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TOPOLOGY OF REAL MILNOR FIBRATIONS FOR

NON-ISOLATED SINGULARITIES

NICOLAS DUTERTRE AND RAIMUNDO ARAÚJO DOS SANTOS

Abstract. We consider a real analytic map F = (f1, . . . , fk) : (Rn, 0) →
(Rk, 0), 2 ≤ k ≤ n − 1, that satisfies Milnor’s conditions (a) and
(b) introduced by D. Massey. This implies that every real analytic
fI = (fi1 , . . . , fil) : (Rn, 0) → (Rl, 0), induced from F by projections
where 1 ≤ l ≤ n − 2 and I = {i1, . . . , il}, also satisfies Milnor’s condi-
tions (a) and (b). We give several relations between the Euler charac-
teristics of the Milnor fibre of F , the Milnor fibres of the maps fI , the
link of F−1(0) and the links of f−1

I (0).

1. Introduction

In the last fourty years many research has been developed toward under-
standing the geometry and topology of complex and real singularities. After
the famous book of J. Milnor [Mi] the search for real and complex topolog-
ical invariants of singularity have gotten special attentions. In [Mi] Milnor
considered a holomorphic function f : 0 ∈ U ⊂ C

n → C, f(0) = 0 and
∇f(0) = 0, and proved the existence of a smooth fiber bundle in a neigh-
borhood of the critical point 0. Moreover, if the critical point is isolated
he related the Euler-Poincaré number of the fiber of this fibration with the
topological degree of the gradient vector field ∇f. This became a starting
point of several others formulae in the real and complex settings. Let us
remind below some of them in the real case.

In [Kh] Khimshiashvili proved a Poincaré-Hopf formula which relates the
Euler-Poincaré number of a regular local fiber of an analytic function with
the topological degree of its gradient vector field, as follows.

Let f : (Rn, 0) → (R, 0) be a germ of a real analytic function with isolated
critical point, then

χ
(

f−1(δ) ∩Bǫ
)

= 1 − sign(−δ)ndeg0∇f,

where 0 < |δ| ≪ ε ≪ 1 is a regular value, Bǫ stands for the close ball
centered at the origin, ∇f is the gradient vector field of f and deg0∇f is
the topological degree of the mapping

ǫ
∇f

‖∇f‖
: Sn−1

ǫ → Sn−1
ǫ .
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A similar formula was proved before by Milnor (see [Mi], page 61) for the
case of holomorphic functions with isolated singularity.

Several relative versions of the Khimshiashvili formula were proved after-
wards. Let us present them briefly. Let ψ = (f1, . . . , fk) : (Rn, 0) → (Rk, 0),
2 ≤ k ≤ n, be an analytic map-germ and let us denote by φ the map-germ
(f1, . . . , fk−1) : (Rn, 0) → (Rk−1, 0). We assume that ψ−1(0) and φ−1(0)
have an isolated singularity at 0 (note that here the maps φ and ψ do not
need to have an isolated critical point at the origin). Some authors investi-
gated the following difference:

Dδ,α = χ
(

φ−1(δ) ∩ {fk ≥ α} ∩Bǫ
)

− χ
(

φ−1(δ) ∩ {fk ≤ α} ∩Bǫ
)

,

where (δ, α) is a regular value of ψ such that 0 ≤ |α| ≪ |δ| ≪ ǫ.

In [Du2], the first author proved that:

Dδ,α ≡ dimR

ORn,0

I
mod 2,

where ORn,0 is the ring of analytic function-germs at the origin and I is the

ideal generated by f1, . . . , fk−1 and all the k× k minors
∂(fk,f1,...,fk−1)
∂(xi1 ,...,xik )

. This

is only a mod 2 relation and we may ask if it is possible to get a more precise
relation.

When k = n and fk = x21 + · · · + x2n, according to Aoki et al. ([AFN1],
[AFS]), Dδ,0 = χ

(

φ−1(δ) ∩ Bε
)

= 2deg0H and 2deg0H is the number of

semi-branches of φ−1(0), where

H = (
∂(fn, f1, . . . , fn−1)

∂(x1, . . . , xn)
, f1, . . . , fn−1).

They proved a similar formula in the case fk = xn in [AFN2] and Szafraniec
generalized all these results to any fk in [Sz3].

When k = 2 and f2 = x1, Fukui [Fu1] stated that

Dδ,0 = −sign(−δ)ndeg0H,

where H = (f1,
∂f1
∂x2

, . . . , ∂f1
∂xn

). Several generalizations of Fukui’s formula are

given in [Fu2], [Du1], [FK] and [Du4]. Note that in [Du4], the first author
gave degree formulas for the Euler characteristic of regular fibers of some
map-germs from (Rn, 0) to (R2, 0) called partially parallelizable.

More recently in [ADD] the authors of the present paper and D. Dreibelbis
proved an extension of Khimshiashvili’s formula in the following way.

Take ψ = (f1, . . . , fk) : (Rn, 0) → (Rk, 0), n ≥ k ≥ 2, an analytic map
germ and suppose that 0 ∈ R

n is an isolated singular point of ψ. By Milnor
[Mi], page 98, it is known that for each small enough ǫ > 0, there exists
0 < η ≪ ǫ such that the mapping
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(1) ψ| : Bǫ ∩ ψ
−1(Sp−1

η ) → Sp−1
η

is the projection of a smooth locally trivial fibration.

Denote by Mψ its fiber, also known as Milnor fiber. The main result was:

Proposition 1.1 ([ADD], page 71). Let ψ = (f1, . . . , fk) : (Rn, 0) → (Rk, 0)
as above.

(i) If n is even, then χ
(

Mψ) = 1 − deg0∇f1. Moreover,

deg0 ∇f1 = · · · = deg0∇fk.

(ii) If n is odd, then χ
(

Mψ) = 1, and deg0∇fi = 0, for all i.

