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Bôıte Postale 166, F-38042 Grenoble Cedex 9, France

(2) Departamento de F́ısica Aplicada, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain
(3) SPINTEC, UMR CEA/CNRS/UJF-Grenoble 1/Grenoble-INP, INAC, Grenoble, France

(4) International Iberian Nanotechnology Laboratory (INL),
Av. Mestre José Veiga, 4715-330 Braga, Portugal

(Dated: October 31, 2018)

We propose an intrinsic spin scattering mechanism in graphene originated by the interplay of
atomic spin-orbit interaction and the local curvature induced by flexural distortions of the atomic
lattice. Starting from a multiorbital tight-binding Hamiltonian with spin-orbit coupling considered
non-perturbatively, we derive an effective Hamiltonian for the spin scattering of the Dirac electrons
due to flexural distortions. We compute the spin lifetime due to both flexural phonons and ripples
and we find values in the microsecond range at room temperature. Interestingly, this mechanism
is anisotropic on two counts. First, the relaxation rate is different for off-plane and in-plane spin
quantization axis. Second, the spin relaxation rate depends on the angle formed by the crystal
momentum with the carbon-carbon bond. In addition, the spin lifetime is also valley dependent.
The proposed mechanism sets an upper limit for spin lifetimes in graphene and will be relevant
when samples of high quality can be fabricated free of extrinsic sources of spin relaxation.

PACS numbers:

I. INTRODUCTION.

The electron spin lifetime in carbon materials is ex-
pected to be very long both because of the very large
natural abundance of the spinless nuclear isotope 12C and
the small size of spin orbit coupling. In the case of flat
graphene, the spin projection perpendicular to the plane
is conserved, even in the presence of the intrinsic spin-
orbit coupling. Thus, graphene was proposed as an op-
timal material to store quantum information in the spin
of confined electrons1. Most of the experiments2–11 show
that the spin lifetimes are in the range of nanoseconds,
much shorter than expected from these considerations,
which is being attributed to several extrinsic factors:
the breaking of reflection symmetry due to coupling of
graphene to a substrate12 and/or a gate field, the break-
ing of translational invariance due to impurities13–15, lo-
calized states16, and resonant coupling to extrinsic mag-
netic moments17. In the case of non-local spin valves,
the relaxation due the electronic coupling to magnetic
electrodes is also being considered10,11.

Here we take the opposite point of view and we con-
sider intrinsic spin relaxation in graphene due to the
interplay between its unique mechanical and electronic
properties. We show that flexural distortions, unavoid-
able in two dimensional crystals38 in the form of either
static ripples or out-of-plane phonons, induce spin scat-
tering between the Dirac electrons, to linear order in
the flexural field. This coupling differs from the spin-
conserving second-order interaction between Dirac elec-

∗Permanent Address: Departamento de Fisica Aplicada, Universi-
dad de Alicante, Spain

trons and flexural distortions18 that has been proposed
as an intrinsic limit to mobility in suspended high quality
samples19,20.

The fact that curvature enhances spin-orbit scattering
has been discussed21 and observed22 in the case of carbon
nanotubes. Local curvature is also expected to enhance
spin-orbit in graphene23–26 and graphene ribbons27. In
the present paper we derive a microscopic Hamiltonian
that describes explicitly the spin-flip scattering of elec-
tronic states of graphene due to both dynamic and static
flexural distortions. We describe graphene by means of
a multi-orbital atomistic description that naturally ac-
counts for the two crucial ingredients of the proposed in-
trinsic spin-phonon coupling: the intra-atomic spin orbit
coupling (SOC) and the modulation of the inter-atomic
integrals due to atomic displacements. Importantly, both
the SOC and the flexural distortions couple the Dirac
electrons to higher energy σ bands, in the spin-flip and
spin conserving channels respectively. Their combined
action results in an effective spin-flip interaction for the
Dirac electrons.

