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Abstract

In this paper, we show the equivalence between mirror descent algorithms and al-
gorithms generalizing the conditional gradient method. This is done through convex
duality, and implies notably that for certain problems (such as the support vector ma-
chine), the primal subgradient method and the dual conditional gradient method are
formally equivalent. The dual interpretation leads to a form of line search for mirror
descent, as well as guarantees of convergence for primal-dual certificates.

1 Introduction

Many problems in machine learning, statistics and signal processing may be cast as convex
optimization problems. In large-scale situations, simple gradient-based algorithms with po-
tentially many cheap iterations are often preferred over methods, such as Newton’s method
or interior-point methods, that rely on fewer but more expensive iterations.

In this paper, we consider two classical algorithms, namely (a) subgradient descent and
its mirror descent extension [1, 2, 3], and (b) conditional gradient algorithms, sometimes
referred to as Frank-Wolfe algorithms [4, 5, 6, 7, 8].

Subgradient algorithms are adapted to non-smooth situations, have a convergence rate of
O(t−1/2) in terms of objective values, after t steps. This convergence rate goes to O(t−1)
when the objective function is strongly convex [9]. Conditional-gradient algorithms are
tailored to the optimization of smooth functions on a compact convex set, for which mini-
mizing linear functions is easy (but typically, orthogonal projections would be hard, so that
proximal methods [10, 11] cannot be used efficiently). They also have a convergence rate of
O(1/t) [6]. The main results of this paper are (a) to show that these two sets of methods
are in fact equivalent by convex duality, (b) to recover a previously proposed extension of
the conditional gradient method which is more generally applicable [12], and (c) provide
explicit convergence rates for primal and dual iterates.
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More precisely, we consider a convex function f defined on R
n, a convex function h defined

on R
p, both potentially taking the value +∞, and a linear operator A from R

p to R
n. We

consider the following minimization problem, which we refer to as the primal problem:

min
x∈Rp

h(x) + f(Ax). (1)

Throughout this paper, we make the following assumptions regarding the problem:

– f is B-Lipschitz-continuous and finite on R
n, i.e., for all x, y ∈ R

n, |f(x)−f(y)| 6
B‖x − y‖, where ‖ · ‖ denotes the Euclidean norm. Note that this implies that the
domain of the Fenchel conjugate f∗ is included in the ball of center 0 and radius
B. We denote by C the compact domain of f∗. Thus, for all z ∈ R

n, f(z) =
maxy∈C y⊤z − f∗(y).

Note that the compactness of the domain of f∗ is crucial and allows for simpler proof
techniques with explicit constants (see a generalization in [12]).

– h is lower-semicontinuous and µ-strongly convex on R
p. This implies that h∗

is defined on R
p, differentiable with (1/µ)-Lipschitz continuous gradient [13, 14]. Note

that the domain K of h may be strictly included in R
p.

Moreover, we assume that the following quantities may be computed efficiently:

– Subgradient of f : for any z ∈ R
n, a subgradient of f is any maximizer y of

maxy∈C y⊤z − f∗(y).

– Gradient of h∗: for any z ∈ R
p, (h∗)′(z) may be computed and is equal to the unique

maximizer x of maxx∈Rp x⊤z − h(x).

The values of the functions f , h, f∗ and h∗ are useful to compute duality gaps.

We denote by gprimal(x) = h(x) + f(Ax) the primal objective in Eq. (1). It is the sum
of a Lipschitz-continuous convex function and a strongly convex function, potentially on a
restricted domain K. It thus well adapted to the subgradient method.

We have the following primal/dual relationships (obtained from Fenchel duality [13]):

min
x∈Rp

h(x) + f(Ax) = min
x∈Rp

max
y∈C

h(x) + y⊤(Ax)− f∗(y)

= max
y∈C

{

min
x∈Rp

h(x) + x⊤A⊤y

}

− f∗(y)

= max
y∈C

−h∗(−A⊤y)− f∗(y).

This leads to the dual maximization problem:

max
y∈C

−h∗(−A⊤y)− f∗(y). (2)
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We denote by gdual(y) = −h∗(−A⊤y) − f∗(y) the dual objective. It has a smooth part
−h∗(−A⊤y) defined on R

n and a potentially non-smooth part −f∗(y), and the problem is
restricted onto a compact set C. When f∗ is linear (and more generally smooth) on its
support, then we are exactly in the situation where conditional gradient algorithms may be
used.