In the present paper we will use tools from Morse theory and singularity
theory to prove several extensions of the previous formula for the setting of
real analytic mappings with non-isolated singularity. Our formulae relates
the Euler-Poincaré number of the Milnor fibers with the Euler-Poincaré
number of the singular link. We will assume that the analytic maps satisfies
the Milnor conditions (a) and (b) defined by D. Massey in [Ma], so it implies
the existence of the tube Milnor fibration like in (1) above. These conditions
seem to be strong in the setting of real analytic mappings, but it is not diffi-
cult to show that any holomorphic function satisfies them. See Example 2.6
for further details. Therefore, our formulae also provide an extension of Mil-
nor’s formula (see [Mi], page 64) for the case of holomorphic functions with
non-isolated singularity. We will also answer a question stated by Milnor in
[Mi], page 100, (see below) under these more general Milnor conditions (a)
and (b). Let us remind this conjecture below:

“ Note that any polynomial mapping R
n → R

k with isolated singularity
at origin can be composed with the projection R

k → R
k−1 to obtain a new

mapping R
n → R

k−1, also with isolated singularity at origin ”.

Conjecture 1.2 ([Mi], page 100). The fiber of the fibration associated with
this new mapping is homeomorphic to the product of the old fiber with the
unit interval.

We should say that as far as we know this problem was approached by
A. Jacquemard in [Ja] under different hypotheses that cover the isolated
singular case as our hypotheses do.

The paper is organized as follows. In section 2, we remind the definition of
Milnor’s conditions (a) and (b) and recall the proof of Milnor’s fibration the-
orem. Section 3 contains some auxiliary lemmas about subanalytic sets. In
section 4, we state basic results for mappings satisfying Milnor’s conditions.
In section 5, we study the behavior of some critical points on the boundary
of the Milnor fiber. In section 6, we consider a mapping satisfying Milnor’s
conditions (a) and (b), give a proof of Milnor’s conjecture stated above and
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study the Euler-Poincaré numbers of the Milnor fibers of the mappings given
by compositions of this initial mapping and projections. In section 7, we still
consider these mappings and we relate the Euler-Poincaré number of their
Milnor fibers to the Euler-Poincaré number of the links of their zero sets.
In section 8, we establish several formulae for the Euler-Poincaré number of
semi-analytic sets defined by the components of the initial mapping. Last
section contains some applications and examples.

Acknowledgments. Computations are made in section 9, they have been
carried out by a program, based on the Eisenbud-Levine-Khimshiashvili
formula, written by A.  Lecki. The authors are very grateful to him and Z.
Szafraniec for giving them this program.

The authors thank the USP-Cofecub project “UcMa133/12 - Structure
fibrée de l’espace au voisinage des singularits des applications”.

The first author is partially supported by the program “Catédras Lévi-
Strauss − USP/French Embassy, no. 2012.1.62.55.7”.

2. Milnor’s conditions (a) and (b)

In this section we will follow the definitions and results given by D. Massey
in [Ma].

Let F = (f1, . . . , fk) : (Rn, 0) → (Rk, 0) be an analytic map, 2 ≤ k ≤ n−1,
V = F−1(0) and ΣF be the set of critical points of F , i.e., the set of points
where the gradients ∇f1, . . . ,∇fk are linearly dependent. Of course, here
and in the rest of the paper we assume that F is not constant.

Let ρ be the square of the distance function to the origin and denote by
ΣF,ρ the set of critical points of the pair (F, ρ), i.e., the set of points where
the gradients ∇ρ,∇f1, . . . ,∇fk are linearly dependent.

It follows by definition that ΣF ⊆ ΣF,ρ.

Definition 2.1. [Ma]Given F and ρ as above.

(1) We say that F satisfies Milnor’s condition (a) at the origin, if ΣF ⊂
V in a neighborhood of the origin.

(2) We say that F satisfies Milnor’s condition (b) at the origin, if 0 is

isolated in V ∩ ΣF,ρ \ V in a neighborhood of the origin.

Next example shows that the Milnor condition (a) is not enough to ensure
the existence of Milnor’s fibration.

Example 2.2. This example is inspired by examples in [CSS].
Let f : (R3, 0) → (R2, 0), f(x, y, z) = (x2z + y2, x). It is easy to see that

Σf = {(0, 0, z) : z ∈ R} ⊆ V and so Milnor’s condition (a) holds. However,
for any δ > 0 we have that the fibers f−1(δ, 0) 6= f−1(−δ, 0).

Remark 2.3. It follows from definition 2) the equivalence:
The mapping F satisfies Milnor’s condition (b) at origin if and only if

there exist ǫ0 > 0 such that, for each 0 < ǫ ≤ ǫ0 we have Bǫ∩V ∩(ΣF,ρ \ V ) ⊆



Topology of real Milnor fibrations for non-isolated singularities 5

{0} if and only if for each ǫ > 0 small enough, there exist δ > 0, 0 < δ ≪ ǫ
such that the restriction map F| : Sn−1

ǫ ∩ F−1(Bp
δ \ {0}) → Bp

δ \ {0} is a

smooth submersion (and onto, if the link of F−1(0) is not empty).

We say that ǫ > 0 is a Milnor radius for F at origin, provided that
Bǫ ∩ (ΣF − V ) = ∅, and Bǫ ∩ V ∩ (ΣF,ρ \ V ) ⊆ {0}, where Bǫ denotes the
closed ball in R

n with radius ǫ.

Consequently under Milnor’s conditions (a) and (b), we can conclude that
for all regular values close to the origin the respective fibers into the closed
ǫ−ball are smooth and transverse to the sphere Sn−1

ǫ .

Theorem 2.4 ([Ma], page 284, Theorem 4.3 ). Let F : (f1, . . . , fk) :
(Rn, 0) → (Rk, 0) and ǫ0 > 0 be a Milnor’s radius for F at origin. Then,
for each 0 < ǫ ≤ ǫ0, there exist δ, 0 < δ ≪ ǫ, such that

(2) F| : Bǫ ∩ F
−1(Bp

δ \ {0}) → Bp
δ \ {0}

is the projection of a smooth locally trivial fiber bundle.

Proof. (Idea)
Since ǫ0 > 0 is a Milnor’s radius for F at origin, we have that ΣF ∩Bǫ0 ⊂

V ∩ Bǫ0 . It means that, for all 0 < ǫ ≤ ǫ0 the map F| : B̊ǫ \ V → Rk is a

smooth submersion in the open ball B̊ǫ.
From the Milnor condition (b), and the remark above, it follows that: for

each ǫ there exists δ, 0 < δ ≪ ǫ, such that

F| : Sn−1
ǫ ∩ F−1(Bδ − {0}) → Bδ − {0}

is a submersion on the boundary Sn−1
ǫ of the closed ball Bǫ.

