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Remarks on some quasilinear equations with gradient terms and measure data

Let Ω ⊂ R N be a smooth bounded domain, H a Caratheodory function defined in Ω × R × R N , and µ a bounded Radon measure in Ω. We study the problem

where ∆ p is the p-Laplacian (p > 1), and we emphasize the case H(x, u, ∇u) = ± |∇u| q (q > 0). We obtain an existence result under subcritical growth assumptions on H, we give necessary conditions of existence in terms of capacity properties, and we prove removability results of eventual singularities. In the supercritical case, when µ ≧ 0 and H is an absorption term, i.e. H ≧ 0, we give two sufficient conditions for existence of a nonnegative solution.

Introduction

Let Ω be a smooth bounded domain in R N (N ≧ 2). In this article we consider problems of the form -∆ p u + H(x, u, ∇u) = µ in Ω, (1.1) where ∆ p u = div(|∇u| p-2 ∇u) is the p-Laplace operator, with 1 < p ≦ N, H is a Caratheodory function defined in Ω × R × R N , and µ is a possibly signed Radon measure on Ω. We study the existence of solutions for the Dirichlet problem in Ω

-∆ p u + H(x, u, ∇u) = µ in Ω, u = 0 on ∂Ω, (1.2) 
and some questions of removability of the singularities. Our main motivation is the case where µ is nonnegative, H involves only ∇u, and either H is nonnegative, hence H is an absorption term, or H is nonpositive, hence H is a source one. The model cases are

-∆ p u + |∇u| q = µ in Ω, (1.3) 
where q > 0, for the absorption case and -∆ p u = |∇u| q + µ in Ω. (1.4) for the source case.

The equations without gradient terms,

-∆ p u + H(x, u) = µ in Ω, (1.5) 
such as the quasilinear Emden-Fowler equations

-∆ p u ± |u| Q-1 u = µ in Ω,
where Q > 0, have been the object of a huge literature when p = 2. In the general case p > 1, among many works we refer to [START_REF] Benilan | An L 1 theory of existence uniqueness of nonlinear elliptic equations[END_REF], [START_REF] Bidaut-Véron | Removable singularities and existence for a quasilinear equation[END_REF], [START_REF] Bidaut-Véron | Necessary conditions of existence for an elliptic equation with source term and measure data involving the p-Laplacian[END_REF] and the references therein, and to [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF] for new recent results in the case of absorption. We set

Q c = N (p -1) N -p , q c = N (p -1) N -1 , (Q c = ∞ if p = N ), q = p -1 + p N (1.6) 
(hence q c , q < p < N or q c = q = p = N ), and

q * = q q + 1 -p , (1.7) 
(thus q * = q ′ in case p = 2).

In Section 2 we recall the main notions of solutions of the problem -∆ p u = µ, such as weak solutions, renormalized or locally renormalized solutions, and convergence results. In Section 3 we prove a general existence result for problem (1.2) in the subcritical case, see Theorem 3.1. Then in Section 4 we give necessary conditions for existence and removability results for the local solutions of problem (1.1), extending former results of [START_REF] Hansson | Criteria of solvability for multidimensional Riccati equations[END_REF] and [START_REF] Phuc | Quasilinear Riccati type equations with super-critical exponents[END_REF], see Theorem 4.5. In Section 5 we study the problem (1.2) in the supercritical case, where many questions are still open. We give two partial results of existence in Theorems 5.5 and 5.8. Finally in Section 5 we make some remarks of regularity for the problem -∆ p u + H(x, u, ∇u) = 0 in Ω.

Notions of solutions

Let ω be any domain of R N . For any r > 1, the capacity cap 1,r associated to W 1,r 0 (ω) is defined by

cap 1,r (K, ω) = inf ψ r W 1,r 0 (ω) : ψ ∈ D(ω), χ K ≤ ψ ≤ 1 ,
for any compact set K ⊂ ω, and then the notion is extended to any Borel set in ω. In R N we denote by G 1 the Bessel kernel of order 1 (defined by G 1 (y) = (1 + |y| 2 ) -1/2 ), and we consider the Bessel capacity defined for any compact K ⊂ R N by

Cap 1,r (K, R N ) = inf f r L r (R N ) : f ≧ 0, G 1 * f ≧ χ K .
On R N the two capacities are equivalent, see [START_REF] Adams | The equivalence of two definitions of the capacity[END_REF].

We denote by M(ω) the set of Radon measures in ω, and M b (ω) the subset of bounded measures, and define M + (ω), M + b (ω) the corresponding cones of nonnegative measures. Any measure µ ∈ M(ω) admits a positive and a negative parts, denoted by µ + and µ -. For any Borel set E, µ E is the restriction of µ to E; we say that µ is concentrated on E if µ = µ E.

For any r > 1, we call M r (ω) the set of measures µ ∈ M(ω) which do not charge the sets of null capacity, that means µ(E) = 0 for every Borel set E ⊂ ω with cap 1,r (E, ω) = 0. Any measure concentrated on a set E with cap 1,r (E, ω) = 0 is called r-singular. Similarly we define the subsets M r b (ω) and M r+ b (ω). For fixed r > 1, any measure µ ∈ M(ω) admits a unique decomposition of the form µ = µ 0 + µ s , where µ 0 ∈ M r (ω), and µ s = µ + s -µ - s is r-singular. If µ ≧ 0, then µ 0 ≧ 0 and µ s ≧ 0.

Remark 2.1 Any measure µ ∈ M b (ω) belongs to M r (ω) if and only if there exist f ∈ L 1 (ω) and g ∈ (L r ′ (ω)) N such that µ = f + divg, see [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF]Theorem 2.1]. However this decomposition is not unique; if µ is nonnegative there exists a decomposition such that f is nonnegative, but one cannot ensure that divg is nonnegative.

For any k > 0 and s ∈ R, we define the truncation T k (s) = max(-k, min(k, s)). If u is measurable and finite a.e. in ω, and T k (u) belongs to W 1,p 0 (ω) for every k > 0, one can define the gradient ∇u a.e. in ω by ∇T k (u) = ∇u.χ {|u|≦k} for any k > 0.

For any

f ∈ M + R N , we denote the Bessel potential of f by J 1 (f ) = G 1 * f.

Renormalized solutions

Let µ ∈ M b (Ω). Let us recall some known results for the problem

-∆ p u = µ in Ω, u = 0 on ∂Ω, (2.1) 
Under the assumption p > 2 -1/N, from [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], problem (2.1) admits a solution u ∈ W 1,r 0 (Ω) for every r ∈ [1, q c ) , satisfying the equation in D ′ (Ω) . When p < 2 -1/N , then q c < 1; this leads to introduce the concept of renormalized solutions developed in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF], see also [START_REF] Maeda | Renormalized solutions of Dirichlet problems for quasilinear elliptic equations with general measure data[END_REF], [START_REF] Trudinger | Quasilinear elliptic equations with signed measure data[END_REF]. Here we recall one of their definitions, among four equivalent ones given in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF].

Definition 2.2 Let µ = µ 0 + µ s ∈ M b (Ω), where µ 0 ∈ M p (Ω) and µ s = µ + s -µ - s is p-singular. A function u is a renormalized solution, called R-solution of problem (2.1
), if u is measurable and finite a.e. in Ω, such that T k (u) belongs to W 1,p 0 (Ω) for any k > 0, and |∇u| p-1 ∈L τ (Ω), for any τ ∈ [1, N/(N -1)) ; and for any h ∈ W 1,∞ (R) such that h ′ has a compact support, and any ϕ ∈ W 1,s (Ω) for some s > N, such that h(u)ϕ ∈ W 1,p 0 (Ω),

Ω |∇u| p-2 ∇u.∇(h(u)ϕ)dx = Ω h(u)ϕdµ 0 + h(∞) Ω ϕdµ + s -h(-∞) Ω ϕdµ - s . (2.2)
As a consequence, any R-solution u of problem (2.1) satisfies |u| p-1 ∈ L σ (Ω), ∀σ ∈ [1, N/(N -p) . More precisely, u and |∇u| belong to some Marcinkiewicz spaces [START_REF] Benilan | An L 1 theory of existence uniqueness of nonlinear elliptic equations[END_REF], [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF], [START_REF] Kilpeläinen | Maximal regularity via reverse Hölder inequalities for elliptic systems of n-Laplace type involving measures[END_REF], and one gets useful convergence properties, see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]Theorem 4.1 and §5] for the proof:

L s,∞ (Ω) = u measurable in Ω : sup k>0 k s |{x ∈ Ω : |u(x)| > k}| < ∞ , see [9],
Lemma 2.3 (i) Let µ ∈ M b (Ω)
and u be any R-solution of problem (2.1). Then for any k > 0,

1 k {m≦u≦m+k} |∇u| p dx ≤ |µ| (Ω), ∀m ≧ 0. If p < N , then u ∈ L Qc,∞ (Ω) and |∇u| ∈ L qc,∞ (Ω), |{|u| ≧ k}| ≦ C(N, p)k -Qc (|µ| (Ω)) N N-p , |{|∇u| ≧ k}| ≦ C(N, p)k -qc (|µ| (Ω)) N N-1 . (2.

