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Abstract

We describe the Minimal Model Program in the family of Q-Gorenstein projective horo-
spherical varieties, by studying a family of polytopes defined from the moment polytope of a
Cartier divisor of the variety we begin with. In particular, we generalize the results on MMP
in toric varieties due to M. Reid, and we complete the results on MMP in spherical varieties
due to M. Brion in the case of horospherical varieties.
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1 Introduction

The Minimal Model Program (MMP) takes an important place in birational algebraic geometry
in order to get a birational classification of algebraic varieties. A lot of progress has been done
in the last three decades. We come back here to an original version of the MMP, summarized by
Figure 1 where H denote a family of Q-factorial varieties (see [Mat02] to have a good overview
of this theory). For any Q-Gorenstein variety X, we denote by NE(X) the nef cone of curves of
X, by KX a canonical divisor of X and by NE(X)KX<0 (resp. NE(X)KX>0) the intersection of
the nef cone with the open half-space of curves negative (resp. positive) along the divisor KX .

When H is the family of Q-factorial toric varieties, M. Reid proved in 1983 that the MMP
works [Rei83]. In particular, the MMP ends (there is no infinite series of flips). Note that, for
this family, the cone NE(X) is polyhedral generated by finitely many rays, and is very well-
understood. Note also that, since toric varieties are rational varieties, a minimal model is then
a point. Moreover, M. Reid proved that the general fibers of the Mori fibrations, for Q-factorial
toric varieties, are weighted projective spaces.

WhenH is the family of Q-factorial sphericalG-varieties, for any connected reductive algebraic
group G, M. Brion proved in 1993 that the MMP works [Bri93]. For this family, the cone NE(X)
is still polyhedral generated by finitely many rays and described in [Bri93]. Note that spherical
varieties are also rational varieties, so that minimal models are still points here. Nevertheless, it
is very difficult to compute concretely NE(X) and KX , so that it makes difficult the application
of the MMP to explicit examples of this family. That is why we reduce the study to horospherical
varieties, for which a canonical divisor is well-known, and that is also why we present another
approach that does not need the computation of NE(X). Moreover, the general fibers of Mori
fibrations for Q-factorial spherical G-varieties are not known.

In this paper, we first consider the case where H is the family of Q-Gorenstein projective
horospherical G-varieties. The family of horospherical varieties is contained in the family of
spherical varieties and contains toric varieties. Using a different approach than the one used by
M. Reid or M. Brion, we obtain the main result of this paper.

Theorem 1. The MMP described by Figure 2 works if H is the family of Q-Gorenstein projective
horospherical G-varieties for any connected reductive algebraic group G. Moreover, for any X in
H and from any choice of an ample Cartier divisor of X, we can concretely describe each step of
this MMP until it ends.
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Figure 1: Original MMP for Q-factorial varieties

X ∈ H

Is KX nef? X is a minimal model

There exist Y in H
attached to the contraction φ : X −→ Y

of a ray of NE(X)KX<0

Is dim(Y )
less than
dim(X)?

φ is a Mori fibration

Is φ
a divisorial contraction?
(ie contracts a divisor)

Y is in H,
in particular,
it is Q-factorial

There exist X+ in H
attached to the contraction φ+ : X+ −→ Y

of a ray of NE(X)KX>0

(called a flip)

replace
X by Y

replace
X by X+

yes END

no

yes END

no

yes

no
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Remark that the main difference with the original MMP is that a divisorial contraction can
give a flip,. It comes from the fact that the varieties are here not necessarily Q-factorial.

We use here convex geometry, and in particular continuous transformations of moment poly-
topes. That is why we need to restrict to projective varieties. To illustrate Theorem 1, we give
two first examples, both from the same toric variety X. Note that the result of the MMP applied
to a variety X is not unique: for the original MMP, it depends on the choices of a ray in the
effective cone of all varieties appearing in the beginning of each loop of the program, and here it
depends on the choice of a Q-Cartier ample divisor of the variety X (only in the beginning of the
program). To choose a Q-Cartier ample divisor of a projective toric variety is equivalent to choose
its moment polytope (see Section 2.2). We suppose here that the reader know the classification
of toric varieties in terms of fans, see [Ful93] or [Oda88] if it is not the case.