Now, combining these two conditions we have that, for each ǫ, we can
choose δ such that

F| : Bǫ ∩ F
−1(Bδ − {0}) → Bδ − {0}

is a proper smooth submersion. Applying the Ehresmann Fibration Theo-
rem for the manifold with boundary Bǫ, we get that it is a smooth locally
trivial fibration. �

Corollary 2.5. Let F : (f1, . . . , fk) : (Rn, 0) → (Rk, 0) and ǫ0 > 0 be a
Milnor’s radius for F at origin. Then, for each 0 < ǫ ≤ ǫ0, there exists δ,
0 < δ ≪ ǫ, such that

(3) F| : Bǫ ∩ F
−1(Sp−1

δ ) → Sp−1
δ

is the projection of a smooth locally trivial fiber bundle.

Example 2.6. Let f : (Cn, 0) → (C, 0) be a holomorphic function germ,
then it satisfies the Milnor conditions (a) and (b).
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In fact, it can be seen as an application of  Lojasiewicz’s inequality (see
[Lo]) which states that, in a small neighborhood of the origin, there are
constants C > 0 and 0 < θ < 1 such that

|f(x)|θ ≤ C‖∇f(x)‖.

It is easy to see that Milnor condition (a) holds. In [HL], page 323, Hamm
and Lê proved that the  Lojasiewicz inequality implies Thom af−condition for
a Whitney (a) stratification of V. Therefore, Milnor’s condition (b) follows.

Example 2.7. Let F : (Rn, 0) → (Rk, 0) be an analytic map-germ with
an isolated singular point at origin. Then, Milnor’s conditions (a) and (b)
above hold. In fact, Milnor’s condition (b) follows since the zero locus is
transversal to all small spheres.

3. Some results about subanalytic sets

Let us recall some terminology and results on the critical points of a
function on the link of a real subanalytic set. The situation is described
as follows. Let Y ⊂ R

n be a smooth subanalytic set of dimension d that
contains 0 in its closure and let g : Rn → R be a smooth subanalytic function
such that g(0) = 0.

Lemma 3.1. The critical points of g|Y lie in {g = 0} in a neighborhood of
the origin.

Proof. By the Curve Selection Lemma, we can assume that there is a smooth
subanalytic curve p : [0, ν[→ Y such that p(0) = 0 and p(t) is a critical point
of g|Y for t ∈]0, ν[. Therefore we have

(g ◦ p(t))′ = 〈∇g(p(t)), p′(t)〉 = 0,

since p′(t) is a tangent vector to Y at p(t). This implies that g ◦ p(t) =
g(p(0)) = 0. �

Now we are interested in the critical points of g|Y ∩Sε
, where 0 < ε ≪ 1,

lying in {g 6= 0}. Let q be such a critical point. By the previous lemma, we
know that ∇g|Y (q) 6= 0 and so there exists λ(q) 6= 0 such that

∇g|Y (q) = λ(q)∇ρ|Y (q).

Definition 3.2. We say that q ∈ {Y ∩ Sε} is an outwards-pointing (resp.
inwards-pointing) critical point for g|Y ∩Sε

if λ(q) > 0 (resp. λ(q) < 0).

Lemma 3.3. The point q ∈ {g 6= 0} is an outwards-pointing (resp. inwards-
pointing) critical point for g|Y ∩Sε

if and only if g(q) > 0 (resp. g(q) < 0).

Proof. Let us assume that λ(q) > 0. By the Curve Selection Lemma, there
exists a smooth subanalytic curve p : [0, ν[→ Y passing through q such that
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p(0) = 0 and for t 6= 0, p(t) is a critical point of g|Y ∩S‖p(t)‖
with λ(p(t)) > 0.

Therefore we have:

(g◦p)′(t) = 〈∇g|Y (p(t)), p′(t)〉 = λ(p(t))〈∇ρ|Y (p(t)), p′(t)〉 = λ(p(t))(ρ◦p)′(t).

But (ρ◦p)′ > 0 for otherwise (ρ◦p)′ ≤ 0 and ρ◦p would be decreasing. Since
ρ(p(t)) tends to 0 as t tends to 0, this would imply that ρ ◦ p(t) ≤ 0, which
is impossible. Hence we can conclude that (g ◦ p)′ > 0 and g ◦ p is strictly
increasing. Since g ◦ p(t) tends to 0 as t tends to 0, we see that g ◦ p(t) > 0
for t > 0. Similarly if λ(q) < 0 then g(q) < 0. �

4. Basic results on Milnor’s conditions (a) and (b)

In this section we consider F = (f1, . . . , fk) : (Rn, 0) → (Rk, 0), 1 ≤ k ≤
n−1, an analytic mapping. Let us consider l ∈ {1, . . . , k} and I = {i1, . . . , il}
an l-tuple of pairwise distinct elements of {1, . . . , k} and let us denote by
fI the mapping (fi1 , . . . , fil) : (Rn, 0) → (Rl, 0). Suppose that F satisfies
Milnor condition (a) at the origin. Then, we have

ΣfI ⊂ ΣF ⊂ F−1(0) ⊂ f−1
I (0),

and so by definition the map fI also satisfies Milnor’s condition (a) at the
origin.

It is clear that ΣfI ,ρ ⊂ ΣF,ρ. We will show below that if F satisfies Mil-
nor’s condition (b) at the origin, then any mapping fI also satisfies Milnor’s
condition (b) at the origin.

Lemma 4.1. Assume that F satisfies Milnor’s conditions (a) and (b) at the
origin. Then, for l ∈ {1, . . . , k} and I = {i1, . . . , il} ⊂ {1, . . . , k}, the maps
fI : (Rn, 0) → (Rl, 0) satisfies Milnor’s conditions (a) and (b).

Proof. If a map fI does not satisfy condition (b), then 0 is not isolated

in f−1
I (0) ∩ ΣfI ,ρ \ f

−1
I (0). This implies that there exists a sequence of

points (yn)n∈N tending to the origin such that fI(yn) = 0 and yn belongs to

ΣfI ,ρ \ f
−1
I (0).

If yn belongs to ΣfI ,ρ \ f
−1
I (0), there exists a sequence of points (ykn)k∈N

tending to yn such that fI(y
k
n) 6= 0 and the gradients ∇ρ,∇fi1 , . . . ,∇fil are

linearly dependent at the points ykn. Hence the gradients ∇ρ,∇fi1 , . . . ,∇fil
are also linearly dependent at yn. But, since in a neighborhood of the origin
ρ has no critical point on f−1

I (0)\ΣfI by Lemma 3.1, we see that yn belongs
to ΣfI if n is big enough and so, yn belongs to V because ΣfI ⊂ ΣF ⊂ V .