Given a pair of primal-dual candidates (x, y) ∈ K × C, we denote by gap(x, y) the duality
gap:

gap(x, y) = gprimal(x)− gdual(y) =
[

h(x) + h∗(−A⊤y) + y⊤Ax
]

+
[

f(Ax) + f∗(y)− y⊤Ax
]

.

This quantity serves as a certificate of optimality, as

gap(x, y) =
[

gprimal(x)− min
x′∈K

gprimal(x
′)
]

+
[

max
y′∈C

gdual(y
′)− gdual(y)

]

.

2 Examples

Typical cases for h (often the regularizer in machine learning and signal processing) are the
following:

– Squared Euclidean norm: h(x) = µ
2‖x‖

2, which is µ-strongly convex.

– Squared Euclidean norm with convex constraints: h(x) = µ
2 ‖x‖

2+IK(x), with
IK the indicator function for K a convex set, which is µ-strongly convex.

– Negative entropy: h(x) =
∑n

i=1 xi log xi + IS(x), where S = {x ∈ R
n, x >

0,
∑n

i=1 xi = 1}, which is 1-strongly convex. More generally, many barrier functions
of convex sets may be used (see examples in [3, 15]).

Typical cases for f (often the data fitting terms in machine learning and signal processing)
are functions of the form f(z) = 1

n

∑n
i=1 ℓi(zi):

– Least-absolute-deviation: ℓi(zi) = |zi − yi|, with yi ∈ R. Note that the square loss
is not Lipschitz-continuous on R

p (but it is, when restricted to a compact set).

– Logistic regression: ℓi(zi) = log(1 + exp(−ziyi)), with yi ∈ {−1, 1}. Here f∗ is not
linear in its support, and f∗ is not smooth, since it is a sum of negative entropies.
This extends to any negative exponential family log-likelihood. Note that f is then
smooth and proximal methods with an exponential convergence rate may be used
(which correspond to a constant step size in the algorithms presented below, instead
of a decaying step size).

– Support vector machine: ℓi(zi) = max{1 − yizi, 0}, with yi ∈ {−1, 1}. Here
f∗ is linear on its domain (this is a situation where subgradient and conditional
gradient methods are exactly equivalent). This extends to more general max-margin
formulations [16].
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Other examples may be found in signal processing; for example, total-variation denoising,
where the loss is strongly convex but the regularizer is non-smooth [17], or submodular
function minimization cast through separable optimization problems [18].

3 Mirror descent for strongly convex problems

We first assume that the function h is essentially smooth (i.e., differentiable at any point
in the interior of K, and so that the norm of gradients converges to +∞ when approaching
the boundary of K); then h′ is a bijection from int(K) to R

p, where K is the domain of h
(see, e.g., [14]). We consider the Bregman divergence

D(x1, x2) = h(x1)− h(x2)− (x1 − x2)
⊤h′(x2).

It is always defined onK×int(K), and is nonnegative. If x1, x2 ∈ int(K), thenD(x1, x2) = 0
if and only if x1 = x2. See more details in [3]. For example, when h(x) = µ

2 ‖x‖
2, we have

D(x1, x2) =
1
2‖x1 − x2‖

2.

Subgradient descent for square Bregman divergence. When h(x) = µ
2 ‖x‖

2, the
primal problem becomes:

min
x∈K

f(Ax) +
µ

2
‖x‖2.

The projected subgradient method starts from x0 ∈ R
p, and iterates the following recursion:

xt = xt−1 −
ρt
µ

[

A⊤f ′(Axt−1) + µxt−1

]

,

where f ′(Axt−1) is any subgradient of f at Axt−1. The step size is
ρt
µ
.

The recursion may be rewritten as

µxt = µxt−1 − ρt
[

A⊤f ′(Axt−1) + µxt−1

]

,

which is equivalent to the minimization of

(x− xt−1)
⊤
[

A⊤ȳt−1 + µxt−1

]

+
µ

2ρt
‖x− xt−1‖

2,

which is the traditional proximal step, with step size ρt/µ.

