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In this paper we derive a strain gradient plate model from the three-dimensional equations of strain gradient linearized elasticity. The deduction is based on the asymptotic analysis with respect of a small real parameter being the thickness of the elastic body we consider. The body is constituted by a second gradient isotropic linearly elastic material. The obtained model is recognized as a strain gradient Reissner-Mindlin plate model. We also provide a mathematical justification of the obtained plate model by means of a variational weak convergence result.

Introduction

Higher order gradient continuum theories in linear and nonlinear elasticity have recently raised the interest on many scientists, since modern technologies involving multi-scale materials exhibit size effects and a strong dependence on internal (material) lengths. A possible generalization of Cauchy model has been proposed in the pioneering works by Toupin, [START_REF] Toupin | Elastic materials with couple-stresses[END_REF], Mindlin, [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], and Germain, [START_REF] Germain | La méthode des puissances virtuelles en mécanique des milieux continus. I. Théorie du second gradient[END_REF]. In these papers, the stored deformation energy is assumed to depend not only on the strain, but also on the strain gradient. These general continua are called second gradient continua by Germain, or strain gradient continua. In second gradient continua approaches it is necessary to generalize the concept of Cauchy contact actions, see [START_REF] Dell'isola | Edge contact forces and quasi-balanced power[END_REF], and the constitutive laws, see [START_REF] Dell'isola | Generalized Hooke's law second gradient materials[END_REF]. For a general overview on second gradient elasticity theories and their applications it is worth mentioning the work by Askes and Aifantis [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementation and new results[END_REF].

Thin plate theories have found recently several applications in the areas of micro-mechanics and nano-mechanics. Micro-mechanical systems and nano-mechanical systems show size effects and non local behavior, hence strain gradient elasticity theories find their natural and appropriate application. Furthermore, granular materials, porous materials and, generally, materials endowed with a microstructure, in which the stresses do not depend only on the local strain, can be described by strain gradient elasticity theories. For instance, Lazopoulos has derived a mechanical model for the bending behavior of strain gradient Kirchhoff-Love plates (see [START_REF] Lazopoulos | On the gradient strain elasticity theory of plates[END_REF] and [START_REF] Lazopoulos | On bending of strain gradient elastic micro-plates[END_REF]) and shallow shells (see [START_REF] Lazopoulos | Nonlinear strain gradient elastic thin shallow shells[END_REF]).

In the present paper we derive a strain gradient plate model starting from the threedimensional equations of strain gradient linearized elasticity through an asymptotic analysis. We consider a plate-like domain filled by an isotropic second gradient linearly elastic material. By defining a small real parameter ε, which represents the thickness of the plate-like domain, we apply the asymptotic expansion method, following the approach by Ciarlet in [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. Then, we characterize the leading terms of the asymptotic expansion and the associated limit problems. In order to have a mathematical justification of the obtained model we study the weak convergence of the solution of the three-dimensional problem towards the solution of the limit problem in a precise functional framework.

The asymptotic analysis is a widely used technique for the formal derivation and justification of classical theories of thin structures, starting from the classical three-dimensional elasticity, (see [START_REF] Ciarlet | Mathematical Elasticity[END_REF], in the case of plate models). For what concerns with the derivation of plate models, it is well-known that if we apply the asymptotic methods to the classical linear or nonlinear elasticity equations, we are capable to derive only Kirchhoff-Love plate models. In order to obtain the Reissner-Mindlin plate model through an asymptotic analysis or variational convergence, we need to generalize the stored elastic energy by adding some appropriate second gradient terms, see [START_REF] Paroni | A justification of the Reissner-Mindlin plate theory through variational concergence[END_REF], or by using a different continuum model as starting point, like the micropolar continuum, see [START_REF] Aganović | Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity[END_REF]. As we already mentioned, in the present approach, we use a second gradient continuum constituting the plate-like body and, by performing an asymptotic analysis, we derive a second gradient Reissner-Mindlin plate model.

The layout of this paper is as follows. In Section 2, we introduce the mathematical problem associated with the equilibrium of a strain gradient linearly elastic plate; we define a small real parameter ε which is related to the thickness of the plate; then we apply the asymptotic methods to obtain the simplified models. In Section 3, we present the main Ansatz (25) for the asymptotic expansions of the displacement field. Then we derive the limit displacement field, which corresponds to the Reissner-Mindlin kinematics, and its associated limit problem. In Section 4, we give a mathematical justification of the obtained model by presenting a weak convergence result.

Statement of the problem

In the sequel, Latin indices range in the set {1, 2, 3}, while Greek indices range in the set {1, 2} and the Einstein's summation convention with respect to the repeated indices is adopted.

Let ω ∈ 2 be a smooth domain in the plane spanned by vectors e α , let γ 0 be a measurable subset of the boundary γ of the set ω, such that length γ 0 > 0, and let 0 < ε < 1 be an dimensionless small real parameter which will tend to zero. For each ε, we define

Ω ε := ω × (-ε, ε), Γ ε 0 := γ 0 × [-ε, ε], Γ ε ± := ω × {±ε}. (1) 
Hence the boundary of the set Ω ε is partitioned into the lateral face γ × [-ε, ε] and the upper and lower faces Γ ε + and Γ ε -, and the lateral face is itself partitioned as

γ × [-ε, ε] = (γ 0 × [-ε, ε]) ∪ (γ 1 × [-ε, ε])
, where γ 1 := γγ 0 . In order to avoid inessential complications in the sequel we suppose that γ = γ 0 , and thus γ 1 = / 0. We assume that the set Ω ε is the reference configuration of a strain gradient linearly elastic plate of thickness 2ε and middle surface ω. We study the physical problem corresponding to the mechanical behaviour of a strain gradient plate. The plate is completely clamped on Γ ε 0 = Γ ε , in the sense that the boundary conditions of place, imposed to the displacements, are

u ε i = 0 and ∂ ε n u ε i = 0 on Γ ε 0 , (2) 
where ∂ ε n represents the derivative operator with respect to the unit outer normal vector (n ε i ) along the boundary Γ ε 0 . Moreover, we supposed that the plate is subjected to body forces ( f ε i ) : Ω ε → R 3 , and surface forces (

g ε i ) : Γ ε + ∪ Γ ε -→ R 3 .
We finally assume that the strain gradient linearly elastic material constituting the plate Ω ε is homogeneous and isotropic. The constitutive laws for this kind of material (see [START_REF] Dell'isola | Generalized Hooke's law second gradient materials[END_REF]) take the following form:

σ ε (u ε ) := A ε e ε (u ε ), P ε (u ε ) := B ε ∇ ε e ε (u ε ), (3) 
or, componentwise,

σ ε i j (u ε ) = A ε i jkℓ e ε kℓ (u ε ), with A ε i jkℓ := λ ε δ i j δ kℓ + 2µ ε (δ ik δ jℓ + δ iℓ δ jk ),
p ε i jk (u ε ) = B ε i jkℓpq e ε ℓpq (u ε ), with B ε i jkℓpq := c ε 1 (δ i j δ kℓ δ pq + δ i j δ kp δ ℓq + δ ik δ jq δ ℓp + δ iq δ jk δ ℓp ) + c ε 2 δ i j δ kq δ ℓp + +c ε 3 (δ ik δ jℓ δ pq + δ ik δ jp δ ℓq + δ iℓ δ jk δ pq + δ ip δ jk δ ℓq ) + c ε 4 (δ iℓ δ jp δ kq + +δ ip δ jℓ δ kq ) + c ε 5 (δ iℓ δ jq δ kp + δ ip δ jq δ kℓ + δ iq δ jℓ δ kp + δ iq δ jp δ kℓ ), (4) 
where σ ε = (σ ε i j ) is the classical Cauchy stress tensor,

P ε = (p ε i jk ) is the hyperstress tensor, e ε (u ε ) = (e ε i j (u ε )) := 1 2 (∂ ε i u ε j + ∂ ε j u ε i ) is the linearized strain tensor and ∇ ε e ε (u ε ) = (e ε i jk (u ε )) := (∂ ε k e ε i j (u ε )) is the gradient of e ε (u ε ). A ε = (A ε i jkℓ
) and B ε = (B ε i jkℓpq ) represent, respectively, the fourth order classical isotropic elasticity tensor and the sixth order isotropic strain gradient isotropic elasticity tensor. The components of the Cauchy stress tensor and the components of the hyperstress tensor can be also written as follows:

σ ε i j := λ ε e ε pp δ i j + 2µ ε e ε i j , p ε i jk := c ε 1 (e ε pp j δ ik + 2e ε kpp δ i j + e ε ppi δ jk ) + c ε 2 e ε ppk δ i j + +2c ε 3 (e ε jpp δ ik + e ε ipp δ jk ) + 2c ε 4 e ε i jk + 2c ε 5 (e ε ik j + e ε jki ), (5) 
We assume that A ε gives rise to a positive definite quadratic form on the vector space of symmetric matrices. As it is well known, this condition is satisfied if and only if 3λ ε +2µ ε > 0 and µ ε > 0. We also assume that B ε gives rise to a positive definite quadratic form on the vector space of all third order symmetric matrices with respect to the first two indices. In order to ensure this condition Dell'Isola et al. in [START_REF] Dell'isola | Generalized Hooke's law second gradient materials[END_REF] have proved the suffciency of the following inequalities:

c ε 4 > 0, - c ε 4 2 < c ε 5 < c ε 4 , 5c ε 2 + 4c ε 4 > 2c ε 5 , c ε 3 > c ε 2 (3c ε 4 + c ε 5 ) + 2(c ε2 4 -5c ε2 1 -6c ε 5 c ε 1 -2c ε2 5 + c ε 4 (2c ε 1 + c ε 5 )) 4c ε 5 -10c ε 2 -8c ε 4 . (6) 
To begin with, we introduce some notations that will be used in the sequel. We let:

a • b := a i b i , A : B := a i j b i j and C ∴ D := c i jk d i jk , (7) 
for, respectively, all vectors a = (a i ) and b = (b i ), for all symmetric second order matrices A = (a i j ) and B = (b i j ), and for all third order matrices C = (c i jk ) and D = (d i jk ), symmetric with respect to the first two indices.

The displacement field u ε = (u ε i ) satisfies the following variational problem defined over the variable domain Ω ε :

Ω ε {σ ε (u ε ) : e ε (v ε ) + P ε (u ε ) ∴ ∇ ε e ε (v ε )} dx ε = l ε (v ε ), (8) 
for all v ε ∈ V (Ω ε ), where

V (Ω ε ) := v ε = (v ε i ) ∈ H 2 (Ω ε ; R 3 ); v ε = 0 and ∂ ε n v ε = 0 on Γ ε 0 , (9) 
and

l ε (v ε ) := Ω ε f ε • v ε dx ε + Γ ε ± g ε • v ε dΓ ε . (10) 
Componentwise, we get:

Ω ε σ ε i j (u ε )e ε i j (v ε ) + p ε i jk (u ε )e ε i jk (v ε ) dx ε = Ω ε f ε i v ε i dx ε + Γ ε ± g ε i v ε i dΓ ε , (11) 
for all v ε ∈ V (Ω ε ). We suppose that

f ε i ∈ L 2 (Ω ε ) and g ε i ∈ L 2 (Γ ε ± ).
Proposition 1 From the assumption on the positive definiteness of the elasticity tensors A ε and B ε , the variational problem (8) has a unique solution u ε in V (Ω ε ).

For a more general formulation of the three-dimensional strain gradient non linear elasticity theory, the reader can refer to the work by dell'Isola et al. [START_REF] Dell'isola | Generalized Hooke's law second gradient materials[END_REF].

