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A Comparative Study of Fixation Density Maps
Ulrich Engelke*, Member, IEEE, Hantao Liu, Member, IEEE, Junle Wang, Patrick Le Callet, Member, IEEE,

Ingrid Heynderickx, Hans-Jürgen Zepernick, Senior Member, IEEE, and Anthony Maeder, Member, IEEE

Abstract— Fixation density maps (FDM) created from eye
tracking experiments are widely used in image processing ap-
plications. The FDM are assumed to be reliable ground truths of
human visual attention and as such one expects high similarity
between FDM created in different laboratories. So far, no studies
have analysed the degree of similarity between FDM from inde-
pendent laboratories and the related impact on the applications.
In this paper, we perform a thorough comparison of FDM from
three independently conducted eye tracking experiments. We
focus on the effect of presentation time and image content and
evaluate the impact of the FDM differences on three applications:
visual saliency modelling, image quality assessment, and image
retargeting. It is shown that the FDM are very similar and that
their impact on the applications is low. The individual experiment
comparisons, however, are found to be significantly different,
showing that inter-laboratory differences strongly depend on
the experimental conditions of the laboratories. The FDM are
publicly available to the research community.

Index Terms— Eye tracking, visual attention, fixation density
maps, inter-laboratory differences.

I. INTRODUCTION

THE human visual system (HVS) receives and processes

an abundant amount of information at any instant in time.

To reduce the complexity of scene analysis, several bottom-up

and top-down visual attention (VA) [1], [2] mechanisms are

deployed. The former is fast, signal driven, and independent

of a particular viewing task. The latter mechanism is slower as

it requires a voluntary gaze shift that is strongly dependent on

the viewing task and semantic information in the visual scene.

The two mechanisms together achieve that the most relevant

visual information is favoured in any given context.

Various image and video processing applications, including

source coding [3], retargeting [4], retrieval [5], and quality

assessment [6], integrate VA mechanisms with the aim to

improve system performance. To fully exploit the benefits

of VA-based processing systems, the visual locations that
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attract an observers attention need to be determined using

computational VA or saliency models [7]–[10]. These models

are often developed using a ground truth recorded in subjective

experiments. In some cases, such experiments require the

observers to manually label the interesting [11] or important

[12], [13] regions. Given the strong link between overt VA

and eye movements [14], [15], more frequently such a ground

truth is obtained through eye tracking experiments [16]. The

resulting gaze patterns can be post-processed into fixation

density maps (FDM) and the average FDM over all observers

are then considered to be reliable ground truths of overt VA.

There is a strong demand for publicly available image and

video eye tracking databases [10], [17]–[20] providing FDM.

Having a reliable ground truth for computational modelling

is common to other image processing applications, such as

image quality assessment, where standardised procedures exist

to perform subjective quality experiments. However, no stan-

dardised methodologies exist for eye tracking experiments.

Instead, researchers usually follow best-practice guidelines

[21]. The experiment outcomes hence depend on several

factors related to the observer panel and the experimental

design. The observers differ with respect to their cultural

background, age, gender, interest, and expectations. These

variations are the main reason why averaged FDM instead

of individual FDM are used. Environmental aspects further

affect the final FDM, such as the experimental procedures, the

eye tracker hardware, and the viewing conditions. The lack of

agreement on these experimental methodologies may lead to

considerable differences in the resulting FDM. To identify the

reliability of the FDM as a ground truth for image processing

applications it is thus crucial to evaluate the similarity of FDM

obtained from independent laboratories. Such inter-laboratory

comparisons are common in research disciplines related to

natural sciences and medical sciences. However, they are less

common in computer science where researchers often restrict

themselves to assessing the differences amongst observers

within an experiment [22], [23].

To the best of our knowledge, there are no comprehen-

sive studies on the differences of eye tracking data between

laboratories and the implications for image processing ap-

plications. In this article, we therefore study the degree to

which FDM of images differ between three experiments. These

experiments were not conducted conjointly for the purpose

of FDM comparison, but they were performed independently

with each experiment considering their FDM to be solid

ground truths for image processing. The goal here is therefore

not to compare FDM that were created using exactly the

same setup, but rather to analyse the differences amongst

FDM and to estimate the impact on the performance of image

processing applications. We further focus on the influence of
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TABLE I

REFERENCE IMAGES IN THE LIVE IMAGE QUALITY DATABASE [26].

# Name # Name # Name

1 bikes 11 house 21 sailing1

2 building2 12 lighthouse 22 sailing2

3 buildings 13 lighthouse2 23 sailing3

4 caps 14 manfishing 24 sailing4

5 carnivaldolls 15 monarch 25 statue

6 cemetry 16 ocean 26 stream

7 churchandcapitol 17 paintedhouse 27 studentsculpture

8 coinsinfountain 18 parrots 28 woman

9 dancers 19 plane 29 womanhat

10 flowersonih35 20 rapids

two factors: visual content and image presentation time. The

former factor can be assumed to have a strong impact since

the agreement may vary with the degree to which objects

in the scene attract the viewers’ attention. The latter factor

is of interest because the similarity between FDM may vary

with respect to the duration that the images are viewed. We

presented initial results on these issues in [24], based on two

experiments. In this article, we extend this work by a third

experiment and by providing a considerably more detailed

discussion and analysis using different similarity measures.