On the other hand, the points ykn’s belong to ΣF,ρ \ V as well, so yn lies

in ΣF,ρ \ V and therefore 0 is not isolated in V ∩ ΣF,ρ \ V . �

Corollary 4.2. There exists ǫ0 > 0 such that, for all l ∈ {1, . . . , k} and
I = {i1, . . . , il} ⊂ {1, . . . , k}, the maps fI : (Rn, 0) → (Rl, 0) have ǫ0 as a
Milnor’s radius.
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5. Critical points on the boundary of the Milnor fibre

From now on, we consider an analytic mapping F : (f1, . . . , fk) : (Rn, 0) →
(Rk, 0) with a Milnor’s radius ǫ > 0, V = F−1(0), the mapping φ =
(f1, . . . , fk−1) and g = fk. By Lemma 4.1, these two maps also satisfy
Milnor’s conditions (a) and (b).

In this section we will study the behaviour of the critical points of the
function g restricted to the boundary of the Milnor fibre of the mapping φ.

The next lemma is inspired by [Sz1], pages 411–412.

Lemma 5.1. There exist a positive constant C and an integer N such that
‖F (x)‖ ≥ C‖x‖N for every x ∈ ΣF,ρ \ V sufficiently close to the origin.

Proof. Let

Γ =
{

(x, r, y) ∈ R
n × R× R

k | ρ(x) = r, x ∈ ΣF,ρ and y = F (x)
}

,

and let π : R
n × R × R

k → R × R
k be the projection on the last k + 1

components. Since π|Γ is proper, then Z = π(Γ) is a closed semi-analytic

set. Let us write Z1 = R×{0} ⊂ R×R
k and let Z2 be the closure of Z \Z1.

Then 0 is isolated in Z1 ∩Z2. If it is not the case, this means that there is a
sequence of points zi = (ri, 0) in Z1 tending to 0 such that zi belongs to Z2.

Hence for each i, there is a sequence of points (zji )j∈N in Z \ Z1 tending to

zi. Let us write zji = (rji , y
j
i ). Since zji is in Z \ Z1, this implies that there

exists xji in ΣF,ρ such that F (xji ) = yji . Taking a subsequence if necessary,

we can assume that (xji ) tends to a point xi which belongs to V because

F (xji ) = yji tends to 0 and such that ρ(xi) = ri because rji = ρ(xji ) tends to

ri. But since ri tends to 0, this implies that 0 is not isolated in V ∩ΣF,ρ \ V ,
which contradicts Milnor’s condition (b).

By the  Lojasiewicz inequality, there exist a constant C > 0 and an integer
N > 0 such that

‖y‖ ≥ CrN ,

for (r, y) ∈ Z2 sufficiently close to the origin. So if x ∈ ΣF,ρ and F (x) 6= 0,

then ‖F (x)‖ ≥ Cρ(x)N if ‖x‖ is small enough. �

As a consequence, we see that for ǫ > 0 small enough, there exists δǫ > 0
such that if 0 < ‖δ‖ < δǫ, then F−1(δ) intersects Sǫ transversally.

Remark 5.2. The lemma above can the generalized by changing the square
of the distance function to the origin with any subanalytic function ρ smooth,
positive and proper, such that locally ρ−1(0) = 0.

Corollary 5.3. For ǫ > 0 small enough, there exists δǫ > 0 such that if

0 < ‖δ‖ < δǫ, then the critical points of g|φ−1(δ)∩Sǫ
lie in {|g| ≥

√
3
2 Cǫ

N}.

Proof. Applying the above lemma and consequence to the mapping φ =
(f1, . . . , fk−1), we see that there exist a constant D > 0 and an integer
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M > 0 such that
‖φ(x)‖ ≥ D‖x‖M ,

for x ∈ Σφ,ρ \ φ−1(0) sufficiently close to the origin. Let us fix ǫ > 0
sufficiently small so that Sǫ intersects φ−1(0) \ Σφ transversally. If δ ∈

R
k−1 is such that 0 < ‖δ‖ ≤ D

2 ǫ
M , then Sǫ intersects the fibre φ−1(δ)

transversally by the above inequality. Let us choose δ ∈ R
k−1 such that

0 < ‖δ‖ ≤ Min{D2 ǫ
M , C2 ǫ

N}. If x is a critical point g|φ−1(δ)∩Sǫ
then x

belongs to ΣF,ρ \ V and so ‖F (x)‖ ≥ CǫN . This implies that

g(x)2 ≥ C2ǫ2N − ‖φ‖2 ≥ C2ǫ2N −
C2

4
ǫ2N ,

and so |g(x)| ≥
√
3
2 Cǫ

N . �

Now we can return to our map F : (φ, g) : (Rn, 0) → (Rk, 0). Let us
choose ǫ and δ ∈ R

k−1 such that 0 < ‖δ‖ ≪ ǫ ≪ 1 and the critical points of

g|φ−1(δ)∩Sǫ
lie in {|g| ≥

√
3
2 Cǫ

N}. �

Lemma 5.4. The critical points of g|φ−1(δ)∩Sǫ
in {g ≥

√
3
2 Cǫ

N} are outwards-

pointing and the critical points of g|φ−1(δ)∩Sǫ
in {g ≤ −

√
3
2 Cǫ

N} are inwards-
pointing.

Proof. Let us prove the statement about the critical points in {g ≥
√
3
2 Cǫ

N}.
Let us remark first that such a critical point is not a critical point of g|φ−1(δ)

because Σφ,g ⊂ φ−1(0) ∩ g−1(0) in a neighborhood of the origin. Therefore
if the statement is not verified, then this means that we can find a sequence

of points (qn)n∈N in Sǫ ∩ {g ≥
√
3
2 Cǫ

N} such that φ(qn) tends to 0 and qn is
an inwards-pointing critical point of g|φ−1(φ(qn))∩Sǫ

. Taking a subsequence if

necessary, this produces a point q in φ−1(0) ∩ Sǫ such that g(q) ≥
√
3
2 Cǫ

N

and q is a critical point of g restricted to φ−1(0) \ Σφ ∩ Sǫ, because

Σφ ⊂ ΣF ⊂ F−1(0) ⊂ g−1(0).