Example 1. In Q3 consider the simple polytope Q defined by the following inequations, where
(x, y, z) are the coordinates of a point in Q3.

z ≥ −1
−x− y − 2z ≥ −5

2x− z ≥ −3
−2x− z ≥ −3
2y − z ≥ −3
−2y − z ≥ −3.

It is a pyramid whose summit is cut by a plane.
The edges of the fan FX of the toric variety X associated to Q are x1 := (0, 0, 1), x2 :=

(−1,−1,−2), x3 := (2, 0,−1), x4 := (−2, 0,−1), x5 := (0, 2,−1) and x6 := (0,−2,−1). And the
maximal cones of FX are the cones respectively generated by (x1, x3, x5), (x1, x3, x6), (x1, x4, x5),
(x1, x4, x6), (x2, x3, x5), (x2, x3, x6), (x2, x4, x5), (x2, x4, x6). (See Section 2.2, to have an expla-
nation of the correspondence between moment polytopes and fans.)

Note that X is Q-factorial, because Q is simple (and FX is simplicial).
We consider the family of polytopes Qǫ defines by the following inequations:

z ≥ −1 + ǫ
−x− y − 2z ≥ −5 + ǫ

2x− z ≥ −3 + ǫ
−2x− z ≥ −3 + ǫ
2y − z ≥ −3 + ǫ
−2y − z ≥ −3 + ǫ.

Note that, for ǫ > 0 and small enough, it is the moment polytope of D+ ǫKX , where D is the
divisor of X whose moment polytope is Q, and KX is the canonical divisor.

For ǫ ∈ [0, 1[, all polytopes Qǫ have the same structure so that they all correspond to the
toric variety X. For any ǫ ∈ [1, 2[, the polytopes Qǫ are pyramids. They all correspond to the
toric variety Y whose fan FY is described by the cones respectively generated by (x1, x3, x5),

4



Figure 2: MMP for Q-Gorenstein projective horospherical G-varieties

X ∈ H

Is KX nef? X is a minimal model

There exist Y in H
attached to the contraction φ : X −→ Y

of a face of NE(X)KX<0

Is dim(Y )
less than
dim(X)?

φ is a Mori fibration

Does Y
have Q-Gorenstein

singularities?
φ is a divisorial contraction

There exist X+ in H
attached to the contraction φ+ : X+ −→ Y

of a face of NE(X)KX>0

replace
X by Y

replace
X by X+

yes END

no

yes END

no

yes

no
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(x1, x3, x6), (x1, x4, x5), (x1, x4, x6), (x3, x4, x5, x6). Remark that the last cone is not simplicial,
so that Y is not Q-factorial. The fact that Y is Q-Gorenstein comes from the fact that x3, x4,
x5 and x6 are in a common plane. Note also that x2 is not an edge of FY .

And for ǫ = 2, the polytope Qǫ is a point. Then the family (Qǫ)ǫ∈[0,2] reveals a divisorial
contraction φ : X −→ Y and a Mori fibration from Y to a point.

We illustrate this example in Figure 3.

Polytope Q

Polytope Qǫ for ǫ = 1

Polytope Qǫ for ǫ = 2

Figure 3: Evolution of Qǫ in Example 1 (view from the top of the pyramid)

Before to give the second example, we can notice that, in Example 1, the divisorial contraction
φ goes from a Q-factorial variety to a not Q-factorial variety. It does not contradict the results
of M. Reid, because φ is not the contraction of a ray of NE(X) but of a 2-dimensional face of
NE(X). That gives a reason of considering first Q-Gorenstein varieties instead of Q-factorial
varieties. Fortunately, what occurs in Example 1 can be observed only in very particular cases
(see Theorem 2). Now, we consider a second example, with a more general divisor D.

