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Abstract

The influence of magnetic interactions on the anisotropy of magnetic susceptibility (AMS)
have been largely studied by several theoretical models or experiments. Numerical models
have shown that when magnetostatic interactions occur, the distributions of particles over the
volume rather than their individual orientations control the AMS. We have shown recently from
a comprehensive rock magnetic study and from a theoretical 2-dimensional (2-D) model that
single domain particles closely packed in globule aggregate could produce strong local random
interaction magnetic fields which could influence the magnetic susceptibility and decrease the
degree of anisotropy. In this paper, we first present in detail this 2-D theoretical model and
then we extend it to the 3-D case. The possible distribution function of the magnetostatic
interaction fields comprises two extreme states: it is either isotropic or ordered. The former
case corresponds to the thermal-demagnetized state while the second case corresponds to the
Alternative Field (AF) demagnetized state. We show that when easy axes of magnetization are
not uniformly distributed, the degree of anisotropy decreases as the interaction field increases
in both AF- and thermal-demagnetized states in 2-D and 3-D geometry. Thus we conclude
that random magnetic fields generated by a random arrangement of magnetic particles over
the sample volume decrease the degree of anisotropy of AMS and may alter the magnetic fabric.

1 Introduction

Measurement of the low-field anisotropy of magnetic susceptibility (AMS) in rocks provides a
second-order tensor represented by an ellipsoid whose principal axes,K1 > K2 > K3, are determined
by the contribution of the individual minerals (Tarling and Hrouda, 1993, see e. g.). Such AMS
measurements are commonly used as a proxy of deformation in petrofabric and structural studies
(e.g. Borradaile and Jackson, 2004, for a review). Easy, rapid and inexpensive to implement, this
method as been successfully calibrated to practically every rock including those weakly deformed
such as lava flows (Cañón-Tapia, 2004) or magma flows (Bouchez, 2000). An expected model is a
normal AMS fabric corresponding to a preferred orientation of non-equant-shaped magnetic grains.
In this basic model, the maximum axes K1 are aligned along the long axes of the grains and thus are
statistically parallel to the flow direction while the minimum axes K3 are perpendicular to the flow
plane. Numerical models have been developed to determine the relationship between the orientation
distribution of magnetic minerals and AMS (Jezek and Hrouda, 2004). However, these relationships
can be complicated by different magnetic configurations or particular strains (Merle, 1998). Potter
and Stephenson (1988) and Rochette et al. (1999) have shown situations where inverse magnetic
fabrics are due to a predominance of SD grains (K1 perpendicular to the flow plane and K3 parallel
to the flow direction) and Rochette et al. (1999) gave examples where the magnetic fabric is inter-
mediate between the normal and inverse models. These different patterns depend on the physical
origin of the AMS. It is clear that interpretations of flow directions from magnetic fabric data are
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Figure 1: 2-D schematic representation of magnetic particles in a cluster of a finite volume V . Each
particle own a magnetic moment mi producing a dipolar magnetic field interacting with the field
produced by the neighboring particles.