The spin-flip lifetimes computed from our theory are
in the range of µs at room temperature. Therefore, the
observation of spin lifetimes in the nanosecond regime im-
plies that other extrinsic spin relaxation mechanisms are
effective. Our results provide an upper limit for the life-
time that will be relevant when graphene samples can be
prepared without extrinsic sources of spin relaxation. In
the case of the proposed intrinsic spin relaxation mecha-
nism, we find that the spin liftetime of electrons depends
crucially on the long wavelength mechanical properties
of the sample, determined by its coupling to the envi-
ronment. We also find that the spin relaxation lifetime
depends on the quantization axis along which the spin
scattering is taking place as well as on the relative angle
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between the electron crystal momentum ~k and the crystal
lattice.

II. MICROSCOPIC MODEL.

Our starting point is the tight-binding Hamiltonian
H = HSC +HSOC for electrons with spin s moving in a
lattice of atoms ~r, with atomic orbitals o. We write the
hopping part as

HSC =
∑

~r,~r′,o,o′,s

Ho,o′(~r − ~r′)Ψ†~r,o,sΨ~r′,o′,s. (1)

considering explicitly the dependence of the (spin con-
serving) inter-atomic matrix elements on the positions of
the atoms. The intra-atomic SOC reads

HSOC =
∑

~r,o,o′,s,s′

λ〈~roσ|~L(~r) · ~S|~ro′s′〉Ψ†~r,o,sΨ~r,o′,s′ (2)

where ~S is the spin operator, ~L(~r) is the orbital angular
momentum operator acting upon the atomic orbitals of
site ~r and λ is the spin-orbit coupling parameter.

Deviations from the ideal graphene lattice affect its
electronic properties via modifications of the transfer in-
tegrals in Eq. (1). Their dependence on the inter-atomic
distance, for example, gives rise to an electron-phonon
interaction analogous to that of conducting polymers28

and leads to the appearance of effective gauge fields24,29.
In the present model, we consider instead the coupling
with flexural distortions arising from the angular depen-
dence of the interatomic Hamiltonian. We describe cor-
rugations away from perfectly flat graphene in the form
~r ' ~r0 + h(~r)ẑ, where ~r0 is a vector of the honeycomb
lattice and h(~r) is the displacement of atom ~r perpendic-
ular to the graphene sheet. We expand the interatomic
Hamiltonian matrix to lowest order in the flexural field
h(~r) and rewrite the Hamiltonian as H = H0 + V, where
H0 now describes ideally flat graphene including the weak
intra-atomic SOC perturbation, and

V =
∑

r,r′,o,o′,s

[h(~r)− h(~r′)]
∂

∂z
Ho,o′(~r0 − ~r′0)Ψ†~r,o,sΨ~r′,o′,s.

(3)
is the spin-conserving coupling between electrons and
corrugations.

III. ELECTRON-FLEXURAL PHONON
SCATTERING.

It is now convenient to recast Eq. (3) in terms of the
eigenstates of the Hamiltonian H0 for flat graphene. In

this context, the atomic positions ~r = ~R + ~rα, are spec-

ified by their unit cell vector, ~R, and their position ~rα
inside the cell (sublattice index α = A,B). The creation

operators for Bloch states are related to atomic orbitals
through:

c†
ν~k

=
1√
N

∑
~R,α,o,s

ei
~k·~RCν,~k(α, o, s)Ψ†~R+~rα,o,s

(4)

where ~k is the wave-vector, the coefficients Cν,~k(α, o, s)

are obtained from the diagonalization of the Bloch ma-
trix and ν is an index that labels the resulting bands
(with mixed spin and angular momentum). Similarly,
we expand the flexural field on each sublattice in its

Fourier components, hα(~R) = 1√
N

∑
~q e
−i~q·~Rhα(~q). Af-

ter a lengthy but straightforward calculation, we can ex-
press Eq. (3) as a term causing scattering between crystal
states with different momentum and band indices:

