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Abstract

Given a convex optimization problem and its dual, there are many possible first-order
algorithms. In this paper, we show the equivalence between mirror descent algorithms
and algorithms generalizing the conditional gradient method. This is done through
convex duality, and implies notably that for certain problems, such as for supervised
machine learning problems with non-smooth losses or problems regularized by non-
smooth regularizers, the primal subgradient method and the dual conditional gradient
method are formally equivalent. The dual interpretation leads to a form of line search
for mirror descent, as well as guarantees of convergence for primal-dual certificates.

1 Introduction

Many problems in machine learning, statistics and signal processing may be cast as convex
optimization problems. In large-scale situations, simple gradient-based algorithms with po-
tentially many cheap iterations are often preferred over methods, such as Newton’s method
or interior-point methods, that rely on fewer but more expensive iterations. The choice of
a first-order method depends on the structure of the problem, in particular (a) the smooth-
ness and /or strong convexity of the objective function, and (b) the computational efficiency
of certain operations related to the non-smooth parts of the objective function, when it is
decomposable in a smooth and a non-smooth part.

In this paper, we consider two classical algorithms, namely (a) subgradient descent and its
mirror descent extension [29, 24, 4], and (b) conditional gradient algorithms, sometimes
referred to as Frank-Wolfe algorithms [16, 13, 15, 14, 19].

Subgradient algorithms are adapted to non-smooth unstructured situations, and after ¢
steps have a convergence rate of O(1/4/t) in terms of objective values. This convergence
rate improves to O(1/t) when the objective function is strongly convex [22]. Conditional-
gradient algorithms are tailored to the optimization of smooth functions on a compact
convex set, for which minimizing linear functions is easy (but where orthogonal projections
would be hard, so that proximal methods [26, 5] cannot be used efficiently). They also have



a convergence rate of O(1/t) [15]. The main results of this paper are (a) to show that for
common situations in practice, these two sets of methods are in fact equivalent by convex
duality, (b) to recover a previously proposed extension of the conditional gradient method
which is more generally applicable [10], and (c) provide explicit convergence rates for primal
and dual iterates. We also review in Appendix A the non-strongly convex case and show
that both primal and dual suboptimalities then converge at rate O(1/v/).

More precisely, we consider a convex function f defined on R”, a convex function h defined
on RP, both potentially taking the value +o00, and a matrix A € R™"*P. We consider the
following minimization problem, which we refer to as the primal problem:

min h(x) + f(A2). 1)

Throughout this paper, we make the following assumptions regarding the problem:

— f is Lipschitz-continuous and finite on R™, i.e., there exists a constant B such that for
all z,y € R", |f(x) — f(y)| < Bl||lz — y||, where | - || denotes the Euclidean norm. Note
that this implies that the domain of the Fenchel conjugate f* is bounded. We denote
by C the bounded domain of f*. Thus, for all z € R", f(z) = maxyec y'z— f*(y). In
many situations, C' is also closed but this is not always the case (in particular, when
f*(y) tends to infinity when y tends to the boundary of C').

Note that the boundedness of the domain of f* is crucial and allows for simpler proof
techniques with explicit constants (see a generalization in [10]).

— h is lower-semicontinuous and w-strongly convex on RP. This implies that h* is defined
on RP, differentiable with (1/u)-Lipschitz continuous gradient [8, 28]. Note that the
domain K of h may be strictly included in R?.

Moreover, we assume that the following quantities may be computed efficiently:

— Subgradient of f: for any z € R", a subgradient of f is any maximizer y of max,cc Yy z—
f* ().

— Gradient of h*: for any z € RP, (h*)'(z) may be computed and is equal to the unique
maximizer x of max,ere z' 2 — h(x).

The values of the functions f, h, f* and h* will be useful to compute duality gaps but are
not needed to run the algorithms. As shown in Section 2, there are many examples of pairs
of functions with the computational constraints described above. If other operations are
possible, in particular max,ec y'z— f*(y) — %Hy”z, then proximal methods [5, 26] applied
to the dual problem converge at rate O(1/t?). If f and h are smooth, then gradient methods
(accelerated [25, Section 2.2] or not) have linear convergence rates.

We denote by gprimai(z) = h(z) + f(Az) the primal objective in Eq. (1). It is the sum
of a Lipschitz-continuous convex function and a strongly convex function, potentially on a
restricted domain K. It is thus well adapted to the subgradient method [29].