not as straightforward as usually assumed. All these studies pointed out the main role of distribu-
tion and magnetic behaviour of the particles. Indeed, distribution anisotropy is a common, if not
ubiquitous, source of AMS in weakly deformed rocks such as basaltic lava flows. It occurs when
equant- or not-equant-shaped magnetic particles are unevenly distributed and are close enough to
interact magnetostatically, producing an asymmetric magnetic interaction field which contributes
to the bulk magnetic anisotropy (Hargraves et al., 1991). The role of such magnetostatic inter-
actions on magnetic susceptibility have been largely studied and several theoretical models have
been developed. Stephenson (1994) showed that magnetically isotropic particles with linear or pla-
nar regular arrangements give rise to large degree of anisotropy. Cañón-Tapia (1996) and Gaillot
et al. (2006) generalized the latter models by studying the effects of individual-particle anisotropy
in AMS. These models have shown that when magnetostatic interactions occur, the distributions
of particles rather than their individual orientations controls the AMS. Bascou et al. (2005) were
the first to demonstrate experimentally the predominance of the distribution anisotropy in basaltic
lava flow by comparing the magnetic fabric with the lattice preferred orientations of plagioclase,
clinopyroxene and titanomagnetite. However Grégoire et al. (1998) concluded on the basis of exper-
imental results that shape orientation of magnetite grains seems to be the main source of AMS even
in case when magnetic interactions are strong. Moreover, Grégoire et al. (1995) showed that the
bulk susceptibility and the degree of anisotropy change as a function of grain separation and grain
configuration in a system formed by two ferromagnetic particles. In a recent study Fanjat et al.
(2011) concluded from a comprehensive rock magnetic study and from a 2-D theoretical model that
uniaxial anisotropic SD grains randomly distributed over the volume of a cluster could produce
random interaction magnetic fields which could decrease the degree of anisotropy and thus alter
the magnetic fabric. The purpose of the present study is to present in detail the 2-D model and to
develop it in a 3-D geometry. This paper is organized as follows. We present in a first section the
outlines of our model which is then developed in a 2-D case and a 3-D case, respectively. The last
section contains concluding comments on the theory and results.

2 Numerical approach

The direct way to model systems of interacting particles is to introduce a local interaction field
Hint. For a given grain, Hint is produced by all other grains in the cluster (Fig. 1). Underline
that magnetic particles are randomly distributed over the cluster volume V , the local interaction
fields are random and can be described statistically with a probability density function W (Hint).
Moreover, the closer are the particles and the stronger are their mutual interactions. To account
for this effect, we used the packing fraction p (Shcherbakov and Shcherbakova, 1975; Egli, 2006b).
Consider an ensemble of SD spheres closely packed, p is defined by the ratio between the volume
occupied by the magnetic particles and the total volume V of the cluster. The size for SD magnetite
grains is 0.03-0.05 µm (Dunlop and Özdemir, 1997). Moreover, numerical simulations show that
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the maximal packing fraction for random close packing spheres is 0.636 (Torquato et al., 2000).
According to the cluster sizes observed in basaltic flows (Zhou et al., 1997; Fanjat et al., 2011) and
the size of SD particles, we assume that the clusters are composed by two scales of packing spheres:
SD particles are gathered in small cluster of about 0.1 µm, itself packed in a bigger one. In this
case, the maximal packing fraction is evaluated between 0.20 and 0.40, in agreement with values
proposed by Chen et al. (2007) in natural and biogenic cluster of SD particles. For such densely
packed clusters, the distribution function W (Hint) can be approximated by a Gaussian distribution
(Shcherbakov and Shcherbakova, 1975; Egli, 2006a):

W (Hint) =
1

σ0
√
2π

exp(−H
2

int

2σ2

0

). (1)

Here the standard deviation σ0 is defined by:

σ0 = 0.3µs
√
p, (2)

where µs denotes the intensity of the saturation magnetization. For magnetite, µs ≈ 480 kA/m at
p ≈ (0.2-0.4), thus the dispersion σ0 achieves values of order of 80 kA/m. This means that the local
fields can be relatively strong.

3 2-D geometry

3.1 Magnetic energies for SD particles with uniaxial anisotropy

First, let us consider an ensemble of identical oriented spherical particles. For simplicity, we will
assume grains with an uniaxial anisotropy constant K. Let us suggest in this section that all the
vectors, i.e. spontaneous magnetization Ms, interaction field Hint, and small external field hext,
lie in the same plane (Fig. 2). Thus we can use a 2-D geometry for the further calculations and
introduce a polar coordinate system with the polar axis defined by the unit vector u along the easy
axis of magnetization l. In this frame, the vectors have the following coordinates:

Ms =Ms

(

sin θ
cos θ

)

Hint = Hint

(

sinφ
cosφ

)

hext = hext

(

sinψ
cosψ

)

In absence of external and interaction magnetic fields, Ms lies along l. In presence of an internal
interaction magnetic field Hint, Ms is shifted by an angle θ from its initial position (Fig. 2.a). The
expression of the total non perturbed energy Enp of the particle is (see e.g. O’Reilly (1984)):

