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Abstract. Several muscular degenerative diseases alter motor abilities
of large muscles but spare smaller muscles, e.g. keeping hand motor skills
relatively unaffected while upper limbs ones are altered. Thus, hand move-
ments could be be used to control an arm exoskeleton for rehabilitation
and assistive purpose. Using an infra-red sensors (IR) based interface for
the exoskeleton control, this paper describes the learning part of the sys-
tem, endowing the system with a fast online calibration and adaptation
abilities. This learning component shows good results and have been suc-
cessfully implemented on the real system.

1 Introduction

Exoskeleton for upper limb could be used to enhanced or augment muscular ca-
pacity of the user [1]. They also offer a useful technology for rehabilitation [2] and
assistance robotics [3], as described in this paper. In an assistive robotic context,
arm exoskeletons aims at compensating the lack of mobility for persons with
various muscular diseases, such as muscular dystrophy or neuro-degenerative
disorders.

There is two key components: the exoskeleton technology and the interface.
Most of the existing exoskeleton are not designed and suited for providing an
assistive system. This paper uses the ESTA exoskeleton project [4], which pro-
vides a suitable orthosis for disabled persons. It had been design to compensate
for motor deficiency in the upper limb, i.e. shoulder and elbow muscles. Several
degenerative diseases affect the large muscles but leave the small ones with some
motor capacities, such as wrists, hands and fingers.

Several control interfaces have been proposed in the literature. The most
promising solution is to use direct recording of the muscle activity with surface
electromyogram [1]. This approach overcomes the electro-chemical-mechanical
delay, allowing very fast responses, e.g. for catching a ball. But this solution
is not suitable for a motor-impaired person, precisely because her motor-based
communication channels are not functional. Haptic devices, e.g. joystick, are
not well suited because they require grasping the device for a long period, a
sustained effort which is not feasible. It is possible to use head-pose estimation
and facial expressions as commands [5, 6], but these approaches imply to set up a
context detection to automatically stop the command when the user is speaking
or having some social interactions.



Fig. 1: The exoskeleton control rely on the recognition of seven hand positions.
From left to right: right, up, forward, rest, backward, down and left.

The chosen solution of this paper is to rely on hand gestures for control-
ling the exoskeleton movements. Hand gesture recognition for Human Machine
Interface [7] is an active research topic, but image-based approaches require
computationally demanding algorithms and constraint environment, which are
not compatible with the ESTA objectives. We propose to use a touchless in-
terface based on IR-sensors, such as [8], but adapted to the motor capacities of
persons affected by muscular dystrophy and neuro-degenerative disorders. Six
hand positions are recognized to control the 4 degrees of freedom of ESTA ex-
oskeleton, in a 3D euclidean space (see Fig. 1. A seventh hand position is used
as resting state. There are 5 IR-sensors, 4 colinear placed on the right side and
1 orthogonal placed under the wrist.

2 Online calibration and adaptation algorithms

2.1 Learning schemes

Two calibration methods are proposed, using either a supervised scheme or an
unsupervised one. The supervised and the unsupervised scheme rely on k-NN
classifiers for associating hand positions with motor commands.

The supervised k-NN scheme uses an iterative approach, inspired from the
edited k-NN [9]. Let Λ = {Λ1, . . . ,ΛC} denotes the set of pre-selected exemplars
used for the k-NN classifier with C classes and n exemplars in each class. Let
X = {X1, . . . , XM} be a set of M examples. The X set is edited to remove
the misclassified examples, which remove the ambiguous and outlier examples
to separate the classification regions. This process is done iteratively on the
examplesX, i.e. X is partitioned in N equal subsets and each subset is classified,
edited and added to the exemplar set Λ. The resulting exemplar set Λ is used
for the evaluation.



The proposed unsupervised learning scheme is similar to the k-NN regression
algorithm proposed by [10], rely on manifold embedding. Here, the unsupervised
learning scheme is used for classification and needs only a few preselected ex-
emplars Λ to classify the examples X. An example x ∈ X is classified and then
affected to its associated class, increasing the size of the training set Λ. Thus,
only a small number of labeled exemplars is needed to classify the unlabeled
examples. One can note that even if the examples label are available in our
dataset, it is not used in the algorithm, except for its final evaluation.