We have the following primal/dual relationships (obtained from Fenchel duality [8]):

. o : T gk
min h(z) + f(Az) = gelﬁggleagh(fﬂ)w (Az) — f*(y)
_ . T AT e
= r;leag{;gg;h(x)ﬂ A y} f ()

= max—h*(—ATy) — f*(y).
yeC

This leads to the dual maximization problem:

—h*(=ATy) = f(y). 2
max —h"(=A"y) = () (2)
We denote by gqual(y) = —h*(=ATy) — f*(y) the dual objective. It has a smooth part

—h*(—ATy) defined on R™ and a potentially non-smooth part —f*(y), and the problem is
restricted onto a bounded set C. When f* is linear (and more generally smooth) on its
support, then we are exactly in the situation where conditional gradient algorithms may be
used [16, 13].

Given a pair of primal-dual candidates (z,y) € K x C, we denote by gap(z,y) the duality
gap:
gap(,y) = Gprimal (¢) — ganal(y) = [A(x) + " (=ATy) +y " Az] + [f(Az) + f*(y) — y " Ax].

It is equal to zero if and only if (a) (z,—ATy) is a Fenchel-dual pair for h and (b) (Az,y)
is a Fenchel-dual pair for f. This quantity serves as a certificate of optimality, as

gap(iﬂa y) = [gprimal(x) - mlpel?( gprimal(xl)] + [2}2&? 9dual (y/) — Ydual (y)] .

The goal of this paper is to show that for certain problems (f* linear and h quadratic), the
subgradient method applied to the primal problem in Eq. (1) is equivalent to the conditional
gradient applied to the dual problem in Eq. (2); when relaxing the assumptions above, this
equivalence is then between mirror descent methods and generalized conditional gradient
algorithms.

2 Examples

The non-smooth strongly convex optimization problem defined in Eq. (1) occurs in many
applications in machine learning and signal processing, either because they are formulated
directly in this format, or their dual in Eq. (2) is (i.e., the original problem is the minimiza-
tion of a smooth function over a compact set).

2.1 Direct formulations

Typical cases for h (often the regularizer in machine learning and signal processing) are the
following;:



~ Squared Euclidean norm: h(z) = &||z|?, which is p-strongly convex.

— Squared Euclidean norm with convex constraints: h(z) = &||z||* + Ix(x), with Ix the
indicator function for K a closed convex set, which is u-strongly convex.

— Negative entropy: h(z) =Y 1" | x;log xi+Ix(z), where K = {x e R", 2 >0, Y I | x; =
1}, which is 1-strongly convex. More generally, many barrier functions of convex sets
may be used (see examples in [4, 9], in particular for problems on matrices).

Typical cases for f (often the data fitting terms in machine learning and signal processing)
are functions of the form f(z) = 13"  4;(z):

— Least-absolute-deviation: £;(z;) = |z; — y;|, with y; € R. Note that the square loss is
not Lipschitz-continuous on R (although it is Lipschitz-continuous when restricted to a
bounded set).

— Logistic regression: £;(z;) = log(1+exp(—zy;)), with y; € {—1,1}. Here f* is not linear
in its support, and f* is not smooth, since it is a sum of negative entropies (and the
second-order derivative is not bounded). This extends to any “log-sum-exp” functions
which occur as a negative log-likelihood from the exponential family (see, e.g., [32]
and references therein). Note that f is then smooth and proximal methods with an
exponential convergence rate may be used (which correspond to a constant step size in
the algorithms presented below, instead of a decaying step size) [26, 5].

— Support vector machine: £;(z;) = max{1l — y;2;,0}, with y; € {—1,1}. Here f* is linear
on its domain (this is a situation where subgradient and conditional gradient methods
are exactly equivalent). This extends to more general “max-margin” formulations [31,
30]: in these situations, a combinatorial object (such as a full chain, a graph, a matching
or vertices of the hypercube) is estimated (rather than an element of {—1,1}) and this
leads to functions z; — ¢;(z;) whose Fenchel-conjugates are linear and have domains
which are related to the polytopes associated to the linear programming relaxations
of the corresponding combinatorial optimization problems. For these polytopes, often,
only linear functions can be maximized, i.e., we can compute a subgradient of ¢; but
typically nothing more.