Enp = Ean + Eint (3)

where

Ean = K sin2 θ (4)

denotes the anisotropy energy of the uniaxial grain, and K denotes the anisotropy parameter (Na-
gata, 1961) and

Eint = −Ms ·Hint = −MsHint cos(θ − φ) (5)

is the magnetostatic interaction energy. However, external fields are present in the general case, so
the total energy density of the grain becomes:

E = K sin2(θ)−MsHint cos(θ − φ)−Mshext cos(θ − ψ). (6)

Here hext denotes a small external magnetic field and ψ ∈ [−π;π] denotes the angle between hext

and l (Fig. 2.b). Under the influence of hext, Ms is slightly deflected from θ to θ’. Normalizing eq.
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Figure 2: Sketch of a SD particle with uniaxial anisotropy: a) Submitted to an interaction magnetic
field Hint. Ms is the spontaneous magnetization and φ is the angle between Hint and the easy axis
of magnetization l. θ is the angle between the spontaneous magnetization Ms and l. b) Application
of an external field hext. ψ is the angle between hext and l. θ’ is the new angle of equilibrium of
the spontaneous magnetization Ms.

(6) to K and defining dimensionless interaction magnetic field H = MsHint/K and dimensionless
external magnetic field h =Mshext/K, we find:

Etot = sin2(θ)−H cos(θ − φ)− h cos(θ − ψ) = E0 +∆E. (7)

where E0 is the dimensionless non-perturbed energy density:

E0 = sin2 θ −H cos(φ− θ), (8)

Underline that in this notation, the spontaneous magnetization of a particle is equal to one.
The position of equilibrium θ0’ of the magnetic moment is found by minimization of eq. (7). First,
let us determine the extrema of E0 in eq. (8). θ0 is a root of the following equation:

∂E0

∂θ
= sin(2θ)−H sin(φ− θ) = 0. (9)

Note that for H < 1, there are always two minima states of the energy E0 in the interval [0,π] (Fig.
3.a). The left minimum is deeper at φ < π/2 while the right minimum is deeper at π/2 < φ < π.
These two minima correspond to two of the three possible roots of eq. (9). θ10 corresponds to
φ < π/2 and θ20 corresponds to π/2 < φ < π (Fig. 3). However for H > 1, the two minima exist at
some φ only (Fig. 4.b). Keeping this result in mind, we consider only the case where H < 1. This
restriction in practice is of little importance because strong interaction fields with H > 1 seldom
occur, only at very high volume density of SD grains. Then, in the case when such very strong fields
do appear, they would produce strong correlations between the direction of the magnetic moments
of the grains and thus, the analysis presented hereafter will be anyway invalid.

Assuming smallness of h with respect to H , the new position of equilibrium θ′
0

of eq. (7) is
θ′0 = θ0 + y where y ≪ 1. Expanding Etot in a Taylor’s series at θ0, we obtain:

Etot(θ0 + y) ≈ F [θ0(φ)]
y2

2
− h cos(ψ − θ0 − y) + Etot(θ0), (10)

where
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Figure 3: The non-perturbed energy density E0 as a function of the angle θ for H = 0.8 and φ = 1.5.
The two minima are θ1

0
and θ2

0
.

F [θ0(φ)] =
∂2E0

∂θ2
= 2 cos(2θ0) +H cos(φ− θ0) (11)

is the second derivative of E0. We obtain the expression of y from eq. (10):

∂Etot

∂y
= F [θ0(φ)]y − h sin(ψ − θ0) = 0, (12)

so

y = h
sin(ψ − θ0)

F [θ0(φ)]
. (13)

The projection of the induced magnetization of a grain onto the field direction, is given for the two
angles θ and ψ by:

mind(ψ) = h
sin2(θ0 − ψ)

F [θ0(φ)]
. (14)

The total induced magnetic moment is obtained by the integration of eq. (14) over the surface.
Now the further scenario depends on the distribution function of the easy axis of magnetization.