We further address the impact of FDM similarity on three

contemporary applications: visual saliency modelling, image

quality assessment, and image retargeting.

The remainder of the article is organised as follows. Section

II introduces the eye tracking experiments and Section III

describes the FDM similarity measures. Section IV provides a

detailed comparison of the FDM from the three experiments.

The influence of the FDM on three applications is discussed in

Section V. A discussion of the results is provided in Section

VI. Finally, conclusions are drawn in Section VII.

II. EYE TRACKING EXPERIMENTS

The eye tracking experiments were conducted in three

independent laboratories, i.e. at the School of Computing and

Mathematics at the University of Western Sydney (UWS),

Australia [18], the Man-Machine Interaction group of Delft

University of Technology (TUD), The Netherlands [19], and

the Image and Video Communications Group at IRCCyN of

the University of Nantes (UN), France [25].

A. Test images

The stimuli presented in all three experiments were the

29 original (reference) images from the LIVE image quality

database [26]. These images cover a wide range of content,

including, natural scenes, buildings, boats, humans, animals,

and written text. A list of all images is given in Table I with

the original names from the LIVE database.

B. Comparison of experimental procedures

An overview of the three experiments is presented in Table

II. We do not repeat all details here but instead highlight

differences amongst the experiments that can be expected to

be a dominant source of variability in the recorded data.

(a)

(b) (c)

Fig. 1. Eye trackers: (a) EyeTech TM3 (UWS) [30], (b) SMI iView X RED
(TUD) [28], and (c) SMI iView X Hi-Speed (UN) [29].

Amongst the major differences in the observer panel is the

number of participants, which ranges from 15 to 21. Gener-

ally, eye tracking data averaged over an observer population

becomes more stable with an increased number of participants

[21]. The average age between UWS and UN is considerably

different and may have an impact on the viewing behaviour

as people of different ages have different interests. No ages

were recorded in experiment TUD, however, given that all

participants were students the average age is expected to be the

lowest amongst the experiments. Finally, as the experiments

were conducted in three countries, cultural differences between

the observer panels may have an influence.

Three different eye trackers were used in the experiments,

which are illustrated in Fig. 1. The considerably higher fre-

quency of the eye tracker in experiment UN is instrumental for

the analysis of saccadic eye movements, for which frequencies

of below 50 Hz are not sufficient. Since we focus on the anal-

ysis of fixations, the recording frequency of the eye trackers

is not expected to have a strong impact on the results. More

importantly, the head rest and comparably higher accuracy of

the eye tracker in UN may result in more accurate gaze data

compared to the other eye trackers.

The image presentation differs mainly in three factors.

Firstly, the duration ranges from 10 s to 15 s, which means

that for the purpose of comparing the three experiments, we

are limited to the first 10 s of each experiment. Secondly, the

visual angle of the displayed images differs due to varying

viewing distance and screen resolution. Finally, experiment

UWS utilised a central fixation point during the grey screen

presented between images to ensure that image viewing is

started from the same location. This factor can be expected

to have an impact especially on the early fixations.

C. Creation of fixation density maps

The recorded gaze patterns are post-processed into FDM,

which are normalised intensity maps with values between 0

and 1. The magnitudes within the FDM represent the amount

of overt attention at certain locations, but they do not account

for the timely order of the fixations. However, fixation order
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TABLE II

OVERVIEW OF THE EYE TRACKING EXPERIMENTS.

Category Details UWS TUD UN

Participants Number 15 18 21

Age range (average age) 20-60 (42) - 18-42 (26)

Male/female 9/6 11/7 11/10

Non-experts/experts 12/3 18/0 21/0

Occupation University staff/students University students University staff/students

Compensated No No Yes

Viewing Environment Laboratory

conditions Illumination Low

Viewing distance 60 cm 70 cm 70 cm

Task Free-viewing: the observers were not instructed with any particular task but to view the images

Display Make Samsung SyncMaster iiyama DELL

Type LCD CRT LCD

Size 19”

Resolution [pixels] 1280× 1024 1024× 768 1280× 1024

Eye tracker Make EyeTech TM3 [27] SMI iView X RED [28] SMI iView X Hi-Speed [29]

Type Infrared video-based

Frequency 45 GP/s 50 GP/s 500 GP/s

Accuracy < 1 dva 0.5-1 dva 0.25-0.5 dva

Mounting Under the display Under the display Tower with head rest

Calibration 16 point screen 9 point screen 9 point screen

Image Order Random

presentation Image duration 12 s 10 s 15 s

Grey-screen duration 3 s

Max. visual angle [pixels/deg] 36 32.8 41.8

Central fixation point Yes No No

cannot easily be predicted using a computational model [31],

for which reason FDM are typically used. The conversion into

FDM is conducted for UWS using the implementation that is

explained in [18]. Experiments TUD and UN utilised the SMI

Begaze software that accompanied the eye tracker. Despite the

different software used, the underlying process comprised of

the same steps. Firstly, gaze points (GP) belonging to saccades

were removed since vision is greatly suppressed during these

fast eye movements. The remaining GP were clustered into

fixations, with the magnitudes of the fixations corresponding

to the fixation lengths. Finally, the fixation map was filtered

using a Gaussian kernel to account for eye tracker inaccuracies

as well as the decrease in visual accuracy with increasing

eccentricity from the fovea. All three experiments assumed

a minimum fixation length of 100 ms and a foveal coverage

of approximately 2 degrees visual angle (dva).