In order to perform an asymptotic analysis, we need to transform problem [START_REF] Lazopoulos | Nonlinear strain gradient elastic thin shallow shells[END_REF] posed on a variable domain Ω ε onto a problem posed on a fixed domain (independent of ε). Accordingly, we let

Ω := ω × (-1, 1), Γ 0 := γ 0 × [-1, 1], Γ ± := ω × {±1}. (12) 
Hence, we define the following change of variables (see [START_REF] Ciarlet | Mathematical Elasticity[END_REF]):

π ε : x := ( x, x 3 ) ∈ Ω → x ε := ( x, εx 3 ) ∈ Ω ε , with x = (x α ). (13) 
By using the bijection π ε , one has

∂ ε α = ∂ α and ∂ ε 3 = 1 ε ∂ 3 .
With the unknown displacement field

u ε = (u ε i ) ∈ V (Ω ε ), we associated the scaled dis- placement field u(ε) = (u i (ε)) : Ω → R 3 defined by: u ε α (x ε ) = εu α (ε)(x) and u ε 3 (x ε ) = u 3 (ε)(x) for all x ε = π ε x ∈ Ω ε . (14) 
We likewise associate with any test functions vector field

v ε = (v ε i ) ∈ V (Ω ε ), the scaled test functions vector field v = (v i ) : Ω → R 3 ,
defined by the scalings:

v ε α (x ε ) = εv α (x) and v ε 3 (x ε ) = v 3 (x) for all x ε = π ε x ∈ Ω ε . ( 15 
)
We make the following assumptions on the data, and, thus, we require that the Lamé constants and the second gradient elastic moduli satisfy the following relations:

λ ε = λ , µ ε = µ, c ε k = c k , k ∈ {1, 2, 3, 4, 5}. ( 16 
)
Hence A ε i jkℓ = A i jkℓ and B ε i jkℓpq = B i jkℓpq are both independent of ε. We also ask that the applied body and surface forces take the following forms:

f ε α (x ε ) = ε f α (x) and f ε 3 (x ε ) = f 3 (x) for all x ε = π ε x ∈ Ω ε , g ε α (x ε ) = ε 2 g α (x) and g ε 3 (x ε ) = εg 3 (x) for all x ε = π ε x ∈ Ω ε . ( 17 
)
The elastic constants λ , µ and c k , and functions

f i ∈ L 2 (Ω ) and g i ∈ L 2 (Γ + ∪ Γ -) are inde- pendent of ε.
Let us define, respectively, the rescaled components of the linearized strain tensor e i j (u(ε)) and of its gradient e i jk (u(ε)). According to the previous assumptions on the displacement field, one has:

e ε αβ (u ε ) = εe αβ (u(ε)) = ε 2 (∂ α u β (ε) + ∂ β u α (ε)), e ε α3 (u ε ) = εe α3 (u(ε)) = 1 2 (∂ 3 u α (ε) + ∂ α u 3 (ε)) e ε 33 (u ε ) = e 33 (u(ε)) = 1 ε ∂ 3 u 3 (ε), (18) 
and,

e ε αβ γ (u ε ) = εe αβ γ (u(ε)) = ε∂ γ e αβ (u(ε)), e ε αβ 3 (u ε ) = e αβ 3 (u(ε)) = ∂ 3 e αβ (u(ε)), e ε α3β (u ε ) = e α3β (u(ε)) = ∂ β e α3 (u(ε)), e ε α33 (u ε ) = 1 ε e α33 (u(ε)) = 1 ε ∂ 3 e α3 (u(ε)), e ε 33α (u ε ) = 1 ε e 33α (u(ε)) = 1 ε ∂ α e 33 (u(ε)), e ε 333 (u ε ) = 1 ε 2 e 333 (u(ε)) = 1 ε 2 ∂ 3 e 33 (u(ε)). (19) 
By virtue of the relations above, we can compute the components of the rescaled hyperstress tensor p i jk (u(ε)) := B i jkℓpq e ℓpq (u(ε)) as follows

p αβ γ (u(ε)) = ε p 1 αβ γ (u(ε)) + 1 ε p -1 αβ γ (u(ε)), p αβ 3 (u(ε)) = p 0 αβ 3 (u(ε)) + 1 ε 2 p -2 αβ 3 (u(ε)), p α3β (u(ε)) = p 0 α3β (u(ε)) + 1 ε 2 p -2 α3β (u(ε)), p α33 (u(ε)) = ε p 1 α33 (u(ε)) + 1 ε p -1 α33 (u(ε)), p 33α (u(ε)) = ε p 1 33α (u(ε)) + 1 ε p -1 33α (u(ε)), p 333 (u(ε)) = p 0 333 (u(ε)) + 1 ε 2 p -2 333 (u(ε)), (20) 
where

