γ(t0),y)}
= max{Φ(F0;x,γ(t0)),Φ(H(F0;Ω);γ(t0),y)}
≤Φ(F0;X).

If B1/2(x,y) * X , then we can replace X by a larger compact set X̃ ⊂ X that does
contain B1/2(x,y). By (P2), extend F0 to a function F̃0 with dom(F̃0) = X̃ such that

F̃0(x) = F0(x), for all x ∈ X ,

Φ(F̃0; X̃) = Φ(F0;X).
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Define F̃1 analogously to F1:

F̃1(x),
{

H(F̃0;Ω)(x), if x ∈Ω ,

F̃0(x), if x ∈ X̃ \Ω .

Note that F̃1|X ≡ F1, and furthermore, the analysis just completed at the beginning of
case three applies to F̃0, F̃1, and X̃ since B1/2(x,y)⊂ X̃ . Therefore,

Φ(F1;x,y) = Φ(F̃1;x,y)≤Φ(F̃0; X̃) = Φ(F0;X).
ut

4.2 Customs Lemma

In this section we prove the Customs Lemma, which is vital to the proof of the prop-
erty (Qp) from Lemma 1. Throughout this section we shall make use of the construc-
tion of the sequence of extensions {Un}n∈N, which we repeat here.

Let U0 ∈FΦ(X ,Z) with dom(U0) = X and n ∈ N∗. Set

Λ , {Ω j |Ω j ∈ O(ρ,N0), j = 1, . . . ,n},

and define:

A ,
n⋃

j=1

Ω j.

Let {U j}n
j=1 ⊂FΦ(X ,Z) be a collection of functions defined as:

U j+1(x),
{

H(U j;Ω j+1)(x), if x ∈Ω j+1,
U j(x), if x ∈ X \Ω j+1,

for all j = 0, . . . ,n−1.

We shall need the following lemma first.

Lemma 4 Let x ∈A . Then there exists σ > 0 so that B(x;σ)⊂A , and for each b ∈
B(x;σ), there exists j ∈ {1, . . . ,n} such that x,b ∈ Ω j, Un(x) = U j(x), and Un(b) =
U j(b).

Proof To begin, set
η1 , sup{r > 0 | B(x;r)⊂A },

noting that A is open and so η1 > 0. Define the following two sets of indices:

I+ , { j ∈ {1, . . . ,n} | x ∈Ω j},
I− , { j ∈ {1, . . . ,n} | x /∈Ω j}.

The set I+ is nonempty since x ∈A . So we can additionally define

j+ , max
j∈I+

j.
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On the other hand, I− may be empty. If it is not, then we define ` j , dX(x,Ω j) for
each j ∈ I−, and set

η2 ,
1
2

min{` j | j ∈ I−}.

Finally, we take η to be:

η ,

{
min{η1,η2}, if I− 6= /0,
η1, if I− = /0.

Note that η > 0; we also have:

B(x;η)∩
⋃

j∈I−
Ω j = /0 and B(x;η)⊂

⋃
j∈I+

Ω j. (22)

Now let
J , { j ∈ I+ |Un(x) =U j(x)}.

Clearly j+ ∈ J, and so this set is nonempty. We use it to define the following:

Σ , {b ∈ B(x;η) | ∃ j ∈ J : Un(b) =U j(b), b ∈Ω j}.

The set Σ is nonempty since B(x;η)∩Ω j+ ⊂ Σ .
To prove the lemma, it is enough to show that x ∈ Σ̊ . Indeed, if x ∈ Σ̊ , then there

exists a σ > 0 such that B(x;σ) ⊂ Σ̊ . Then for each b ∈ B(x;σ), there exists j ∈ J
such that Un(b) =U j(b) (by the definition of Σ ) and Un(x) =U j(x) (by the definition
of J).

We prove that x ∈ Σ̊ by contradiction. Suppose that x /∈ Σ̊ . Let {zk}k∈N be a
sequence which converges to x that satisfies the following property:

∀k ∈ N, zk /∈ Σ and zk ∈ B(x;η).

Define:
I+k , { j ∈ I+ | zk ∈Ω j}, for all k ∈ N.