Other examples may be found in signal processing; for example, total-variation denoising,
where the loss is strongly convex but the regularizer is non-smooth [11], or submodular
function minimization cast through separable optimization problems [2]. Moreover, many
proximal operators for non-smooth regularizers are of this form, with h(z) = 1|z — x|

and f is a norm (or more generally a gauge function).

2.2 Dual formulations

Another interesting set of examples for machine learning are more naturally described from
the dual formulation in Eq. (2): given a smooth loss term h*(—A"y) (this could be least-
squares or logistic regression), a typically non-smooth penalization or constraint is added,



often through a norm €. Thus, this corresponds to functions f* of the form f*(y) = ¢p(Q(y)),
where ¢ is a convex non-decreasing function (f* is then convex).

Our main assumption is that a subgradient of f may be easily computed. This is equivalent
to being able to maximize functions of the form 2Ty — f*(y) = 2"y — (Q(y)) for z € R™. If
one can compute the dual norm of z, () = maxq(,)<1 2"y, and in particular a maximizer
y in the unit-ball of €2, then one can compute simply the subgradient of f. Only being able
to compute the dual norm efficiently is a common situation in machine learning and signal
processing, for example, for structured regularizers based on submodularity [2], all atomic
norms [12], and norms based on matrix decompositions [1]. See additional examples in [19].

Our assumption regarding the compact domain of f* translates to the assumption that ¢
has compact domain. This includes indicator functions ¢ = Ijg ) which corresponds to
the constraint (y) < wo. We may also consider ¢(w) = Aw + I[g (W), which corresponds
to jointly penalizing and constraining the norm; in practice, wg may be chosen so that the
constraint Q(y) < wp is not active at the optimum and we get the solution of the penalized
problem max,egn —h*(—ATy) — AQ(y). See [17, 34, 1] for alternative approaches.

3 Mirror descent for strongly convex problems

We first assume that the function h is essentially smooth (i.e., differentiable at any point
in the interior of K, and so that the norm of gradients converges to +o0o when approaching
the boundary of K); then A’ is a bijection from int(K) to R?, where K is the domain of h
(see, e.g., [28, 18]). We consider the Bregman divergence

D(Cﬂl,xQ) = h(ml) — h(:ﬂg) — (561 — $2)Thl($2).

It is always defined on K xint(K), and is nonnegative. If 21, x9 € int(K), then D(z1,x2) =
if and only if x; = x9. Moreover, since h is assumed p-strongly convex, we have D(x1,x2)
Bllz1 —22|[%. See more details in [4]. For example, when h(z) = 4|/z||?, we have D(z1, z2)
Glla — a2

2

WV o

Subgradient descent for square Bregman divergence We first consider the common
situation where h(z) = 4|/z|?; the primal problem then becomes:

. H 9
min f(A2) + 2 o]

The projected subgradient method starts from any zg € RP, and iterates the following
recursion: )
Ty = Ty—1 — i[ATf/(ACUtﬂ) + ,uCthl],

where ;1 = f/(Az;_1) is any subgradient of f at Ax;_1. The step size is P
L
The recursion may be rewritten as

BTy = PTp—1 — Pt [ATf,(Al“tﬂ) + ,UCUtfl]a



which is equivalent to x; being the unique minimizer of
(x—a41)" [AszH + pai—1] + %Hx — 2% (3)
¢

which is the traditional proximal step, with step size p;/p.

Mirror descent We may interpret the last formulation in Eq. (3) for the square regular-
izer h(z) = &|z||* as the minimization of

1
(.%' - xt—l)—rg;rimal(xt—l) + ED('% xt—l)v

with solution defined through (note that b’ is a bijection from int(K) to RP):

W(w) = h(zer)—pe[AT(Azer) + B (21)]
= (1= p)l (w—1) — pAT /(A1)

This leads to the following definition of the mirror descent recursion:

Gi-1 € argmax y Az, — [*(y),
yeC (4)
n = argmin h(z) — (- p)a B (1) + pt AT,

The following proposition proves the convergence of mirror descent in the strongly convex
case with rate O(1/t)—previous results were considering the convex case, with convergence

rate O(1//t) [24, 4].