We created FDM based on a range of presentation times t ∈
{0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} s to allow for FDM similarity

analysis for different viewing durations. The FDM for image i,

created from a particular presentation time t, and belonging to

one of the three experiments UWS, TUD, and UN, are denoted

as M
(t)
UWS(i), M

(t)
TUD(i), and M

(t)
UN (i), respectively. All FDM

are presented in Fig. 17 and Fig. 18 (last page of this article)

for a presentation time t = 10 s. In addition to the experimental

FDM, we created random FDM for each image that serve as

a lower limit, both for the FDM similarity evaluation as well

as the performance evaluation of the applications in Section

V. The random FDM were created by randomly substituting

the FDM between images of the same or similar size within

the same database. For better comparability, the same random

substitution was used for all databases. The random FDM are

in the following denoted as M
(t)
RND.

III. SIMILARITY MEASURES

There are no standardised measures to compare the similar-

ity between two FDM or between FDM and saliency maps

from computational models. However, there is a range of

measures that are widely used to perform this task: correlation

coefficient [8], [9], [32], Kullback-Leibler divergence [8], [10],

receiver operating characteristics (ROC) analysis [32], [33],

and normalised scanpath saliency (NSS) [23], [33]–[35]. The

former three are directly applicable to saliency maps and

FDM, whereas NSS compares the actual fixations to a saliency

map. We utilise two similarity measures: the Pearson linear

correlation coefficient and the area under the ROC curve. For

the purpose of computing these measures, the original FDM

values are linearly transformed from the range [0,1] to the

range [0,255]. Visual comparison of the FDM is additionally

facilitated by the FDM provided in Fig. 17 and Fig. 18.

A. Pearson linear correlation coefficient (PLCC)

The Pearson linear correlation coefficient (PLCC) [36]

measures the strength and direction of a linear relationship

between two variables. We compute it between two FDM,

M (i) and M (j), as follows

ρP (M
(i),M (j)) = (1)

∑

k

∑

l

(M
(i)
kl − µ(i))(M

(j)
kl − µ(j))

√

∑

k

∑

l

(M
(i)
kl − µ(i))2

√

∑

k

∑

l

(M
(j)
kl − µ(j))2

where k ∈ [1,K] and l ∈ [1, L], respectively, are the horizontal

and vertical pixel coordinates, and µ(i) and µ(j) are the mean

pixel values of the FDM.
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Fig. 2. Scatter-like plot of the conjoint pixel values between two FDM for (a)

highly similar FDM (M
(10)
UWS

(6) and M
(10)
TUD

(6)) and (b) highly dissimilar

FDM (M
(10)
UWS

(11) and M
(10)
TUD

(11)).

For illustration purposes, scatter-like plots are presented

in Fig. 2(a) for two highly correlated FDM (M
(10)
UWS(6) and

M
(10)
TUD(6)) with ρP = 0.933 and in Fig. 2(b) for two lowly

correlated FDM (M
(10)
UWS(11) and M

(10)
TUD(11)) with ρP =

0.637. Naturally, the highly correlated FDM exhibit values

much closer to the main diagonal. There are, however, also

very distinct structures in the plots, which inherently result

from the structures contained in the actual FDM (see Fig. 17

and Fig. 18). The PLCC does not account for these structural

differences between the FDM and also cannot distinguish

whether differences amongst FDM are caused mainly from

high magnitude pixels or low magnitude pixels. The area under

the ROC curve accounts for these missing aspects of PLCC.

B. Area under the ROC curve (AUC)

To facilitate the use of the area under the ROC curve (AUC)

[37], [38] for measuring FDM similarity, one of the two FDM

has to be thresholded into a binary map as

M
(t)
bin,DB(i) =

{

1 for M
(t)
DB(i) ≥ τ

0 for M
(t)
DB(i) < τ

(2)

with τ ∈ [0 . . . 254] and DB ∈ {UWS, TUD,UN}. ROC

analysis is non-symmetrical and depending on which FDM

is used to create the binary map, the value of the resulting

AUC can vary. We therefore compute the average over the

two non-symmetrical AUC. Depending on the threshold τ

chosen, different properties of the FDM are analysed. For a

low threshold the binary map covers a larger area than for a

large threshold. Hence, for low values of τ the AUC accounts

for coverage similarity between the FDM whereas for large

values it identifies the similarity between the peaks.

For illustration of this behaviour, Fig. 3 presents both non-

symmetrical AUC computations between two FDM, along

with their mean for all 255 thresholds τ . For highly similar

FDM (Fig. 3(a)), the AUC rises fast towards the maximum

level and the difference between the AUC is small. For highly

dissimilar FDM (Fig. 3(b)), the AUC is low and in this case

even decreases with an increasing threshold. These lower AUC

for large τ quantify that FDM M
(10)
UWS(11) and M

(10)
TUD(11)

have different peaks, as can be visually observed from Fig. 17.
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Fig. 3. AUC for 255 thresholds τ between for (a) highly similar FDM

(M
(10)
UWS

(6) and M
(10)
TUD

(6)) and (b) highly dissimilar FDM (M
(10)
UWS

(11)

and M
(10)
TUD

(11)).