Mirror descent. We may interpret the last formulation as the minimization of

(x− xt−1)
⊤g′primal(xt−1) +

1

ρt
D(x, xt−1),

with solution defined through (note that h′ is a bijection from int(K) to R
p):

h′(xt) = h′(xt−1)− ρt
[

A⊤f ′(Axt−1) + h′(xt−1)
]

= (1− ρt)h
′(xt−1)− ρtA

⊤f ′(Axt−1).
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Thus, we now define the mirror descent recursion as follows:







ȳt−1 ∈ argmax
y∈C

y⊤Axt−1 − f∗(y),

xt = arg min
x∈Rp

h(x)− (1− ρt)x
⊤h′(xt−1) + ρtx

⊤A⊤ȳt−1.
(3)

Proposition 1 (Convergence of mirror descent in the strongly convex case) Assume
that (a) f is Lipschitz-continuous and finite on R

p, with C the domain of f∗, (b) h is essen-
tially smooth and µ-strongly convex. Consider ρt = 2/(t+ 1) and R2 = maxy,y′∈C ‖A⊤(y −
y′)‖2. Denoting by x∗ the unique minimizer of gprimal, after t iterations of the mirror descent
recursion of Eq. (3), we have:

g

(

2

t(t+ 1)

t
∑

u=1

uxu−1

)

− gprimal(x∗) 6
R2

µ(t+ 1)
,

min
u∈{0,...,t−1}

{

gprimal(xu)− gprimal(x∗)
}

6
R2

µ(t+ 1)
,

D(x∗, xt) 6
R2

µ(t+ 1)
.

Proof We follow the proof of [3] and adapt it to the strongly convex case. We have:

D(x∗, xt)−D(x∗, xt−1)

= h(xt−1)− h(xt)− (x∗ − xt)
⊤h′(xt) + (x∗ − xt−1)

⊤h′(xt−1)

= h(xt−1)− h(xt)− (x∗ − xt)
⊤
[

(1− ρt)h
′(xt−1)− ρtA

⊤f ′(Axt−1)
]

+ (x∗ − xt−1)
⊤h′(xt−1)

= h(xt−1)− h(xt)− (xt−1 − xt)
⊤h′(xt−1) + ρt(x∗ − xt)

⊤g′primal(xt−1)

=
[

−D(xt, xt−1) + ρt(xt−1 − xt)
⊤g′primal(xt−1)

]

+
[

ρt(x∗ − xt−1)
⊤g′primal(xt−1)

]

. (4)

In order to upper-bound the two terms in Eq. (4), we first consider the following bound
(obtained by convexity of f):

f(Ax∗) + h(x∗) > f(Axt−1) + h(xt−1) + (x∗ − xt−1)
⊤[A⊤ȳt−1 + h′(xt−1)] +D(x∗, xt−1),

which may be rewritten as:

gprimal(xt−1)− gprimal(x∗) 6 −D(x∗, xt−1) + (xt−1 − x∗)
⊤g′primal(xt−1),

which implies

ρt(x∗ − xt−1)
⊤g′primal(xt−1) 6 −ρtD(x∗, xt−1)− ρt

[

gprimal(xt−1)− gprimal(x∗)
]

. (5)

Moreover,

−D(xt, xt−1) + ρt(xt−1 − xt)
⊤g′primal(xt−1) = max

x∈Rp
−D(x, xt−1) + ρt(xt−1 − x)⊤z = ϕ(z),

5



with z = ρtg
′
primal(xt−1). The function x 7→ D(x, xt−1) is µ-strongly convex, and its Fenchel

conjugate is thus (1/µ)-smooth. This implies that ϕ is (1/µ)-smooth. Since ϕ(0) = 0 and
ϕ′(0) = 0, ϕ(z) 6 1

2µ‖z‖
2. Moreover, z = ρt(A

⊤f ′(Axt−1) + h(xt−1)). Since h′(xt−1) ∈

−A⊤K (because h′(xt−1) is a convex combination of such elements), then ‖A⊤f ′(Axt−1) +
h(xt−1)‖

2 6 R2 = maxy1,y2∈K ‖A⊤(y1 − y2)‖
2 = diam(A⊤K)2.

Overall, combining Eq. (5) and ϕ(z) 6
R2ρ2t
2µ into Eq. (4), this implies that

D(x∗, xt)−D(x∗, xt−1) 6
ρ2t
2µ

R2 − ρtD(x∗, xt−1)− ρt
[

gprimal(xt−1)− gprimal(x∗)
]

,

that is,

gprimal(xt−1)− gprimal(x∗) 6
ρtR

2

2µ
+ (ρ−1

t − 1)D(x∗, xt−1)− ρ−1
t D(x∗, xt).