p 1 αβ γ (u(ε)) := c 1 [δ αγ e σ σ β (u(ε)) + 2δ αβ e γσ σ (u(ε)) + δ β γ e σ σ α (u(ε))] +c 2 δ αβ e σ σ γ (u(ε)) + 2c 3 [δ αγ e β σ σ (u(ε)) + δ β γ e ασ σ (u(ε))]+ +2c 4 e αβ γ (u(ε)) + 2c 5 [e αγβ (u(ε)) + e β γα (u(ε))], p -1 αβ γ (u(ε)) := c 1 [δ αγ e 33β (u(ε)) + 2δ αβ e γ33 (u(ε)) + δ β γ e 33α (u(ε))]+ +c 2 δ αβ e 33γ (u(ε)) + 2c 3 [δ αγ e β 33 (u(ε)) + δ β γ e α33 (u(ε))], p 0 αβ 3 (u(ε)) := 2c 1 δ αβ e 3σ σ (u(ε)) + c 2 δ αβ e σ σ 3 (u(ε)) + 2c 4 e αβ 3 (u(ε))+ +2c 5 [e α3β (u(ε)) + e β 3α (u(ε))], p -2 αβ 3 (u(ε)) := (2c 1 + c 2 )δ αβ e 333 (u(ε)), p 0 α3β (u(ε)) := c 1 δ αβ e σ σ 3 (u(ε)) + 2c 3 δ αβ e 3σ σ (u(ε)) + 2c 4 e α3β (u(ε))+ +2c 5 e αβ 3 (u(ε)), p -2 α3β (u(ε)) := (c 1 + 2c 3 )δ αβ e 333 (u(ε)), p 1 α33 (u(ε)) := c 1 e σ σ α (u(ε)) + 2c 3 e ασ σ (u(ε)), p -1 α33 (u(ε)) := (c 1 + 2c 5 )e 33α (u(ε)) + 2(c 3 + c 4 + c 5 )e α33 (u(ε)), p 1 33α (u(ε)) := 2c 1 e ασ σ (u(ε)) + c 2 e σ σ α (u(ε)), p -1 33α (u(ε)) := 2(c 1 + 2c 5 )e α33 (u(ε)) + (c 2 + 2c 4 )e 33α (u(ε)), p 0 333 (u(ε)) := (2c 1 + c 2 )e σ σ 3 (u(ε)) + 2(c 1 + 2c 3 )e 3σ σ (u(ε)), p -2 333 (u(ε)) := (4c 1 + c 2 + 4c 3 + 2c 4 + 4c 5 )e 333 (u(ε)). (21) 
We can now reformulate the problem on the fixed domain Ω . From Proposition 1 it follows that for every ε > 0 the rescaled displacement field u(ε) ∈ V (Ω ) is the unique solution of the following rescaled problem:

1 ε 4 a -4 (u(ε), v) + 1 ε 2 a -2 (u(ε), v) + a 0 (u(ε), v) + ε 2 a 2 (u(ε), v) = l 0 (v) + ε 2 l 2 (v), (22) for all v ∈ V (Ω ), where V (Ω ) := v = (v i ) ∈ H 2 (Ω ; R 3 ); v = 0 and ∂ n v = 0 on Γ 0 . ( 23 
)
The bilinear forms a -4 , a -2 , a 0 , a 2 : V (Ω ) × V (Ω ) → R and the linear forms l 0 , l 2 : V (Ω ) → R are respectively defined as follows:

a -4 (u(ε), v) := Ω p -2 333 (u(ε))e 333 (v)dx, a -2 (u(ε), v) := Ω [(λ + 2µ)e 33 (u(ε))e 33 (v) + p -2 αβ 3 (u(ε))e αβ 3 (v)+ +2p -2 α3β (u(ε))e α3β (v) + 2p -1 α33 (u(ε))e α33 (v)+ +p -1 33α (u(ε))e 33α (v) + p 0 333 (u(ε))e 333 (v)]dx, a 0 (u(ε), v) := Ω [λ e σ σ (u(ε))e 33 (v) + λ e 33 (u(ε))e σ σ (v) + 4µe α3 (u(ε))e α3 (v)+ +p -1 αβ γ (u(ε))e αβ γ (v) + p 0 αβ 3 (u(ε))e αβ 3 (v) + 2p 0 α3β (u(ε))e α3β (v)+ +2p 1 α33 (u(ε))e α33 (v) + p 1 33α (u(ε))e 33α (v)]dx, a 4 (u(ε), v) := Ω [λ e σ σ (u(ε))e ττ (v) + 2µe αβ (u(ε))e αβ (v)+ +p 1 αβ γ (u(ε))e αβ γ (v)]dx, l 0 (v) := Ω f 3 v 3 dx + Γ ± g 3 v 3 dΓ , l 2 (v) := Ω f α v α dx + Γ ± g α v α dΓ . ( 24 
)
3 Asymptotic analysis

We can now perform an asymptotic analysis of the rescaled problem (22). Since it has a polynomial structure with respect to the small parameter ε, we can look for the solution of the problem as a series of powers of ε:

u(ε) = u 0 + ε 2 u 2 + ε 4 u 4 + ε 6 u 6 + . . . . (25) 
By substituting (25) into the rescaled problem (22), and by identifying the terms with identical power of ε, we obtain, as customary, the following set of problems, defined for all v ∈ V (Ω ):

P -4 : a -4 (u 0 , v) = 0, P -2 : a -4 (u 2 , v) + a -2 (u 0 , v) = 0, P 2 : a -4 (u 4 , v) + a -2 (u 2 , v) + a 0 (u 0 , v) = l 0 (v), P 4 : a -4 (u 6 , v) + a -2 (u 4 , v) + a 0 (u 2 , v) + a 2 (u 0 , v) = l 2 (v), P 2 j : a -4 (u 2 j+4 , v) + a -2 (u 2 j+2 , v) + a 0 (u 2 j , v) + a 2 (u 2 j-2 , v) = 0, j ≥ 2. ( 26 
)
To proceed with the asymptotic analysis we need to solve each problem above and characterize the limit displacement field u 0 and the associated limit problem.

We start by solving problem

P -4 . Let us choose test functions v = u 0 ∈ V (Ω ): Ω p -2 333 (u 0 )e 333 (u 0 )dx = Ω (4c 1 + c 2 + 4c 3 + 2c 4 + 4c 5 )(e 333 (u 0 )) 2 dx = 0. ( 27 
)
Since 4c 1 + c 2 + 4c 3 + 2c 4 + 4c 5 > 0, by virtue of the positive definiteness of B, we get e 333 (u 0 ) = 0, which implies that

u 0 3 ( x, x 3 ) = w 0 ( x) + x 3 b 0 3 ( x). ( 28 
)
Let us consider problem P -2 . Since e 333 (u 0 ) = 0, we get that p -2 α3β (u 0 ) = p -2 αβ 3 (u 0 ) = 0, thus one has:

Ω [p -2
333 (u 2 )e 333 (v) + (λ + 2µ)e 33 (u 0 )e 33 (v) + 2p -1 α33 (u 0 )e α33 (v)+ +p -1 33α (u 0 )e 33α (v) + p 0 333 (u 0 )e 333 (v)]dx for all v ∈ V.