V =
∑

~k,~k′,ν,ν′

Vν,ν′(~k, ~k′)c†
ν,~k
cν′,~k′ (5)

Vν,ν′(~k, ~k′) ≡ 1√
N

∑
~R,α,α′,o,o′,σ

∂

∂z
Ho,o′(~rα − ~rα′ − ~R)×

× F
~R
αα′(~k,~k′)C∗

ν,~k
(α, o, σ)Cν′,~k′(α

′, o′, σ) (6)

The coupling is linear in the flexural phonon field,

through the form factor F
~R
αα′(~k,~k′) = hα(~k − ~k′)ei~k′·~R −

hα′(~k − ~k′)ei
~k·~R. This should be contrasted with

the electron-flexural phonon coupling usually considered
within the π subspace18–20,29, that is quadratic in the
field because of the quadratic dependence of interatomic
distances on h. Note that Hoo′ is short ranged within

our tight-binding description, which limits ~R to the 4
vectors connecting neighboring cells (inter-cell coupling),
as illustrated in Fig. 1a, plus the null vector (intra-cell
coupling).

A. Slater-Koster parametrization.

Eqs. (5) and (6) provide a general recipe to compute
the coupling of electrons of a generic tight-binding Hamil-
tonian to a flexural field. We now show that because we
have included the SOC in the reference Hamiltonian H0,
the perturbation Eq. (5) is able to induce a direct cou-
pling between states with opposite spin. Following pre-
vious work21,23,25,27,30 we consider a subset of 4 valence
orbitals of the Carbon atom, namely o = s, px, py, pz,
and adopt a Slater-Koster (SK)31 parametrization for the
tight-binding Hamiltonian Eq. (1)32. In this framework,
the inter-atomic matrix elements Ho,o′ connecting the
atom α at ~rα with atom α′ at ~rα′ + R can be expressed
in terms of 4 parameters, Vss, Vsp, Vσπ, Vππ, describing
inter-orbital overlaps in the s, p basis27,31, and the three
director cosines l,m, n of the interatomic bond vectors

~ρ = ~rα − ~rα′ − ~R, defined by ~ρ ≡ ρ (lx̂+mŷ + nẑ). Set-
ting Ux ≡ Vppπ + x2Vσπ and Vσπ ≡ (Vppσ − Vppπ) we can
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FIG. 1: (color online) (a) Sketch of a local corrugation of
the graphene layer. The shaded area is the unit cell. Green
arrows indicate the inter-atomic contributions to the electron-
flexural phonon coupling of Eq. (6); (b) The band structure
resulting from our Slater-Koster parametrization; (c) Kine-
matics of the scattering process around the Dirac point K in
the low phonon frequency limit.

write the SK matrix in compact form as

H(~ρ) =

 Vssσ lVspσ mVspσ nVspσ
−lVspσ Ul lmVσπ lnVσπ
−mVspσ lmVσπ Um mnVσπ
−nVspσ lnVσπ mnVσπ Un

 (7)

The unperturbed crystal states for flat graphene are
described by H(~ρ) with n = 0 (all bonds within the x, y
plane). The resulting band structure is shown in Fig.
1b. From Eq. (6), the electron-flexural distortion cou-
pling is determined by ∂zH(~ρ) = (1/d)∂nH(~ρ), where d
is the equilibrium C-C distance. Direct inspection of Eq.
(7) shows that H(~ρ)(n = 0) does not couple the pz and
s, px, py sectors, while ∂nH(~ρ) does. As a result, the π
and σ bands of flat graphene are not mixed in the absence
of SOC, unless they scatter with flexural distortions. In
the presence of SOC, however, the low-energy π states
with spin s mix with the σ states with opposite spin al-
ready within the reference H0 for flat graphene. Close to
the Dirac points, where the π and σ bands are separated
in energy by a gap Eσπ, the spin π−σ mixing is propor-
tional to λ/Eσπ. Since this correction is small, the low
energy Dirac bands of H0 can still be labeled according
to their dominant spin character, that we denote as ⇑
and ⇓.