With ρt =
2

t+ 1
, we obtain

t
[

gprimal(xt−1)− gprimal(x∗)
]

6
R2

µ(t+ 1)
+

(t− 1)t

2
D(x∗, xt−1)−

t(t+ 1)

2
D(x∗, xt).

Thus, by summing from u = 1 to u = t, we obtain

t
∑

u=1

u
[

gprimal(xu−1)− gprimal(x∗)
]

6
R2

µ
t−

t(t+ 1)

2
D(x∗, xt),

that is,

D(x∗, xt) +
2

t(t+ 1)

t
∑

u=1

u
[

gprimal(xu−1)− gprimal(x∗)
]

6
R2

µ(t+ 1)

This implies that (a) D(x∗, xt) 6
R2

µ(t+ 1)
, i.e., the iterates converges, and (b)

g

(

2

t(t+ 1)

t
∑

u=1

uxu−1

)

− gprimal(x∗) 6
R2

µ(t+ 1)
,

the objective functions at an average data point converges, and (c)

min
u∈{0,...,t−1}

gprimal(xu)− gprimal(x∗) 6
R2

µ(t+ 1)
,

i.e., one of the iterates has an objective that converges.
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Averaging. Note that with the step size ρt =
2

t+ 1
, we have

h′(xt) =
t− 1

t+ 1
h′(xt−1)−

2

t+ 1
A⊤f ′(Axt−1),

which implies
t(t+ 1)h′(xt) = (t− 1)th′(xt−1)− 2tA⊤f ′(Axt−1).

By summing these equalities, we obtain t(t+ 1)h′(xt) = −2
∑t

u=1 uA
⊤f ′(Axu−1), i.e.,

h′(xt) =
2

t(t+ 1)

t
∑

u=1

u
[

− 2A⊤f ′(Axu−1)
]

,

that is, h′(xt) is a weighted average of subgradients.

Generalization to h non-smooth. The previous result does not require h to be essen-
tially smooth, i.e., it may be applied to h(x) = µ

2‖x‖
2 + IK(x) where K is a convex set

strictly included in R
p. In the mirror descent recursion,







ȳt−1 ∈ argmax
y∈C

y⊤Axt−1 − f∗(y),

xt = arg min
x∈Rp

h(x)− (1− ρt)x
⊤h′(xt−1) + ρtx

⊤A⊤ȳt−1,

there may then be multiple choices for h′(xt−1). If we choose for h′(xt−1) at iteration t,
the subgradient of h obtained at the previous iteration, i.e., such that h′(xt−1) = (1 −
ρt−1)h

′(xt−2)− ρt−1A
⊤ȳt−2, then Prop. 1 above holds.

Note that when h(x) = µ
2‖x‖

2 + IK(x), the algorithm above is not equivalent to projected
gradient descent. Indeed, the classical algorithm has the iteration

xt = ΠK

(

xt−1 −
1

µ
ρt
[

µxt−1 +A⊤f ′(Axt−1)
])

= ΠK

(

(1− ρt)xt−1 + ρt
[

−
1

µ
A⊤f ′(Axt−1)

]

)

,

and corresponds to the choice h′(xt−1) = µxt−1 in the mirror descent recursion, which,
when xt−1 is in the boundary of K, is not the choice that we need for the equivalence.

4 Conditional gradient method and extensions

Conditional gradient method. Given a maximization problem of the form (i.e., where
f∗ is zero on its domain)

max
y∈C

−h∗(−A⊤y),

the conditional gradient algorithm consists in the following iteration (note that below
Axt−1 = A(h∗)′(−A⊤yt−1) is the gradient of the objective function):

xt−1 = arg min
x∈Rp

h(x) + x⊤A⊤yt−1

ȳt−1 ∈ argmax
y∈C

y⊤Axt−1

yt = (1− ρt)yt−1 + ρtȳt−1.
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It corresponds to a linearization of −h∗(−A⊤y) and its maximization over the compact
convex set C. As we show later, the choice of ρt may be done in different ways, through a
fixed step size of by (approximate) line search.