(29)

If we choose test functions v = u 0 ∈ V (Ω ), problem P -2 reads as follows:

Ω (λ + 2µ)(e 33 (u 0 )) 2 + 4(c 3 + c 4 + c 5 ) e α33 (u 0 ) + 2c 5 + c 1 c 3 + c 4 + c 5 e 33α (u 0 ) 2 + + c 2 + 2c 4 - (2c 5 + c 1 ) 2 c 3 + c 4 + c 5 (e 33α (u 0 )) 2 dx = 0. ( 30 
)
Since the assumptions on A and B imply that the coefficients multiplying the quadratic terms are positive, we obtain that

e 33 (u 0 ) = e 33α (u 0 ) = e α33 (u 0 ) = 0. ( 31 
)
By virtue of relations (31), the displacement field u 0 can be updated as follows:

u 0 α ( x, x 3 ) = ū0 α ( x) + x 3 ϕ 0 α ( x), u 0 3 ( x, x 3 ) = w 0 ( x). ( 32 
)
The above displacement field corresponds to the well-known Reissner-Mindlin kinematics assumptions for a plate. Since we want to focus our attention on the flexural behavior of the plate, in the sequel we neglect the in-plane displacements ū0 α , which are associated with the membrane behavior of the plate. Hence,

u 0 α ( x, x 3 ) = x 3 ϕ 0 α ( x), u 0 3 ( x, x 3 ) = w 0 ( x). (33) 
Finally, by substituting v α = 0 and v 3 = v 3 ( x, x 3 ) in P -2 , we have

Ω p -2 333 (u 2 ) + p 0 333 (u 0 ) ∂ 33 v 3 dx = 0 for all v 3 ∈ V (Ω ), (34) 
which is verified when p -2 333 (u 2 ) = -p 0 333 (u 0 ) and so, we obtain the following characterization for u 2 3 :

u 2 3 ( x, x 3 ) = a 2 3 ( x) + x 3 b 2 3 ( x) - x 2 3 2 c (c 1 + 2c 3 )∂ σ σ a 0 3 + (3c 1 + c 2 + 2c 3 )∂ σ b 0 σ ( x), (35) 
with c := 4c 1 + c 2 + 4c 3 + 2c 4 + 4c 5 . Problem P 0 reads as follows:

Ω p -2 333 (u 4 )e 333 (v) + (λ + 2µ)e 33 (u 2 )e 33 (v) + p -2 αβ 3 (u 2 )e αβ 3 (v)+ +2p -2 α3β (u 2 )e α3β (v) + 2p -1 α33 (u 2 )e α33 (v) + p -1 33α (u 2 )e 33α (v)+ +p 0 333 (u 2 )e 333 (v) + λ e σ σ (u 0 )e 33 (v) + 4µe α3 (u 0 )e α3 (v)+ +p 0 αβ 3 (u 0 )e αβ 3 (v) + 2p 0 α3β (u 0 )e α3β (v)+ +2p 1 α33 (u 0 )e α33 (v) + p 1 33α (u 0 )e 33α (v) dx = Ω f 3 v 3 dx + Γ ± g 3 v 3 dΓ , (36) 
for all v ∈ V (Ω ). Let us choose test functions v ∈ V (Ω ) such that v α ( x, x 3 ) = v α ( x) + x 3 η α ( x) and v 3 ( x, x 3 ) = η 3 ( x), i.e., e 333 (v) = e 33 (v) = e α33 (v) = e 33α (v) = 0. Hence, problem P 2 becomes:

Ω p -2 αβ 3 (u 2 ) + p 0 αβ 3 (u 0 ) e αβ 3 (v) + 2 p -2 α3β (u 2 ) + p 0 α3β (u 0 ) e α3β (v)+ + 4µe α3 (u 0 )e α3 (v) dx = Ω f 3 η 3 dx + Γ ± g 3 η 3 dΓ for all v ∈ V (Ω ). (37) 
Let v α = 0, then we find the first limit problem verified by w 0 and ϕ 0 α :

h ω (C 1 ∂ β β w 0 +C 2 ∂ β ϕ 0 β )∂ αα η 3 + c 4 (∂ αβ w 0 + ∂ β ϕ 0 α ) + c 5 (∂ α ϕ 0 β + ∂ β ϕ 0 α ) ∂ αβ η 3 + +µ(∂ α w 0 + ϕ 0 α )∂ α η 3 d x = ω qη 3 d x, ( 38 
) for all η 3 ∈ V (ω) := {η = (η i ) ∈ H 1 (ω, R 2 ) × H 2 (ω); η = 0, ∂ ν η 3 = 0 on γ 0 } ( by virtue of the assumption γ 0 = γ, one has V (ω) = H 1 0 (ω, R 2 ) × H 2 0 (ω)), where q( x) := 1 -1 f 3 ( x, x 3 )dx 3 + g 3 ( x, ±1), (39) 
and

C 1 := c 3 -(c 1 -2c 3 ) 2 c , C 2 := c 1 + c 3 -(3c 1 +c 2 +2c 3 )(c 1 +2c 3 ) c . ( 40 
)
If we choose v 3 = 0 in problem (37), we obtain the second limit problem satisfied by w 0 and ϕ 0 α :

ω C 2 ∂ β β w 0 +C 3 ∂ β ϕ 0 β ∂ α η α + µ(∂ α w 0 + ϕ 0 α )η α + + c 4 ∂ β ϕ 0 α + (c 4 + 2c 5 )(∂ αβ w 0 + ∂ β ϕ 0 α + ∂ α ϕ 0 β ) ∂ β η α d x = 0, (41) 
for all η α ∈ V (ω), where