3.2 Isotropic distribution for the easy axes

Consider now a sample for which the distribution function for Hint is isotropic. Then, introducing
the blocking temperature Tb of a grain, the probability that θ0 belongs to either θ1

0
or θ2

0
is described

by the Boltzman’s distribution:

P [θi
0
(φ)] =

1

C
exp

(

−E0[θ
i
0(φ)]

kBTb

)

for i = (1,2), (15)

where

C = exp

(

−E0[θ
1

0
(φ)]

kBTb

)

+ exp

(

−E0[θ
2

0
(φ)]

kBTb

)

, (16)

and kB is the Boltzman’s constant. From eq. (14), the total induced magnetic moment can be
found by averaging:
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Figure 4: The positions of the minima θ10 and θ20 of the energy E0 computed at the stable point θ0
as the function of the angle φ between the easy axis and direction of interaction field H . The figure
is computed for a) H=0.8 and b) H=1.1.

Mint[θ0(φ), ψ] =
1

2Cπ2

(

∫ π

2

−π

2

∫ π

−π

(

cos(θ0 − ψ) + h
sin2(θ0 − ψ)

F [θ0(φ)]

)

f(φ, ψ)dψ exp

[

−E
1

0(φ)

kBTb

]

dφ

+

∫ π

π

2

∫ π

−π

(

cos(θ0 − ψ) + h
sin2(θ0 − ψ)

F [θ0(φ)]

)

f(φ, ψ)dψ exp

[

−E
2

0
(φ)

kBTb

]

dφ (17)

+

∫
−π

2

−π

∫ π

−π

(

cos(θ0 − ψ) + h
sin2(θ0 − ψ)

F [θ0(φ)]

)

f(φ, ψ)dψ exp

[

−E
2

0(φ)

kBTb

]

dφ
)

where f(φ, ψ) denotes the distribution function of the angles φ and ψ. If there is no magnetic fabric,
then ψ has an uniform distribution over the interval [0, π]. Neglecting a possible correlation between
the directions of magnetic moments of the grains, i.e. neglecting any anisotropy of distribution
(Hargraves et al., 1991), the angle φ is also distributed uniformly over [0,π]. As a consequence, for
the further estimations, we will assume that f(φ, ψ)=1.

Whatever is the nature of the natural remanent magnetization (NRM) in a sample, the dis-
tribution function of the interaction field is comprised between two boundary states. It is either
isotropic, which formally corresponds to the thermal-demagnetized state, or it is strongly ordered,
which formally corresponds to the Alternative Field (AF) demagnetized state. To estimate the
susceptibility measured from the thermal-demagnetized state, we consider the extreme case when
the demagnetization completely randomizes the direction of the interaction field in relation to the
position of easy axis of a grain. Physically, it happens when at a blocking temperature Tb, the
interactions are weak, so the ratio Ei

0
(φ)/(kBTb) ≪ 1. Then, all exponents in eq. (18) can be

replaced by one and the factor C equals 2, so we obtain:

Mint[θ0(φ), ψ] =
1

4π2

∫ π

−π

∫ π

−π

(

cos(θ0 − ψ) + h
sin2(θ0 − ψ)

F [θ0(φ)]
dψ

)

dφ. (18)

Hence the integration over ψ brings the first term in eq. (18) to zero. Thus, eq. (18) becomes:

Mint[θ0(φ), ψ] =
h

4π2

∫ π

−π

(∫ π

−π

sin2(θ0 − ψ)

F [θ0(φ)]
dψ

)

dφ (19)

After integrating eq. (19) over ψ, we obtain:

Mint[θ0(φ)] =
h

4π

∫ π

−π

dφ

2 cos[2θ0(φ)] +H cos[θ0(φ)− φ]
(20)
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From eq. (20) we deduce the expression of the magnetic susceptibility:

χT (H) =
1

2π

∫ π

0

1

2 cos[2θ0(φ)] +H cos[θ0(φ) − φ]
dφ. (21)