By the remark given in (22) we see that I+k is nonempty for each k ∈ N. Thus we can
define

jk , max
j∈Ik

j.

Since I+ \J has a finite number of elements, there exists i0 ∈ I+ \J and a subsequence
{zφ(k)}k∈N ⊂ {zk}k∈N that converges to x such that

∀k ∈ N, jφ(k) = i0.

By the definition of I+k and using the fact that i0 is the largest element of I+
φ(k) for each

k ∈ N, we have

∀k ∈ N, Un(zφ(k)) =Ui0(zφ(k)) and zφ(k) ∈Ωi0 .

Since the functions U j are continuous by (P5), we have

lim
k→∞

Un(zφ(k)) =Un(x),
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and
lim
k→∞

Ui0(zφ(k)) =Ui0(x).

Thus
Un(x) =Ui0(x).

But then i0 ∈ J, which in turn implies that zφ(k) ∈ Σ for all k ∈ N. Thus we have a
contradiction, and so x ∈ Σ̊ . ut

Lemma 5 (Customs Lemma) If there exists some constant C ≥ 0 such that

Φ(U j;Ω j)≤C, for all j = 1, . . . ,n,

then for all x,y ∈A with B(x;dX(x,y))⊂A ,

Φ(Un;x,y)≤C.

Proof Let x ∈A and define

A (x), {y ∈A | B(x;dX(x,y))⊂A }.

The set A (x) is a ball centered at x. Furthermore, using Lemma 4, there exists a
σ > 0 and a corresponding ball B(x;σ)⊂A such that

Φ(Un;x,b)≤C, for all b ∈ B(x;σ).

In particular, we have

Φ(Un;x,y)≤C, for all y ∈ B(x;σ)∩A (x). (23)

Consider the set
Aσ (x), A (x)\ (B(x;σ)∩A (x)).

The set Aσ (x) contains those points y ∈A (x) for which we do not yet have an upper
bound for Φ(Un;x,y). Let

M , sup
y∈Aσ (x)

Φ(Un;x,y).

If we can show that M ≤C, then we are finished since we took x to be an arbitrary
point of A . By (P4), the function y ∈Aσ (x) 7→Φ(Un;x,y) is continuous. Thus,

M = sup
y∈Aσ (x)

Φ(Un;x,y).

Since X is compact, Aσ (x) is compact as well, and so the set

S , {y ∈Aσ (x) |Φ(Un;x,y) = M}

is nonempty. We select y0 ∈S such that

dX(x,y0)≤ dX(x,y), for all y ∈S . (24)
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Since S is closed and a subset of Aσ (x), it is also compact. Furthermore, the function
y ∈S 7→ dX(x,y) is continuous, and so the point y0 must exist. It is, by definition,
the point in Aσ (x) that not only achieves the maximum value of the function y ∈
Aσ (x) 7→ Φ(Un;x,y), but also, amongst all such points, it is the one closest to x.
Thus we have reduced the problem to showing that M = Φ(Un;x,y0)≤C.

We claim that it is sufficient to show the following: there exists a point y1 ∈A (x)
such that dX(x,y1)< dX(x,y0), and furthermore satisfies:

M = Φ(Un;x,y0)≤max{Φ(Un;x,y1),C}. (25)

Indeed, if such a point were to exist, then we could complete the proof in the fol-
lowing way. If C is the max of the right hand side of (25), then clearly we are
finished. If, on the other hand, Φ(Un;x,y1) is the max, then we have two cases to
consider. If dX(x,y1) < σ , then y1 ∈ B(x;σ)∩A (x), and so by (23) we know that
Φ(Un;x,y1) ≤C. Alternatively, if dX(x,y1) ≥ σ , then y1 ∈Aσ (x) and by the defini-
tion of M we have Φ(Un;x,y1)≤M, which by (25) implies that Φ(Un;x,y1) =M. But
y0 is the closest point to x for which the function y ∈ Aσ (x) 7→ Φ(Un;x,y) achieves
the maximum M. Thus we have arrived at a contradiction.