3)

If p = N (where u is unique), then for any r > 1 and s ∈ (1, N ) ,

|{|u| ≧ k}| ≦ C(N, p, r)k -r (|µ| (Ω)) r p-1 , |{|∇u| ≧ k}| ≦ C(N, p, s)k -N (|µ| (Ω)) s N-1 . (2.4) (ii) Let (µ n ) be a sequence of measures µ n ∈ M b (Ω), uniformly bounded in M b (Ω), and u n be any R-solution of -∆ p u n = µ n in Ω, u n = 0 on ∂Ω.
Then there exists a subsequence (µ ν ) such that (u ν ) converges a.e. in Ω to a function u, such that T k (u) ∈ W 1,p 0 (Ω), and (T k (u ν )) converges weakly in W 1,p 0 (Ω) to T k (u), and (∇u ν ) converges a.e. in Ω to ∇u. Remark 2.4 These properties do not require any regularity of Ω. If R N \Ω is geometrically dense, i.e. there exists c > 0 such that |B(x, r)\Ω| ≧ cr N for any x ∈ R N \Ω and r > 0, then (2.4) holds with s = N, and C depends also on the geometry of Ω. Then |∇u| ∈ L N,∞ (Ω), hence u ∈ BM O(Ω), see [START_REF] Dolzmann | Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side[END_REF], [START_REF] Kilpeläinen | Maximal regularity via reverse Hölder inequalities for elliptic systems of n-Laplace type involving measures[END_REF].

Next we recall the fundamental stability result of [16, Theorem 3.1]: Definition 2.5 For any measure µ = µ 0 + µ + s -µ - s ∈ M b (Ω), where µ 0 = f -divg ∈ M p (Ω), and µ + s , µ - s are p-singular we say that a sequence (µ n ) is a good approximation of µ in M b (Ω) if it can be decomposed as 

µ n = µ 0 n + λ n -η n , with µ 0 n = f n -divg n , f n ∈ L 1 (Ω), g n ∈ (L p ′ (Ω)) N , λ n , η n ∈ M + b (Ω), (2.5) such that (f n ) converges to f weakly in L 1 (Ω), (g n ) converges to g strongly in (L p ′ (Ω)) N and (divg n ) is bounded in M b (Ω),
-∆ p u n = µ n in Ω, u n = 0 on ∂Ω.
Then there exists a subsequence (u ν ) converging a.e. in Ω to a R-solution u of problem (2.1). And (T k (u ν )) converges to T k (u) strongly in W 1,p 0 (Ω).

Remark 2.7 As a consequence, for any measure µ ∈ M b (Ω), there exists at least a solution of problem (2.1). Indeed, it is pointed out in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF] that any measure µ ∈ M b (Ω) can be approximated by such a sequence: extending µ by 0 to R N , one can take

g n = g, f n = ρ n * f, λ n = ρ n * µ + s , η n = ρ n * µ - s , where (ρ n ) is a regularizing sequence; then f n , λ n , η n ∈ C ∞ b (Ω).
Notice that this approximation does not respect the sign:

µ ∈ M + b (Ω) does not imply that µ n ∈ M + b (Ω).
In the sequel we precise the approximation property, still partially used in [START_REF] Hamid | On the connection between to quasilinear elliptic problems with lower terms of order 0 or 1[END_REF]Theorem 2.18] for problem (1.5).

Lemma 2.8 Let µ ∈ M b (Ω). Then (i) there exists a sequence (µ n ) of good approximations of µ, such µ n ∈ W -1,p ′ (Ω), and µ 0 n has a compact support in Ω, λ n , η n ∈ C ∞ b (Ω) , (f n ) converges to f strongly in L 1 (Ω), and

|µ n | (Ω) ≦ 4 |µ| (Ω), ∀n ∈ N (2.6)
Moreover, if µ ∈ M + b (Ω), then one can find the approximation such that µ n ∈ M + b (Ω) and (µ n ) is nondecreasing.

(ii) there exists another sequence (µ n ) of good approximations of µ, with , with

f n , g n ∈ D (Ω), λ n , η n ∈ C ∞ b (Ω), such that (f n ) converges to f strongly in L 1 (Ω), satisfying (2.6); if µ ∈ M + b (Ω), one can take µ 0 n ∈ D + (Ω) . Proof. (i) Let µ = µ 0 + µ + s -µ - s , where µ 0 ∈ M p (Ω), µ + s , µ - s are p-singular and µ 1 = (µ 0 ) + , µ 2 = (µ 0 ) -; thus µ 1 (Ω) + µ 2 (Ω) + µ + s (Ω) + µ - s (Ω) ≦ 2 |µ(Ω)| .
Following [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF], for i = 1, 2, one has

µ i = ϕ i γ i , with γ i ∈ M + b (Ω) ∩ W -1,p ′ (Ω) and ϕ i ∈ L 1 (Ω, γ i ). Let (K n ) n≧1
be an increasing sequence of compacts of union Ω; set

ν 1,i = T 1 (ϕ i χ K 1 )γ i , ν n,i = T n (ϕ i χ Kn )γ i -T n-1 (ϕ i χ K n-1 )γ i , µ 0 n,i = n 1 ν n,i = T n (ϕ i χ Kn )γ i . Thus µ 0 n,i ∈ M + b (Ω) ∩ W -1,p ′ (Ω). Regularizing by (ρ n ), there exists φ n,i ∈ D + (Ω) such that φ n,i -ν n,i W -1,p ′ (Ω) ≦ 2 -n µ i (Ω). Then ξ n,i = n 1 φ k,i ∈ D + (Ω); (η n,i ) converges strongly in L 1 (Ω) to a function ξ i and ξ n,i L 1 (Ω) ≦ µ i (Ω). Also setting G n,i = µ 0 n,i -ξ n,i = n 1 (ν n,i -φ k,i ) ∈ W -1,p ′ (Ω) ∩ M b (Ω), then (G n,i ) converges strongly in W -1,p ′ (Ω) to some G i , and µ i = ξ i +G i , and G n,i M b (Ω) ≦ 2µ i (Ω). Otherwise λ n = ρ n * µ + s and η n = ρ n * µ - s ∈ C ∞ b (Ω) converge respectively to µ + s , µ - s in the narrow topology, with λ n L 1 (Ω) ≦ µ + s (Ω), η n L 1 (Ω) ≦ µ - s (Ω).
Then we set

µ n = µ 0 n + ρ n -η n with µ 0 n = ξ n + G n , ξ n = ξ n,1 -ξ n,2 ∈ D(Ω), G n = G n,1 -G n,2 ∈ W -1,p ′ (Ω) thus µ 0 n has a compact support. Moreover µ 0 = ξ + G with ξ = ξ 1 -ξ 2 ∈ D(Ω), and G = G 1 -G 2 = ϕ + divg for some ϕ ∈ L p ′ (Ω) and g ∈ (L p ′ (Ω)) N , and (G n ) converges to G in W -1,p ′ (Ω). Then we can find ψ n ∈ L p ′ (Ω) , φ n ∈ (L p ′ (Ω)) N , such that G n -G = ψ n + divφ n and G n -G W -1,p ′ (Ω) = max( ψ n L p ′ (Ω) , φ n (L P ′ (Ω)) N ); then µ 0 = f + divg with f = ξ + ϕ and µ 0 n = f n + divg n , with f n = ξ n + ϕ + ψ n , g n = g + φ n . Thus (µ n ) is a good approximation of µ, and satisfies (2.6). If µ is nonnegative, then µ n is nonnegative. (ii) We replace µ 0 n by ρ m * µ 0 n = ρ m * f n + div(ρ m * g n ), m ∈ N, and observe that ρ m * µ 0 n (Ω) ≦ µ 0 n (Ω)
; then we can construct another sequence satisfying the conditions.