The susceptibility of particles in thermal-demagnetized state increases when H increases (Fig. 5).
The reason for this increase is that the potential well becomes more shallow when π/2 < φ < π, i.e.
when the direction of the interaction field is more or less opposite to the easy axis of magnetization
(Fig. 6). The sharp increase of the susceptibility at H → 1 occurs because at this limit the second
derivative F approaches zero at φ = 3π/4 (Fig 6). To show that, note first that when H = 1 the
analytical solution of eq. (9) can be calculated. Indeed, at φ < 3π/4, we have 2θ0 = −φ + θ0, so
θ0 = φ/3. Analogously, θ0 = π − φ at 3π/4 < φ < π. Hence, F = 3 cos(2φ/3) for φ < 3π/4 and
F = cos(2φ) for 3π/4 < φ < π, so

χT (H) =
1

6π

∫ 3π/4

0

dφ

cos(2φ/3)
+

1

2π

∫ π

3π/4

dφ

cos(2φ)
. (22)

It is straightforward to demonstrate that eq. (22) has a logarithmic divergence at φ→ 3π/4.
Now let us consider the other extreme case. AF treatment forces the magnetic moment of a

grain to switch from one to another direction along the easy axis. In the absence of any external
or interaction field, it leads to a statistical polarization of the magnetic moments of SD ensemble
when an half of them falls in one direction while the second half falls in the opposite one. However,
the presence of any magnetic field breaks the symmetry, making these states not equiprobable. As
far as the amplitude of AF gradually decreases, the moment finally will be trapped in the state
with the biggest critical field, i.e. in the deepest potential well. Thus, even if the location of the
magnetic moment before the AF treatment was in the shallow minimum θ0 = θ2

0
, it will occupy

eventually the deep potential well θ0 = θ1
0
. Hence,

χAF (H) =
1

π

∫ π

2

0

1

2 cos[2θ0(φ)] +H cos[θ0(φ)− φ]
dφ (23)

It is clearly demonstrated that the effect of interactions on the susceptibility of an ensemble of SD
grains in AF-demagnetized state is not much important (Fig. 5). Indeed, the only result is that
interactions slightly decrease the susceptibility which ranges now from 0.25 at H = 0 to 0.21 at H
= 1. Physically, the decrease of χAF with H is conditioned by the deepening of the potential well
of the states when φ < π/2 , i.e. when the direction of the interaction field is close to the direction
of the magnetic moment of a grain.

3.3 Anisotropic distribution for the easy axes

When a magnetic fabric is present, the easy axes are distributed non-homogeneously over the angles
ψ. Hence the distribution function f(ψ, φ) is not constant. We assume for simplicity that the
distribution of interaction field vector is totally random so that f(φ, ψ) = f(ψ). We can formally
decompose f(ψ) into Fourier series. Let us retain only the two first terms, so f becomes:

f(φ, ψ) = 1 + a cos(2ψ), (24)

where a denotes an arbitrary coefficient. With this choice, the maximum susceptibility axis lies
along ψ = 0.

For thermo-demagnetized state, using eq. (24), the expression of the total induced magnetic
moment becomes:

M =
1

4π2

∫ π

−π

∫ π

−π

(

cos(θ0 − ψ) + h
sin2(θ0 − ψ)

F [θ0(φ)]

)(

1 + a cos(2ψ)
)

dφdψ

=
h

8π

∫ π

−π

2− a cos(2θ0)

F [θ0(φ)]
dφ

(25)
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Figure 5: Influence of the interaction field on the bulk susceptibility in the 2-D case. Theoretical
magnetic susceptibility of AF-demagnetized and thermo-demagnetized grain as a function of the
interaction field H. The shaded area is the area where the NRM is likely to be.
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Figure 6: The second derivative F computed at the stable point θ0 as the function of the angle φ.
The thick curve is computed for H = 0.5 while the thin curve is computed for H = 1.0.
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Figure 7: Influence of the interaction field on the anisotropy degree of the magnetic susceptibility
in the 2-D case. The degree of anisotropy P = K1/K3 of a SD grain in a thermo-demagnetized
state and in a AF-demagnetized state as a function of the interaction field H computed for the
parameter a = 0.3. The shaded area is the area where the NRM is likely to be.