FDM τ = 10 τ = 100 τ = 200

Fig. 4. Binary maps for highly similar FDM (M
(10)
UWS

(6) and M
(10)
TUD

(6))
after thresholding with τ = 10, τ = 100, and τ = 200.

FDM τ = 10 τ = 100 τ = 200

Fig. 5. Binary maps for highly dissimilar FDM (M
(10)
UWS

(11) and

M
(10)
TUD

(11)) after thresholding with τ = 10, τ = 100, and τ = 200.

To capture different properties of FDM, in terms of coverage

and peak similarity, we consider in the following a low

threshold τ = 10, a high threshold τ = 200, and also an

intermediate threshold τ = 100 to account for lower order

peaks. Fig. 4 and Fig. 5 illustrate the binary maps resulting

from the thresholding for the FDM presented in Fig. 3(a) and

Fig. 3(b), respectively. The similarity between the binary maps

in Fig. 4 reflects well the increase in AUC as presented in

Fig. 3(a). Similarly, the decrease in AUC in Fig. 3(b) is also

reflected in the visual inspection of the binary maps in Fig. 5.

C. Monotonicity between PLCC and AUC

Despite the different purposes for the PLCC and AUC,

they are expected to vary conjointly to some degree. To

identify the degree to which the two measures interrelate to

each other, we compute the Spearman rank order correlation
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TABLE III

SPEARMAN RANK ORDER CORRELATION BETWEEN PLCC AND AUC.

UWS vs. TUD UWS vs. UN TUD vs. UN

τ = 10 0.317 0.474 0.409

τ = 100 0.836 0.784 0.762

τ = 200 0.691 0.64 0.762

coefficient (SRCC). The SRCC computed over all images and

presentation times t (N = 29 × 11 = 319) are presented in

Table III. The threshold τ has a strong impact on the similarity

between the ranks of PLCC and AUC. The higher SRCC

for τ = 100 and τ = 200 as compared to τ = 10 can be

attributed to the fact that the PLCC is only high if also the large

magnitudes in the FDM (the peaks) agree with each other.

IV. INTER-LABORATORY COMPARISON

In the following sections, the FDM similarity is evaluated

using the PLCC and AUC measures.

A. Inter-laboratory differences

The main objective of this article is the evaluation of inter-

laboratory differences between FDM. For this purpose, we

present in Fig. 6 and Fig. 7 the PLCC and AUC, respectively,

as a function of presentation time t for the 3 inter-laboratory

comparisons and the comparison to the random FDM. Each

figure shows the means along with their standard errors over

all 29 images. Figure 6 illustrates that the progression of the

mean PLCC with presentation time is similar between the three

experiments. The increase quickly flattens out and the PLCC

only marginally depends on the presentation time for t ≥ 2 s.

For TUD-UN this observation already holds for t ≥ 1 s.

Despite similar progression of the PLCC, the overall mag-

nitudes between the three comparisons differ to some degree,

with TUD-UN having the highest correlations, followed by

UWS-UN and UWS-TUD. Hence, the FDM of experiments

TUD and UN appear to be most similar, whereas the respective

similarities to experiment UWS are to some degree lower. In

addition to the lower mean PLCC, it can also be observed

that the standard errors are larger for UWS-TUD and UWS-

UN compared to TUD-UN, which indicates that there is

a larger variance of the PLCC with respect to the image

content. The significantly higher PLCC for t ≥ 1 s between

the experimental FDM, as compared to the random FDM,

emphasize high similarity between the experimental FDM.

Similar observations as for the PLCC also hold for the

AUC presented in Fig. 7. The AUC plots confirm the order

of similarity between the experiments and also the increasing

similarity between experiments with an increase in presenta-

tion time. It is interesting to note the difference of the AUC

values for the three different thresholds τ = 10, τ = 100, and

τ = 200. The AUC increases with the threshold, indicating

that the FDM similarity is generally higher for the strongly

salient regions as compared to the remainder of the images.

The significantly lower AUC between the experimental FDM

and random FDM confirm the observations on the PLCC.
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Fig. 6. Mean PLCC and standard errors over all images for all t.
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Fig. 7. Mean AUC and standard errors over all images for all t and for
τ = 10 (top), τ = 100 (middle), and τ = 200 (bottom).

B. Content dependency

The standard errors in Fig. 6 and Fig. 7 show that the FDM

similarity is to some degree content dependent. We therefore

analyse here the similarity between the FDM in relation to the

content of the images. Given that the PLCC and AUC are very

similar for t ≥ 2 s, we consider two presentation times: t = 1 s

and t = 10 s. These presentation times allow us to compare

the impact of image content on the early fixations (t = 1 s)

and on a more exhaustive viewing of the images (t = 10 s).

The PLCC and AUC for all 29 images are presented in Fig. 8

and Fig. 9, respectively. The PLCC and AUC are presented for

the individual comparisons amongst experiments (UWS-TUD,

UWS-UN, TUD-UN) as well as for the average over the three

comparisons. All presented values are sorted with respect to

the decreasing average measures.