Locally renormalized solutions

Let µ ∈ M(Ω). Following the notion introduced in [6], we say that u is a locally renormalized solution, called LR-solution, of problem

-∆ p u = µ, in Ω, (2.7) 
if u is measurable and finite a.e. in Ω, T k (u) ∈ W 1,p loc (Ω) for any k > 0, and

|u| p-1 ∈ L σ loc (Ω), ∀σ ∈ [1, N/(N -p) ; |∇u| p-1 ∈ L τ loc (Ω), ∀τ ∈ τ ∈ [1, N/(N -1)) , (2.8) 
and for any h ∈ W 1,∞ (R) such that h ′ has a compact support, and ϕ ∈ W 1,m (Ω) for some m > N, with compact support, such that h(u)ϕ ∈ W 1,p (Ω), there holds

Ω |∇u| p-2 ∇u.∇(h(u)ϕ)dx = Ω h(u)ϕdµ 0 + h(+∞) Ω ϕdµ + s -h(-∞) Ω ϕdµ - s .
(2.9)

Remark 2.9 Hence the LR-solutions are solutions in D ′ (Ω). From a recent result of [START_REF] Kilpelainen | Superharmonic functions are locally renormalized[END_REF], if µ ∈ M + (Ω), any p-superharmonic function is a LR-solution, and conversely any LR-solution admits a p-superharmonic representant.

Existence in the subcritical case

We first give a general existence result, where H satisfies some subcritical growth assumptions on u and ∇u, without any assumption on the sign of H or µ: we consider the problem

-∆ p u + H(x, u, ∇u) = µ in Ω, u = 0 on ∂Ω, (3.1) 
where

µ ∈ M b (Ω). We say that u is a R-solution of problem (1.2) if T k (u) ∈ W 1,p 0 (Ω) for any k > 0, and H(x, u, ∇u) ∈ L 1 (Ω) and u is a R-solution of -∆ p u = µ -H(x, u, ∇u),
in Ω, u = 0 on ∂Ω.

Theorem 3.1 Let µ ∈ M b (Ω)
, and assume that

|H(x, u, ξ)| ≦ f (x) |u| Q + g(x) |ξ| q + ℓ(x) (3.2) with Q, q > 0 and f ∈ L r (Ω) with Qr ′ < Q c , g ∈ L s (Ω) with qs ′ < q c , and ℓ ∈ L 1 (Ω).
Then there exists a R-solution of (3.1) if, either max(Q, q) > p -1 and |µ| (Ω) and ℓ L 1 (Ω) are small enough, or

q = p -1 > Q and f L r (Ω) is small enough, or Q = p -1 > q and g L s (Ω) is small enough, or q, Q < p -1.
Proof. (i) Construction of a sequence of approximations. We consider a sequence (µ n ) n≧1 of good approximations of µ, given in Lemma 2.8 (i). For any fixed n ∈ N * , and any v ∈ W 1,p 0 (Ω) we define

M (v) = |Ω| N-p N -p-1 Qr ′ Ω |v| Qr ′ dx p-1 Qr ′ + |Ω| N-1 N -p-1 qs ′ Ω |∇v| qs ′ dx p-1 qs ′ , Φ n (v)(x) = - H(x, v(x), ∇v(x)) 1 + 1 n (f (x) |v(x)| Q + g(x) |∇v(x)| q + ℓ(x)) so that |Φ n (v)(x)| ≦ n a.e. in Ω. Let λ > 0 be a parameter. Starting from u 1 ∈ W 1,p 0 (Ω) such that M (u 1 ) ≦ λ, we define u 2 ∈ W 1,p 0 (Ω) as the solution of the problem -∆ p u 2 = Φ 1 (u 1 ) + µ 1 in Ω, U 2 = 0 on ∂Ω,
and by induction we define u n ∈ W 1,p 0 (Ω) as the solution of

-∆ p u n = Φ n-1 (u n-1 ) + µ n in Ω, u n = 0 on ∂Ω.
From (2.3), for any σ ∈ (0, N/(N -p) and τ ∈ (0, N/(N -1)) ,

|Ω| N-p N -1 σ ( Ω |u n | (p-1)σ dx) 1 σ +|Ω| N-1 N -1 τ ( Ω |∇u n | (p-1)τ dx) 1 τ ≦ C( Ω |Φ n-1 (u n-1 )| dx+4 |µ| (Ω)),
with C = C(N, p, σ, τ ). We take σ = Qr ′ /(p -1) and τ = qs ′ /(p -1); since

Ω |H(x, u n-1 , ∇u n-1 )| dx ≦ f L r (Ω) Ω |u n-1 | Qr ′ dx) 1 r ′ + g L s (Ω) ( Ω |∇u n-1 | qs ′ dx) 1 s ′ + ℓ L 1 (Ω) (3.3)
we obtain

M (u n ) ≦ C( Ω |H(x, u n-1 , ∇u n-1 )| dx + 4 |µ| (Ω)) ≦ b 1 M (u n-1 ) Q/(p-1) + b 2 M (u n-1 ) q/(p-1) + η + a with C = C(N, p, q, Q), and b 1 = C f L r (Ω) |Ω| 1 r ′ -Q Qc , b 2 = C g L s (Ω) |Ω| 1/s ′ -q/qc , η = C ℓ L 1 (Ω) , a = 4C |µ| (Ω). Then by induction, M (u n ) ≦ λ for any n ≧ 1 if b 1 λ Q/(p-1) + b 2 λ q/(p-1) + η + a ≦ λ. (3.4)
When Q < p -1 and q < p -1, (3.4) holds for λ large enough. In the other cases, we note that it holds as soon as

b 1 λ Q/(p-1)-1 + b 2 λ q/(p-1)-1 ≦ 1/2, and η ≦ λ/4, a ≦ λ/4. (3.5) 
First suppose that Q > p -1 or q > p -1. We take λ ≦ 1, small enough so that (b

Q/(p-1) 1 + b q/(p-1) 2
)λ max(Q,q)/(p-1)-1 ≦ 1/2, and then η, a ≦ λ/4. Next suppose for example that Q = p-1 > q, a is arbitrary. If b 1 small enough, and η, a are arbitrary, then we obtain (3.5) for λ large enough.

(ii) Convergence: Since M (u n ) ≦ λ, in turn from (3.3), (H(x, u n , ∇u n )) is bounded in L 1 (Ω), and then also Φ n (u n ). Thus Ω |Φ n-1 (u n-1 )| dx + |µ n | (Ω) ≦ C λ := b 1 λ Q/(p-1) + b 2 λM q/(p-1) + η + 4 |µ| (Ω).
From Lemma 2.3, up to a subsequence, (u n ) converges a.e. to a function u, (∇u n ) converges a.e. to ∇u, and u p-1 n converges strongly in L σ (Ω), for any σ ∈ [1, N/(N -p)) , and finally |∇u n | p-1 converges strongly in L τ (Ω), for any τ ∈ [1, N/(N -1)) . Therefore (u

Qr ′ n ) and (|∇u n | qr ′ ) converge strongly in L 1 (Ω), in turn (Φ n (x, u n , ∇u n )) converges strongly to H(x, u, ∇u) in L 1 (Ω). Then (Φ n (x, u n , ∇u n ) + µ n ) is a sequence of good approximations of H(x, u, ∇u) + µ. From Theorem 2.6, u is a R-solution of problem (3.1).
Remark 3.2 Our proof is not based on the Schauder fixed point theorem, so we do not need that 1 ≦ Qr ′ or 1 ≦ qs ′ . Hence we improve the former result of [START_REF] Hamid | On the connection between to quasilinear elliptic problems with lower terms of order 0 or 1[END_REF] for problem (1.5) where H only depends on u, proved for 1 ≦ Qr ′ , implying 1 < Q c . Here we have no restriction on Q c and q c . Next we consider the case where H and µ are nonnegative; then we do not need that the data are small:

Theorem 3.3 Consider the problem (3.1) -∆ p u + H(x, u, ∇u) = µ in Ω, u = 0 on ∂Ω, (3.6) 
where µ ∈ M + b (Ω), and

0 ≦ H(x, u, ξ) ≦ C(|u| Q + |ξ| q ) + ℓ(x), (3.7 
)

with 0 < Q < Q c , 0 < q < q c , C > 0, ℓ ∈ L 1 (Ω).
Then there exists a nonnegative R-solution of problem (3.6).