Futhermore as the limit of a sequence of inwards-pointing critical points, q
is either inwards-pointing, which is impossible by the previous lemma, or is
a critical point of g restricted to φ−1(0) \ Σφ, which is also impossible by
Lemma 3.1. �

6. Topology of the Milnor fibre

We keep the notations of the previous section. We denote by MF the
Milnor fibre of the mapping F and by Mφ the Milnor fibre of φ. Here we
need to assume that k ≥ 3 so that the Milnor fibre of φ is well-defined.

Theorem 6.1 (Milnor’s conjecture, [Mi], page 100). The fibre Mφ is home-
omorphic to MF × [−1, 1].

Proof. Let us choose ǫ ∈ R and δ ∈ R
k such that:



10 Nicolas Dutertre and Raimundo Araújo dos Santos

(1) 0 < ‖δ‖ ≪ ǫ≪ 1,
(2) Mφ is homeomorphic to φ−1(δ) ∩Bǫ,
(3) MF is homeomorphic to φ−1(δ) ∩ g−1(0) ∩Bǫ,
(4) the critical points of g restricted to φ−1(δ) ∩ Sǫ lie in {g 6= 0}, are

outwards-pointing in {g > 0} and inwards-pointing in {g < 0}.

Note that g|φ−1(δ)∩B̊ǫ
has no critical points because Σφ,g ⊂ φ−1(0) ∩ g−1(0).

Then by Morse theory for manifolds with boundary (see [H]), φ−1(δ)∩Bǫ ∩
{g ≥ 0} is homeomorphic to φ−1(δ) ∩ Bǫ ∩ {g = 0} × [0, 1] and φ−1(δ) ∩
Bǫ ∩ {g ≤ 0} is homeomorphic to φ−1(δ)∩Bǫ ∩ {g = 0}× [−1, 0]. Therefore
φ−1(δ)∩Bǫ is homeomorphic to φ−1(δ)∩Bǫ ∩{g = 0}× [−1, 1] because it is
homeomorphic to the gluing of φ−1(δ)∩Bǫ∩{g ≥ 0} and φ−1(δ)∩Bǫ∩{g ≤ 0}
along φ−1(δ) ∩Bǫ ∩ {g = 0}. �

Corollary 6.2. Under the above conditions we have χ(MF ) = χ(Mφ).

Proceeding by induction on the number of components of the mapping,
we can easily prove the following corollary.

Corollary 6.3. Let l ∈ {2, . . . , k} and let I = {i1, . . . , il} be an l-tuple of
pairwise distinct elements of {1, . . . , k}. Then we have χ(MfI ) = χ(MF ).

It remains to consider the fibres of the function fj : (Rn, 0) → (R, 0).

Here such a function admits two Milnor fibres : M+
f{j}

= f−1
j (δ) ∩ Bǫ and

M−
f{j}

= f−1
j (−δ) ∩Bǫ, where 0 < δ ≪ ǫ≪ 1.

Let us write for instance f = f1 and g = f2. Using the same argument as
above, we see that M+

f is homeomorphic to M(f,g) × [−1, 1] and that M−
f is

also homeomorphic M(f,g) × [−1, 1].

Corollary 6.4. For every j ∈ {1, . . . , k}, we have χ(M+
f{j}

) = χ(M−
f{j}

) =

χ(MF ).

7. Topology of the links

In this section we give several relations between the Euler characteristics
of the links of f−1

I (0) and the Euler characteristic of the Milnor fibre of F .
Let us choose l ∈ {1, . . . , k} and an l-tuple I = {i1, . . . , il} of pairwise

distinct elements of {1, . . . , k}. We write J = {i1, . . . , il−1} and g = fil . We
also denote by LI (resp. LJ) the link of the zero-set of fI (resp. fJ). If
l = 1 then J = ∅ and we put fJ = 0.

Proposition 7.1. We have:

χ(LJ) − χ(LI) = (−1)n−l2χ(MF ).

Proof. Let us write VJ = f−1
J (0). By a deformation argument due to Milnor,

VJ ∩g
−1(δ)∩Bǫ is homeomorphic to VJ ∩{g ≥ δ}∩Sǫ and VJ ∩g

−1(−δ)∩Bǫ
is homeomorphic to VJ ∩ {g ≤ −δ} ∩ Sǫ for 0 < δ ≪ ǫ ≪ 1. By the
Mayer-Vietoris sequence, we can write:

χ(VJ ∩ Sǫ) = χ(VJ ∩ Sǫ ∩ {g ≥ δ}) + χ(VJ ∩ Sǫ ∩ {g ≤ −δ})+
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χ(VJ ∩ Sǫ ∩ {−δ ≤ g ≤ δ}) − χ(VJ ∩ Sǫ ∩ {g = δ}) − χ(VJ ∩ Sǫ ∩ {g = −δ}).

By the above remark and Corollaries 6.3 and 6.4, the first two terms of the
right-hand side of this equality are equal to χ(MF ). The third term is equal
to χ(LI) because by Durfee’s result [Dur], LI is a retract by deformation of
VJ ∩Sǫ∩{−δ ≤ g ≤ δ}. Furthermore, if n− l is even then the two last Euler
characteristics are equal to 0 because VJ∩Sǫ∩{g = δ} and VJ∩Sǫ∩{g = −δ}
are odd-dimensional compact manifolds. If n − l is odd, they are equal to
2χ(MF ) because they are boundaries of odd-dimensional Milnor fibres of
fI . �

Corollary 7.2. Let j ∈ {1, . . . , k}. If n is even, then we have χ(L{j}) =
2χ(MF ) and if n is odd, then we have χ(L{j}) = 2 − 2χ(MF ).

Proof. We apply the previous proposition to the case l = 1. In this case, if
n is even then χ(LJ) = 0 and if n is odd then χ(LJ) = 2. �

Corollary 7.3. Let l ∈ {3, . . . , k} and let I = {i1, . . . , il} ⊂ {1, . . . , k}. Let
K be an (l − 2)-tuple of pairwise distincts elements of I. Then we have:
χ(LK) = χ(LJ).

Proof. Let J be an (l − 1)-tuple built form adding to K one element of
I \K. By the previous proposition, we see that χ(LJ) − χ(LI) = χ(LJ) −
χ(LK). �

So, in order to express the Euler characteristics of all the links LI , we just
need to compute the Euler characteristic of a link LI where #I = 2. Let us
set I = {1, 2}. By Proposition 7.1, we find that

χ(LI) = χ(L{1}) − (−1)n2χ(MF ).