The similarity amongst FDM strongly depends on the image

content, both for t = 1 s and t = 10 s. For high average

PLCC and AUC, the values from the individual experimental

comparisons are located closely together, whereas for low

average PLCC and AUC the deviation of the individual values

is considerably higher. Furthermore, the PLCC and AUC of
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Fig. 9. Impact of the image content measured using AUC (τ = 200) for
t = 1 s (top) and t = 10 s (bottom).
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Fig. 10. Differences between t = 1 s and t = 10 s for PLCC (top), ρP,∆t,
and AUC with τ = 200 (bottom), AUC∆t.

the same images can be different between the two presentation

times. This essentially means that the content dependency of

the similarity between FDM is a function of time. To better

illustrate the differences between the two presentation times,

we present in Fig. 10 two bar plots of the PLCC and AUC

difference between t = 1 s and t = 10 s denoted as ρP,∆t and
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Fig. 11. PLCC (left) and AUC with τ = 200 (right) between FDM of
consecutive presentation times.

AUC∆t, respectively. Together with Fig. 8 and Fig. 9 as well

as visual inspection of the FDM at all presentation times, these

results allow for a detailed discussion as follows.

For both PLCC and AUC, many of the images exhibit

rather small differences ρP,∆t and AUC∆t. For instance, image

number 6 (’cemetry’) is rated very high for both t = 1 s

and t = 10 s. This image contains two plaques with written

text which attracted the attention of the observers upon pre-

sentation of the image and kept the attention throughout the

image presentation. Many other images have large differences

between presentation times. Image number 3 (’buildings’), for

instance, exhibits the largest AUC∆t difference in the set due

to a low AUC at t = 1 s and a high AUC at t = 10 s. Like

image number 6, this image also contains text. However, due to

the high complexity of the image, the text is not as dominant

and the observers needed more time to detect it. Similarly,

image number 18 (’parrots’) has considerably higher PLCC

and AUC for t = 10 s as compared to t = 1 s. This image

contains two distinct salient regions (the parrot heads) whose

attendance leveled off with increased presentation time.

C. Convergent behaviour

The previous sections revealed a strong similarity between

the FDM of the three laboratories, especially for an increased

presentation time (t ≥ 2 s). This increased similarity suggests

that the FDM become more stable with longer presentation

times. In applications that require a converged FDM, verifica-

tion of the convergence speed of FDM may aid in reducing

experimental time and cost while sacrificing only marginally

the accuracy of a final FDM. We therefore analyse in the

following the PLCC and AUC (τ = 200) between FDM

created from two consecutive presentation times for each

experiment individually. These PLCC and AUC values are

presented as a function of presentation time in Fig. 11 for

the three experiments. The labels on the abscissa indicate the

higher presentation time, for instance, t = 1 s relates to the

similarity between FDM based on t = 500ms and t = 1 s.

The average over all contents illustrates that there is indeed

a strong convergent behaviour of the FDM similarity with

presentation time. The PLCC and AUC curves generally
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TABLE IV

PLCC BETWEEN THE SALIENCY MAPS AND FDM.

Data- Visual attention models

t base Itti [7] Rajashekar [9] Bruce [10] Achanta [39] Hou [40] σSAL

1 s UWS 0.096 0.288 0.218 0.202 0.241 0.071

TUD 0.097 0.348 0.244 0.242 0.3 0.094

UN 0.099 0.372 0.272 0.254 0.32 0.103

σDB 0.001 0.044 0.027 0.027 0.041 —

RND 0.04 0.282 0.164 0.12 0.152 0.087

10 s UWS 0.147 0.435 0.371 0.312 0.384 0.111

TUD 0.152 0.448 0.369 0.333 0.415 0.115

UN 0.15 0.449 0.376 0.335 0.421 0.118

σDB 0.003 0.008 0.004 0.013 0.02 —

RND 0.072 0.297 0.208 0.135 0.171 0.084

TABLE V

AUC (τ = 200) BETWEEN THE SALIENCY MAPS AND FDM.

Data- Visual saliency models

t base Itti [7] Rajashekar [9] Bruce [10] Achanta [39] Hou [40] σSAL

1 s UWS 0.624 0.733 0.683 0.651 0.676 0.04

TUD 0.62 0.786 0.713 0.693 0.748 0.062

UN 0.648 0.801 0.749 0.681 0.758 0.061

σDB 0.015 0.036 0.033 0.022 0.044 —

RND 0.621 0.717 0.633 0.603 0.65 0.044

10 s UWS 0.66 0.797 0.758 0.687 0.737 0.055

TUD 0.671 0.803 0.772 0.692 0.771 0.057

UN 0.658 0.802 0.773 0.69 0.76 0.06

σDB 0.007 0.003 0.008 0.002 0.017 —

RND 0.616 0.682 0.624 0.554 0.606 0.046

follow a very similar progression for all three experiments,

with exception of the PLCC and AUC between presentation

times t = 500ms and t = 1 s. For presentation times larger

than t = 4 s the average PLCC and AUC are well above

0.95 and 0.995, respectively. This observation holds for all

three experiments and for a wide range of natural image

content. The convergence is partly a result of the effect that

the number of new fixations relative to the total number

of fixations decreases with an increase of presentation time.