Now we are left with the task of showing the existence of such a point y1. Apply
Lemma 4 to the point y0 to obtain a radius σ ′ such that B(y0;σ ′) ⊂A and for each
b ∈ B(y0;σ ′), one has Φ(Un;y0,b) ≤ C. Since y0 ∈ Aσ (x) ⊂ A (x), we also know
that B(x;dX(x,y0)) ⊂ A (x) ⊂ A . Therefore B1/2(x,y0) ⊂ B(x;dX(x,y0)) ⊂ A (x).
Let γ : [0,1]→ B1/2(x,y0) be the curve guaranteed to exist by (P3), and take y1 be the
intersection point of γ with ∂B(y0;σ ′). Clearly y1 ∈ B1/2(x,y0)⊂A (x), and further-
more it satisfies:

Φ(Un;x,y0)≤ inf
t∈[0,1]

max{Φ(Un;x,γ(t)),Φ(Un;γ(t),y0)}

≤max{Φ(Un;x,y1),Φ(Un;y1,y0)}
≤max{Φ(Un;x,y1),C}.

Finally, using the monotonicity property of the curve γ , we see that dX(x,y1) <
dX(x,y0). ut

4.3 Geometrical Lemma

Lemma 6 Fix ρ > 0 and β > 0 with β < ρ . Let {B(xn;rn)}n∈N be a set of balls
contained in X. Suppose that ∀n ∈ N, rn > ρ . For N ∈ N, let us define

AN ,
⋃

n≤N

B(xn;rn) and A∞ ,
⋃

n∈N
B(xn;rn).

Then ∀ε > 0, ∃Nε ∈ N such that ∀B(x;r), with r ≥ β and B(x;r)⊂A∞, we have

B(x;r− ε)⊂ANε
.
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Proof Let ε > 0. Let us define for all N ∈ N,

IN , {a | B(a;β −2ε)⊂AN} and I∞ , {b | B(b;β −2ε)⊂A∞}.

We remark that rn > ρ > β −2ε implies that

AN =
⋃

a∈IN

B(a;β −2ε) and A∞ =
⋃

b∈I∞

B(b;β −2ε).

Let us define

A
ε/2

N ,
⋃

a∈IN

B(a;
ε

2
) and A ε/2

∞ ,
⋃

b∈I∞

B(b;
ε

2
).

The sequence {A ε/2
N }N∈N is monotonic under inclusion and converges to A

ε/2
∞ in

Hausdorff distance as n→ ∞. For ε/2 > 0 there exists Nε ∈ N such that

δ (A
ε/2

Nε
,A ε/2

∞ )≤ ε

2
. (26)

Choose any ball B(x;r)⊂A∞ with r ≥ β and define

J(x), {c | B(c;β −3ε)⊂ B(x;r− ε)}.

We note, similar to earlier, that r > β−2ε implies we have B(x;r−ε)=
⋃

c∈J(x) B(c;β−
3ε). We will show that B(x;r− ε)⊂ANε

.
Let y ∈ B(x;r−ε) and choose c ∈ J(x) such that y ∈ B(c;β −3ε). Since B(c;β −

3ε)⊂ B(x;r− ε) and B(x;r)⊂A∞ we have

B(c;β −2ε)⊂ B(x;r)⊂A∞.

Thus c ∈ I∞ and c ∈ A
ε/2

∞ . Since c ∈ A
ε/2

∞ , using (26), choose z ∈ A
ε/2

Nε
which

satisfies
dX(c,z)≤

ε

2
. (27)

Moreover since z ∈A
ε/2

Nε
, choose a ∈ INε

which satisfies z ∈ B(a;ε/2). We have

dX(z,a)≤
ε

2
. (28)

By (27) and (28),

dX(c,a)≤ dX(c,z)+dX(z,a)≤
ε

2
+

ε

2
≤ ε. (29)

Since y ∈ B(c;β −3ε) we obtain

dX(y,a)≤ dX(y,c)+dX(c,a)≤ β −3ε + ε ≤ β −2ε. (30)

Since a ∈ INε
we conclude that y ∈ ANε

. Therefore B(x;r− ε) ⊂ ANε
and the result

is proved. ut
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5 Open questions and future directions

From here, there are several possible directions. The first was already mentioned
earlier, and involves the behavior of the quasi-AMLE U( f ,ρ,N0,α,σ0) as ρ → 0,
N0 → ∞, α → 0, and σ0 → 0. For the limits in α and σ0 in particular, it seems that
either more understanding or further exploitation of the geometrical relationship be-
tween (X,dX) and (Z,dZ) is necessary. Should something of this nature be resolved,
though, it would prove the existence of an AMLE under this general setup.