Example 2. Let Qǫ be the polytopes defined by the following inequations,

z ≥ −1 + ǫ
−x− y − 2z ≥ −5 + ǫ

2x− z ≥ −4 + ǫ
−2x− z ≥ −4 + ǫ
2y − z ≥ −3 + ǫ
−2y − z ≥ −3 + ǫ.
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The simple polytope Q0 is still a pyramid whose summit is cut by a plane. It is the moment
polytope of a Q-Cartier ample divisor of the toric variety X of Example 1.

For ǫ ∈ [0, 12 [, all polytopes Q
ǫ have the same structure so that they all correspond to the toric

variety X.
Now, for ǫ = 1

2 , Q
ǫ corresponds to the fan whose maximal cones are the cones respec-

tively generated by (x1, x3, x5), (x1, x3, x6), (x1, x4, x5), (x1, x4, x6), (x2, x4, x5), (x2, x4, x6) and
(x2, x3, x5, x6). The associated toric variety Y is not Q-factorial. In fact, it is even not Q-
Gorenstein (because x2, x3, x5 and x6 are not in a common plane).

For ǫ ∈]12 ,
3
2 [, the polytopeQ

ǫ is the moment polytope of a divisor of the toric varietyX+ whose
fan has maximal cones respectively generated by (x1, x3, x5), (x1, x3, x6), (x1, x4, x5), (x1, x4, x6),
(x2, x4, x5), (x2, x4, x6), (x2, x5, x6) and (x3, x5, x6). The variety X+ is clearly Q-factorial, and
defines a flip X −→ Y ←− X+.

Now, for ǫ ∈ [32 , 2[, Q
ǫ is a simple polytope with 6 vertices and the moment polytope of a

divisor of the toric variety Z whose fan has maximal cones respectively generated by (x1, x3, x5),
(x1, x3, x6), (x1, x4, x5), (x1, x4, x6), (x3, x5, x6) and (x4, x5, x6). And we get a divisorial contrac-
tion from X+ to Z.

To finish, for ǫ = 2, Qǫ is the segment whose extremities are (−1
2 , 0, 1) and (12 , 0, 1), corre-

sponding to the toric variety P1. It gives a Mori fibration from Z to the projective line.
We illustrate this example in Figure 4.
Moreover, the general fiber of the Mori fibration is the toric variety associated to the polytope

in Q2 defined by the inequalities z ≥ −1, 2y− z ≥ −3 and −2y− z ≥ −3. Its fan is isomorphic to
the complete fan in Q2 whose edges are (0, 1), (−2, 1) and (−2,−1). It is the weight projective
plane P(1, 1, 2).

Example 2 arises a natural question: can we recover the original MMP for Q-factorial pro-
jective horospherical varieties, by chosing a good divisor D? The answer is yes and given in the
following result.

Theorem 2. Suppose that X is Q-factorial. Then, by taking a general divisor D of X, we have
that

• at any loops of the MMP described in Figure 2 (until it ends), the morphisms φ and φ+ are
contractions of rays of NE(X) and NE(X+);

• the MMP described in Figure 2 still works by replacing Q-Gorenstein singularities with
Q-factorial ones everywhere;

• the general fibers of Mori fibrations are projective Q-factorial horospherical varieties with
Picard number 1 (whose moment polytopes are simplexes intersecting all walls of a dominant
chamber along facets).

Remark 1. If X is smooth and D general, the general fibers of Mori fibrations are projective
smooth horospherical varieties with Picard number 1. These varieties have been classified in
[Pas09], in particular we get flag varieties and some two-orbit varieties. Hence, the general fibers
of Mori fibration are not only weighted projective spaces as in the toric case.
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Polytope Qǫ for ǫ = 1

Polytope Qǫ for ǫ = 3
2

Polytope Q

Polytope Qǫ for ǫ = 1
2

Polytope Qǫ for ǫ = 2

Figure 4: Evolution of Qǫ in Example 2 (view from the top of the pyramid)
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The paper is organized as follows.
In Section 2, we recall the theory of horospherical varieties, we state the correspondence

between polarized horospherical varieties and moment polytopes, we rewrite the existence criterion
of an equivariant morphism between two horospherical varieties in terms of polytopes, and we
describe the curves of horospherical varieties from a moment polytope.