C 3 := 2c 1 + c 2 + c 3 -(3c 1 +c 2 +2c 3 ) 2 c . ( 42 
)
By integrating by parts problem (38) and (41), we obtain the following differential system:

   h(C 1 ∆ -µ)∆ w 0 + h(C 2 ∆ -µ)divϕ 0 = q in ω, (C 2 ∆ -µ)∇w 0 + (C 3 ∆ -µ)ϕ 0 + C 4 ∇(divϕ 0 ) = 0 in ω, w 0 = 0, ∂ n w 0 = 0, ϕ 0 = 0, on γ 0 , (43) 
where ∆ φ := ∂ αα φ is the two-dimensional Laplacian operator applied to φ , divφ := ∂ α φ α is the divergence operator applied to φ = (φ α ), ∇φ := (∂ α φ ) is the two-dimensional gradient operator applied to φ , and

C 1 := c 4 +C 1 , C 2 := c 4 + 2c 5 +C 2 , C 3 := 2 (c 4 + c 5 ) , C 4 := c 4 + 2c 5 +C 3 . ( 44 
)
Remark 1. We notice that the partial differential operator associated with system (43) is self adjoint, because it comes from a symmetric bilinear form associated with the variational problem (37).

Remark 2. In several works (see, for instance, [START_REF] Aifantis | Strain gradient interpretation of size effects[END_REF]), Aifantis has proposed a simplified strain gradient isotropic linearly elastic constitutive law, in which c 1 = c 3 = c 5 = 0, c 2 = ℓ 2 λ and c 4 = ℓ 2 µ, where ℓ is an internal length connected to the micro-structure. The simplified strain gradient constitutive law gets the following expression:

σ ε i j (u ε ) := λ ε e ε pp (u ε )δ i j + 2µ ε e ε i j (u ε ), p ε i jk (u ε ) := ℓ 2 ∂ ε k σ ε i j (u ε ) = ℓ 2 ∂ ε k (λ ε e ε pp (u ε )δ i j + 2µ ε e ε i j (u ε )). (45) 
In this particular case the limit problem takes the following form:

   hµ(ℓ 2 ∆ -1)(∆ w 0 + divϕ 0 ) = q in ω, µ(ℓ 2 ∆ -1)(∇w 0 + ϕ 0 ) + µℓ 2 ∆ ϕ 0 + ℓ 2 µ(2µ+3λ ) λ +2µ ∇divϕ 0 = 0 in ω, (46) 
or, analogously,

hµ(ℓ 2 ∆ -1)(∆ w 0 + divϕ 0 ) = q in ω, 12ℓ 2 h 2 D∆ divϕ 0 = -q in ω, (47) 
where

D := µ(λ +µ)h 3 3(λ +2µ) = Eh 3 12(1-ν 2 )
is the classical rigidity modulus of the plate. The coefficient 12(ℓ/h) 2 usually appears in strain gradient plate theories and it represents the ratio between the intrinsic length of the microstructure and the actual thickness of the plate. Its influence is high for small thicknesses, when the intrinsic length ℓ is comparable to the thickness of the plate. Besides, it has been shown in [START_REF] Lazopoulos | On bending of strain gradient elastic micro-plates[END_REF] that, by comparing the deflections of a classical Kirchhoff-Love plate and the deflections of a strain gradient Kirchhoff-Love plate, 12(ℓ/h) 2 has the effect of increasing the global stiffness of the plate.

A weak convergence results

In this section we establish a convergence result of the solution of the three-dimensional problem towards the solution of the simplified limit problem.

With the scaled displacement field u(ε) ∈ H 2 (Ω ; R 3 ), we associate the following tensors κ(ε) = (κ i j (ε)) and ∇κ(ε) = (κ i jk (ε)) := (∂ k κ i j (ε)), with κ i j (ε) ∈ H 1 (Ω ) and κ i jk (ε) ∈ L 2 (Ω ), defined by

κ αβ (ε) := εe αβ (ε), κ α3 (ε) := e α3 (ε), κ 33 (ε) := 1 ε e 33 (ε), κ αβ γ (ε) := εe αβ γ (ε), κ αβ 3 (ε) := e αβ 3 (ε), κ α3β (ε) := e α3β (ε), κ α33 (ε) := 1 ε e α33 (ε), κ 33α (ε) := 1 ε e 33α (ε), κ 333 (ε) := 1 ε 2 e 333 (ε). (48) 
With an arbitrary vector field v ∈ H 2 (Ω ; R 3 ), we likewise associate the tensors κ(ε

; v) = (κ i j (ε); v) and ∇κ(ε; v) = (κ i jk (ε; v)) := (∂ k κ i j (ε; v)). In particular, one has κ(ε) = κ(ε; u(ε)) and ∇κ(ε) = ∇κ(ε; u(ε)).
Then the rescaled problem (22) takes the particularly condensed form:

Ω (Aκ(ε) : κ(ε; v) + B∇κ(ε) ∴ ∇κ(ε; v)) dx = l 0 (v 3 ) + ε 2 l 2 (v α ), (49) 
for all v ∈ V (Ω ).

The main result of this section is claimed in the following theorem.

Theorem 1 For each ε > 0, let u(ε) denote the (unique) solution of (49). Then

u 3 (ε) ⇀ ū3 in H 2 (ω), ∂ 3 u α (ε) ⇀ φα in H 1 (ω), (50) 
where ū3 and φα are the solutions of the limit problems (38)-( 41)