One may also wish to relax the assumptions on (X,dX). In the cases in which (4)
is not equivalent to (3), distinctly new ideas are most likely necessary. In other cases
of simpler relaxations, it may be possible to amend the arguments more easily.

A final possible question concerns the property (P2). This property requires that
an isometric extension exist for each f ∈FΦ(X,Z); that is, that the Lipschitz con-
stant is preserved perfectly. What if, however, one had the weaker condition that the
Lipschitz constant be preserved up to some constant? In other words, suppose that
we replace (P2) with the following weaker condition:

(P′2) Isomorphic Lipschitz extension:
For all f ∈FΦ(X ,Z) and for all D ⊂ X such that dom( f ) ⊂ D, there exists an
extension F : D→ Z such that

Φ(F ;D)≤C ·Φ( f ;dom( f )), (31)

where C depends on (X,dX) and (Z,dZ).

Suppose then we wish to find an F satisfying (31) that also satisfies the AMLE con-
dition to within a constant factor? The methods here, in which we correct locally,
would be hard to adapt given that with each correction, we would lose a factor of C
in (31).

A Proof that (P0)-(P5) hold for 1-fields

In this appendix we consider the case of 1-fields and the functional Φ = Γ 1 first defined in Section 2.4.4.
Recall that (X,dX) = Rd with dX(x,y) = ‖x− y‖, where ‖ · ‖ is the Euclidean distance. The range (Z,dZ)
is taken to be P1(Rd ,R), with elements P ∈P1(Rd ,R) given by P(a) = p0 +D0 p · a, with p0 ∈ R,
D0 p ∈Rd , and a ∈Rd . The distance dZ is defined as: dZ(P,Q), |p0−q0|+‖D0 p−D0q‖. For a function
f ∈F (X,Z), we use the notation x ∈ dom( f ) 7→ f (x)(a) = fx +Dx f · (x− a), where fx ∈ R, Dx f ∈ Rd ,
and once again a ∈ Rd . Note that f (x) ∈P1(Rd ,R). The functional Φ is defined as:

Φ( f ;x,y) = Γ
1( f ;x,y), 2 sup

a∈Rd

| f (x)(a)− f (y)(a)|
‖x−a‖2 +‖y−a‖2 . (32)

Rather than Φ , we shall write Γ 1 throughout the appendix. The goal is to show that the properties (P0)-(P5)
hold for Γ 1 and the metric spaces (X,dX) and (Z,dZ).

A.1 (P0) and (P1) for Γ 1

The property (P0) (symmetry and nonnegative) is clear from the definition of Γ 1 in (32). The property (P1)
(pointwise evaluation) is by definition.
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A.2 (P2) for Γ 1

The property (P2) (existence of a minimal extension to X for each f ∈F
Γ 1 (X,Z)) is the main result of

[20]. We refer the reader to that paper for the details.

A.3 (P3) for Γ 1

Showing property (P3), Chasles’ inequality, requires a detailed study of the domain of uniqueness for
a biponctual 1−field (i.e., when dom( f ) consists of two points). Let Pm(Rd ,R) denote the space of
polynomials of degree m mapping Rd to R.