So if n is even, we see that χ(LI) = 0 and if n is odd, we see that χ(LI) = 2.
We can summarize all these results in the following theorem.

Theorem 7.4. Let l ∈ {1, . . . , k} and let I = {i1, . . . , il} be an l-tuple of
pairwise distinct elements of {1, . . . , k}. If n is even, then we have:

χ(LI) = 2χ(MF ) if l is odd and χ(LI) = 0 if l is even.

If n is odd, then we have:

χ(LI) = 2 − 2χ(MF ) if l is odd and χ(LI) = 2 if l is even.

�

8. Topology of related semi-analytic sets

In this section, we establish formulas for the Euler characteristics of sev-
eral semi-analytic sets defined from the components of the map F . We are
interested first in the sets of the form

f−1
I (δ) ∩ {fj1ǫ10, . . . , fjsǫs0} ∩Bǫ,
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where I = {i1, . . . , il} is an l-tuple of pairwise distinct elements of {1, . . . , k},
l + s ≤ k, δ is a sufficiently small regular value of fI , j1, . . . , js are pairwise
distinct elements of {1, . . . , k} \ I and for i ∈ {1, . . . , s}, ǫi ∈ {≤,≥}.

Proposition 8.1. We have:

χ
(

f−1
I (δ) ∩ {fj1ǫ10, . . . , fjsǫs0} ∩Bǫ

)

= χ(MF ).

Proof. We prove the result by induction on s. Let us state the induction
hypothesis IH(s) properly.

Let s ∈ {1, . . . , k}. For any l ∈ {1, . . . , k} such that l+s ≤ k, for any l-tuple
I = {i1, . . . , il} of pairwise distinct elements of {1, . . . , k}, for any s-tuple
{j1, . . . , js} of pairwise distinct elements of {1, . . . , k} \ I, we have

χ
(

f−1
I (δ) ∩ {fj1ǫ10, . . . , fjsǫs0} ∩Bǫ

)

= χ(MF ),

where δ is a sufficiently small regular value of fI and for i ∈ {1, . . . , s},
ǫi ∈ {≤,≥}.

Let us prove IH(1). By the same argument of Theorem 6.1, we can apply
Morse theory for manifolds with boundary to fj1 restricted to f−1

I (δ) ∩ Bǫ,
to find that

χ
(

f−1
I (δ) ∩ {fj1 ≥ 0} ∩Bǫ

)

− χ
(

f−1
I (δ) ∩ {fj1 = 0} ∩Bǫ

)

= 0

and

χ
(

f−1
I (δ) ∩ {fj1 ≤ 0} ∩Bǫ

)

− χ
(

f−1
I (δ) ∩ {fj1 = 0} ∩Bǫ

)

= 0.

Now by Corollary 6.3 and Corollary 6.4 we get the result.

Let us assume that IH(s − 1) is satisfied and let us prove IH(s). By
Morse theory for manifold with corners (see [Du3]) applied to fjs restricted

to f−1
I (δ) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10} ∩Bǫ, we find that

χ
(

f−1
I (δ) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≥ 0} ∩Bǫ

)

−

χ
(

f−1
I (δ) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = 0} ∩Bǫ

)

= 0,

and

χ
(

f−1
I (δ) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≤ 0} ∩Bǫ

)

−

χ
(

f−1
I (δ) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = 0} ∩Bǫ

)

= 0.

But, by the induction hypothesis IH(s− 1), we know that

χ
(

f−1
I (δ) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = 0} ∩Bǫ

)

= χ(MF ).

�

Now we look at the sets of the form

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ,

where δ is a sufficiently small regular value of fjs.
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Lemma 8.2. We have:

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ

)

=

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = −δ} ∩ Sǫ

)

.

Proof. We prove the result by induction on s. Let us state the induction
hypothesis IH(s) properly.

Let s ∈ {1, . . . , k}. For any l ∈ {1, . . . , k} such that l+s ≤ k, for any l-tuple
I = {i1, . . . , il} of pairwise distinct elements of {1, . . . , k}, for any s-tuple
{j1, . . . , js} of pairwise distinct elements of {1, . . . , k} \ I, we have

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ

)

=

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = −δ} ∩ Sǫ

)

,

where δ is a sufficiently small regular value of fjs and for i ∈ {1, . . . , s− 1},
ǫi ∈ {≤,≥}.

Let us prove first IH(1). This is easy because f−1
I (0) ∩ {fj1 = δ} ∩ Sǫ

is the boundary of the manifold f−1
I (0) ∩ {fj1 = δ} ∩ Bǫ and so its Euler

characteristic is 0 if dimf−1
I (0) is odd and it is 2χ(MF ) if dimf−1

I (0) is even.
Let us assume that IH(1), . . ., IH(s−1) are satisfied and let us prove IH(s).

If dimf−1
I (0) is odd then dimf−1

I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ
is also odd. But f−1

I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ is an odd-
dimensional manifold with corners so, after rounding the corners, we can
write

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ

)

=

1

2
χ
(

∂
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ

)

)

.

By the Mayer-Vietoris sequence, we see that the Euler characteristic of the
right-hand side is a linear combination, with coefficients equal to ±1, of the
Euler characteristics of sets of the form:

f−1
I (0) ∩ {fj1ν10, . . . , fjs−1νs−10, fjs = δ} ∩ Sǫ,

where νi ∈ {≤,=,≥} for i = 1, . . . , s − 1 and at least one of the νi’s is the
sign =. Hence we can apply the induction hypothesis to obtain the result.

If dimf−1
I (0) is even then dimf−1

I (0)∩{fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ}∩Sǫ
is also even. But f−1

I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Bǫ is an odd-
dimensional manifold with corners so, after rounding the corners, we can
write

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩Bǫ

)

=

1

2
χ
(

∂
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩Bǫ

)

)

.