In Section 3, we study particular (linear) one-parameter families of polytopes in Qn and we
define some equivalence relation in these families.

In Section 4, we prove Theorems 1 and 2, by using the previous two sections. In particular,
we construct a one-parameter families of moment polytopes whose equivalent classes describe all
loops of the MMP given in Figure 2.

In Section 5, we give five examples to illustrate what can happen in the MMP for horospherical
(and not toric) varieties.

2 Horospherical varieties and polytopes

2.1 Notations and horospherical embedding theory

We begin by recalling briefly the Luna-Vust theory of horospherical embeddings and by setting
the notations used in the rest of the paper. For more details, the reader could have a look at
[Pas08], or in more generalities at the Luna-Vust theory of spherical embeddings in [Kno91].

We fix a connected reductive algebraic group G. A closed subgroup H of G is said to be
horospherical if it contains the unipotent radical U of a Borel subgroup B of G. It is equivalent
to say that G/H is a torus fibration over a flag variety G/P . The parabolic subgroup P is the
normalizer NG(H) of H in G and contains B. We fix a maximal torus T of B. Then we denote
by S the set of simple roots of (G,B, T ). Also denote by R the subset of S of simple roots
of P . Let X(T ) (respectively X(T )+) be the lattice of characters of T (respectively the set of
dominant characters). Similarly, we define X(P ) and X(P )+ = X(P )∩X(T )+. Note that X(P )
is generated by the fundamental weights ̟α with α ∈ S\R. Let M be the sublattice of X(P )
consisting of characters of P vanishing on H. The rank of M is called the rank of G/H and
denoted by n. Let N := HomZ(M,Z). For any free lattice L, we denote by LQ the Q-vector
space L ⊗Z Q. For any simple root α ∈ S\R, the restriction of the coroot α∨ to M is a point of
N , which we denote by α∨

M . For any α ∈ S\R, we also denote by Wα,P the hyperplane defined
by {m ∈ X(P )Q | 〈m,α

∨〉 = 0} (note that it corresponds to a wall of the dominant chamber of
characters of P ).

A G/H-embedding is couple (X,x), where X is a normal algebraic G-variety and x a point
of X such that G · x is open in X and isomorphic to G/H. By abuse of notation, we will forget
the point x.

The G/H-embeddings are classified by colored fans in NQ. A colored fan is a set of colored
cones in NQ stable by taking colored subcones and without overlap (see for example [Pas08] for
the complete definition of a colored fan). A colored cone is a couple (C,F), where F is a subset
of S\R such that α∨

M 6= 0 for all α ∈ F , and C is a strictly convex cone generated by the α∨
M with

α ∈ F and a finite set of points in N .
If G = (C∗)n and H = {1}, we get the well-known classification of toric varieties.
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The colored fans of complete G/H-embeddings are the complete ones (ie such that NQ is the
union of the colored cones of the colored fan).

If X is a G/H-embedding, we denote by FX the colored fan of X in NQ and we denote by
FX the set ∪(C,F)∈FXF ⊂ S\R of colors of X.

Moreover, the set of G-orbits of a G/H-embedding X is naturally in bijection with the set
of colored cones of FX (reversing usual orders). In particular, the G-stable irreducible divisors
correspond to the colored edges of FX of the form (C,∅). We denote them by X1, . . . ,Xm, and
for any i ∈ {1, . . . ,m}, we denote by xi the primitive element in N of the corresponding edge.

2.2 Correspondence between projective horospherical varieties and polytopes

In this section, we list results coming directly from the characterization of Cartier, Q-Cartier and
ample divisors of horospherical varieties due to M. Brion in the more general case of spherical va-
rieties ([Bri89]). And we classify projective G/H-embeddings in terms of G/H-polytopes (defined
below in Definition 1).

First, describe the B-stable irreducible divisors of a G/H-embedding X. We already defined
the G-stable divisors X1, . . . ,Xm. The other ones are the closures in X of B-stable irreducible
divisors of G/H, which are the inverse images by the torus fibration G/H −→ G/P of the
Schubert divisors of the flag variety G/P . We denote these divisors of X by Dα for any α ∈ S\R.