Proposition 1 (Convergence of mirror descent in the strongly convex case) Assume
that (a) f is Lipschitz-continuous and finite on RP, with C the domain of f*, (b) h is essen-
tially smooth and p-strongly conver. Consider py = 2/(t + 1) and R? = max, ycc |A" (y —
y)||?. Denoting by . the unique minimizer of gprimal, aftert iterations of the mirror descent
recursion of Eq. (4), we have:

92 < R2
— - rima. * < T o\
g(t(t 1) uzlux“ 1) gorimal (%) < Iy

R2
i i - i * g 77
ue{gur,zltfl} {gprlmal(xu) gprlmal(x )} ,U'(t n 1)
R2
D(te,7) < —u.
pu(t+1)

Proof We follow the proof of [4] and adapt it to the strongly convex case. We have, by
reordering terms and using the optimality condition '(z;) = W (z,—1) — p [AT f/(Azi—1) +



W (we-1)]:

+ (T — ﬂUt—l)Th/(xt—l)
= (wi—1) = h(@e) — (@1 — 2) "B (m=1) + pe(@s — 24) " Grimar (T1—1)
= [= D@, 2-1) + pe(@i-1 — 1) ' Gopimar (Te—1)] (5)
+pe (s — 20-1) T Ghpimar (Ti-1)] -

In order to upper-bound the two terms in Eq. (5), we first consider the following bound
(obtained by convexity of f and the definition of D):

FAz) + h(zy) = f(Az1) + h(@e1) + (20 — 3m1) T[ATGem1 + B (m-1)] + D(24, 24-1),
which may be rewritten as:
Gprimal (Tt—1) — Gprimal () < =D (24, 24—1) + (24—1 — $*)T9§rimal($t71),
which implies
pr(xy — xtfl)—rg{;rimal(xtfl) < =D (@4, 21-1) = pt [ Gprimal (T1—1) — Gprimat (@) ] (6)
Moreover, by definition of x;,

—D(xt,x1-1) + pr(i-1 = T1) | Gpprimmal (T1-1) = max —D(z, 1) + pr(@e-1 — z)"z = ¢(2),

with z = Ptgl/grimal(xt—l)- The function x — D(x, ;1) is p-strongly convex, and its Fenchel
conjugate is thus (1/p)-smooth. This implies that ¢ is (1/p)-smooth. Since ¢(0) = 0 and
©'(0) =0, p(z) < ZHZ‘P Moreover, z = py[A" f/(Azy—1) + h(x—1)]. Since W(z;-1) €
—ATC (because A (z;_1) is a convex combination of such elements), then ||AT f/(Az;_1) +
h(zi-1)|? < R? = maxy, yec [AT (11 — y2)[|* = diam(ATC)?.

Overall, combining Eq. (6) and ¢(z) < %}fg into Eq. (5), this implies that

2

D(w,21) — D(ws,11) < %32 — D@y 21-1) = pe[Gorimal (T1-1) — Gorimal ()]
that is,
Gprimal (Tt—1) — Gprimal (T+) < p;—};z + (p;t = 1)D(xs,241) — p; ' D (s, 1)
With p; = i, we obtain
t+1
t[gprimal (Tt—1) — gprimar ()] < ,u(fj—tl) + (t _zl)tD(x*,xt_ﬂ _ut ;_ 1)D(9c*,mt).

7



Thus, by summing from v = 1 to v = ¢, we obtain

t
R t(t+1
Zu gprlmal Loy— 1) gprimal(x*)] < —t- u-D(x*,xt)a
o 2
u=1
that is,
t
R2
D * rim. <—F.
(:C xt - ) 9p al(x*)] H(t+1)
u—l
2
This implies that D(x, x¢) < m, i.e., the iterates converges. Moreover, using the
0

convexity of g,

t t
2 2 R?
- — Yprim. < rim —1) 7 Yprim * < )
g<t<t+1>uzzlm“ 1) Srmaee) < gy 2 ommatens) gm0 < Gy

i.e., the objective functions at an averaged iterate converges, and

R2
min i Ty) — Gpri Ty) < ————
ue{07...’t_1}gpr1mal( u) gprlmal( *) S M(t T 1),
i.e., one of the iterates has an objective that converges. |

2
Averaging Note that with the step size p = ——, we have

t+1
t—1 2
W (xy) = H—lh/(ﬂﬁt—l) - H—lATf/(Awt—l%

which implies
t(t + 1R (2) = (t = V)t (1) — 2tAT f'(Awy ).

By summing these equalities, we obtain t(t + 1)/ (x;) = —23L _ uAT f/(Ax,_1), i.e

h/(.%'t) =

ey ol AT A ).
u=1

that is, h/(x¢) is a weighted average of subgradients (with more weights on later iterates).