To visualise this effect, we created through simulation FDM

containing randomly distributed fixations, with an averaged

fixation length of 250ms that was estimated from the eye

tracking data. These random FDM, denoted as RNDC in

Fig. 11, also exhibit a convergent behaviour of PLCC and AUC

over time. However, the convergence is considerably slower,

providing further evidence of the strong convergent behaviour

of the experimental FDM.

V. APPLICATIONS

The similarity measures indicate high similarity between the

FDM but they do not provide direct insight into the reliability

of the FDM as a ground truth for image processing applica-

tions. In this section, we therefore identify the sensitivity of

three applications to the FDM used: visual saliency modelling,

image quality assessment, and image retargeting.

TABLE VI

IMAGE QUALITY PREDICTION PERFORMANCE GAIN BASED ON PLCC.

JPEG JPEG J2K J2K Gaussian White Fast Average

1 2 1 2 blur noise fading

PSNR UWS 0.004 0.028 0.002 0.037 0.006 0 0.009 0.012

TUD 0.008 0.031 0.006 0.037 0.02 0 0.016 0.017

UN 0.006 0.029 0.003 0.036 0.018 0 0.015 0.015

RND 0 -0.006 -0.001 0.005 -0.02 0.014 0.001 -0.008

SSIM UWS 0.017 0.041 0.022 0.041 0.075 0.008 0.029 0.033

TUD 0.019 0.039 0.019 0.038 0.07 0.008 0.023 0.031

UN 0.014 0.036 0.019 0.037 0.07 0.009 0.025 0.03

RND 0.002 -0.004 0.002 0 0.064 -0.002 0.023 0.012

VIF UWS 0.022 0.008 0 0.007 0.017 0.01 0.012 0.011

TUD 0.022 0.008 0 0.009 0.017 0.012 0.009 0.011

UN 0.026 0.008 0.004 0.009 0.021 0.01 0.008 0.012

RND 0.018 0.007 0 0.007 0.013 0.008 0.003 0.008

A. Visual saliency models

FDM obtained from eye tracking experiments are typically

used for the training and validation of visual saliency models.

We analyse here to what degree the validation of saliency

models depends on the ground truth, the FDM. We consider

in the following the well known saliency model by Itti et

al. [7] as well as the models by Rajashekar et al. [9], Bruce

et al. [10], Achanta et al. [39], and Hou et al. [40]. We

compute the saliency maps for all images using these models

and compute the similarity between them and the FDM based

on presentation times t = 1 s and t = 10 s. The results for

PLCC and AUC (τ = 200) are presented in Table IV and

V, respectively. In addition, the standard deviations over the

PLCC and AUC are given over the three databases, σDB , and

the five saliency models, σSAL.

The results show that both similarity measures differ consid-

erably more between the visual saliency models than between

the FDM. This observation holds for both presentation times

t = 1 s and t = 10 s. Interestingly, all saliency models perform

better on the FDM with t = 10 s, even though these models

aim to predict salient locations that are widely known to drive

mainly rapid bottom-up VA mechanisms. For the PLCC, this

higher performance might be influenced to some degree by the

larger number and thus a wider spread of fixations for t = 10 s

compared to t = 1 s. The consistently higher performance of

all saliency models on the experimental FDM compared to

the random FDM further illustrates that the models predict

saliency with an accuracy above chance.

B. Quality prediction models

Saliency maps and FDM are often integrated into image

quality models with the aim to improve quality prediction

performance [19], [41]. We analyse to what degree the im-

provement of three quality prediction models, the Peak Signal-

to-Noise Ratio (PSNR), Structural Similarity (SSIM) Index

[42], and Visual Information Fidelity (VIF) criterion [43],

varies with the FDM used. Following the procedure in [44],

we integrate the FDM based on a presentation time of t = 10 s

into the quality models by local, multiplicative weighting of

the respective distortion map. As the images we used in our
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eye tracking experiments are taken from the LIVE image

quality database, we have a large set of distorted images and

their respective mean opinion scores (MOS) available for the

design and validation of the quality models. To analyse the

prediction performance, we computed PSNR, SSIM, and VIF

on all distorted images of the LIVE database before and after

incorporation of the FDM. The model predictions were then

compared to the respective MOS by computing the PLCC. The

analysis is conducted independently for the different distortion

classes contained in the LIVE database. The performance gain

through incorporation of the FDM is presented in Table VI.

The results show that for all distortion classes and the

related averages, the improvements are very similar between

the three experiments. The improvement, however, differs con-

siderably between the quality prediction models and between

the different distortion classes. The consistency between FDM

is thus better than the consistency between quality prediction

models and distortion classes.

C. Saliency-based image retargeting

Image retargeting algorithms [45] resize images by cutting

out vertical seams of lowest energy, thus preserving the most

important regions in the images. Saliency-based image retar-

geting algorithms allow for an additional importance weighting

based on the visual saliency in the scene. We used the FDM

based on t = 1 s and t = 10 s in the saliency-based image

retargeting algorithm by Wang et al. [4] to determine the

similarity of the resulting retargeted images. Examples are

presented in Fig. 12-14 for the images 13, 27, and 29 of the

LIVE database.