Proof. We use the good approximation of µ by a sequence of measures

µ n = µ 0 n + λ n , with µ 0 n ∈ D + (Ω) , λ n ∈ C + b (Ω),
given at Lemma 2.8 (ii). Then there exists a weak nonnegative solution u n ∈ W 1,p 0 (Ω) of the problem

-∆ p u n + H(x, u n , ∇u n ) = µ n in Ω, u n = 0 on ∂Ω.
Indeed 0 is a subsolution, and the solution 

ψ n ∈ W 1,p 0 (Ω) of -∆ p ψ n = µ n in Ω, is a supersolution. Since µ n ∈ L ∞ (Ω), there holds ψ ∈ C 1,α (Ω) for some α ∈ (0, 1), thus ψ ∈ W 1,∞ (Ω). From [12, Theorem 2.1], since Q c ≦ p, there exists a weak solution u n ∈ W 1,p 0 (Ω), such that 0 ≤ u n ≤ ψ n , hence u n ∈ L ∞ (Ω), and u n ∈ W 1,r loc (Ω) for some r > p. Taking ϕ = k -1 T k (u n -m) with m ≥ 0, k > 0,
| p ) , u p-1 n converges strongly in L σ (Ω) for any σ ∈ [1, N/(N -p)) , |∇u n | p-1 converges strongly in L τ (Ω), for any τ ∈ [1, N/(N -1)) . Then (u Qr ′ n ) and (|∇u n | qr ′ ) converge strongly in L 1 (Ω), in turn (H(x, u n , ∇u n )) converges strongly to H(x, u, ∇u) in L 1 (Ω).
Applying Theorem 2.6 to µ n -H(x, u n , ∇u n ) as above, we still obtain that u is a R-solution of (3.6).

Necessary conditions for existence and removability results

Let µ ∈ M(Ω). We consider the local solutions of

-∆ p u + H(x, u, ∇u) = µ in Ω, (4.1) 
We say that u is a weak solution of (4.1) if u is measurable and finite a.e. in Ω, T k (u) ∈ W 1,p loc (Ω) for any k > 0, H(x, u, ∇u) ∈ L 1 loc (Ω) and (4.1) holds in D ′ (Ω). We say that u is a LR-solution of (4.1) if T k (u) ∈ W 1,p loc (Ω) for any k > 0, and |∇u| q ∈ L 1 loc (Ω) and u is a LR-solution of 

-∆ p u = µ -H(x, u, ∇u), in Ω. Remark 4.1 If q ≧ 1
(i) If |H(x, u, ξ)| ≦ C 1 |ξ| q + ℓ(x) (4.2)
with C 1 > 0 and ℓ ∈ L 1 (Ω), then setting

C 2 = C 1 + q * -1, for any ζ ∈ D + (Ω), Ω ζ q * dµ ≤ C 2 Ω |∇u| q ζ q * dx + Ω |∇ζ| q * dx + Ω ℓζ q * dx. (4.3) 
(ii) If H has a constant sign, and

C 0 |ξ| q -ℓ(x) ≦ |H(x, u, ξ)| , (4.4) 
then for some C = C(C 0 , p, q),

Ω |∇u| q ζ q * dx ≦ C( Ω ζ q * dµ + Ω |∇ζ| q * dx + Ω ℓζ q * dx) (4.5)
Proof. By density, we can take ζ q * as a test function, and get

Ω ζ q * dµ = - Ω H(x, u, ∇u)ζ q * dx + q * Ω |∇u| p-2 ∇u.ζ q * -1 ∇ζdx;
and from the Hölder inequality, for any ε > 0,

q * Ω |∇u| p-1 ζ q * -1 |∇ζ| dx ≦ (q * -1)ε Ω |∇u| q ζ q * dx + ε 1-q * Ω |∇ζ| q * dx (4.6)
which implies (4.3). If H has a constant sign, then

C 0 Ω |∇u| q ζ q * dx - Ω ℓdx ≦ Ω |H(x, u, ∇u)| ζ q * dx = Ω H(x, u, ∇u)ζ q * dx ≦ Ω ζ q * dµ + q * Ω |∇u| p-1 ζ q * -1 |∇ζ| dx,
thus (4.5) follows after taking ε small enough.

Proposition 4.3 Let µ ∈ M(Ω), and assume that (4.1) admits a weak solution u.

(i) If (4.2) holds, then µ ∈ M q * (Ω).

(ii) If H(x, u, ξ) ≦ -C 0 |ξ| q and µ and u are nonnegative, then in addition there exists C = C(C 0 , p, q) > 0 such that for any compact K ⊂ Ω, µ(K) ≦ Ccap 1,q * (K, Ω).

(4.7)

Proof. (i) Let E be a Borel set such that cap 1,q * (E, Ω) = 0. There exist two measurable disjoint sets A, B such that Ω = A ∪ B and µ + (B) = µ -(A) = 0. Let us show that µ + (A ∩ E) = 0. Let K be any fixed compact set in A ∩ E. Since µ -(K) = 0, for any δ > 0 there exists a regular domain ω ⊂⊂ Ω containing K, such that µ -(ω) < δ. Then there exists ζ n ∈ D(ω) such that 0 ≤ ζ n ≤ 1, and ζ n = 1 on a neighborhood of K contained in ω, and (ζ n ) converges to in W 1,q * (R N ) and a.e. in Ω, see [START_REF] Adams | The equivalence of two definitions of the capacity[END_REF]. There holds

µ + (K) ≤ ω ζ q * n dµ + = ω ζ q * n dµ + ω ζ q * n dµ -≤ ω ζ q * n dµ + δ and from (4.3), Ω ζ q * n dµ ≤ C 2 Ω |∇u| q ζ q * n dx + Ω |∇ζ n | q * dx + Ω ℓζ q * n dx
And lim n→∞ Ω |∇u| q ζ q * n dx = 0, from the dominated convergence theorem, thus Ω ζ q * n dµ ≤ δ for large n; then µ + (K) ≤ 2δ for any δ > 0, thus µ + (K) = 0, hence µ + (A ∩ E) = 0; similarly we get µ -(B ∩ E) = 0, hence µ(E) = 0. (ii) Here we find

Ω ζ q * dµ + C 0 Ω |∇u| q ζ q * dx ≦ q * Ω |∇u| p-2 ∇u.ζ q * -1 ∇ζdx
and hence from (4.6) with ε > 0 small enough, for some C = C(C 0 , p, q), Ω ζ q * dµ ≤ C Ω |∇ζ| q * dx and (4.7) follows, see [START_REF] Maz | Sobolev Spaces with application to elliptic partial differential equations[END_REF].

Remark 4.4 Property (ii) extends the results of [START_REF] Hansson | Criteria of solvability for multidimensional Riccati equations[END_REF] and [39, Theorem 3.1] for equation (1.4).

Next we show a removability result:

Theorem 4.5 Assume that H has a constant sign and satisfies (4.2) and (4.4). Let F be any relatively closed subset of Ω, such that cap 1,q * (F, R N ) = 0, and µ ∈ M q * (Ω).

(i) Let 1 < q ≦ p. Let u be any LR-solution of

-∆ p u + H(x, u, ∇u) = µ in Ω\K (4.8)
Then u is a LR-solution of -∆ p u + H(x, u, ∇u) = µ in Ω. (4.9)

(ii) Let q > p and u be a weak solution of (4.8), then u is a weak solution of (4.9).

Proof. (i) Let 1 < q ≦ p. From our assumption, T k (u) ∈ W 1,p loc (Ω\F ), for any k > 0, and |u| p-1 ∈ L σ loc (Ω), for any σ ∈ [1, N/(N -p)) , and |∇u| p-1 ∈ L τ loc (Ω\F ), for any τ ∈ [1, N/(N -1)) , and |∇u| q ∈ L 1 loc (Ω\F ). For any compact K ⊂ Ω, there holds cap 1,p (F ∩K, R N ) = 0, because p ≦ q * , thus T k (u) ∈ W 1,p loc (Ω), see [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]Theorem 2.44]. And u is measurable on Ω and finite a.e. in Ω, thus we can define ∇u a.e. in Ω by the formula ∇u(x) = ∇T k (u)(x) a.e. on the set {x ∈ Ω : |u(x)| ≦ k} .