In all the paper, a divisor of a horospherical variety is always supposed to be B-stable.
Let X be a projective G/H-embedding and let D =

∑m
i=1 aiXi +

∑

α∈S\R aαDα be an ample
Cartier divisor of X. Then the set

Q̃X,D = Q̃D := {m ∈MQ | 〈m,xi〉 ≥ −ai, ∀i ∈ {1, . . . ,m} and 〈m,α
∨
M 〉 ≥ −aα, ∀α ∈ DX}

is a lattice polytope in MQ (ie with vertices in M) of maximal dimension. If D is only Q-Cartier,
then Q̃D is a polytope in MQ of maximal dimension. The polytope QX,D = QD := v0 + Q̃D in
X(P )Q, where v

0 =
∑

α∈S\R aα̟α, is called the moment polytope of the polarized variety (X,D)

(or of D in X). We call Q̃D the pseudo-moment polytope of (X,D).
Moreover, the moment polytope of an ample Q-Cartier divisor D in a G/H-embedding X is

always contained in the dominant chamber X(P )+, and QD ∩Wα,P 6= ∅ if and only if α ∈ FX .
We note also that, since any α ∈ FX satisfies α∨

M 6= 0, a moment polytope is contained in no wall
Wα,P , with α ∈ S\R.

An important tool of the paper is the fact that the colored fan of X is reconstructible from
the moment polytope QD of (X,D) for any ample Q-Cartier (B-stable) divisor D. Indeed, any
maximal colored cone of the complete colored fan FX can be defined from a vertex of QD as
follows. Let v be a vertex of QD. We define Cv to be the cone of NQ generated by inward-pointing
normal vectors of the facets of QD containing v. And we set Fv = {α ∈ S\R | v ∈Wα,P}. Then
(Cv,Fv) is a maximal colored cone of FX .

Moreover, the divisor D can also be computed from the pair (Q, Q̃). Indeed, the coefficients
aα with α ∈ S\R are given by the translation vector in X(P )+ that maps Q̃ to Q. And, for any
i ∈ {1, . . . ,m}, the coefficient ai is given by 〈vi, xi〉 for any element vi ∈MQ in the facet of Q̃ for
which xi is an inward-pointing normal vector.
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In order to classify projective G/H-embeddings in terms of polytopes, we give the following
definition.

Definition 1. Let Q be a polytope in X(P )+Q . We say that Q is a G/H-polytope, if its direction
is MQ and if it is contained in no wall Wα,P with α ∈ S\R.

Let Q and Q′ be two G/H-polytopes in X(P )+Q . Consider any polytopes Q̃ and Q̃′ in MQ

obtained by translations of Q and Q′ respectively. We say that Q and Q′ are equivalent G/H-
polytopes if the following conditions are satisfied.

1. There exist an integer j, 2j affine half-spaces H+
1 , . . . ,H

+
j and H′+

1 , . . . ,H
′+
j of MQ (respec-

tively delimited by the affine hyperplanes H1, . . . ,Hj and H′
1, . . . ,H

′
j) such that Q̃ is the

intersection of the H+
i , Q̃

′ is the intersection of the H′+
i , and for all i ∈ {1, . . . , j}, H+

i is
the image of H′+

i by a translation.

2. With notations of the previous item, for all subset J of {1, . . . , j}, the intersections ∩i∈JHi∩
Q and ∩i∈JH

′
i ∩Q

′ have the same dimension.

3. Q and Q′ intersect exactly the same walls Wα,P of X(P )+ (with α ∈ S\R).

Remark that this definition does not depend on the choice of Q̃ and Q̃′. As a corollary of
what we say just above, we obtain the following result.

Proposition 3. The correspondence between moment polytopes and colored fans gives a bijec-
tion between the set of classes of G/H-polytopes and (isomorphic classes of) projective G/H-
embeddings.

Moreover, the set of G-orbits of a projective G/H-embedding is in bijection with the set of
faces of one of its moment polytope (preserving the respective orders).