From here the maximum magnetic susceptibility along the direction ψ = π/2 is:

K1 =
1

4π

∫ π

0

2− a cos(2θ0(φ))

F [θ0(φ)]
dφ (26)

Along the direction ψ = 0, the minimum magnetic susceptibility is:

K3 =
1

4π

∫ π

0

2 + a cos(2θ0(φ))

F [θ0(φ)]
dφ (27)

Using the same development for the AF-demagnetized state, we calculate the minimal and
maximal magnetic susceptibility:

K1 =
1

2π

∫ π

2

0

2− a cos(2θ0(φ))

F
dφ (28)

and

K3 =
1

2π

∫ π

2

0

2 + a cos(2θ0(φ))

F
dφ (29)

We find that the anisotropy degree P = K1/K3 decreases as the interaction field H increases (Fig.
7). As a consequence, when interactions are relatively strong, the anisotropy ellipsoid is approaching
a sphere, introducing noise in measurements. Let us investigate the 3-D geometry case, using the
same approach.

4 3-D geometry

Now let consider a real 3-D spherical system (θ the colatitude and λ the longitude), leaving the
assumption that all the vectors lie in the same plane. Notations are the same than in the 2-D
geometry. In this system, the different vectors are:

m = m





sin θ2 cosλ2
sin θ2 sinλ2

cos θ2



 Hint = Hint





sin θ3 cosλ3
sin θ3 sinλ3

cos θ3



 hext = hext





sin θ cosλ
sin θ sinλ

cos θ
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Figure 8: Influence of the interaction field on the bulk susceptibility in the 3D-case. Theoretical
magnetic susceptibility of AF-demagnetized and thermo-demagnetized grain as a function of the
interaction field H. The shaded area is the area where the NRM is likely to be.

Without loss of generality and in order to simplify the problem, we assume that the easy axis of
magnetization and the polar axis are aligned. This assumption implies that λ3 = 0, θ2 ∈ [0;π],
λ2 ∈ [0; 2π] and θ3 ∈ [0;π]. The initial geometry is the same than in the 2D case. Now the
un-perturbed part of the dimensionless energy transforms to:

E0 = sin2 θ2 −H(sin θ2 sin θ3 cosλ2 + cos θ2 cos θ3). (30)

The stable points (θ02 , λ
0
2) can be found as roots of the equations:

∂E0

∂θ2
= sin(2θ2) +H (cos θ3 sin θ2 − cos θ2 sin θ3 cosλ2) = 0, (31)

and

∂E0

∂λ2
= H sin θ2 sin θ3 sinλ2 = 0. (32)

From eq. (31), we obtain λ2 = 0, for H 6= 0, θ2 6= 0 and θ3 6= 0. Then eq. (27) becomes:

∂E0

∂θ2
= sin(2θ2) +H sin(θ2 − θ3) = 0. (33)

This equation is exactly the same as eq. (9) used for the 2D case. Let us look at perturbation
of the energy caused by the applied small external field hext. Under the action of this field, the
coordinates of the equilibrium position (θ0

2
, 0) is slightly shifted to the position (θ0

2
+ y, z) where

(y, z) ≪ 1. Using a Taylor’s expansion around (θ02 , 0):

E′

tot(θ
0

2
+ y, z) =

y2

2

∂2Etot

∂θ2
2

(θ0
2
, 0) +

z2

2

∂2Etot

∂λ2
2

(θ0
2
, 0)

+
1

2

∂2Etot

∂θ2∂λ2
(θ0

2
, 0)− (hext.Ms).

(34)

where the vector of magnetization Ms can be written as:
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Ms =
[

cos z sin(θ02 + y), sin z sin(θ02 + y), cos(θ02 + y)
]

. (35)

The mixed derivative in eq. (34) is equal to zero because λ0
2
= 0. Let F and G be the second

derivatives of Etot over θ2 and over λ2, respectively, defined by:

F =
∂2Etot

∂θ22
(θ0

2
, 0) = 2 cos(2θ0

2
) +H(cos θ0

2
cos θ3 − sin θ0

2
sin θ3) (36)

and

G =
∂2Etot

∂λ2
(θ0

2
, 0) = H sin θ0

2
sin θ3 (37)

Then, using these notations, eq. (34) becomes:

Etot(θ
0

2 + y, z) ≈ y2

2
F +

z2

2
G− h sin(θ02 + y) cos z sin θ cosλ

− h
[

sin z sin(θ0
2
+ y) sin θ sinλ+ cos(θ0

2
+ y) cos θ

]

.