For f ∈F
Γ 1 (X,Z) and x,y ∈ dom( f ), x 6= y we define

A( f ;x,y),
2( fx− fy)+(Dx f +Dy f ) · (y− x)

‖x− y‖2

and

B( f ;x,y),
‖Dxu−Dyu‖
‖x− y‖

. (33)

Using [20], Proposition 2.2, we have for any D⊂ dom( f ),

Γ
1( f ;D) = sup

x,y∈D
x 6=y

(√
A( f ;x,y)2 +B( f ;x,y)2 + |A( f ;x,y)|

)
. (34)

For the remainder of this section, fix f ∈F
Γ 1 (X,Z), with dom( f ) = {x,y}, x 6= y, f (x) = Px, f (y) =

Py, and set
M , Γ

1( f ;dom( f ),dom( f )). (35)

Also, for an arbitrary pair of points a,b ∈ Rd , let [a,b] denote the closed line segment with end points a
and b.

Proposition 2 Let F be an extension of f such that B1/2(x,y) ⊂ dom(F). Then there exists a point c ∈
B1/2(x,y) that depends only on f such that

Γ
1(F ;x,y)≤max{Γ 1(F ;x,a),Γ 1(F ;a,y)}, for all a ∈ [x,c]∪ [c,y]. (36)

Remark 1 Proposition 2 implies that the operator Γ 1 satisfies the Chasles’ inequality (property (P3)). In
particular, consider an arbitrary 1-field g ∈F

Γ 1 (X,Z) with x,y ∈ dom(g) such that B1/2(x,y) ⊂ dom(g).
Then g is trivially an extension of the 1-field g|{x,y}, and so in particular satisfies (36). But this is the
Chasles’ inequality with γ = [x,c]∪ [c,y].

To prove proposition 2 we will use the following lemma.

Lemma 7 There exists c ∈ B1/2(x,y) and s ∈ {−1,1} such that

M = 2s
Px(c)−Py(c)

‖x− c‖2 +‖y− c‖2 .

Furthermore,

c =
x+ y

2
+ s

Dx f −Dy f
2M

, (37)

Px(c)− s
M
2
‖x− c‖2 = Py(c)+ s

M
2
‖y− c‖2,

Dx f + sM(x− c) = Dy f − sM(y− c).

Moreover, all minimal extensions of f coincide at c.
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The proof of Lemma 7 uses [20], Propositions 2.2 and 2.13. The details are omitted. Throughout the
remainder of this section, let c denote the point which satisfies Proposition 7.

Lemma 8 Define P̃c ∈P1(Rd ,R) as

P̃c(z), f̃c +Dc f̃ · (z− c), z ∈ Rd ,

where
f̃c , Px(c)− s

M
2
‖x− c‖2,

and
Dc f̃ , Dx f + sM(x− c).

If A( f ;x,y) = 0, then the following polynomial

F(z), P̃c(z)− s
M
2
[(z− c) · (x− c)]2

‖x− c‖2 + s
M
2
[(z− c) · (y− c)]2

‖y− c‖2 , z ∈ Rd

is a minimal extension of f .
If A( f ;x,y) 6= 0, let z ∈ Rd and set p(z), (x− c) · (z− c) and q(z), (y− c) · (z− c). We define

F(z),



P̃c(z)− s
M
2
[(z− c) · (x− c)]2

‖x− c‖2 , if p(z)≥ 0 and q(z)≤ 0,

P̃c(z)+ s
M
2
[(z− c) · (y− c)]2

‖y− c‖2 , if p(z)≤ 0 and q(z)≥ 0,

P̃c(z), if p(z)≤ 0 and q(z)≤ 0,

P̃c(z)− s
M
2
[(z− c) · (x− c)]2

‖x− c‖2 + s
M
2
[(z− c) · (y− c)]2

‖y− c‖2 , if p(z)≥ 0 and q(z)≥ 0.

Then F is a minimal extension of f .

Remark 2 The function F is an extension of the 1-field f in the following sense. F defines a 1-field via its
first order Taylor polynomials; in particular, define the 1-field U with dom(U) = dom(F) as:

U(a), JaF, a ∈ dom(F),

where JaF is the first order Taylor polynomial of F . We then have:

U(x) = f (x) and U(y) = f (y),

Γ
1(U ;dom(U)) = Γ

1( f ;dom( f )).

Proof After showing that the equality A( f ;x,y) = 0 implies that (x− c) · (c− y) = 0, the proof is easy to
check. Suppose that A( f ;x,y) = 0. By (32) and (35) we have M = B( f ;x,y). By (37) we have

‖2c− (x+ y)‖=
‖Dx f −Dy f‖

M
= ‖x− y‖.