Let us consider a fixed function ζ ∈ D + (Ω) and let ω ⊂⊂ Ω such that suppζ ⊂ ω and set K ς = F ∩ suppζ. Then K ς is a compact and cap 1,q * (K, R N ) = 0. Thus there exists ζ n ∈ D(ω) such that 0 ≤ ζ n ≤ 1, and ζ n = 1 on a neighborhood of K contained in ω, and (ζ n ) converges to 0 in W 1,q * (R N ); we can assume that the convergence holds everywhere on R N \N, where cap 1,q * (N, R N ) = 0, see for example [START_REF] Baras | Singularités éliminables pour des équations semi-linéaires[END_REF]

, Lemmas 2.1,2.2]. From Lemma 4.2 applied to ξ n = ζ(1 -ζ n ) in Ω\F, we have Ω |∇u| q ξ q * n dx ≦ C( Ω ξ q * n d |µ| + Ω |∇ξ n | q * dx + Ω ℓξ q * n dx) ≦ C( Ω ζ q * d |µ| + Ω |∇ζ| q * dx + Ω |∇ζ n | q * dx + Ω ℓζ q * dx). (4.10)
From the Fatou Lemma, we get |∇u| q ζ q * ∈ L 1 (Ω) and

Ω |∇u| q ζ q * dx ≦ C ζ := C( Ω ζ q * d |µ| + Ω |∇ζ| q * dx Ω ℓζ q * dx), (4.11) 
where C ζ also depends on ζ. Taking T k (u)ξ q * n as test function, we obtain

Ω |∇(T k (u))| p ξ q * n dx + Ω H(x, u, ∇u)T k (u)ξ q * n dx = Ω T k (u)ξ q * n dµ 0 + k( Ω ξ q * n dµ + s + Ω ξ q * n dµ - s ) + Ω T k (u) |∇u| p-2 ∇u.∇(ξ q * n )dx;
From the Hölder inequality, we deduce

1 k Ω T k (u) |∇u| p-2 ∇u.∇(ξ q * n )dx ≦ q * ( Ω ζ q * -1 |∇u| p-1 |∇ζ|)dx + Ω ζ q * |∇u| p-1 |∇ζ n | dx) ≦ (q * -1) Ω |∇u| q ζ q * dx + Ω |∇ζ| q * dx + q * ( Ω |∇u| q ζ q * dx + Ω ζ q * |∇ζ n | q * dx) ≦ 2q * C ζ + Ω |∇ζ| q * dx + o(n). Thus from (4.2), with a new constant C ζ , Ω |∇(T k (u))| p ξ q * n dx ≦ (k + 1)C ζ + o(n);
hence from the Fatou Lemma,

Ω |∇(T k (u))| p ζ q * dx ≦ (k + 1)C ζ . Therefore |u| p-1 ∈ L σ loc (Ω), ∀ σ ∈ [1, N/(N -p)) and |∇u| p-1 ∈ L τ loc (Ω), ∀ τ ∈ [1, N/(N -1)
) , from a variant of the estimates of [START_REF] Benilan | An L 1 theory of existence uniqueness of nonlinear elliptic equations[END_REF] and [START_REF] Boccardo | Nonlinear elliptic equations with right-hand side measures[END_REF], see [START_REF] Petitta | New properties of p-Laplacian measure[END_REF]Lemma 3.1].

Finally we show that u is a LR-solution in Ω : let h ∈ W 1,∞ (R) such that h ′ has a compact support, and ϕ ∈ W 1,m (Ω) for some m > N, with compact support in Ω, such that h(u)ϕ ∈ W 1,p (Ω); let ω ⊂⊂ Ω such that suppζ ⊂ ω and set K = F ∩suppζ, and consider

ζ n ∈ D(R N ) as above; then (1 -ζ n )ϕ ∈ W 1,m (Ω\F ) and h(u)(1 -ζ n )ϕ ∈ W 1,p ( 
Ω\F ) and has a compact support in Ω\F, then we can write

I 1 + I 2 + I 3 + I 4 = Ω h(u)ϕ(1 -ζ n )dµ 0 + h(+∞) Ω ϕ(1 -ζ n )dµ + s -h(-∞) Ω ϕ(1 -ζ n )dµ - s ,
with

I 1 = Ω |∇u| p-2 ∇u.h ′ (u)ϕ(1 -ζ n )dx, I 2 = - Ω |∇u| p-2 ∇u.h(u)ϕ∇ζ n dx I 3 = Ω |∇u| p-2 ∇u.h(u)(1 -ζ n )∇ϕdx, I 4 = Ω H(x, u, ∇u)h(u)ϕ(1 -ζ n )dx.
We can go to the limit in I 1 as n → ∞, from the dominated convergence theorem, since there exists a > 0 such that

Ω |∇u| p-2 ∇u.h ′ (u)ϕ(1 -ζ n )dx = Ω |∇T a (u)| p-2 ∇T a (u).h ′ (T a (u))ϕ(1 -ζ n )dx. Furthermore I 2 = o(n), because Ω |∇u| p-2 ∇u.h(u)ϕ∇ζ n dx ≦ h L ∞ (R) ( Ω |∇u| q ϕdx) 1/q ∇ζ n L q * (R N ) ;
we can go to the limit in I 3 because |∇ϕ| ∈ L m (Ω) and |∇u| p-1 ∈ L τ loc (Ω), ∀τ ∈ [1, N/(N -1)) ; in I 4 from (4.11) and (4.2), and in the right hand side because h(u)ϕ ∈ L 1 (Ω, dµ 0 ), see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]Remark 2.26] and ζ n → 0 everywhere in R N \N and µ(N ) = 0. Then we conclude:

Ω |∇u| p-2 ∇u.∇(h(u)ϕ)dx + Ω H(x, u, ∇u)h(u)ϕdx = Ω h(u)ϕdµ 0 + h(+∞) Ω ϕdµ + s -h(-∞) Ω ϕdµ - s .
(ii) Assume that q > p > 1 (hence 1 < q * < p) and u is a weak solution in Ω\F. Then u ∈ W 1,q loc (Ω\F ) implies u ∈ W 1,q * loc (Ω\F ) = W 1,q * loc (Ω), hence |∇u| is well defined in L 1 loc (Ω). As in part (i) we obtain that |∇u| q ζ q * ∈ L 1 (Ω), hence |∇u| q ∈ L 1 loc (Ω). For any ϕ ∈ D(Ω), and ω containing suppϕ, we have ϕ(1 -ζ n ) ∈ D(Ω\F ), then we can write

J 1 + J 2 + J 3 = Ω ϕ(1 -ζ n )dµ, with J 1 = Ω (1-ζ n ) |∇u| p-2 ∇u.∇ϕdx, J 2 = - Ω ϕ |∇u| p-2 ∇u.∇ζ n dx, J 3 = Ω H(x, u, ∇u)ϕ(1-ζ n )dx.
Now we can go to the limit in J 1 and J 3 from the dominated convergence theorem, because |∇u| q ∈ L 1 loc (Ω) and q > p -1; and ( Ω ϕ(1 -ζ n )dµ) converges to Ω ϕdµ as above. And J 2 converges to 0, because |∇u| p-1 ∈ L q/(p-1) loc

(Ω) and |∇ζ n | tends to 0 in L q * (Ω). Then u is a weak solution in Ω.

Existence in the supercritical case

Here the problem is delicate and many problems are still unsolved.

Case of a source term

Here we consider problem

-∆ p u = |∇u| q + µ in Ω, u = 0 on ∂Ω. (5.1)
The main question is the following:

If µ ∈ M q * b (Ω) satisfies condition (4.7
) with a constant C > 0 small enough, does (5.1) admit a solution?

In the case p = 2 < q, the problem has been solved in [START_REF] Hansson | Criteria of solvability for multidimensional Riccati equations[END_REF]. In that case one can define the solutions in a very weak sense. According to [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF], setting ρ(x) = dist(x, ∂Ω), a function u is called a very weak solution of (5.1) if u ∈ W 1,q loc (Ω) ∩ L 1 (Ω), |∇u| q ∈ L 1 (Ω, ρdx) and for any ϕ ∈ C 2 Ω such that ϕ = 0 on ∂Ω,

- Ω u∆ϕdx = Ω |∇u| q ϕdx + Ω ϕdµ.
Theorem 5.1 ( [START_REF] Hansson | Criteria of solvability for multidimensional Riccati equations[END_REF]) Let µ ∈ M + (Ω). If 1 < q and p = 2 and (5.1) has a very weak solution, then

µ(K) ≦ Ccap 1,q ′ (K, Ω) (5.2) 
for any compact K ⊂ Ω, and some C < C 1 (N, q). Conversely, if 2 < q and (5.2) holds for some C < C 2 (N, q, Ω) then (5.1) has a very weak nonnegative solution.