(38)

From here, recalling that z ≪ 1 and h≪ 1, eq. (38) becomes:

Etot(θ
0

2 + y, z) ≈ y2

2
F +

z2

2
G

− h
[

sin(θ0
2
+ y) cos z sin θ cosλ+ sin z sin(θ0

2
+ y) sin θ sinλ+ cos(θ0

2
+ y) cos θ

]

.

(39)

Moreover, at the stable position, we have:

∂E

∂y
= Fy − h(cos θ02 cosλ sin θ − sin θ02 cos θ) = 0, (40)

and

∂E

∂z
= Gz − h(sin θ02 sinλ sin θ) = 0. (41)

Solving the system, we find y and z. Now, using these results and from eq. (35), the vector of the
induced magnetization is:

Mind =
[

y cos θ02, z sin θ
0

2,−y sin θ02
]

(42)

The susceptibility is the projection of the induced magnetization Mind on h:

χ = Mindh/h
2 =

y

h

[

cos θ0
2
sin θ cosλ− sin θ0

2
cos θ

]

+
z

h
sin θ0

2
sin θ sinλ

=
1

F

[

cos θ0
2
sin θ cosλ− sin θ0

2
cos θ

]2

+
1

G

[

sin θ0
2
sin θ sinλ

]2
(43)

For the thermal-demagnetized state with no magnetic fabric, the angles θ and λ are randomly
distributed over the sphere. Then, integrating eq. (43) over sin θdθdλ, we obtain:
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χT =
1

8π
(

∫ π

0

cos2 θ0
2

F (θ0
2
)
sin θ3dθ3

∫

2π

0

∫ π

0

(sin θ cosλ)2 sin θdθdλ

+

∫ π

0

sin2 θ0
2

F (θ0
2
)
sin θ3dθ3

∫

2π

0

∫ π

0

cos2 θ sin θdθdλ

+

∫ π

0

sin2 θ02
G(θ0

2
)
sin θ3dθ3

∫ 2π

0

∫ π

0

(sin θ sinλ)2 sin θdθdλ)

(44)

After integrating on θ and λ we have:

χT =
1

6

[∫ π

0

sin θ3
F (θ0

2
)
dθ3 +

∫ π

0

sin2 θ0
2

G(θ0
2
)
sin θ3dθ3

]

(45)

For the AF state, eq. (49) must be written:

χAF =
1

3

[

∫ π/2

0

sin θ3
F (θ0

2
)
dθ3 +

∫ π/2

0

sin2 θ02
G(θ0

2
)
sin θ3dθ3

]

(46)

The plot of total susceptibility as a function of H is represented in Fig. 8. In absence of interactions
(H=0), we have θ02 = 0 and χ = 1/3. Indeed, the 3-D problem can be split in three 1-D problems.
We consider one axis parallel to hext, hence along this axis, the susceptibility is null. Then we
consider the two other axes perpendicular to the first one. We have:

χ =
M2

s

2K
sin2(π/2) =

J2

s

2K
(47)

Averaging the susceptibility of these three directions we obtain:

χ =
M2

s

3K
(48)

This result is in agreement with the numerical integration (Fig. 8). As it is seen, these graphs are
very similar to Fig. 5. So, all other of our conclusions on the role of interactions on the magnetic
susceptibility are valid for the general 3-D ensemble.