We know by the previous proposition that the left-hand side of this equality
does not depend on the sign of δ. Let us examine the Euler characteristic of
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the right-hand side. By the Mayer-Vietoris sequence, it is equal to a linear
combination, with coefficients equal to ±1, of the Euler characteristic of

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ,

the Euler characteristics of sets of the type:

f−1
I (0) ∩ {fj1ν10, . . . , fjs−1νs−10, fjs = δ} ∩Bǫ,

where νi ∈ {≤,=,≥} for i = 1, . . . , s − 1, and the Euler characteristics of
sets of the type:

f−1
I (0) ∩ {fj1ν10, . . . , fjs−1νs−10, fjs = δ} ∩ Sǫ,

where νi ∈ {≤,=,≥} for i = 1, . . . , s − 1 and at least one of the νi’s is the
sign =. Since the Euler characteristics of the sets of the first type do not
depend on the sign of δ by the previous proposition, and those of the sets
of the second type do not neither by the induction hypothesis, we get the
result. �

Now we study the links of the sets of the form

f−1
I (0) ∩ {fj1ǫ10, . . . , fjsǫs0},

where I = {i1, . . . , il} ⊂ {1, . . . , k}, l+ s ≤ k, j1, . . . , js are pairwise distinct
elements of {1, . . . , k} \ I and for i ∈ {1, . . . , s}, ǫi ∈ {≤,≥}.

Theorem 8.3. We have:

χ (LI ∩ {fj1ǫ10, . . . , fjsǫs0}) = χ(MF ),

if n is even and

χ (LI ∩ {fj1ǫ10, . . . , fjsǫs0}) = 2 − χ(MF ),

if n is odd.

Proof. We prove the result by induction on s. Let us state the induction
hypothesis IH(s) properly.

Let s ∈ {1, . . . , k}. For any l ∈ {1, . . . , k} such that l+s ≤ k, for any l-tuple
I = {i1, . . . , il} of pairwise distinct elements of {1, . . . , k}, for any s-tuple
{j1, . . . , js} of pairwise distinct elements of {1, . . . , k} \ I, we have

χ (LI ∩ {fj1ǫ10, . . . , fjsǫs0}) = χ(MF ),

if n is even and

χ (LI ∩ {fj1ǫ10, . . . , fjsǫs0}) = 2 − χ(MF ),

if n is odd, where for i ∈ {1, . . . , s}, ǫi ∈ {≤,≥}.

Let us prove first IH(1). We have the following equality:

χ (LI ∩ {fj1 ≥ 0}) = χ
(

f−1
I (0) ∩ {fj1 ≥ δ} ∩ Sǫ

)

+

χ
(

f−1
I (0) ∩ {0 ≤ fj1 ≤ δ} ∩ Sǫ

)

− χ
(

f−1
I (0) ∩ {fj1 = δ} ∩ Sǫ

)

,

where 0 < δ ≪ ǫ ≪ 1. As already explained above, by a deformation
argument due to Milnor, f−1

I (0)∩ f−1
j1

(δ)∩Bǫ is homeomorphic to f−1
I (0)∩
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{fj1 ≥ δ} ∩ Sǫ. So the first term of the right-hand side is equal to χ(MF ).

By Durfee’s result, f−1
I (0) ∩ {0 ≤ fj1 ≤ δ} ∩ Sǫ retracts by deformation

to f−1
I (0) ∩ {fj1 = 0} ∩ Sǫ and so the second term is equal to χ(LI∪{j1}).

Similarly we have

χ(LI ∩ {fj1 ≤ 0}) = χ(MF ) + χ(LI∪{j1}) − χ
(

f−1
I (0) ∩ {fj1 = −δ} ∩ Sǫ

)

.

Therefore we can conclude by the previous lemma that

χ (LI ∩ {fj1 ≥ 0}) = χ (LI ∩ {fj1 ≤ 0}) .

Applying the Mayer-Vietoris sequence, we can write:

χ (LI) = χ (LI ∩ {fj1 ≥ 0}) + χ (LI ∩ {fj1 ≤ 0}) − χ (LI ∩ {fj1 = 0}) .

It is easy to conclude using Theorem 7.4.

Let us assume that IH(1),. . ., IH(s−1) are satisfied and let us prove IH(s).
We have the following equality:

χ
(

LI ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≥ 0}
)

=

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≥ δ} ∩ Sǫ

)

+

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, 0 ≤ fjs ≤ δ} ∩ Sǫ

)

−

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ

)

,

where 0 < δ ≪ ǫ≪ 1. By an adaptation of Milnor’s deformation argument,
we see that

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩Bǫ,

is homeomorphic to

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≥ δ} ∩ Sǫ.

So the first term of the right-hand side is equal to χ(MF ) by Proposition
8.1. By Durfee’s result,

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, 0 ≤ fjs ≤ δ} ∩ Sǫ,

retracts by deformation to

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = 0} ∩ Sǫ,

and so the second term is equal to χ(LI∪{js} ∩ {fj1ǫ10, . . . , fjs−1ǫs−10}).
Applying the previous lemma as for IH(1), we can conclude that

χ
(

LI ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≥ 0}
)

=

χ
(

LI ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≤ 0}
)

.

Applying the Mayer-Vietoris sequence, we can write:

χ
(

LI ∩ {fj1ǫ10, . . . , fjs−1ǫs−10}
)

=

χ
(

LI ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≥ 0}
)

+

χ
(

LI ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≤ 0}
)

−

χ
(

LI ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = 0}
)

.
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It is easy to conclude using the induction hypothesis IH(s− 1). �

Corollary 8.4. If s ≥ 2 then we have:

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ

)

= χ(MF ).

Proof. We use the following equality already mentioned above:

χ
(

LI ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≥ 0}
)

=

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs ≥ δ} ∩ Sǫ

)

+

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, 0 ≤ fjs ≤ δ} ∩ Sǫ

)

−

χ
(

f−1
I (0) ∩ {fj1ǫ10, . . . , fjs−1ǫs−10, fjs = δ} ∩ Sǫ

)

,

where 0 < δ ≪ ǫ ≪ 1. The term of the left-hand side and the second term
of the right-hand side are equal by the previous theorem and the first term
of the left-hand side is equal to χ(MF ), as already explained in the proof of
the previous theorem. �

9. Applications

In [Sz2] Z. Szafraniec proved interesting formulae relating the Euler num-
ber of the link of a weighted homogeneous real polynomial function f :
R
n → R, such that df(0) = 0, with the topological degrees of mappings

which are explicitly constructed in terms of f. Let us remind the main steps
and results.

Let f : Rn → R be a weighted homogeneous real polynomial function of
type (d1, · · · , dn; d), with df(0) = 0, and denote by L = {x ∈ Sn−1; f(x) =
0} the link of {f = 0}.

Let p be the smallest positive integer such that 2p > d and each di divides

p. Also denote by ai =
p

di
and

(4) ω =
x2a11

2a1
+ · · · +

x2ann

2an
.