The above derivation shows that there are two pertur-
bations that couple π and σ states, the spin-conserving
coupling to the flexural field, and the spin-flip SOC. Their
combination is able to yield a spin-flip channel within the
low energy π bands, that is linear in both the flexural de-
formation and in the atomic spin-orbit coupling λ. This
is very similar to the so called Rashba spin orbit coupling,
induced by the combination of π−σ mixing due to an ex-

ternal electric field and atomic spin-orbit coupling23,26,30,
and different from the λ2 scaling of the intrinsic SOC in
flat graphene.

B. Effective Hamiltonian

We now apply the microscopic theory developed above
to obtain the effective spin-flip Hamiltonian for electrons
close to the Dirac points. Anticipating that the dominant
contributions to spin-flip scattering arise from the long-
wavelength, i.e. low energy flexural modes, we consider
the lower flexural branch for which ωq ∝ q2 (see below),
discarding the higher energy modes that involve out of
phase vibrations of the two sublattices. The flexural field
is factored out from Eq. (5) by setting hA(~q) = h~q and

hB(~q) = ei~q·(~rB−~rA)h~q, which yields:

V =
∑

~k,~q,ν,ν′

Mν,ν′(~k, ~q)
h~q
d
c†
ν,~k+~q

cν′,~k (8)

with Vν,ν′(~k + ~q,~k) =
h~q
d Mν,ν′(~k, ~q). The standard

form for the phonon spin-flip interaction in second
quantization is readily obtained by substituting h~q =√

~
2MCω~q

(a†−~q + a~q) into Eq. (8), with MC the Carbon
mass.

C. Spin quantization axis

In the case of systems with time reversal invariance
and inversion symmetry, a Bloch state with momentum
~k has a twofold Kramers degeneracy. This is definitely
the case of the ideal flat graphene. As a result, there are
infinitely many possible choices of the pairs of degener-
ate states ν and ν′. In the calculations below we select
a given pair by including in the Hamiltonian an exter-
nal magnetic field along the direction n̂ with magnitude
negligible compared with all other energy scales in the
problem, but enough to split the Kramers doublet and
choose its spin quantization axis. Importantly, the ef-
fective electron-phonon coupling depends on this choice,
i.e., it depends on n̂. In the following we include n̂ as
an argument of the phonon spin-flip coupling and we la-
bel the two bands as ⇑ and ⇓, which are referred to the
quantization axis n̂. The fact that the phonon spin-flip
coupling depends on n̂ means that the strength of the
spin-flip Hamiltonian is not isotropic in the spin space.
This will lead to an anisotropy of the spin relaxation in
graphene, closely related to the one recently proposed in
the case of metals34.
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FIG. 2: (color online) Spin-flip matrix elements as a function
of the initial state wave-vector orientation φ, for three differ-
ent orientations of the spin quantization axis, n̂ = x̂, ŷ, ẑ. It
can be checked that c2(φ, ẑ) = c2(φ, x̂) + c2(φ, ŷ).

IV. SPIN RELAXATION

A. Spin relaxation Rates

The spin relaxation rate can now be calculated from
Eq. (8) via the Fermi golden rule. Because the dispersion
of the flexural modes is much weaker than the electronic
dispersion, we can safely neglect the phonon frequency
in the energy conservation. The relaxation rate for an

electron with momentum ~k in the band ⇑ is then obtained
by summing over both phonon absorption and emission
processes and over all possible final states in the ⇓ band,
which yields:

Γ~k,n̂ =
2π

~

∫
d2q

(2π)2
|M⇑,⇓(~k, ~q, n̂)|2〈h2~q〉δ(E~k+~q − E~k).

