Topology of real Milnor fibration for non-isolated singularities - Archive ouverte HAL Access content directly
Journal Articles International Mathematics Research Notices Year : 2016

Topology of real Milnor fibration for non-isolated singularities

Abstract

We consider a real analytic map $F=(f_1,\ldots,f_k) : (\mathbb{R}^n,0) \rightarrow (\mathbb{R}^k,0)$, $2 \le k \le n-1$, that satisfies Milnor's conditions (a) and (b) introduced by D. Massey. This implies that every real analytic $f_I=(f_{i_1},\ldots,f_{i_l}) : (\mathbb{R}^n,0) \rightarrow (\mathbb{R}^l,0)$, induced from $F$ by projections where $1 \le l \le n-2$ and $I=\{i_1,\ldots,i_l\}$, also satisfies Milnor's conditions (a) and (b). We give several relations between the Euler characteristics of the Milnor fibre of $F$, the Milnor fibres of the maps $f_I$, the link of $F^{-1}(0)$ and the links of $f_I^{-1}(0)$.
Fichier principal
Vignette du fichier
TopRealMilnorFibration4.pdf (215.06 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00757428 , version 1 (26-11-2012)

Identifiers

Cite

Nicolas Dutertre, Raimundo N. Araújo dos Santos. Topology of real Milnor fibration for non-isolated singularities. International Mathematics Research Notices, 2016, 2016 (16), pp.4849-4866. ⟨10.1093/imrn/rnv286⟩. ⟨hal-00757428⟩
128 View
392 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More