If a magnetic fabric is present, by the analogy with the eq.(25) for the 2-D case, we can generalize
the eq. (44) as follows:

χ =
1

8π
(

∫ π

0

cos2 θ0
2

F (θ0
2
)
sin θ3dθ3

∫

2π

0

∫ π

0

(sin θ cosλ)2[1 + a cos(2θ)] sin θdθdλ

+

∫ π

0

sin2 θ0
2

F (θ0
2
)
sin θ3dθ3

∫

2π

0

∫ π

0

cos2 θ[1 + a cos(2θ)] sin θdθdλ

+

∫ π

0

sin2 θ0
2

G(θ0
2
)
sin θ3dθ3

∫ 2π

0

∫ π

0

(sin θ sinλ)2[1 + a cos(2θ)] sin θdθdλ)

(49)

where the coefficient a > 0 when the field is directed along the minimum susceptibility axis and
vice versa. The integration of eq. 49 gives:

χT =
1

8π
(

∫ π

0

cos2 θ0
2

F (θ0
2
)
sin θ3dθ3(1/6 + a/10) +

∫ π

0

sin2 θ0
2

F (θ0
2
)
sin θ3dθ3(1/6− a/30)

+

∫ π

0

sin2 θ0
2

G(θ0
2
)
sin θ3dθ3(1/6 + a/10)

(50)
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Figure 9: Influence of the interaction field on the anisotropy degree of the magnetic susceptibility
in the 3-D case. The degree of anisotropy P = K1/K3 of a SD grain in a thermo-demagnetized
state and in a AF-demagnetized state as a function of the interaction field H computed for the
parameter a = 0.3. The shaded area is the area where the NRM is likely to be.

In the case of AF-state, we obtain:

χAF =
1

4π
(

∫ π/2

0

cos2 θ02
F (θ0

2
)
sin θ3dθ3(1/6 + a/10) +

∫ π/2

0

sin2 θ02
F (θ0

2
)
sin θ3dθ3(1/6− a/30)

+

∫ π/2

0

sin2 θ0
2

G(θ0
2
)
sin θ3dθ3(1/6 + a/10)

(51)

As in the 2-D model, the degree of anisotropy decreases when the interaction field increases (Fig
9). The evolution of the degree of anisotropy P as function of H presents exactly the same trend
in the 2-D and the 3-D geometry.

5 Discussion and Conclusion

Our model is quite different from the other numerical models dealing with AMS (Stephenson (1994),
Cañón-Tapia (1996), Gaillot et al. (2006)) by its geometry. Indeed, all these models rely on a non-
uniform distribution (lineation or foliation) of magnetic particles with a particular configuration of
the interaction field. They predict that the degree of anisotropy is increased by magnetic interactions
induced by the anisotropy of distribution. Here we have shown that it is not at all always the case,
namely, random magnetic fields generated by the random arrangement of magnetic particles over
the volume leads to the decrease of the degree of anisotropy. For this, a new method to estimate the
role of interactions in an ensemble of randomly distributed SD grains over the volume is suggested.

However, it must be stressed that the degree of anisotropy depends on a number of other
parameters, for example, AMS can be a result of a mixing of the interacting and non-interacting
part fraction (Cañón-Tapia, 2001; Gaillot et al., 2006). The role of interactions between neighboring
clusters is also questionable. Indeed, interactions between clusters can have also a contribution in the
magnetic fabric. Depending on the distribution of the clusters and of their spacing, such interactions
can raise an important magnetic fabric (Stephenson (1994), Cañón-Tapia (1996), Gaillot et al.
(2006)), in opposition with the result expected according to our model. However, we showed that
the interaction field is of the order of 100 kA/m and thus greater than the applied field during AMS
measurements (≈ 400 A/m for the Kappabridge). Thus interactions are stronger within the clusters
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than between the clusters themselves and the influence of remote interactions may be neglected.
Other sources of AMS can be present in the rocks such as shape orientation of non interacting
magnetite grains. The AMS measurements do not allow to distinguish the main sources of AMS in
the rocks. Thus it is important to identify the magnetic carriers and their properties to be able to
interpret correctly magnetic fabrics and the rock history. Finally, the question concerning the roles
of interactions in the remanent magnetization must be asked. Muxworthy and Williams (2004);
Egli (2006b) have shown that densely packed interacting particles with uniaxial anisotropy also
interfere with the remanent magnetization.
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