In the general case p > 1, such a notion of solution does not exist. The problem (5.1) with p < q was studied by [START_REF] Phuc | Quasilinear Riccati type equations with super-critical exponents[END_REF] for signed measures µ ∈ M b (Ω) such that

[µ] 1,q * ,Ω = sup |µ(K ∩ Ω)| Cap 1,q * (K, R N ) : K compact of R N , Cap 1,q * (K, R N ) > 0 < ∞. Theorem 5.2 ([39]) Let 1 < p < q. Let µ ∈ M b (Ω). There exists C 1 = C 1 (N, p, q, Ω) such that if |µ(K ∩ Ω)| ≦ Ccap 1,q * (K, R N ) (5.3)
for any compact K ⊂ R N , and some C < C 1 , then (5.1) has a weak solution u ∈ W 1,q 0 (Ω), such that [|∇u| q ] 1,q * ,Ω is finite. In particular this holds for any µ ∈ L N/q * ,∞ (Ω).

Very recently the case p = q, has been studied in [START_REF] Jaye | Quasilinear elliptic equations and weighted Sobolev-Poincaré inequalities with distributional weights[END_REF] for signed measures satisfying a trace inequality: setting

p # = (p -1) 2-p if p ≧ 2, p # = 1 if p < 2,
they show in particular the following:

Theorem 5.3 ([25]) Let 1 < p = q. Let µ ∈ M b (Ω) such that -C 1 Ω |∇ζ| p dx ≦ Ω |ζ| p dµ ≤ C 2 Ω |∇ζ| p dx, ∀ζ ∈ D(Ω), (5.4) 
with C 1 > 0 and C 2 ∈ (0, p # ). Then (5.1) has a weak solution u ∈ W 1,p loc (Ω).

The existence for problem (5.1) is still open in the case q < p for p = 2

Case of an absorption term

Here we consider problem (1.2) in case of absorption, where µ ∈ M + b (Ω) and we look for a nonnegative solution. In the model case

-∆ p u + |∇u| q = µ in Ω, u = 0 on ∂Ω, (5.5) 
the main question is the following:

If µ ∈ M q * + b (Ω), hence µ = f + divg, with f ∈ L 1
(Ω) and g ∈ (L q/(p-1) (Ω)) N , does (5.5) admits a nonnegative solution?

Remark 5.4 Up to changing u into -u, the results of Theorem 5.2 and 5.3 are also available for the problem (5.5) but we have no information on the sign of u.

In the sequel we give two partial results of existence.

Case

q ≦ p and µ ∈ M p+ b (Ω)
Here we assume that µ ∈ M p+ b (Ω), subspace of M q * + b (Ω). Our proof is directly inspired from the results of [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF] for the problem (3.6), where q = p and H(x, u, ξ)u ≧ 0.

Theorem 5.5 Let p -1 < q ≦ p. Let µ ∈ M p+ b (Ω), and 
0 ≦ H(x, u, ξ) ≦ C 1 |ξ| p + ℓ(x), (5.6) 
H(x, u, ξ) ≧ C 0 |ξ| q for u ≧ L, (5.7 
)

with ℓ(x) ∈ L 1 (Ω), C k , C 0 , L ≧ 0.
Then there exists a nonnegative R-solution of problem (1.2).

Remark 5.6 The result was known in the case where H(x, u, ∇u) = |∇u| q , p = 2, and µ ∈ L 1 (Ω) (see for example [START_REF] Abdellaoui | Breaking of resonance and regularizing effect of a first order quasilinear term in some elliptic equations[END_REF], where the existence for any µ ∈ M 2+ b (Ω) is also claimed, without proof ). For p = 2, the case q < p, µ ∈ L 1 (Ω) is partially treated in [START_REF] Perrotta | Regularizing effect of a gradient term in problem involving the p-Laplacian operator[END_REF].

Proof. Let µ = f -divg with f ∈ L 1+ (Ω) and g = (g i ) ∈ (L p ′ (Ω)) N .
Here again we use the good approximation of µ by a sequence of measures

µ n ∈ M + b (Ω) given at Lemma 2.8 (ii), λ n = 0, thus µ n = µ 0 n = f n -divg n , with f n ∈ D + (Ω) and g n = (g n,i ) ∈ (D (Ω) N ).
Hence there exists a weak nonnegative solution u n ∈ W 1,p 0 (Ω) of the problem Taking m = 0 we obtain

-∆ p u n + H(x, u n , ∇u n ) = µ n in Ω, u n = 0 on ∂Ω.
Ω |∇u n | q dx ≤ {un≥k} |∇u n | q dx + Ω |∇T k (u n )| q dx ≤ 4C -1 0 µ(Ω) + Ω |∇T k (u n )| p dx + |Ω| since q ≦ p; thus from the Fatou Lemma, |∇u| q ∈ L 1 (Ω) . Moreover using ϕ = T 1 (u n -k), {k-1≦un≦k} |∇u n | p dx + {un≥k} H(x, u n , ∇u n )dx ≦ {un≥k-1} f n dx + {k-1≤un≤k} |g n .∇u n | dx.
Therefore, from the Hölder inequality, {k-1≤un≤k} Next we prove the strong convergence of the truncates in W 1,p 0 (Ω) as in [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF]: we take as test function

|∇u n | p dx+p ′ {un≥k} H(x, u n , ∇u n )dx ≤ {un≥k-1} f n dx+( N i=1 {k-1≤un≤k} |g n,i | p ′ dx).
ϕ n = Φ(T k (u n ) -T k (u))
, where Φ(s) = se θ 2 s 2 /4 , where θ > 0 will be chosen after, thus Φ ′ (s) ≥ θ |Φ(s)| + 1/2. Then ϕ n ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) , and we have

|ϕ n | ≤ Φ(k); setting ψ n = Φ ′ (T k (u n ) -T k (u)), we have 0 ≤ ψ n ≤ Φ ′ (k). Then ϕ n → 0, ψ n → 1 in L ∞ (Ω)
weak * and a.e. in Ω. We set a(ξ) = |ξ| p-2 ξ, and

X = Ω (a(∇(T k (u n )) -a(∇(T k (u))).∇(T k (u n ) -T k (u))ψ n dx,
and get

X + I 1 = I 2 + I 3 + I 4 , with I 1 = Ω H(x, u n , ∇u n )ϕ n dx, I 2 = Ω a(∇(T k (u)).∇(T k (u) -T k (u n ))ψ n dx, I 3 = Ω f n ϕ n dx + Ω div(g n -g)ϕ n dx + Ω g.∇(T k (u n ) -T k (u))ψ n dx, I 4 = - Ω a(∇(u n -T k (u n )).∇(T k (u n ) -T k (u))ψ n dx = {un≥k} a(∇(u n -T k (u n )).∇(T k (u))ψ n dx.
One can easily see that

|I 2 | + |I 3 | + |I 4 | = o(n). Since H(x, u n , ∇u n ) ≧ 0 for u n ≥ k, then X ≦ I 5 + o(n),
where

I 5 = {un<k} H(x, u n , ∇u n )ϕ n dx ≤ C 1 Ω |∇(T k u n )| p ) |ϕ n | dx + Ω l |ϕ n | dx ≦ C 1 (Y + I 7 ) + o(n), with Y = Ω (a(∇(T k (u n )) -a(∇(T k (u))).∇(T k (u n ) -T k (u)) |ϕ n | dx, I 7 = Ω a(∇(T k (u))).∇(T k (u n ) -T k (u)) |ϕ n | dx + Ω (a(∇(T k (u n )).∇(T k (u)) |ϕ n | dx
and then

I 7 = o(n). We get finally X ≦ C 1 Y + o(n); choosing θ = 2C 1 , we deduce that Ω (a(∇(T k (u n )) -a(∇(T k (u))).∇(T k (u n ) -T k (u))dx = o(n).
Hence (T k (u n )) converges strongly to T k (u) in W 1,p 0 (Ω) . Therefore H(x, u n , ∇u n ) is equi-integrable, from (5.6) and (5.8), since for any measurable set E ⊂ Ω,

E H(x, u n , ∇u n )dx ≦ C 1 E |∇(T k u n )| p dx + E ℓdx + {un≥k} H(x, u n , ∇u n )dx.
Then (H(x, u n , ∇u n )) converges to H(x, u, ∇u) strongly in L 1 (Ω); thus (µ n -H(x, u n , ∇u n )) is a good approximation of µ -H(x, u, ∇u), and u is a R-solution of problem (3.1) from Theorem 2.6.