(9)
This, together with the explicit expressions for the spin-
flip matrix elements in Eq. (6), constitutes the main re-
sult of this work. From Eq. (9) it is clear that once
the specific form of the electron-flexural phonon cou-

pling, M⇑,⇓(~k, ~q, n̂), is known, the behavior of the spin
relaxation rate is fully determined by the statistical fluc-
tuations of the flexural field, 〈h2~q〉. Interestingly, the
above expression describes on an equal footing both low-
frequency flexural modes (that arise in free-standing or
weakly bound graphene or graphite) as well as static
ripples (relevant to graphene deposited on a substrate).
The proposed spin relaxation mechanism therefore ap-
plies without distinction to both physical situations.

For actual calculations we approximate the π band en-
ergies as E~k = ±~vF k, which is valid except for a neg-
ligible interval around the Dirac point, where the SOC
opens a gap of the order of few µeV . Energy conservation

implies
√
k2 + q2 + 2kq cos θ =

√
k2. This fixes the rela-

tive angle between ~k and ~q to cos θ = − q
2k , cf. Fig. 1c.

This equation has two solutions, that we label with the
index s, which allows to perform the angular integration

in Eq. (9), yielding:

Γ~k,n̂ =
∑
s

1

π~

∫ 2k

0

dq
|Ms
⇑,⇓(k, q, n̂)|2〈h2q〉

~vF
√

1− (q/2k)2
. (10)

We see that only long-wavelength fluctuations with q ≤
2k contribute to the spin relaxation. From our numerics,
we find that in the relevant case of small k and q → 0,
the matrix elements evaluated on the energy-conserving
surface (i.e. on shell, where q/2k = − cos θ) satisfy:∑

s

|Ms
⇑,⇓(k, n̂)|2 ≈ c2(φ, n̂)λ2q4d4, (11)

where φ is the angle formed between ~k and the x-axis in
reciprocal space and c(φ, n̂) is a dimensionless coefficient
that only depends on the angle φ, the spin quantization
axis and the SK parameters. We plot this coefficient in
Fig. 2, for 3 different orientations of the spin quantization
axis.

It must be noted that, while Eq. (11) is strictly valid in
the limit q � 2k, it constitutes the dominant momentum
dependence of the matrix elements in the whole integra-
tion range q ≤ 2k. Therefore, the angular dependence of
c(φ) goes a long way to account for the φ dependence of
the spin relaxation rate that we discuss below.

B. Fluctuations of the flexural field

The scattering rate Eq. (10) depends on the statistical
fluctuations of the flexural field 〈h2~q〉, which we evaluate
here for different scenarios.

We start with the expression for free-standing
graphene at thermal equilibrium:

〈h2q〉 =
~

2MCωq
[1 + 2nB(ωq)] '

kBT

MCω2
q

, (12)

where nB(ωq) is the thermal population of mode q and
the second equality holds when kBT � ~ωq. For purely
harmonic flexural modes, for which ωq ' Dq2, the fluc-
tuation 〈h2~q〉 diverges as q−4 for small q. When inserted

into Eq. (10), this divergence exactly compensates the
q4 dependence of the matrix element Eq. (11). In
real samples, however, the singularity of low-wavelength
fluctuations is renormalized due to the interaction with
other phonons (i.e. by anharmonic effects)33, and can
be further cut off by the presence of strain20 or pin-
ning to a substrate35. The resulting dispersion can be

parametrized as ωq = D
√
q4 + q4−ηqηc for η > 0 so that,

in the long wavelength limit33,36,

〈h2q〉 ∝
1

q4−ηqηc
(13)

where η and qc depend on the physical mechanism of
renormalization. Specifically, substrate pinning opens a
gap in the phonon spectrum35, corresponding to η = 4;
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strain makes the dispersion linear at long wavelengths20

(η = 2); anharmonic effects yield η = 0.8233. Substrate
roughness also gives rise to fluctuations in the form of
Eq. (13), with η = 136,37.