Therefore (x− c) · (c− y) = 0. ut

The proof of the following lemma is also easy to check.

Lemma 9 Let g ∈F
Γ 1 (X,Z) such that for all a ∈ dom(g), g(a) = Qa ∈P1(Rd ,R), with Qa(z) = ga +

Dag · (z−a), where ga ∈ R, Dag ∈ Rd , and z ∈ Rd . Suppose there exists P ∈P2(Rd ,R) such that

P(a) = ga, ∇P(a) = Dag, for all a ∈ dom(g).

Then
A(g;a,b) = 0, for all a,b ∈ dom(g).

Proof Omitted.
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Lemma 10 All minimal extensions of f coincide on the line segments [x,c] and [c,y].

Proof First, let F be the minimal extension of f defined in Lemma 8, and let U be the 1-field corresponding
to F that was defined in remark 2. In particular, recall that we have:

U(a)(z) = JaF(z) = F(a)+∇F(a) · (z−a), a ∈ dom(F).

Now Let W be an arbitrary minimal extension of f such that for all a ∈ dom(W ), W (a) = Qa ∈
P1(Rd ,R), with Qa(z) =Wa +DaW · (z−a), where Wa ∈R, DaW ∈Rd , and z ∈Rd . We now restrict our
attention to [x,c]∪ [c,y]. For any a ∈ [x,c]∪ [c,y], we write W (a) = Qa in the following form:

Qa(z) = F(a)+∇F(a) · (z−a)+δa +∆a · (z−a), z ∈ Rd ,

where δa ∈ R and ∆a ∈ Rd . In particular, we have

Wa = F(a)+δa,

DaW = ∇F(a)+∆a.

Since U is a minimal extension of f , it is enough to show that δa = 0 and ∆a = 0 for a ∈ [x,c]∪ [c,y].
By symmetry, without lost generality let us suppose that a ∈ [x,c]. Since W is a minimal extension of f ,
we have Wx = F(x) = fx, and by Lemma 7, Wc = F(c). Using (34) and (35), and once again since W is a
minimal extension of f , the following inequality must be satisfied:

|A(W ;e,a)|+ B(W ;e,a)2

2M
≤ M

2
, e ∈ {x,c}. (38)

Using Lemma 9 for U restricted to {x,a,c} we have

A(U ;e,a) = 0, e ∈ {x,c}. (39)

Therefore

A(W ;e,a) =
|−2δa +∆a · (e−a)|

‖e−a‖2 , e ∈ {x,c}. (40)

Since a ∈ [x,c], we can write a = c+α(x− c) with α ∈ [0,1]. Using (38) and (39), the definition of
U , and after simplification, δa and ∆a must satisfy the following inequalities:

−2δa +α(1+ s)∆a · (c− x)+
‖∆a‖2

2M
≤ 0, (41)

2δa +α(−1+ s)∆a · (c− x)+
‖∆a‖2

2M
≤ 0, (42)

−2δa− (1−α)(1+ s)∆a · (c− x)+
‖∆a‖2

2M
≤ 0, (43)

2δa− (1−α)(−1+ s)∆a · (c− x)+
‖∆a‖2

2M
≤ 0. (44)

The inequality (1−α)((41)+ (42))+α((43)+ (44)) implies that ∆a = 0. Furthermore, the inequalities
(41) and (42) imply that δa = 0. Now the proof is complete. ut

We finish this appendix by proving Proposition 2. Let us use the notations of Proposition 2 where
c satisfies Lemma 7. By Lemma 10, the extension U (defined in Remark 2) of f is the unique minimal
extension of f on the restriction to [x,c]∪ [c,y]. Moreover, we can check that

Γ
1( f ;x,y) = max{Γ 1(U ;x,a),Γ 1(U ;a,y)}, for all a ∈ [x,c]∪ [c,y]. (45)

Let W be an extension of f . By contradiction suppose that there exists a ∈ [x,c]∪ [c,y] such that