Remark 5.7 In the case p -1 < q < p, and if (5.6) is replaced by

0 ≦ H(x, u, ξ) ≦ C 1 |ξ| q + ℓ(x), (5.9) 
the proof is much shorter: in order to prove the equi-integrability of (H(x, u n , ∇u n )) we do not need to prove the strong convergence of the truncates: indeed for any measurable set E ⊂ Ω,

E |∇u n | q dx ≦ E |∇(T k u n )| q dx + {un≥k} |∇u n | q dx
and (∇T k (u n )) converges strongly to ∇T k (u) in L q (Ω) and (5.8) holds. Then (H(x, u n , ∇u n )) converges to H(x, u, ∇u) strongly in L 1 (Ω) .

Case where µ satisfies (4.7)

Here we assume that µ ∈ M + b (Ω) satisfies a capacity condition of type (4.7). For simplicity we assume that µ has a compact support in Ω. In the sequel we prove the following: Theorem 5.8 Let 1 < q ≦ p or p = 2. Assume that µ ∈ M + b (Ω), has a compact support and satisfies µ(K) ≦ C 1 cap 1,q * (K, Ω), for any compact K ⊂ Ω, (5.10)

for some C 1 = C(N, q, Ω) > 0 (non necessarily small). Then there exists a nonnegative R-solution u of problem (5.5), such that [|∇u| q ] 1,q * ,Ω is finite.

First recall some equivalent properties of measures, see [START_REF] Maz | Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers[END_REF]Theorem 1.2], [START_REF] Hansson | Criteria of solvability for multidimensional Riccati equations[END_REF]Lemma 3.3], see also [START_REF] Phuc | Quasilinear Riccati type equations with super-critical exponents[END_REF]: Remark 5.9 1) Let µ ∈ M + b (Ω), extended by 0 to R N . Then (5.10) holds if and only if there exists

C 2 > 0 such that Ω ζ q * dµ ≤ C 2 Ω |∇ζ| q * dx, ∀ζ ∈ D + (Ω); (5.11)
the constants of equivalence between C 1 , C 2 only depend on N, q * , Ω.

If moreover µ has a compact support K 0 ⊂ Ω, then (5.10) holds if and only if there exists

C 3 > 0 such that µ(K) ≦ C 3 Cap 1,q * (K, R N ) for any compact K ⊂ R N ; (5.12)
the constants of equivalence between C 1 , C 3 only depend on N, q * , K 0 .

2) Let ν ∈ M + b (R N ). Then (5.12) holds if and only if there exists C 4 > 0 such that J 1 (ν) is finite a.e. and J 1 ((J 1 (ν)) q * ) ≦ C 4 J 1 (ν) a.e. in R N ; (5.13) the constants of equivalence between C 3 , C 4 do not depend on ν.

Following the ideas of [START_REF] Phuc | Quasilinear Riccati type equations with super-critical exponents[END_REF]Theorem 3.4] we prove a convergence Lemma:

Lemma 5.10 Let (z n ) be a sequence of nonnegative functions, converging a.e. in L 1 (Ω). Extending z n by 0 in R N \Ω, assume that for some C > 0,

Ω z q p-1 n ξ q * dx ≦ C Ω |∇ξ| q * dx ∀n ∈ N, ∀ξ ∈ D + (R N ).
Then (z n ) converges strongly in L q/(p-1) (Ω).

Proof. From our assumption, (z n ) is bounded in L q/(p-1) (Ω), then up to a subsequence, it converges to some z weakly in L q/(p-1) (Ω) and a.e. in Ω. Consider a ball B ⊃ Ω of radius 2diamΩ, and denote by G the Green function associated to -∆ in B. Set w n = z q/(p-1) n

, and extend w n by 0 to R N \Ω. Then for any compact

K ⊂ R N , K∩Ω w n dx = K∩B w n dx ≦ CCap 1,q * (K, R N ),
which means that [w n ] 1,q * ,B is bounded, and

|∇G(w n )(x)| ≦ B |∇ x G(x, y)| w n (y)dy ≦ CG 1 * w n (x),
with C = C(N,diamΩ). In turn from [39, Corollary 2.5], we get the upperestimate

|∇G(w n )| q p-1 1,q * ,B ≦ C |G 1 * w n | q p-1 1,q * ,B ≦ C [w n ] q/(p-1) 1,q * ,B .
Therefore (|∇G(w n )|) is bounded in L q/(p-1) (B), thus (|∇G(w n -w)|) is bounded in L q/(p-1) (B). Let ϕ ∈ D (B) and ε > 0 be fixed. Since (z n ) converges a.e. to z , from the Egoroff theorem, there exists a measurable set ω ε ⊂ B such that (w n ) converges to w = z q/(p-1) uniformly on ω ε , and |∇ϕ| L q * (B\ωε) ≦ ε. There holds Considering the two integrals on B\ω ε and ω ε we find lim Ω (w n -w)ϕdx = 0. Taking ϕ = 1 on Ω, it follows that lim Ω z q/(p-1) n dx = Ω z q/(p-1) dx and the proof is done.

Proof of Theorem 5.8.

From our assumption, µ ∈ M q * (Ω). We consider the problem associated to µ n = µ * ρ n -∆ p u n + |∇u n | q = µ n in Ω, u n = 0 on ∂Ω. Multiplying this equation by ξ q * with ξ ∈ D + (R N ), we obtain

q * Ω (ε 2 + |∇u n,ε | 2 ) p-2
2 ∇u n,ε .ξ q * -1 ∇ξdx + Ω (ε 2 + |∇u n,ε | 2 ) q 2 ξ q * dx = Ω ξ q * µ n dx + q * ∂Ω ξ q * (ε 2 + |∇u n,ε | 2 ) p-2 2 ∇u n,ε .νds.

The boundary term is nonpositive, hence going to the limit as ε → 0, we get Ω |∇u n | q ξ q * dx ≦ Ω ξ q * µ n dx + q * Ω |∇u n | p-2 ∇u n .ξ q * -1 ∇ξdx (5.15)

When p = 2, existence also holds for q > 2, from [START_REF] Lions | Résolution de problèmes elliptiques quasilinéaires[END_REF]; and then u n ∈ C 2 Ω , thus (5.15) is still true. As in Lemma 4.2, it follows that for any ξ ∈ D + (R N ) Ω |∇u n | q ξ q * dx ≦ C( Ω ξ q * dµ n + Ω |∇ξ| q * dx).

(5.16)

Otherwise, since µ n (Ω) ≦ µ(Ω), from Lemma 2.3, up to a subsequence (u n ) converges a.e. to a function u, (T k (u n )) converges weakly in W 1,p 0 (Ω) and (∇u n ) converges a.e. to ∇u in Ω. Note also that (µ n ) is a sequence of good approximations of µ, since µ has a compact support (see [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF]). From (4.5), for any ξ ∈ D + (R N ), we have lim Ω ξ q * dµ n = Ω ξ q * dµ, since ξ q * ∈ C c (R N ). Then Ω ξ q * dµ ≦ C Ω |∇ξ| q * dx. From the Fatou Lemma, we obtain

Ω |∇u| q ξ q * dx ≦ C( Ω ξ q * dµ + Ω |∇ξ| q * dx) ≦ C Ω |∇ξ| q * dx, (5.17) 
hence |∇u| q ∈ L 1 (Ω) . And then for any compact K ⊂ R N , taking ξ = 1 on K, K∩Ω |∇u| q dx ≦ CCap 1,q * (K, R N ), thus [|∇u| q ] 1,q * ,Ω is finite. Moreover, extending µ by 0 to R N \Ω, we see from Remark 5.9 that µ satisfies condition (5.11), which is equivalent to (5.13). By convexity, µ n also satisfies (5.13) and hence (5.11), with the same constants, i.e. for any n ∈ N and any ξ ∈ D + (R N ), Ω ξ q * dµ n ≦ C 2 Ω |∇ξ| q * dx (5.18)

Then from (5.16) with another C > 0,

Ω |∇u n | q ξ q * dx ≦ C Ω |∇ξ| q * dx (5.19)
Next we can apply Lemma 5.10 to z n = |∇u n | p-1 , since (∇u n ) converges a.e. to ∇u in Ω. Then (|∇u n | q ) converges strongly in L 1 (Ω) to |∇u| q . Thus (µ n -|∇u n | q ) is a good approximation of (µ -|∇u| q ). From Theorem 2.6, u is a R-solution of the problem.

From [START_REF] Jaye | Quasilinear elliptic equations and weighted Sobolev-Poincaré inequalities with distributional weights[END_REF]Theorem 1.4], condition (5.17) (for N ≧ 2) implies that q * < N, that means q > q c , or |∇u| q = 0 in Ω, thus µ = 0. If µ = divg with g ∈ (L N (q+1-p)/(p-1),∞ (Ω)) N with compact support, then |g| q p-1 ∈ L N/q * ,∞ (Ω), thus Ω ζ q * |g| q p-1 dx ≤ C 2 Ω |∇ζ| q * dx, ∀ζ ∈ D + (Ω).