V. RESULTS AND DISCUSSION.

A. Approximate estimate of the rate

Before we discuss the results of our numerical integra-
tion of Eq. (10) it is convenient to obtain an approximate
analytical formula from the integration of the small q
part. For that matter, we make use of the long wave-
length expression Eq. (11), drop the square root factor
in the denominator, which is only relevant in a very nar-
row region around the backscattering condition q ≈ 2k,
and use the asymptotic expression Eq. (13) for flexural
fluctuations. The approximate expression for the rate
reads:

Γ~kF ,n̂ '
d

π~
λ2c(φ, n̂, τ)

~vF
(2kF d)η+1

(η + 1)(qcd)η
r2(T ), (14)

which is valid at densities such that kF � qc. Here we

have defined r2(T ) = kBTd
2

MCD2
1
d2 , representing the ratio be-

tween the short-range flexural fluctuations (i.e. Eq. (12)
evaluated at q = 1/d) and the interatomic distance d.
From Eqs. (12) and (14) we see that in ideal graphene
with η = 0 the spin relaxation rate increases linearly with
temperature, following the thermal population of flexural
phonons. A weaker temperature dependence arises when
anharmonic effects dominate, because the anharmonic
cutoff is itself temperature dependent, qc ∝

√
T 33,38.

Eq. (14) permits a quick estimate of the efficiency of
the spin rate. We see that for a given value of qc, the
spin lifetime increases as the exponent η increases. A
lower limit for the relaxation time is therefore obtained
by setting η = 0 which, for λ = 8meV, c = 10−1, vF =
10−6ms−1 and r2 ' 10−2, yields a lifetime τs = 1/Γ~kF
on the order of 1µs at a density n = 1012cm−2 and at
room temperature. Lifetimes in the µs range are also
obtained in the case of static ripples arising from the
roughness of the underlying substrate, as we have checked
using the values of r2 and qc deduced from the height
profiles in Ref.37. In that case the lifetime is temperature
independent.

B. Energy dependence of the intrinsic spin
relaxation

We now compute Eq. (10) numerically, without ana-
lytical approximations. The spin lifetime τs = 1/ΓkF ,n̂
so obtained for electrons at the Fermi level is plotted in
Figs. 3 and 4.

In Fig. 3 we show the the spin lifetime as a function
of EF = ~vF k, fixing the momentum direction φ = 0,
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FIG. 3: (color online) Room temperature spin lifetime cal-
culated for electrons at the Fermi energy with momentum
parallel to the x-axis (φ = 0), for 2 different values of cutoff
momentum: (a) qc = 0.01 Å−1 and (b) qc = 0.1 Å−1 (right)
and different long-wavelength scaling laws: ideal graphene
(black, η = 0); including anharmonic effects (red, η = 0.82);
including strain (orange, η = 2) and substrate pinning (gray,
η = 4). The black dashed line is for η = 1, which is represen-
tative for substrate roughness.

the valley K (cf. Fig. 1c), and taking as spin quan-
tization axis the off-plane direction n̂ = ẑ. We take20

D = 4.6 · 10−7m2s−1, λ = 8 meV22, T = 300K and
vF = 1.16 · 106m/s from our SK band structure. In each
panel of Fig. 3, different curves correspond to different
values of the scaling exponent η, i.e. to physically dif-
ferent mechanical environments for graphene. Panels (a)
and (b) correspond to two different values of the cut-off
momentum qc. Two representative values, (a) qc = 0.01
Å−1 and (b) qc = 0.1 Å−1 are considered, covering the
large spread of qc values available in the literature. In
both panels, the result for ideal graphene in the har-
monic approximation is shown for reference (black) as
it provides an absolute lower bound to the actual life-
time, in agreement with the estimate τs ∼ 1µs given
after Eq. (14). Comparing Figs. 3a and 3b we see that
the effect of the mechanical environment becomes more
pronounced for large values of the cutoff momentum qc.
Because the spin relaxation is dominated by the low en-
ergy fluctuations of the membrane, the shortest spin life-
times, excluding the harmonic theory, are obtained in
suspended unstrained graphene (red curve), i.e. when ex-
ternal mechanical influences are minimized and the mo-
bility is possibly largest. Even longer spin lifetimes can in
principle be achieved by suppressing the fluctuations of
the graphene membrane, by an applied strain (orange) or
substrate pinning (gray). Pinning by interlayer binding
forces should also inhibit the spin relaxation in epitaxi-
ally grown graphene.