For pt = 1/t, then, we the same techniques we would obtain a convergence rate proportional
to - logt for the average iterate zu | Ty—1, thus with an additional logt factor (see a
smular situation in the stochastic case in [20]). We would then have h/(z;) = 1 St [—
AT f! (Az,_1)], and this is exactly a form dual averaging method [27], which also comes
with primal-dual guarantees.



Generalization to h non-smooth The previous result does not require A to be essen-
tially smooth, i.e., it may be applied to h(z) = §||z[|* + Ik (z) where K is a closed convex
set, strictly included in RP. In the mirror descent recursion,
Ji—1 € argmax y Awmy_q — (),
yeC
ry = arg ;rel%Rr}) h(z) — (1= p)a "W (xe 1) + prx " AT G g,

there may then be multiple choices for h'(xy_1). If we choose for h'/(z;_1) at iteration ¢,
the subgradient of h obtained at the previous iteration, i.e., such that A'(z;—1) = (1 —
pi—1)M (z¢_2) — ps_1 AT §_o, then the proof of Prop. 1 above holds.

Note that when h(z) = §|z||* + Ix(z), the algorithm above is not equivalent to classical
projected gradient descent. Indeed, the classical algorithm has the iteration

xy = g <96t—1 - %Pt (i1 + ATf/(Axt—l)]> =g <(1 — p)Te1 + pr| — %ATf/(Axt—l)]>7

and corresponds to the choice h'(x;—1) = pxy—1 in the mirror descent recursion, which,
when x;_1 is on the boundary of K, is not the choice that we need for the equivalence in
Section 4.

However, when h is assumed to be differentiable on its closed domain K, then the bound of
Prop. 1 still holds because the optimality condition h'(z;) = B/ (z—1) — pi[AT f/(Azy1) +
W (z;-1)] may now be replaced by (z—z¢) " (h’(xt)—h’(xt,l)—i—pt [ATf’(Aﬂ:t,l)—{—h’(xt,l)D >
0 for all z € K, which also allows to get to Eq. (5) in the proof of Prop. 1.

4 Conditional gradient method and extensions

In this section, we first review the classical conditional gradient algorithm, which corre-
sponds to the extra assumption that f* is linear in its domain.

Conditional gradient method Given a maximization problem of the following form
(i.e., where f* is linear on its domain, or equal to zero by a simple change of variable):
max —h*(—A'y),
yeC
the conditional gradient algorithm consists in the following iteration (note that below
Azy 1 = A(R*) (—ATy;_1) is the gradient of the objective function and that we are maxi-

mizing the first-order Taylor expansion to obtain a candidate g;_1 towards which we make
a small step):

= in h TATy,_
Tt—1 arg mu, () + Yt—1
Yp—1 € argmax yTA:ct,l
yeC
ye = (1—=p)ye—1+ pele—1.



It corresponds to a linearization of —h*(—ATy) and its maximization over the bounded
convex set C. As we show later, the choice of p; may be done in different ways, through a
fixed step size of by (approximate) line search.

Generalization Following [10], the conditional gradient method can be generalized to
problems of the form

max —h*(—A'y) — f*(y),

yeC
with the following iteration:
— : TAT _ *\/ T
41 = argmingere h(z) +2' Ay = (*)(—A y1)
Yi-1 € argmaxyecy Az — f*(y) (7)

(1= pt)yi—1 + ptle—1.

<
S
I

The previous algorithm may be interpreted as follows: (a) perform a first-order Taylor
expansion of the smooth part —h*(—ATy), while leaving the other part —f*(y) intact, (b)
minimize the approximation, and (c) perform a small step towards the maximizer. Note
the similarity (and dissimilarity) with proximal methods which would add a proximal term
proportional to ||y —y;_1]|?, leading to faster convergences, but with the extra requirement
of solving the proximal step [26, 5].