1 n

 1 Since H(x, u, ξ) ≧ 0, taking ϕ = k -1 T k (u n -m) with m ≥ 0, k > 0, as a test function, we still obtain(3.8). From Lemma 2.3, up to a subsequence, (u n ) converges a.e. to a function u, (T k (u n )) converges weakly in W 1,p 0 (Ω), (∇u n ) converges a.e. to ∇u, and u p-converges strongly in L σ (Ω), for any σ ∈ [1, N/(N -p)) . Thus lim k→∞ sup n∈N |{u n > k}| = 0, and |∇u n | p-1 converges strongly in L τ (Ω), for any τ ∈ [1, N/(N -1)) . Moreover the choice of ϕ with m + k > L gives 1 k {m≦u≦m+k} |∇u n | p dx + C 0 {un≥m+k} |∇u n | q dx ≦ µ n (Ω) ≦ 4µ(Ω).

From Lemma 2

 2 |∇u n | p dx + {un≥k} H(x, u n , ∇u n )dx) = 0.(5.8)

Ω

  (w n -w)ϕdx = B (w n -w)ϕdx = = -B (∆(G(w n -w)ϕdx = -B ∇(G(w n -w).∇ϕdx

(5. 14 ) 2 2

 142 For q ≦ p, from[START_REF] Boccardo | Résultats d'existence pour certains problèmes elliptiques quasilinéaires[END_REF] Theorem 2.1], as in the proof of Theorem 3.3, (5.14) admits a nonnegative solutionu n ∈ W 1,p 0 (Ω) ∩ C 1,α (Ω). Moreover we can approximate u n in C 1,α (Ω) by the solution u n,ε (ε > 0) of the problem -div((ε 2 + |∇u n,ε | 2 ) p-∇u n,ε ) + (ε 2 + |∇u n,ε | 2 ) q 2 = µ n in Ω,u n,ε = 0 on ∂Ω.

  and (ρ n ) converges to µ + s and (η n ) converges to µ - s in the narrow topology.

	Theorem 2.6 ([16]) Let µ ∈ M b (Ω), and let (µ n ) be a good approximation of µ. Let u n be a
	R-solution of

  as a test function, we get from(2.6) 

	1 k {m≦u≦m+k}	|∇u

n | p dx ≤ µ n (Ω) ≤ 4µ(Ω), (3.8)

then from Lemma 2.3, up to a subsequence, (u n ) converges a.e. to a function u, (T k (u n )) converges weakly in W 1,p 0 (Ω)and (∇u n ) converges a.e. to ∇u, and (|∇u n

  and u is a weak solution, then u satisfies (2.8), see for example [31, Lemma 2.2 and 2.3], thus u ∈ W 1,q loc (Ω).

	Lemma 4.2 Let µ ∈ M(Ω). Assume that (4.1) admits a weak solution u.
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Some regularity results

In this section we give some regularity properties for the problem:

-∆ p u + H(x, u, ∇u) = 0 in Ω. (6.1) We first recall some local estimates of the gradient for renormalized solutions, see [START_REF] Hamid | On the connection between to quasilinear elliptic problems with lower terms of order 0 or 1[END_REF], following the first results of [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], and many others, see among them [START_REF] Alvino | Estimates for the gradient of solutions of nonlinear elliptic equations with L 1 data[END_REF], [START_REF] Kilpelainen | Estimates for p-Poisson equations[END_REF]. Lemma 6.1 Let u be the R-solution of problem -∆ p u = f in Ω, u = 0 on ∂Ω, with f ∈ L m (Ω), 1 < m < N. Set m = N p/(N p -N + p) = p/q,where q is defined in (1.6).

Remark 6.2 The estimates on u and |∇u| are obtained in the case m < m by using the classical test functions φ β,ε (T k (u)), where φ β,ε (w) = w 0 (ε + |t|) -β dt, for given real β < 1. Let us recall the proof in the case m ≧ m, p < N. Then L m (Ω) ⊂ W -1,p ′ (Ω), thus, from uniqueness, u ∈ W 1,p 0 (Ω) and u is a variational solution. If m = m, then m * = p ′ , and the conclusion follows. Suppose m > m, equivalently m * > p ′ . For any σ > p, for any F ∈ (L σ (Ω)) N , there exists a unique weak solution w in W 1,σ 0 (Ω) of the problem

see [START_REF] Iwaniec | Projections onto gradient fields and L p estimates for degenerate elliptic operators[END_REF], [START_REF] Kinnunen | A local estimate for nonlinear equations with discontinuous coefficients[END_REF], [START_REF] Kinnunen | A boundary estimate for nonlinear equations with discontinuous coefficients[END_REF]. Let v be the unique solution in W 1,1 0 (Ω) of the problem

We also obtain local estimates: Proof. We consider again the function v defined in (6.2), and set

Then, from [START_REF] Kinnunen | A local estimate for nonlinear equations with discontinuous coefficients[END_REF], u ∈ W 1,σ loc (Ω) and for any balls

Next we consider problem (6.1) in the case q < q, where q is defined at (1.6).

where g ∈ L N +ε loc (Ω) , C > 0. Let u ∈ W 1,p loc (Ω) be any weak solution of problem (6.1). Then u ∈ C 1,α (Ω) for some α ∈ (0, 1) . Moreover for any balls B 1 ⊂⊂ B 2 ⊂⊂ Ω, u C 1,α (B1) is bounded by a constant which depends only on N, p, B 1 , B 2 , g L N+ε (B 2 ) , and the norm u W 1,p (B 2 ) .

Proof. Since u ∈ W 1,p loc (Ω) , the function f = -H(x, u, ∇u) satisfies f ∈ L m 0 loc (Ω) from (6.3), with m 0 = p/q > 1. Notice that q < q is equivalent to m 0 > m. If m 0 > N, then from [18, Theorem 1.2], |∇u| ∈ L ∞ loc (Ω) and we get an estimate of |∇u| L ∞ (B 1 ) in terms of the norm u W 1,p (B 2 ) and

Ω) for some α ∈ (0, 1) , see [START_REF] Tolksdorf | Regularity for more general class of quasilinear elliptic equations[END_REF].

Next suppose that m 0 < N. Then from Lemma 6.3 we have |∇u| p-1 ∈ L (p-1)m * 0 (Ω). In turn, from (6.3), f ∈ L m 1 loc (Ω) with m 1 = (p -1)m * 0 /q. Note that m 1 /m 0 = N (p -1)/(qN -p) > 1 since q < q. By induction, starting from m 1 , as long as m n < N, we can define m n+1 = (p -1)m * n-1 /q, and we find m n < m n+1 . If m n < N for any n, then the sequence converges to λ = N (q -p + 1)/q, which is impossible since p/q < λ and q < q. Then there exists n 0 such that m n 0 ≧ N. If n 0 = N, or if m 0 = N we modify a little m 0 in order to avoid the case. Then we conclude from above. Remark 6.5 The result, which holds without any assumption on the sign of H, is sharp. Indeed for q < q < p < N, the problem -∆ p u = |∇u| q in B(0, 1) with u = 0 on ∂B(0, 1) admits the solution

x -→ u C (x) = C(|x|

for suitable C > 0, and u C ∈ W 1,p 0 (Ω) for q < q.

Next we consider the absorption case, and for simplicity the model problem:

Theorem 6.6 Let p -1 < q. Let u be a nonnegative LR solution of

Then u ∈ L ∞ loc (Ω) ∩ W 1,p loc (Ω) , and for any balls [START_REF] Kilpelainen | Superharmonic functions are locally renormalized[END_REF], and u satisfies a weak Harnack inequality: for almost any x 0 such that B(x 0 , 3ρ) ⊂ Ω, and any ℓ

with C = C(N, p, ℓ). Then in B(x 0 , ρ), u = T k (u) for some k > 0, thus u ∈ W 1,p loc (Ω) . For any ξ ∈ D (Ω) , taking uξ p as a test function, we get Then for any balls B 1 ⊂⊂ B 2 ⊂⊂ Ω, we obtain that |∇u| L p (B 1 ) is bounded by a constant which depends only on N, p, B and u L ℓ (B 2 ) . If q ≦ p, we deduce that u ∈ C 1,α (Ω) and estimates of |∇u| ∈ L ∞ loc (Ω) from the classical results of [START_REF] Tolksdorf | Regularity for more general class of quasilinear elliptic equations[END_REF].