Now consider g1 = f − ω and g2 = −f − ω.

Lemma 9.1 ([Sz2], page 242). Let Ii = ( ∂gi
∂x1

, · · · , ∂gi
∂xn

) be the ideal generated

by the partial derivatives of gi, for each i = 1, 2, in R[[x1, · · · , xn]]. Then,

dimR

R[[x1, · · · , xn]]

Ii
<∞.

In the case where f is homogeneous, i.e., the weight di = 1 for all i =
1, · · · , n, the author observed that the integer p = [d2 ] + 1 and

ω = (x2p1 + · · · + x2pn )/2p.

Now consider the mappings

(5) Hi = ∇gi : (Rn, 0) → (Rn, 0),
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for i = 1, 2. By the lemma above, we have that 0 ∈ R
n is isolated in H−1

i (0),
and so deg0Hi is well defined, for each i = 1, 2.

The next result relates the topological degrees of the mappings Hi with
the Euler number of the link L = f−1(0) ∩ Sn−1.

Theorem 9.2 ([Sz2], Theorem 5, page 244).

(6) χ(L) = 2 − (deg0H1 + deg0H2 + χ(Sn−1)).

If the degree of homogeneity d is odd, then is possible to do an involution
on the sphere Sn−1 and in this case we have that deg0H1 = deg0H2 and
the result above becomes:

Corollary 9.3 ([Sz2],Corollary 6, page 244). If d is odd then

(7) χ(L) = 2(1 − deg0H1) − χ(Sn−1).

In what follow we will use Szafraniec’s formulae and our previous formulae
to compute some examples.

Example 9.4. Consider f : (C3, 0) → (C, 0), f(x, y, z) = x2z+y2. It follows
from example 2.6 that Milnor’s conditions (a) and (b) are clearly satisfied.
In this case we can apply Sakamoto’s formula [Sa] to get that the Milnor
fiber Mf have the homotopy type of the 2−dimensional sphere S2, and so
χ(Mf ) = 2.

Let g = ℜ(f) : (R6, 0) → (R, 0) be the function given by the real part
of f. Observe that, since the dim(Σg) > 0, then the link is not a manifold,
therefore we can not find easily the Euler number of the link. Applying our
Theorem 7.4, we have that χ(Lg) = 2χ(Mf ) = 4, where Lg := g−1(0) ∩ S5

ǫ

is the link of real function g.

Denote x = x1+ix2, y = y1+iy2 and z = z1+iz2. Therefore, the real part
g = z1(x

2
1 − x22) − 2z2x1x2 + y21 − y22 is a weighted-homogeneous polynomial

function of type (2, 2, 3, 3, 2, 2; 6), and so we can apply Szafraniec’s formula
described above as follows:

It is easy to see that p = 6, a1 = a2 = a5 = a6 = 3, a3 = a4 = 2 and

ω =
x61
6

+
x62
6

+
y41
4

+
y42
4

+
z61
6

+
z62
6
.

It follows from (3) above that the mappings

H1 = (2x1z1 − 2z2x2 − x51,−2x2z1 − 2x1z2 − x52, 2y1 − y31,−2y2 − y32, x
2
1 −

x22 − z51 ,−2x1x2 − z52),
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H2 = (−2x1z1 + 2z2x2 − x51, 2x2z1 + 2x1z2 − x52,−2y1 − y31 , 2y2 − y32,−x
2
1 +

x22 − z51 , 2x1x2 − z52).

Now, computations shows that deg0Hj = −1, j = 1, 2 and by Szafraniec’s
formula (6) we have that

χ(Lg) = 2 − (−1 − 1 + 0) = 4,

and so, both results coincide.

Example 9.5. Let f = (P,Q) : (R3, 0) → (R2, 0) f(x, y, z) = (zx2 + zy2 +
y3, x). It is easy to see that Σf = {(0, 0, z); z ∈ R}, Σf ⊂ V, and so Milnor’s
condition (a) holds.

On the one hand we have that Q = x and since its link is diffeomorphic
to S1 then χ(LQ) = 0.

On the other hand, since P = zx2 + zy2 + y3 is homogeneous of degree

d = 3, then p = 2, g1 = zx2 + zy2 + y3 − ω, where ω = x4

4 + y4

4 + z4

4 and

H1 = (2xz − x3, 3y2 + 2yz − y3, x2 + y2 − z3).

It is easy to see that deg0H1 = −1 and by formula (7) above we have
χ(LP ) = 2. Therefore, Milnor’s condition (b) cannot be satisfied.

Example 9.6. The next example comes from [TYA], Example 5.1, Section
5. Applying a Thom-Sebastiani type Theorem as explained in Section 5 of
cited paper, it is possible to produce examples in all odd dimension.

Let f = (P,Q) : (R5, 0) → (R2, 0), f(x, y, z, u, v) = (y4 − z2x2 − x4 +
u2 − v2, xy + 2uv). It is easy to see that Σf ⊆ V. It was proved in [TYA]
that Milnor’s condition (b) follows as an application of the Curve Selection
Lemma.

Calculations shows that deg0Hi = 1, for i = 1, 2. So, χ(LQ) = −2,
χ(Mf ) = 2 and χ(∂Mf ) = 4. Therefore, we can claim that the boundary
of the Milnor fiber is not connected, since it contains at least two disjoint
copies of S2.

Remark 9.7. Let f1, · · · , fs : U ⊆ R
n → R be analytic functions with

f1(0) = · · · fs(0) = 0 and let f(x) = f1(x)2 + · · · + fs(x)2. The following
equality of analytic sets holds

{x ∈ U ; f1(x) = · · · = fs(x) = 0} = {x ∈ U ; f(x) = 0}.

In [Sz1] the author considered the function g(x) = f(x)−c(x21+ · · ·+x2n)k,
where c > 0 and k an integer, and showed that for k large enough the function
g has an isolated singular point at the origin. Moreover, he proved that for
all small radius ǫ, the following Poincaré-Hopf type formula holds true:

χ(Lf ) = χ({x ∈ Sn−1
ǫ ; f(x) = 0}) = 1 − deg0 ∇g.
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Therefore, connecting this result with our previous formulae, we can con-
clude that for a given analytic mapping satisfying Milnor’s conditions (a)
and (b) the Euler-Poincaré number of the Milnor fiber also satisfies a Poincaré-
Hopf type formula.
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