Generalization. Following [12], the conditional gradient method can be generalized to
problems of the form

max
y∈C

−h∗(−A⊤y)− f∗(y),

with the following iteration:















xt−1 = argminx∈Rp h(x) + x⊤A⊤yt−1 = (h∗)′(−A⊤yt−1)

ȳt−1 ∈ argmaxy∈C y⊤Axt−1 − f∗(y)

yt = (1− ρt)yt−1 + ρtȳt−1.

(6)

The previous algorithm may be interpreted as follows: (a) perform a first-order Taylor
expansion of the smooth part −h∗(−A⊤y), while leaving the other part −f∗(y) intact, (b)
minimize the approximation, and (c) perform a small step towards the maximizer. Note
the similarity (and dissimilarity) with proximal methods which would add a proximal term
proportional to ‖y − yt−1‖

2, leading to faster convergences, but with the extra requirement
of solving the proximal step [10, 11].

When h is essentially smooth (and thus h∗ is essentially strictly convex), it can be reformu-
lated with h′(xt) = −A⊤yt as follows:

h′(xt) = (1− ρt)h
′(xt−1)− ρtA

⊤ argmax
y∈C

{

y⊤Axt−1 − f∗(y)
}

,

= (1− ρt)h
′(xt−1)− ρtA

⊤f ′(Axt−1),

which is exactly the mirror descent algorithm described in Eq. (3). This leads to the
following proposition:

Proposition 2 (Equivalence between mirror descent and generalized conditional gradient)
Assume that (a) f is Lipschitz-continuous and finite on R

p, with C the domain of f∗, (b) h
is µ-strongly convex and essentially smooth. The mirror descent recursion in Eq. (3), started
from x0 = (h∗)′(−A⊤y0), is equivalent to the generalized conditional gradient recursion in
Eq. (6), started from y0 ∈ C.

When h is not essentially smooth, then with a particular choice of subgradient, the two al-
gorithms are also equivalent. We now provide convergence proofs for the two versions (with
adaptive and non-adaptive step sizes); similar rates may be obtained without the compact-
ness assumptions [12], but our results provide explicit constants and primal-dual guarantees.
We first have the following convergence proof for generalized conditional gradient with no
line search:
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Proposition 3 (Convergence of extended conditional gradient - no line search)
Assume that (a) f is Lipschitz-continuous and finite on R

p, with C the domain of f∗, (b) h
is µ-strongly convex. Consider ρt = 2/(t+1) and R2 = maxy,y′∈C ‖A⊤(y− y′)‖2. Denoting
by y∗ any maximizer of gdual on C, after t iterations of the mirror descent recursion of
Eq. (6), we have:

gdual(y∗)− gdual(yt) 6
2R2

µ(t+ 1)
,

min
u∈{0,...,t−1}

gap(xt, yt) 6
8R2

µ(t+ 1)
.

Proof We have (using convexity of f∗ and
(

1
µ

)

-smoothness of h∗):

gdual(yt) = −h∗(−A⊤yt)− f∗(yt)

>

[

− h∗(−A⊤yt−1) + (yt − yt−1)
⊤Axt−1 −

R2ρ2t
2µ

]

−

[

(1− ρt)f
∗(yt−1) + ρtf

∗(ȳt−1)

]

= −h∗(−A⊤yt−1) + ρt(ȳt−1 − yt−1)
⊤Axt−1 −

R2ρ2t
2µ

− (1− ρt)f
∗(yt−1)− ρtf

∗(ȳt−1)

= gdual(yt−1) + ρt(ȳt−1 − yt−1)
⊤Axt−1 −

R2ρ2t
2µ

+ ρtf
∗(yt−1)− ρtf

∗(ȳt−1)

= gdual(yt−1)−
R2ρ2t
2µ

+ ρt

[

f∗(yt−1)− f∗(ȳt−1) + (ȳt−1 − yt−1)
⊤Axt−1

]

= gdual(yt−1)−
B2ρ2t
2µ

+ ρt

[

f∗(yt−1)− y⊤t−1Axt−1 − (f∗(ȳt−1)− ȳ⊤t−1Axt−1)

]

.

Note that by definition of ȳt−1, we have (by equality in Fenchel-Young inequality)

−f∗(ȳt−1) + ȳ⊤t−1Axt−1 = f(Axt−1),

and h∗(−A⊤yt−1) + h(xt−1) + x⊤t−1A
⊤yt−1 = 0, and thus

f∗(yt−1)−y⊤t−1Axt−1−(f∗(ȳt−1)−ȳ⊤t−1Axt−1) = gprimal(xt−1)−gdual(yt−1) = gap(xt−1, yt−1).