ω (C 1 ∂ β β ū3 +C 2 ∂ β φβ )∂ αα η 3 + c 4 (∂ αβ ū3 + ∂ β φα ) + c 5 (∂ α φβ + ∂ β φα ) ∂ αβ η 3 + +µ(∂ α ū3 + φα )∂ α η 3 ] d x = 1 h ω qη 3 d x, ω C 2 ∂ β β ū3 +C 3 ∂ β φβ ∂ α η α + µ(∂ α ū3 + φα )η α + + c 4 ∂ β φα + (c 4 + 2c 5 )(∂ αβ ū3 + ∂ β φα + ∂ α φβ ) ∂ β η α d x = 0, (51) for all η i ∈ V (ω) := {η = (η i ) ∈ H 1 (ω, R 2 ) × H 2 (ω); η = 0, ∂ ν η 3 = 0 on γ 0 }.
Proof For the sake of clarity the proof is divided into two parts. Let us define at first the following L 2 -norms: 49), the variational problem takes the following simple form:

|κ(ε)| 0,Ω := ∑ i, j |κ i j (ε)| 2 0,Ω 1/2 , |∇κ(ε)| 0,Ω := ∑ i, j,k |κ i jk (ε)| 2 0,Ω 1/2 (52) (i) By letting v = u(ε) in (
Ω (Aκ(ε) : κ(ε) + B∇κ(ε) ∴ ∇κ(ε)) dx = l 0 (u 3 (ε)) + ε 2 l 2 (u α (ε)), (53) 
By virtue of the positive definiteness of the bilinear form and, by definition of κ(ε) and ∇κ(ε), one has

Ω (Aκ(ε) : κ(ε) + B∇κ(ε) ∴ ∇κ(ε)) dx ≥ C |κ(ε)| 2 0,Ω + |∇κ(ε)| 2 0,Ω ≥ ≥ C ε 2 ∑ α,β |e αβ (ε)| 2 0,Ω + ∑ α |e α3 (ε)| 2 0,Ω + 1 ε 2 |e 33 (ε)| 2 0,Ω + +ε 2 ∑ α,β ,γ |e αβ γ (ε)| 2 0,Ω + ∑ α,β |e αβ 3 (ε)| 2 0,Ω + |e α3β (ε)| 2 0,Ω + + 1 ε 2 ∑ α |e α33 (ε)| 2 0,Ω + |e 33α (ε)| 2 0,Ω + 1 ε 4 |e 333 (ε)| 2 0,Ω . (54) 
On the other side, by virtue of the continuity of the linear forms and since ε ≤ 1, we get:

l 0 (u 3 (ε)) + ε 2 l 2 (u α (ε)) ≤ C u 3 (ε) 1,Ω + ε 2 ∑ α u α (ε) 1,Ω ≤ ≤ C |κ(ε)| 2 0,Ω + |∇κ(ε)| 2 0,Ω 1/2 . ( 55 
)
In order to prove the inequality above, we notice that, since u i (ε) = 0 on Γ 0 , the norm

u i (ε) 1,Ω is equivalent to {∑ j |∂ j u i (ε)| 2 0,Ω } 1/2 . Since ∂ n u i (ε) = 0 on Γ 0 and n = (n 1 , n 2 , 0
), one has the same inequality for any ∂ α u i (ε). In particular we get

|∂ α u 3 (ε)| 2 0,Ω ≤ C{∑ β |∂ αβ u 3 (ε)| 2 0,Ω + |∂ α3 u 3 (ε)| 2 0,Ω }, |∂ α u β (ε)| 2 0,Ω ≤ C{∑ γ |∂ αγ u β (ε)| 2 0,Ω + |∂ α3 u β (ε)| 2 0,Ω }. (56) 
Since ∂ α j u i (ε) = e αi j (ε) + e jiα (ε)e α ji (ε), one has

∑ α |∂ α u 3 (ε)| 2 0,Ω ≤ C ∑ α,β |e αβ 3 (ε)| 2 0,Ω + |e α3β (ε)| 2 0,Ω + |e α33 (ε)| 2 0,Ω + |e 33α (ε)| 2 0,Ω , ∑ α |∂ α u β (ε)| 2 0,Ω ≤ C ∑ α,β ,γ |e αβ γ (ε)| 2 0,Ω + |e α3β (ε)| 2 0,Ω + |e αβ 3 (ε)| 2 0,Ω . 
(57) Hence we have that

u 3 (ε) 1,Ω + ε 2 ∑ α u α (ε) 1,Ω ≤ ≤ C 1 ε 2 |e 33 (ε)| 2 0,Ω + ∑ α,β |e αβ 3 (ε)| 2 0,Ω + |e α3β (ε)| 2 0,Ω + + 1 ε 2 ∑ α |e α33 (ε)| 2 0,Ω + |e 33α (ε)| 2 0,Ω + ε 2 ∑ α,β |e αβ (ε)| 2 0,Ω + +ε 2 ∑ α,β ,γ |e αβ γ (ε)| 2 0,Ω 1/2 ≤ C |κ(ε)| 2 0,Ω + |∇κ(ε)| 2 0,Ω 1/2 . ( 58 
)
The inequalities above imply that the norms |κ(ε)| 0,Ω and |∇κ(ε)| 0,Ω are bounded independently of ε. Since the sequences (κ i j (ε)) ε>0 and (κ i jk (ε)) ε>0 are bounded in L 2 (Ω ), there exist a constant C such that

|e 333 (ε)| 0,Ω ≤ Cε 2 , |e 33α (ε)| 0,Ω ≤ Cε, |e 33 (ε)| 0,Ω ≤ Cε, |e α33 (ε)| 0,Ω ≤ Cε, |e α3β (ε)| 0,Ω ≤ C, |e α3 (ε)| 0,Ω ≤ C, |e αβ γ (ε)| 0,Ω ≤ C ε , |e αβ 3 (ε)| 0,Ω ≤ C, |e αβ (ε)| 0,Ω ≤ C ε . (59) 
Hence, from the first set of inequalities, we obtain that 1 ε 2 e 333 (ε) ⇀ ē333 , e 333 (ε)

:= ∂ 33 u 3 (ε) → 0, e 33α (ε) := ∂ α3 u 3 (ε) → 0 and e 33 (ε) := ∂ 3 u 3 (ε) → 0 in L 2 (Ω ), and thus ∂ 3 u 3 (ε) → 0 in H 1 (Ω ). Moreover, one has ∂ α u 3 (ε) ⇀ zα ( x) in L 2 (Ω ).
¿From the second set of inequalities, we get that e α3 (ε) ⇀ ēα3 , e α33 (ε)