Γ
1( f ;x,y)> max{Γ 1(W ;x,a),Γ 1(W ;a,y)}. (46)

Using [20], Theorem 2.6, for the 1-field g , { f (x),W (a), f (y)} of domain {x,a,y} there exists an exten-
sion G of g such that

Γ
1(G;dom(G))≤ Γ

1( f ;x,y). (47)

Therefore G is a minimal extension of f . By Lemma (10) and the definition of G we have W (a) = G(a) =
U(a). But then by (45),(46), and (47) we obtain a contradiction. Now the proof of the Proposition 2 is
complete. ut
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A.4 (P4) for Γ 1

Property (P4) (continuity of Γ 1) can be shown using (34), and a series of elementary calculations. We omit
the details.

A.5 (P5) for Γ 1

To show property (P5) (continuity of f ∈F
Γ 1 (X,Z)), we first recall the definition of dZ . For P∈P1(Rd ,R)

with P(a) = p0 +D0 p ·a, p0 ∈ R, D0 p ∈ Rd , we have

dZ(P,Q) = |p0−q0|+‖D0 p−D0q‖.

Recall also that for a 1-field f : E→ Z, E ⊂ X, we have:

x ∈ E 7→ f (x)(a) = fx +Dx f · (a− x) = ( fx−Dx f · x)+Dx f ·a, a ∈ Rd .

To show continuity of f ∈F
Γ 1 (X,Z) at x ∈ X, we need the following: for all ε > 0, there exists a

δ > 0 such that if ‖x− y‖< δ , then dZ( f (x), f (y))< ε . Consider the following:

dZ( f (x), f (y)) = | fx−Dx f · x− fy +Dy f · y|+‖Dx f −Dy f‖
≤ | fx− fy|+ |Dx f · x−Dy f · y|+‖Dx f −Dy f‖. (48)

We handle the three terms (48) separately and in reverse order.
For the third term, recall the definition of B( f ;x,y) in (33), and define B( f ;E) accordingly; we then

have:
‖Dx f −Dy f‖ ≤ B( f ;E)‖x− y‖ ≤ Γ

1( f ;E)‖x− y‖. (49)

Since Γ 1( f ;E)< ∞, that completes this term.
For the second term:

|Dx f · x−Dy f · y| ≤ |Dx f · (x− y)|+ |(Dx f −Dy f ) · y|
≤ ‖Dx f‖‖x− y‖+‖Dx f −Dy f‖‖y‖

Using (49), we see that this term can be made arbitrarily small using ‖x− y‖ as well.
For the first term | fx− fy|, define g : E→R as g(x) = fx for all x ∈ E. By Proposition 2.5 of [20], the

function g is continuous. This completes the proof. ut

B Proof of Proposition 1

We prove Proposition 1, which we restate here:

Proposition 3 (Proposition 1) Let f ∈FΦ (X,Z). For any open V ⊂⊂ dom( f ) and α ≥ 0, let us define

Vα , {x ∈V | dX(x,∂V )≥ α}.

Then for all α > 0 and for all open V ⊂⊂ dom( f ),

Φ( f ;Vα )≤max{Ψ( f ;V ;α),Φ(u;∂Vα )}, (50)

and
Φ( f ;V ) = max{Ψ( f ;V ;0),Φ( f ;∂V )}. (51)
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Proof For the first statement fix α > 0 and an open set V ⊂⊂ X. For proving (50), it is sufficient to prove
that for all x ∈ V̊α and for all y ∈Vα we have

Φ( f ;x,y)≤max{Ψ( f ;V ;α),Φ( f ;∂Vα )}. (52)

Fix x ∈ V̊α . Let B(x;rx)⊂V be a ball such that rx is maximized and define

M(x), sup
{

Φ( f ;x,y) | y ∈Vα \B(x;rx)
}
,

as well as
∆(x),

{
y ∈Vα \B(x;rx) |Φ( f ;x,y) = M(x)

}
,

and
δ (x), inf{dX(x,y) | y ∈ ∆(x)}.