Note that here y; may be expressed as a convexr combination of all g,—1, u € {1,...,t}:
t t
Yt = Z <Pu H (1- P8)>yu—17
u=1 s=u+1

and that when we chose p; = 2/(t + 1), it simplifies to:

t
2 i
Yyt = m ;uyu—l-

When h is essentially smooth (and thus h* is essentially strictly convex), it can be reformu-
lated with b/(2;) = —ATy, as follows:

W(z) = (1—p)h'(we1) —pAT arg max {y" Az, — f* ()},
= (L= po)l(xm1) — peAT f'(Azyq),

which is exactly the mirror descent algorithm described in Eq. (4). This leads to the
following proposition:

Proposition 2 (Equivalence between mirror descent and generalized conditional gradient)
Assume that (a) f is Lipschitz-continuous and finite on RP, with C' the domain of f*, (b) h

is p-strongly convex and essentially smooth. The mirror descent recursion in Eq. (4), started

from zo = (R*) (=ATyq), is equivalent to the generalized conditional gradient recursion in

Eq. (7), started from yo € C.

10



When h is not essentially smooth, then with a particular choice of subgradient (see end
of Section 3), the two algorithms are also equivalent. We now provide convergence proofs
for the two versions (with adaptive and non-adaptive step sizes); similar rates may be ob-
tained without the boundedness assumptions [10], but our results provide explicit constants
and primal-dual guarantees. We first have the following convergence proof for generalized
conditional gradient with no line search (the proof of dual convergence uses standard argu-
ments from [13, 15], while the convergence of gaps is due to [19] for the regular conditional
gradient):

Proposition 3 (Convergence of extended conditional gradient - no line search)
Assume that (a) f is Lipschitz-continuous and finite on RP, with C the domain of f*, (b) h
is pu-strongly convez. Consider py =2/(t+1) and R* = max, e ||AT (y —')||?. Denoting
by ys« any mazimizer of gaual on C, after t iterations of the generalized conditional gradient
recursion of Eq. (7), we have:

9dual \Yx Gdual\ Yt B M(t T 1)a
min ap(ze,yt) < 87}22
uE{O,...,t—l}g PASE el p(t+1)
Proof We have (using convexity of f* and (ﬁ)—smoothness of h*):
gdual(yt)
= —h(—ATy) — f(w)
* T T Rzp% * [ —
> | =D (A y—1) + (e —yi—1) Az_1 — o |~ (L = pe) f*(ye—1) + pef* (Ge—1)
* T — T R2pt2 * * [ —
= —h(=A y-1) +pe(Yr-1 — yr—1) Ariq — T (1= p) f*(ye-1) = pef*(G-1)
2p}

= Gdual(Ye—1) + pt(Ye—1 — yt—l)TAﬂUt—l — + pef (Ye—1) — pe S5 (Ge—1)

Rpf -
= Gdual(Yt—1) — o + pt [f*(yt—l) — [ (Yt=1) + (Y—1 — yt—1) Axt—1:|
R*p; T T
= Ydual(yt—1) — o + pt [f*(ytl) — YAz — (f (Y1) — Z?t_1Al“t1)] :

Note that by definition of g;_1, we have (by equality in Fenchel-Young inequality)
— [ (Ge—1) + G Aze1 = f(Azi1),
and h*(=ATy; 1) + h(x1) + x;r_lATyt,l =0, and thus
F =)=yl Az — (F* (1)~ T 1 Az-1) = Gprimal (Te—1) —gaval (e—1) = gaD(Te—1, Y1—1)-
We thus obtain, for any p; € [0,1]:
R?p?
2

gdual(yt) - gdual(y*) = gdual(ytfl) - gdual(y*) + Ptgap(%fl, ytfl) -

)

11



which is the classical equation from the conditional gradient algorithm [15, 14, 19], which
we can analyze through Lemma 1 (see end of this section), leading to the desired result. Bl

The following proposition shows a result similar to the proposition above, but for the adap-
tive algorithm that considers optimizing the value p; at each iteration.

Proposition 4 (Convergence of extended conditional gradient - with line search)
Assume that (a) f is Lipschitz-continuous and finite on RP, with C' the domain of f*, (b) h is
p-strongly convex. Consider p; = min{4zgap(xi—1,y:-1),1} and R? = maxy yec |AT (y —
y)||?. Denoting by y. any mazimizer of gaua on C, after t iterations of the generalized
conditional gradient recursion of Eq. (7), we have:

2R?

gdual(y*)_gdual(yt) < m,
) 2R?

we s B ) STy

Proof The proof is essentially the same as one from the previous proposition, with a dif-
ferent application of Lemma 1 (see below). [ |

The following technical lemma is used in the previous proofs to obtain the various conver-
gence rates.