For all the mechanical models considered here, the spin
relaxation time is a decreasing function of the density,
because the phase space for spin-flip scattering increases
with kF . The density dependence within the different
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FIG. 4: (color online) Spin lifetime as a function of φ, the
polar angle of the momentum of the initial state, at room
temperature, calculated for EF = 54meV, momentum cutoff
qc = 0.01Å−1, for quantization axis n̂ = x̂ (a) , ŷ (b) and ẑ
(c), and different long-wavelength scaling laws: ideal graphene
(black, η = 0); including anharmonic effects (red, η = 0.82);
including strain (orange, η = 2) and substrate pinning (gray,
η = 4). The black dashed line is for η = 1, which is represen-
tative for substrate roughness. Panel (d): showing the results
for the anharmonic case η = 0.82, quantization axis n̂ = x̂ (i.e
same as in (a)) with the initial state in two different valleys.

models can be anticipated by substituting the Fermi
wavevector kF =

√
πn in the analytical expression Eq.

(14), which results in τs ∝ n−(η+1)/2 for kF . qc
40.

Finally, it is apparent that in all instances the com-
puted lifetimes are larger than 500ns. Therefore, the
proposed intrinsic spin relaxation mechanism cannot ac-
count for present experimental observations where the
spin lifetime is in the nanosecond range, which are pre-
sumably dominated by other (extrinsic) relaxation mech-
anisms.

C. Anisotropy

We now consider the influence of the momentum orien-
tation, the spin quantization axis and the valley on the
spin relaxation time. The results of Fig. 3 have been
obtained for φ = 0, n̂ = ẑ and valley K (cf. Fig. 1c).
We find that the spin relaxation lifetime of a state with

momentum ~k depends on the angle φ formed between ~k
and the x̂ direction, the spin quantization axis, and the
valley. Results for the angular and valley dependence are
shown in Fig. 4 for EF = 54meV. Let us consider first
n̂ = ẑ, Fig. 4c. In this case the φ dependence shows C3

rotation symmetry, dephased with respect to the one of
the lattice. The momentum-direction anisotropy is not a
small effect, as the lifetime changes by more than a factor
2 between maxima and minima, for both values of EF .
The curves τs(φ) also depend on the spin quantization
axis. The effective spin-orbit coupling Hamiltonian30 for
ideal flat graphene is proportional to the product of the

spin and valley operators. Therefore, it is not surprising
that the spin relaxation is different for n̂ in plane and
off-plane. We have verified that 120 degree rotations in
the plane leave the spin lifetime unchanged, unlike the
90 degree rotation necessary to go from n̂ = x̂ to n̂ = ŷ
(Figs.4a and b). In general we find that spin lifetimes
are a factor of 2 to 3 longer for spin quantization axis
in the plane than off-plane. In a spin injection experi-
ment n̂ would be fixed by the magnetization orientation
of the spin injector. Present experimental results show
the opposite trend3 which is a further indication that
other extrinsic mechanisms are dominant.