The retargeting is generally inferior when using the ran-

domly substituted FDM (RND) as compared to the experimen-

tal FDM. An exception is image 29 for t = 1 s, which looks

good also for RND. The most relevant regions are generally

well preserved when using the experimental FDM (UWS,

TUD, UN) with the outcomes being very similar between the

databases. The similarity is particularly high between TUD

and UN and is somewhat lower for UWS, which confirms our

earlier results on PLCC and AUC in Section IV.

VI. DISCUSSION

In Section II-B, we discussed the differences between the

three experiments and how they can be expected to have an

impact on the FDM similarity. Given the multitude of varying

factors due to the independently conducted experiments, we

could only speculate here as to what degree each of the factors

influences the inter-laboratory differences. In the following,

we therefore focus on a discussion of the overall differences

between the databases.

A. Inter-laboratory comparisons: revisited

Both the PLCC and AUC show similar progressions with

presentation time between the three databases (see Fig. 6 and

Fig. 7). The absolute values, however, are not exactly the

same for the individual comparisons between the databases,

with TUD-UN being most similar, followed by UWS-UN and

Fig. 12. Retargeted image number 13 based on FDM with t = 1 s (top) and
t = 10 s (bottom). From left to right: UWS, TUD, UN, RND.

Fig. 13. Retargeted image number 27 based on FDM with t = 1 s (top) and
t = 10 s (bottom). From left to right: UWS, TUD, UN, RND.

Fig. 14. Retargeted image number 29 based on FDM with t = 1 s (top) and
t = 10 s (bottom). From left to right: UWS, TUD, UN, RND.

UWS-TUD. This trend is transferred to some degree to the

image processing applications, where UWS typically differs

somewhat more from the other databases. To see whether there

are significant differences between the individual database

comparisons, we performed paired t-tests for all individual
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Fig. 15. Paired t-test at 95% confidence between for PLCC (left) and AUC
(right). Markers indicate statistically significant difference.

comparisons and all presentation times on the data presented

in Fig. 6 and Fig. 7. The markers in Fig. 15 reveal if

there are significant differences between the comparisons at

95% confidence. For PLCC all comparisons are statistically

different. For AUC, only the comparisons UWS-TUD and

UWS-UN are statistically the same in most cases. These re-

sults show that inter-laboratory comparisons vary significantly

with the laboratories that are involved. Despite the significant

differences of the similarity metrics, the experimental FDM

still have a similarly positive impact on the image processing

applications, as compared to using randomly chosen FDM.

B. Intra- versus inter-experiment differences

It could be argued that the differences between experiments

are due to intrinsic variations amongst the observer groups.

We therefore take a closer look at the variations within the

experiments (intra-experiment) in comparison to the variations

between the experiments (inter-experiment). We adopt the

performance efficiency method [46] by repeatedly splitting the

observer panel within an experiment into two sub-groups and

computing the PLCC between the FDM created from these

groups. These PLCC serve as an intrinsic ground truth and

upper theoretical limit of the variations amongst observers

within an experiment. To facilitate a fair comparison, we adapt

the method in [46] by selecting the same size of the sub-groups

for the three comparisons within and between the experiments.

Based on these sub-groups, we create FDM for a presentation

time of t = 10 s. For the sub-group selection, we are bound by

the lowest number of 15 observers in experiment UWS. We

therefore randomly select two groups of 7 observers within

each of the experiments and compute the intra-experiment

PLCC between the related FDM. Similarly, we select ran-

domly 7 observers from each experiment and compute the

inter-experiment PLCC. To obtain a robust estimate we repeat

this process 100 times for the intra- and inter-experiment

comparisons and compute the average PLCC.

All intra- and inter-experiment PLCC are presented in

Fig. 16. The intra-experiment correlation for UN is approx-

imately 5% higher than for UWS and TUD. One could

speculate that the larger foveal coverage in relation to the

image size in UN (see Section II-B) may enhance observers to

grasp the gist of the scene. Thus, the number of possible target

objects is lower and agreement between observers is higher.

The superior accuracy of the eye tracker in UN could also have

an impact on these results. Finally, the larger Gaussian kernel
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Fig. 16. Spider chart of the intra-experiment (UWS, TUD, UN) and inter-
experiment (UWS-TUD, UWS-UN, TUD-UN) correlations (PLCC) between
FDM based on 7 observers (values averaged over 100 random samples).

TABLE VII

RATIOS OF INTER- VS INTRA-LABORATORY PLCC.

Intra-laboratory Inter-laboratory Ratio

UWS UWS-TUD 0.918

UWS-UN 0.998

TUD UWS-TUD 0.92

TUD-UN 1.009

UN UWS-UN 0.933

TUD-UN 0.941

sizes relative to the image size inherently increases the PLCC

to some degree. The inter-experiment PLCC are considerably

higher for UWS-UN and TUD-UN than for UWS-TUD. The

lower observer differences within UN may be one reason why

this experiment correlates higher with the other experiments.

The ratios between the inter-laboratory PLCC and both

corresponding intra-laboratory PLCC are presented in Table

VII. The ratios that are lower than 1 suggest that there

are indeed differences between the laboratories that are not

accounted for by only the intrinsic observer variations. Only

the ratios 0.998 and 1.009 for UWS-UN and TUD-UN with

UWS and TUD as ground truths, respectively, show that the

intrinsic differences within these experiments are as high as

the differences between the experiments.