Lemma 1 Assume that we have three sequences (ut)i=0, (Vt)t=0, and (pt)i=0, and a positive
constant A such that

YVt >0, py €[0,1]
V>0, 0<u <y
A
VEZ> 1, up <upo1 — prvp—1 + 5P
~If pr = 2/(t + 1), then uy < % and for all t > 1, there exists at least one k €
{[t/2],...,t} such that vy < %.

= If pr = argmin,gjo1] —prVe—1 + %p% = min{v,_1/A, 1}, then u; < % and for all

t > 2, there exists at least one k € {|t/2] —1,...,t} such that v < ir—A?).

Proof In the first case (non-adaptive sequence p;), we have pg = 1 and u; < (1 — py)ug—1 +
%p?, leading to

A t t
w< Sy [ A=pri

u=1 s=u+1

A 4 s—1 A ufu+1) 4 24
w<z) ] s+ 1 \2Zt(t+1)(u+1)2\t+1



Moreover, for any k& < j, by summing u; < up—1 — prve—1 + %p? fort e {k+1,...,75}, we

get
J A J
2
uj < ug — Z Ptvt71+§ Z Py -
t=k-+1 t=k+1
Thus, if we assume that v;—1 >  for all t € {k +1,...,7}, then

24 I
/szt Zptvtlgk—ﬂ+2AZm

t=k+1 t=k+1 t=k+1
24 J 1
< ———+%1Z:————
k+1 S t(t+1)
24 11 1A
Y S R [ L
Kl t%;Jt t+1] k1

: : -
Moreover, Y27, 1 pr =231, 4 tJ%l > 2%. Thus
24 j+1

< —
fs k:+1j—k:

Using j =t+1 and k = [t/2] — 1, we obtain that § < t+1
the two cases t even and ¢ odd) and thus mMaXye((¢/2),...t} Vu < %.

(this can be done by considering

We now consider the line search case:

U?—l
< U] — 5A -

— If Vi—1

A, then p; =
- If Vi1 Vi—1

<
2A,thenpt—1,andweobtamut<ut 1 — vy 1—|— SU-1— 5
Putting all this together, we get u; < us_1—5 mln{vt 1,v2 1 /A}. This implies that (uy) is a
decreasing sequence. Moreover, u; < ’;‘ (because selectmg p1 = 1 leads to this value), thus,
u < mm{uo, A/2} < A. We then obtain for all ¢t > 1, uy < uy—q — 2,4“?—1- From Which we
deduce, ut_1 < uy o1 21A' We can now sum these 1nequaht1es to get ufl < ut — ﬂ, that
is,

1 < 1 - 2A
ST max{uyt,2/A  + 5 Tt +3

ur <

Moreover, if we assume that all v, > g fort € {k+1,...,j}, following the same reasoning
as above, and using the inequality u; < u;—1 — 3 min{v;—1, v} ; /A}, we obtain
A
. 2 .
AY(j—k) < —.
min{3, 67/4} ~ ) < 1
Using j = t+1 and k = [t/2] — 1, we have (k+3)(j — k) > 1(¢+ 3)? (which can be checked
by considering the two cases t even and ¢ odd). Thus, we must have § < A (otherwise we

obtain 3 < 4A/(t + 3)2, which is a contradiction with 3 > A), and thus 8% < 442 /(t + 3)2,
which leads to the desired result. [ |
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5 Discussion

The equivalence shown in Prop. 2 has several interesting consequences and leads to several
additional related questions:

— Primal-dual guarantees: Having a primal-dual interpretation directly leads to primal-
dual certificates, with a gap that converges at the same rate proportional to };—: (see [19,
20] for similar results for the regular conditional gradient method). These certificates
may first be taken to be the pair (z,y;), in which case, we have shown that after ¢
iterations, at least one of the previous iterates has the guarantee. Alternatively, for the

fixed step-size p; = we can use the same dual candidate 1 = —2— Zzzl UYy—1

2
+1° t(t+1)
(which can thus also be expressed as an average of subgradients) and averaged primal
2 ¢

iterate ) Y u—q UTy—1. Thus, the two weighted averages of subgradients lead to

primal-dual certificates.
— Line-search for mirror descent: Prop. 4 provides a form of line search for mirror
descent (i.e., an adaptive step size). Note the similarity with Polyak’s rule which applies

to the non-strongly convex case (see, e.g., [6]).