2.2 Adaptation mechanisms
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Fig. 2: Illustration of the adaptation mechanism. The “x” (and the plain ellipse)
represent the exemplar set Λ after t iterations and the “o” (circled with a dotted
ellipse) after t′ > t iterations.

The IR-sensor signal-to-noise ratio is greatly affected by (1) the ambient light
and (2) the type and proximity of reflexive surface. This section describes the
mechanisms handling these signal and noise variations.

The ambient light impacts the absolute value and the variance of the IR-
sensors, thus an observed signal x ∈ X could be expressed as x = µ(s+ σ). The
σ influence component is reduced with a low-pass filter and the µ component
is removed by rescaling the IR-sensors values. The rescaling factor is evaluated
online: it takes advantage of the fact that the left hand position leaves all the IR-
sensors unobstructed, i.e. the hand does not affect the IR-sensors. The sensors
thus send their maximum value, which depends on the current illumination, and
it is possible to evaluate the rescaling factor.

The reflexive surface variations occurs when the user changes its arm and
hand position, e.g. between two sessions or to find a more comfortable posi-
tion. The hand movements could also change during a session as the user learns
to improve its control of the system. To endow the system with an adaption
mechanism to such variations, we implement an update of the exemplars used
for the k-NN classifier. The adaptation mechanism updates regularly the set Λ,



Method Without rescaling With rescaling
Supervised 77% (σ = 8.9) 90% (σ = 2.7)
Unsupervised 31% (σ = 8.3) 88% (σ = 9.9)

Table 1: Classification results of the supervised and the unsupervised learning
schemes, with or without adaptation mechanisms.

e.g. every 100 iteration, by adding the current example x of class c to the set Λc

and by removing the most distant (in the sense of x) exemplar λi ∈ Λc. To find
the most distant exemplar λi, its index is determined with maxi,λi∈Λc

d(x, λi).
This adaptation mechanism endows the systems with the ability to evolve the
Λ set, resulting in a slow adaptation of the training set, as illustrated on Fig. 2.
This adaptation captures the variability of the user command.

3 Evaluation

The training dataset consist of labeled recorded from 12 subjects, in different
illumination conditions and with different light sources, i.e. with natural and
artificial lights. For each subject, several series of acquisitions (between 2 and
7) have been made for the 7 hand positions, resulting in 420 training examples.
The algorithms are evaluated with ten-fold validation.

The Table 1 indicates the results obtained with the two learning scheme,
standard deviation σ is also indicated. It appears clearly that the rescaling has
a positive and important impact on the results. The supervised learning scheme
gives very good results and could easily discriminate between the seven hand
positions. The unsupervised learning scheme yields less accurate results but
gives results largely above the chance level (14% for seven classes).

A sensitivity analysis is conducted on the k parameter, see Figure 3. This
analysis showing clearly that for small k values (k < 5), the supervised scheme
give its maximum accuracy. This is mainly due to the distribution of the sample
in each class, some classes are very spread whereas others are very dense (par-
ticularly left and right movement classes). When increasing k, the dense classes
could have a destructive effect, concentrating all the neighbors of a given test
point.

The two learning schemes have also been evaluated on the ESTA system.
The supervised classifier gives very good accuracy and is really reactive. This
classifier is sensitive enough to generate micro-movements when the subject,
going from one hand position to another, activate intermediate position.

The unsupervised learning scheme is very convenient to use, because it does
not require a user-specific calibration. The initial exemplar set Λ have an im-
portant impact on the accuracy performance. After chosing carefully this Λ, the
exoskeleton could be controlled very easily.
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Fig. 3: Sensitivity analysis of the k value plotted against the accuracy for the
supervised k-NN learning scheme.

4 Conclusion

This paper propose a touchless interface for the control of an arm exoskeleton
in a assistive robotics context. The touchless interface rely on IR-based sensors
to detect hand movement, and thus is affected by external factors (illumination)
and user-specific factors (skin reflectance, characteristic hand movemenet). This
contribution details the methods employed to reduce these two variabilities, us-
ing rescaling and adaptation.

As the calibration process could be tedious for the user, we propose an unsu-
pervised training method, which does not require any calibration from the user.
To obtain suitable results, the unsupervised calibration should be carefully ini-
tialized.

The perspective of this work are centered around the design of an hybrid
interface. Such hybrid interface could be used to compensate the case where a
user has a hand motor deficiency. We are thus investigating the coupling of the
touchless interface with a brain machine interface.
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