VII. CONCLUSIONS AND OUTLOOK

We analysed FDM similarity between three independent eye

tracking experiments using two different similarity measures:

PLCC and AUC. We showed that these measures capture

different properties while being coherent in predicting the

similarity of the FDM. Only for short presentation times

(t ≤ 1 s), PLCC was found to deviate from AUC.

Despite various differences between the experiments, the

FDM were found to be very similar. The similarity, however,

was dependent on the individual experimental comparisons,

with UWS being more different to TUD and UN. The FDM

similarity was further revealed to be highly dependent on

the image content, with images that contain a distinct salient

region experiencing a higher FDM similarity as compared

to images with multiple or no salient regions. A similar
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convergent behaviour of the FDM was identified for all three

experiments. The speed of convergence may need to be

verified for different numbers of observers as well as different

experimental conditions. The reliability of the FDM as a

ground truth was validated on three image processing appli-

cations: visual saliency modelling, image quality assessment,

and image retargeting. On all applications it was shown that

the difference between the experimental FDM on the outcomes

was low. These findings suggest that FDM from independent

eye tracking experiments can indeed be considered to be

reliable ground truths for image processing applications.

Given the independency of the experiments, we could not

clearly identify the degree to which the differentiating factors

are impacting the FDM. It is therefore instrumental to extend

this work by conducting experiments conjointly with careful

variation of certain factors to evaluate their impact on the

FDM. It further needs to be verified whether a larger number

of participants would result in even more stable FDM and

thus in higher similarity between the experiments and an even

faster convergent behaviour. Thresholds need to be determined

that specify the minimum number of participants in order

to achieve FDM for given similarity constraints. Finally, the

comparisons presented in this article hold for eye-tracking

experiments under task-free condition. Different results could

be expected under a variety of viewing tasks, for instance,

visual search tasks. These issues are out of the scope of this

article and are subject for future work. To stimulate further

VA research, we made the fixation data and FDM of the three

databases publicly available to the research community: UWS

at [47], TUD at [48], and UN at [25].
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l’université de Nantes (Engineer School) in the Electrical Engineering and the
Computer Science department where he is now Full Professor. Since 2006, he
is the head of the Image and Video Communication lab at CNRS IRCCyN, a
group of more than 35 researchers. He is mostly engaged in research dealing
with the application of human vision modeling in image and video processing.
His current centers of interest are 3D image and video quality assessment,
watermarking techniques and visual attention modeling and applications. He is
co-author of more than 140 publications and communications and co-inventor
of 13 international patents on these topics. He is co-chairing within VQEG
(Video Quality Expert Group) the ”Joint-Effort Group” and ”3DTV” activities.
He is currently serving as associate editor for IEEE Transactions on Circuit
System and Video Technology and SPRINGER EURASIP Journal on Image
and Video Processing.

Ingrid Heynderickx received her PhD degree in
physics at the University of Antwerp (Belgium) in
December 1986. In 1987 she joined the Philips
Research Laboratories in Eindhoven (The Nether-
lands), and meanwhile worked in different areas
of research: optical design of displays, processing
of liquid crystalline polymers and functionality of
personal care devices. Since 1999 she is head of the
research activities on Visual Perception of Display
and Lighting Systems and in 2005 she is appointed
research fellow in the group Visual Experiences.

She is member of the Society for Information Displays (SID), and for the
SID, she was chairman of the Applied Vision subcommittee from 2002 till
2007. In 2008, she became Fellow of the SID and chairman of the European
Committee of the SID. In 2005, she is appointed Guest Research Professor
at the Southeast University of Nanjing (China) and Part-time Full Professor
at the University of Technology in Delft (the Netherlands).

Hans-Jürgen Zepernick (M’94-SM’11) received
the Dipl.-Ing. degree from the University of Siegen
in 1987 and the Dr.-Ing. degree from the University
of Hagen in 1994. From 1987 to 1989, he was with
Siemens AG, Germany. He is currently a Professor
of radio communications at the Blekinge Institute
of Technology, Sweden. Prior to this appointment,
he held the positions of Professor of wireless com-
munications at Curtin University of Technology;
Deputy Director of the Australian Telecommunica-
tions Research Institute; and Associate Director of

the Australian Telecommunications Cooperative Research Centre. His research
interests include advanced radio communications, mobile multimedia, and
perceptual quality assessment.

Anthony Maeder (M’) is Professor of Health Infor-
matics at University of Western Sydney in Australia
and research leader of the Telehealth Research and
Innovation Laboratory there. He previously held the
positions of Research Director of the CSIRO eHealth
Research Centre in Brisbane, Professor and Head of
School in Engineering at University of Ballarat and
in Electrical and Electronic Systems Engineering at
Queensland University of Technology. Prior to that
he undertook his PhD in Software Engineering at
Monash University. He was the founding President

of the Australian Pattern Recognition Society. His research interests are in
human visual understanding for digital images, and various topics in eHealth.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 SUBMITTED TO IEEE IMAGE PROCESSING, NOVEMBER 1, 2012

Fig. 17. Example FDM for images 1-15 and for a presentation time of 10 s.
Left to right: original, UWS, TUD, UN.

Fig. 18. Example FDM for images 16-29 and for a presentation time of 10 s.
Left to right: original, UWS, TUD, UN.