We thus obtain, for any ρt ∈ [0, 1]:

gdual(yt)− gdual(y∗) > gdual(yt−1)− gdual(y∗) + ρtgap(xt−1, yt−1)−
B2ρ2t
2µ

,

which is the classical equation from the conditional gradient algorithm [6, 7, 8], which we
can analyze through Lemma 1 (see end of this section).

Proposition 4 (Convergence of extended conditional gradient - with line search)
Assume that (a) f is Lipschitz-continuous and finite on R

p, with C the domain of f∗, (b) h
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is µ-strongly convex. Consider ρt = min{ µ
B2 gap(xt−1, yt−1), 1} and R2 = maxy,y′∈C ‖A⊤(y−

y′)‖2. Denoting by y∗ any maximizer of gdual on C, after t iterations of the mirror descent
recursion of Eq. (6), we have:

gdual(y∗)− gdual(yt) 6
2R2

µ(t+ 3)
,

min
u∈{0,...,t−1}

gap(xt, yt) 6
2R2

µ(t+ 3)
.

Proof The proof is essentially the same as the previous one, with a different application
of Lemma 1 (see end of this section).

Lemma 1 Assume that we have three sequences (ut)t>0, (vt)t>0, and (ρt)t>0, and a positive
constant A such that

∀t > 0, ρt ∈ [0, 1]

∀t > 0, 0 6 ut 6 vt

∀t > 1, ut 6 ut−1 − ρtvt−1 +
A

2
ρ2t .

– If ρt = 2/(t + 1), then ut 6
2A
t+1 and for all t > 1, there exists at least one k ∈

{⌊t/2⌋, . . . , t} such that vk 6
8A
t+1 .

– If ρt = argminρt∈[0,1]−ρtvt−1 + A
2 ρ

2
t = min{vt−1/A, 1}, then ut 6 2A

t+3 and for all

t > 2, there exists at least one k ∈ {⌊t/2⌋ − 1, . . . , t} such that vk 6
2A
t+3 .

Proof In the first case (non-adaptive sequence ρt), we have ρ0 = 1 and ut 6 (1−ρt)ut−1+
A
2 ρ

2
t , leading to

ut 6
A

2

t
∑

u=1

t
∏

s=u+1

(1− ρs)ρ
2
u.

For ρt =
2

t+1 , this leads to

ut 6
A

2

t
∑

u=1

u(u+ 1)

t(t+ 1)

4

(u+ 1)2
6

2A

t+ 1
.

Moreover, for any k < j, by summing ut 6 ut−1 − ρtvt−1 +
A
2 ρ

2
t for t ∈ {k + 1, . . . , j}, we

get

uj 6 uk −

j
∑

t=k+1

ρtvt−1 +
A

2

j
∑

t=k+1

ρ2t

10



Thus, if we assume that all vt−1 > β for t ∈ {k + 1, . . . , j}, then

β

j
∑

t=k+1

ρt 6

j
∑

t=k+1

ρtvt−1 6
2A

k + 1
+ 2A

j
∑

t=k+1

1

(t+ 1)2

6
2A

k + 1
+ 2A

j
∑

t=k+1

1

t(t+ 1)

=
2A

k + 1
+ 2A

j
∑

t=k+1

[1

t
−

1

t+ 1

]

6
4A

k + 1
.

Moreover,
∑j

t=k+1 ρt = 2
∑j

t=k+1
1

t+1 > 2 j−k
j+1 . Thus

β 6
2A

k + 1

j + 1

j − k
.

Using j = t+1 and k = ⌊t/2⌋− 1, we obtain that β 6
8A
t+1 (this can be done by considering

the two cases t even and t odd) and thus maxu∈{⌊t/2⌋,...,t} vu 6 8A
t+1 .

We now consider the line search case:

– If vt−1 6 A, then ρt =
vt−1

A , and we obtain ut 6 ut−1 −
v2
t−1

2A .

– If vt−1 > A, then ρt = 1, and we obtain ut 6 ut−1 − vt−1 +
A
2 6 ut−1 −

vt−1

2 .