:= ∂ 3 e α3 (ε) → 0 and e α3β (ε) := ∂ β e α3 (ε) ⇀ ēα3β in L 2 (Ω ). Thus e α3 (ε) ⇀ ēα3 ( x) in H 1 (Ω ) and so, ēα3β = ∂ β ēα3 ( x). By definition of e α3 (ε), we obtain that ∂ 3 u α (ε) ⇀ 2 ēα3 ( x) -zα ( x) in L 2 (Ω ).
Thanks to (59), we notice that

∂ αβ u 3 (ε) = e α3β (ε) + e β 3α (ε) -e αβ 3 (ε) is bounded in L 2 (Ω ). Therefore, |∂ i j u 3 (ε)| 0,Ω ≤ C
and by (57) one has u 3 (ε) bounded in H 2 0 (ω) and so:

u 3 (ε) ⇀ ū3 ( x) in H 2 0 (ω). (60) 
The limit ū3 = ū3 ( x) is independent of x 3 . This implies that zα = ∂ α ū3 and, thus

∂ 3 u α (ε) ⇀ φα ( x) := 2 ēα3 ( x) -∂ α ū3 ( x) in H 1 0 (ω). (61) 
Finally, from the third set of inequalities, we deduce that εe αβ γ (ε) ⇀ ēαβγ , εe αβ (ε) ⇀ ēαβ and e αβ 3 (ε) ⇀ ēαβ3 in L 2 (Ω ). We notice that ēαβ3

= ∂ α ēβ3 +∂ β ēα3 -∂ αβ ū3 = 1 2 (∂ α φβ + ∂ β φα ) in L 2 (Ω ).
(ii) Now we characterize the limits ū3 and φα . Let us consider the rescaled variational problem (22). Let multiply it by ε 2 and let ε tend to zero. Then we find that

Ω ( c ē333 + (2c 1 + c 2 ) ēσσ3 + 2(c 1 + 2c 3 )∂ σ ē3σ ) e 333 (v)dx = 0, (62) 
for all v ∈ V (Ω ). This relation is satisfied when c ē333 +(2c

1 +c 2 ) ēσσ3 +2(c 1 +2c 3 )∂ σ ē3σ = 0, which implies that ē333 = - 2c 1 + c 2 c ēσσ3 - 2(c 1 + 2c 3 ) c ∂ σ ē3σ = = - 3c 1 + c 2 + c 3 c ∂ σ φσ - c 1 + 2c 3 c ∂ σ σ ū3 . (63) 
Let us choose test functions v ∈ V (Ω ), such that v α ( x, x 3 ) = x 3 η α ( x) and v 3 ( x, x 3 ) = v 3 ( x), i.e. v has the same form of the limit displacement field u 0 . The variational problem (22) takes the following expression when ε tends to zero: (65) for all η 3 ∈ V (ω). Otherwise, by choosing v α = x 3 η α ( x) and v 3 = 0, by means of relation (63) and by means of the convergence results obtained in (i), we obtain the second limit problem (66) for all η α ∈ V (ω). This completes the proof.

Concluding remarks

In the present work we derive a strain gradient Reissner-Mindlin plate model by means of an asymptotic analysis starting from the equations of strain gradient linearized elasticity. Besides, we give a formal justification of the simplified model by virtue of a weak convergence result. We concentrate our attention to the flexural behavior, by neglecting at this stage the membrane behaviour.

As it is mentioned in the Introduction to this paper, in order to obtain the Reissner-Mindlin kinematics for a plate through the asymptotic analysis or Γ -convergence, we need to generalize the initial classical elastic energy by adding some second gradient extra terms or by using the micropolar continuum model. In our work we give another proof of the fact that, in order to formally deduce the Reissner-Mindlin plate model, it is necessary to use a different continuum model, such as the second gradient continuum model. ¿From a mechanical point of view, the obtained strain gradient Reissner-Mindlin plate model can be used to study the mechanical behaviour of micro-plates and nano-plates, especially by considering the reduced Aifantis strain gradient elastic material. The new model contains a material internal length scale parameter ℓ to account the microstructural effect, unlike the classical Reissner-Mindlin plate model. The presence of this additional material constant enables this model to capture size effects.

At last let us explicitly point out that all the obtained conclusions are true also when the plate is clamped only on a measurable subset γ 0 × [-ε, ε] of the lateral boundary Γ ε with length γ 0 > 0, and γ 1 = / 0.

Ω

  [((2c 1 + c 2 ) ē333 + 2c 1 ∂ σ ēσ3 + c 2 ēσσ3 )e ττ3 (v)+ +(2c 4 ēαβ3 + 2c 5 (∂ β ēα3 + ∂ α ēβ3 ))e αβ 3 (v)+ +(2(c 1 + 2c 3 ) ē333 + 2c 3 ∂ σ ēσ3 + c 1 ēσσ3 )e τ3τ (v)+ +2(c 4 ∂ β ēα3 + c 5 ēαβ3 )e α3β (v) = l 0 (v 3 ).

  choosing v α = 0 and v 3 = η 3 ( x), by virtue of (63) and of the previous convergences, we obtain the first limit problemω (C 1 ∂ β β ū3 +C 2 ∂ β φβ )∂ αα η 3 + c 4 (∂ αβ ū3 + ∂ β φα ) + c 5 (∂ α φβ + ∂ β φα ) ∂ αβ η 3 + +µ(∂ α ū3 + φα )∂ α η 3 ] d x = 1 h ω qη 3 d x.

ω C 2

 2 ∂ β β ū3 +C 3 ∂ β φβ ∂ α η α + µ(∂ α ū3 + φα )η α + + ((c 4 + 2c 5 )(∂ αβ ū3 + ∂ β φα + ∂ α φβ ) + c 4 ∂ β φα )∂ β η α d x = 0.