— Absence of logarithmic terms: Note that we have considered a step-size of t%,

which avoids a logarithmic term of the form logt in all bounds (which would be the
case for p; = 7). This also applies to the stochastic case [21].

— Properties of iterates: While we have focused primarily on the convergence rates
of the iterates and their objective values, recent work has shown that the iterates
themselves could have interesting distributional properties [33, 3], which would be worth
further investigation.

— Stochastic approximation and online learning: There are potentially other ex-
changes between primal/dual formulations, in particular in the stochastic setting (see,
e.g., [20]).

— Simplicial methods and cutting-planes: The duality between subgradient and
conditional gradient may be extended to algorithms with iterations that are more ex-
pensive. For example, simplicial methods in the dual are equivalent to cutting-planes
methods in the primal (see, e.g., [7, 20] and [2, Chapter 7]).
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A Non-strongly convex case

In this appendix, we consider the situation where the primal optimization problem is just
convex. That is, we assume that we are given (a) a Lipschitz-continuous function f defined
on R" (with C' the domain of its Fenchel-conjugate), (b) a lower-semicontinuous and 1-
strongly convex function h with compact domain K, which is differentiable on int(K) and
such that for all (z1,22) € K x int(K), D(z1,72) < 62, and (c) a matrix A € R™*P. We
consider the problem,

min f(Az),

and we let , € K denote any minimizer. We have the following Fenchel duality relationship:

in f(Az) = mi TAz — f~
mRIAD = gy A W)
_ (AT g
= max—o(=4'y) - @),

where o : R? — R is the support function of K defined as o(z) = max z'z. We consider
Te

the mirror descent recursion [24, 4], started from zy € K and for which, for ¢ > 1,

1
z € argmin —D(z,x4-1) + (x — xt,l)TATyt,l,
r€K Py

where y;—1 is a subgradient of f at Az;—;. Our goal is to show that the average iterate

Ty = % Z;lo x, and the average dual candidate y; = %Zz;lo 1y are such that

gap(Te, i) = f(AZ) + o(— A 5) + £ ()

tends to zero at an appropriate rate. Similar results hold for certain cases of subgradient
descent [23] and we show that they hold more generally.

Let z € K. We have (using a similar reasoning than [4]) and using the optimality condition
(x—a) " [h’(xt) — h(x4—1) + ptATyt,l] >0 for any v € K:

D(x,x) — D(x,x1-1) = —h(x) — b (x) (2 — z) + hzi—1) + B (2—1) " (2 — 2—1)
pr(x — 1) ATy 4 h(we—1) — hwe) — B (20) T (w1 — 2)

T 1
pe(x — xt—l)TATyt—l + [h/(ﬂft—l) - h,(xt)] (Tp—1 —21) — §H$t - xt—lHQ

using the 1-strong convexity of h,

N

N

T 1
pr(r —ai 1) T ATy + [ptATytq] (w41 —a¢) — §||33t — x|

1 1
= p(x — xtfl)TATytfl + §HPtATyt71H2 - §||$t — T+ ,OtATytf1H2

N

1
pr(x — xtfl)TATytfl + §‘|PtATytf1H2-
This leads to

1
(mo1—2) ATy < —




where R? = maxyec ||A"yl|? (note the slightly different definition than in Section 4). By
summing from u = 1 to ¢, we obtain

t t 1

AT ST . ,%RZ
> (wur—2) ATy r < Y —[D(@,2y-1) - D(x,z,)] Z

u=1 u=1 pu

Assuming that (p;) is a decreasing sequence, we get by integration by parts:

t t—1

t
Z(xufl ) ATy, < ZD(x’xu)( 1 i) N D(z,x9) D(H/U),txt) n Z PuTR2
u=1

h— p— Pu+1 Pu P1
52 R
< 252( ) L Pu2
p— Pu+1 pu P1 —t
52 R
= ;—1—7;/%-

We may now compute an upper-bound on the gap as follows:
gap(Zi,5t) = [(AZ) +o(—=A"H) + [*(7)

t—1
+ % > ) +o(—ATH)
u=0

N
~ | =
4 ~~
1M
=
I
8
e

Using the bound above and minimizing with respect to x € K, we obtain

52 R2
A L _
gap(Z¢, ¥r) o + o uz:lpu

With p; = we obtain a gap less than

9
RVt

Rs RS
\/g t

<SR
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