The curves in Figs. 4a,b and c are asymmetryc in the

sense that
∫ 0

−π τ(φ)dφ 6=
∫ π
0
τs(φ)dφ, where τs is com-

puted for a given valley. Interestingly, the symmetry is
restored when summing over the two valleys, as shown in
Fig. 4d. In particular, we find the interesting relation:

τs(φ,K) = τs(−φ,K ′). (15)

Altogether, the results of Fig. 4 show that the spin re-
laxation time due to scattering with flexural distortions
is anisotropic on 3 counts: spin quantization axis, valley,
and momentum direction. Future work will determine
if the preferred drift along a given direction, determined
by an in-plane electric field, together with an externally
imposed spin polarization, can serve to generate an im-
balance in the valley occupations, and thereby an orbital
magnetization in graphene39.

VI. CONCLUDING REMARKS.

In summary, we have shown that corrugations, that
are ubiquitous in graphene in the form of dynamical flex-
ural phonons or static ripples, enable a direct spin-flip
mechanism to linear order in both the flexural field and
in the spin-orbit coupling. This mechanism provides an
unavoidable source of spin relaxation that will set the
upper limit for spin lifetimes once the extrinsic sources
of spin relaxation that prevail in state of the art experi-
ments are removed. Such limit is however non-universal,
as its precise value depends on graphene’s mechanical en-
vironment, that determines the long-wavelength behav-
ior of the flexural field. At room temperature, intrinsic
spin lifetimes in the microsecond range are expected in
a very wide range of situations. Importantly, the intrin-
sic spin relaxation time of electrons in graphene shows a
marked dependence on their momentum direction, valley
and spin quantization axis.

Finally, whereas the existence of an upper limit for
spin-lifetimes in graphene might present in the future an
obstacle for certain applications such as spin transistors,
the intrinsic spin-lattice coupling could open the way
for hybrid devices, where a confined vibrational phonon
could be coupled resonantly to the spin-flip transitions of
Zeeman split confined Dirac electrons. Microwave pump-
ing of such system could result in a maser behavior of the
phonon mode41.
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11 F. Volmer, M. Drögeler, E. Maynicke, N. von den Dri-
esch, M. L. Boschen, G. Güntherodt, B. Beschoten,
arXiv:1305.6484.

12 C. Ertler, S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev.
B 80, 041405(R) (2009).

13 A. H. Castro Neto, F. Guinea, Phys. Rev. Lett. 103,
026804 (2009).

14 H. Ochoa, A. H. Castro Neto, and F. Guinea, Phys. Rev.
Lett. 108, 206808 (2012).

15 Dmitry V. Fedorov, Martin Gradhand, Sergey Ostanin,
Igor V. Maznichenko, Arthur Ernst, Jaroslav Fabian, and
Ingrid Mertig Phys. Rev. Lett. 110, 156602 (2013).

16 T. Maassen, J. J. van den Berg, E. H. Huisman, H. Dijk-
stra, F. Fromm, T. Seyller, and B. J. van Wees, Phys. Rev.
Lett. 110, 067209 (2013).

17 D. Kochan, M. Gmitra, J. Fabian, arXiv:1306.0230.
18 E. Mariani and F. von Oppen, Phys. Rev. Lett. 100,

076801 (2008).
19 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F.

Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim,
Phys. Rev. Lett. 100, 016602 (2008).

20 Eduardo V. Castro, H. Ochoa, M. I. Katsnelson, R. V.
Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and
F. Guinea, Phys. Rev. Lett. 105, 266601 (2010).

21 T. Ando, J. Phys. Soc. Jpn. 69, 1757 (2000).
22 F. Kuemmeth, S. Ilani, D. C. Ralph, P. L. McEuen, Nature

452, 448 (2008).
23 D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys.

Rev. B 74, 155426 (2006).
24 D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev.

Lett. 103, 146801 (2009).
25 Jae-Seung Jeong, Jeongkyu Shin, and Hyun-Woo Lee,

Phys. Rev. B 84, 195457 (2011).
26 V. K. Dugaev, E. Ya. Sherman, and J. Barnaś, Phys. Rev.
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