We have three cases:

Case 1 Suppose M(x)≤ sup{Φ( f ;x,y) | y ∈ B(x;rx)}. Since B(x;rx)⊂V with rx ≥ α we have

Φ( f ;x,y)≤Ψ( f ;V ;α), ∀y ∈ B(x;rx).

Therefore M(x)≤Ψ( f ;V ;α). That completes the first case.

For cases two and three, assume that M(x) > sup{Φ( f ;x,y) | y ∈ B(x;rx)} and select y ∈ ∆(x) with
dX(x,y) = δ (x).

Case 2 Suppose y ∈ int(Vα \B(x;rx)). Let B(y;ry) ⊂ V be a ball such that ry is maximal. Consider the
curve γ ∈ Γ (x,y) satisfying (P3). Let m ∈ γ ∩B(y;ry)∩Vα , m 6= x,y. Using (P3), we have

Φ( f ;x,y)≤max{Φ( f ;x,m),Φ( f ;m,y)}. (53)

Using the monotonicity of γ we have dX(x,m)< dX(x,y). Using the minimality of the distance of dX(x,y)
and since m ∈Vα we have Φ( f ;x,m)< Φ( f ;x,y). Therefore

Φ( f ;x,y)≤Φ( f ;m,y). (54)

Since m ∈ B(y;ry) with ry ≥ α , using the definition of Ψ we have Φ( f ;m,y) ≤Ψ( f ;V ;α). Therefore
M(x)≤Ψ( f ;V ;α).

Case 3 Suppose y ∈ ∂Vα \B(x;rx). As in case two, let B(y;ry)⊂V be a ball such that ry is maximal and
consider the curve γ ∈Γ (x,y) satisfying (P3). Let m ∈ γ ∩B(y;ry)∩Vα . If there exists m 6= y in Vα , we can
apply the same reasoning as in case two and we have M(x)≤Ψ( f ;V ;α).

If m = y is the only element of γ∩B(y;ry)∩Vα , then there still exists m′ ∈ γ∩∂Vα with m′ 6= y. Using
(P3) we have

Φ( f ;x,y)≤max{Φ( f ;x,m′),Φ( f ;m′,y)}. (55)

Using the monotonicity of γ we have dX(x,m′) < dX(x,y). Using the minimality of distance of dX(x,y)
and since m′ ∈Vα we have Φ( f ;x,m′)< Φ( f ;x,y). Therefore

Φ( f ;x,y)≤Φ( f ;m′,y). (56)

Since m′,y ∈ ∂Vα , we obtain the following majoration

Φ( f ;x,y)≤Φ( f ;m′,y)≤Φ( f ;∂Vα ), (57)

which in turn gives:
M(x)≤Φ( f ;∂Vα ).

The inequality (50) is thus demonstrated.
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For the second statement, we note that by the definition of Ψ we have

max{Ψ( f ;V ;0),Φ( f ;∂V )} ≤Φ( f ;V ).

Using (50), to show (51) it is sufficient to prove

lim
α→0

Φ( f ;Vα ) = Φ( f ;V ). (58)

Let ε > 0. Then there exists xε ∈V and yε ∈V such that

Φ( f ;V )≤Φ( f ;xε ,yε )+ ε.

Set rε = dX(xε ,∂V ). If yε ∈V , there exists τ1 with 0 < τ1 ≤ rε such that for all α , 0 < α ≤ τ1, (xε ,yε ) ∈
Vα ×Vα . Therefore

Φ( f ;xε ,yε )≤Φ( f ;Vα ), ∀α, 0 < α ≤ τ1.

If, on the other hand, yε ∈ ∂V , using (P4) there exists τ2 with 0 < τ2 ≤min{rε ,τ1}, such that

|Φ( f ;xε ,m)−Φ( f ;xε ,yε )| ≤ ε, ∀m ∈ B(yε ;τ2).

By choosing m ∈ B(yε ;τ2)∩Vτ2 , we obtain

Φ( f ;xε ,yε )≤Φ( f ;Vα )+ ε, ∀α, 0 < α ≤ τ2.

Therefore Φ( f ;V )≤Φ( f ;Vα )+2ε , for all α such that 0 < α ≤ τ2 and for all ε > 0. Thus (58) is true. ut
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