Putting all this together, we get ut 6 ut−1 −
1
2 min{vt−1, v

2
t−1/A}. This implies that (ut) is

a decreasing sequence. Moreover, u1 6
A
2 , thus, u1 6 min{u0, A/2} 6 A. We then obtain

for all t > 1, ut 6 ut−1 −
1
2Au

2
t−1. From which we deduce, u−1

t−1 6 u−1
t − 1

2A . We can now

sum these inequalities to get u−1
1 6 u−1

t − t−1
2A , that is,

ut 6
1

u−1
1 + t−1

2A

6
1

max{u−1
0 , 2/A} + t−1

2A

6
2A

t+ 3
.

Moreover, if we assume that all vt−1 > β for t ∈ {k+1, . . . , j}, following the same reasoning
as above, then

min{β, β2/A}(j − k) 6
A

k + 3
.

Using j = t+1 and k = ⌊t/2⌋− 1, we have (k+3)(j− k) > 1
4 (t+3)2 (which can be checked

by considering the two cases t even and t odd). Thus, we must have β 6 A (otherwise we
obtain β 6 4A/(t+ 3)2, which is a contradiction), and thus β2 6 4A2/(t+ 3)2, which leads
to the desired result.
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5 Discussion

The equivalence shown in Prop. 2 has several interesting consequences and leads to several
additional related questions:

– Primal-dual guarantees: Having a primal-dual interpretation directly leads to
primal-dual certificates of guarantees, with a gap that converges at the same rate
R2

µt (see [8] for similar results for the regular conditional gradient method). These
certificates may either be taken to be the pair (xt, yt), in which case, we have shown
that after t iterations, at least one of them has the guarantee.

Alternatively, for the fixed step-size ρt =
2

t+1 , we can use the same dual candidate yt =
2

t(t+1)

∑t
u=1 uȳu−1 (which can thus also be expressed as an average of subgradients)

and averaged primal iterate 2
t(t+1)

∑t
u=1 uxu−1. Thus, the two weighted averages of

subgradients lead to primal-dual certificates.

– Line-search for mirror descent: Prop. 4 provides a form of line search for mirror
descent (i.e., an adaptive step size). Note the similarity with Polyak’s rule (see,
e.g., [19]).

– Absence of logarithmic terms: Note that we have considered a step-size of 2
t+1 ,

which avoids a logarithmic term of the form log t in all bounds (which would be the
case for ρt =

1
t ). This also applies to the stochastic case [20].

– Properties of iterates: While we have focused primarily on the convergence rates
of the iterates and their objective values, recent work has shown that the iterates
themselves could have interesting distributional properties [21, 22], which would be
worth further investigating.

– Stochastic approximation and online learning: There are potentially other ex-
changes between primal/dual formulations, in particular in the stochastic setting (see,
e.g., [23]).

– Simplicial methods and cutting-planes: The duality between subgradient and
conditional gradient may be extended to algorithms with iterations that are more
expensive. For example, simplicial methods in the dual are equivalent to cutting-
planes methods in the primal (see, e.g., [24]).

– Conditional gradient algorithms for penalized problems: Another interesting
example for machine learning is more naturally described from the dual formulation:
given a smooth loss term h∗(−A⊤y) (this could be least-squares or logistic regression),
a typically non-smooth penalization is added, often is the form of a constant times
a norm, i.e., f∗(y) = λΩ(y). When the proximal operator for the norm Ω is easy to
compute, then the minimization of h∗(−A⊤y) + f∗(y) may readily be done through
proximal methods [10, 11]. However, in some situations, the only efficient operation
on the norm Ω is the maximization of linear functions on the unit ball.
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Conditional gradient algorithms are applicable to functions f∗ with a compact do-
main and are thus adapted to constrained problems where f∗ would be the indicator
function of the ball {y ∈ R

n, Ω(y) 6 ν}. However, the penalized problem defined
above does not satisfy the compactness assumption and an extension has been re-
cently proposed in [25]: given a (potentially loose) bound ν on an optimal solution, a
line-search-based algorithm is derived that leads to a convergence rate of O(1/t), with
proportionally constant independent of ν. A simpler algorithm that does not exhibit
this property may be obtained by considering the function defined as f∗(y) = λΩ(y)
for Ω(y) 6 ν and +∞ otherwise, which does have a compact domain, and the gener-
alized conditional gradient algorithms described in Section 4.
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