In section 4.6, we need precise description of the G/H-embedding associated to a G/H-
polytope. For any dominant weight χ, we denote by V (χ) the irreducible G-module of highest
weight χ, and we fix a highest weight vector vχ in V (χ). The Borel subgroup of G opposite to B
is denoted by B−.

Proposition 4. Suppose D is Cartier and very ample, then X is isomorphic to the closure of
G · [

∑

χ∈(v0+M)∩Q vχ] in P(⊕χ∈(v0+M)∩QV (χ)).

Remark 2. If D is Cartier and only ample, then (n− 1)D is very ample ([Pas06, Theorem 0.3]).
In particular, the assumptions Cartier and very ample, instead of Q-Cartier and ample, are not
really restrictive. Indeed, if D is Q-Cartier and ample, then there exists a non-zero integer p such
that pD is Cartier and very ample, and X is isomorphic to the closure of G · [

∑

χ∈(pv0+M)∩pQ) vχ]
in P(⊕χ∈(pv0+M)∩pQV (χ)).

Proof. First, since Q̃ is lattice polytope of maximal dimension, the G-orbit G · [
∑

χ∈(v0+M)∩Q vχ]

is isomorphic to G/H. By [Pas06, Lemma 5.1], the closure X ′ of this G-orbit is normal, and
then a G/H-embedding. Now, if χ0 is a vertex of Q, the intersection of the closure of the G-
orbit with the affine space ∩P(⊕χ∈(pv0+M)∩pQV (χ))v∗χ0

6=0 is the B−-stable affine variety whose
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structure ring is the B−-module generated by the rational functions
v∗χ
v∗χ0

of P(⊕χ∈(v0+M)∩QV (χ)),

with χ0 6= χ ∈ (v0+M)∩Q. It is also the B−-stable affine variety constructed from the maximal
colored cone of FX associated to the vertex χ0 of Q. Hence, the colored fan of X is the same as
the colored fan of X ′ and X is isomorphic to X ′.

2.3 G-equivariant morphisms and polytopes

The existence of G-equivariant morphisms between horospherical varieties can be characterized
in terms of colored fans [Kno91]. In this section, we rewrite this characterization in terms of
moment polytopes.

Let (X,D) be a polarized G/H-embedding, let (X ′,D′) be a polarized G/H ′-embedding and
denote by Q and Q′ the corresponding moment polytopes respectively. (We denote all data
corresponding to G/H ′ and X ′ with primes: H ′, P ′, R′, M ′, N ′,...). We denote by Q̃ and Q̃′ the
pseudo-moment polytopes.

A first necessary condition to the existence of a dominant G-equivariant morphism from X to
X ′, is that there exists a projection π from G/H to G/H ′. In particular H ′ ⊃ H, P ′ ⊃ P , R′ ⊃ R.
The projection π induces an injective morphism π∗ from M ′ to M and a surjective morphism π∗
from N to N ′. We suppose that this necessary condition is satisfied in all the rest of the section
and we identify M ′ with π∗(M

′).
Now, we define an application ψ from the set of facets of Q̃ to the set of faces of Q̃′. First,

note a general fact on polytopes: if P is a polytope in Qr, then for any affine half-space H+

delimited by the affine hyperplane H in Qr, there exists a unique face F of P such that there
exists x ∈ Qr such that F is defined by x+H (ie F = P ∩ (x+H) and P ⊂ v +H+). Then, for
any facet F of Q̃, let H+ be the affine half-space in MQ containing F . If H+ ∩M ′

Q 6= M ′
Q, it is

an affine half-space in M ′
Q and, applying the fact above to P = Q̃′, it gives a unique face F ′ of

Q̃′. We set ψ(F ) = F ′. And if H+ ∩M ′
Q =M ′

Q, we set ψ(F ) = Q̃′.

Proposition 5. Under the above conditions, there exists a dominant G-equivariant morphism
from X to X ′, if and only if

1. for any subset G of facets of Q̃, ∩F∈GF 6= ∅ implies ∩F∈Gψ(F ) 6= ∅, and

2. for any α ∈ S\R such that Q ∩Wα,P 6= ∅ , we have Q′ ∩Wα,P 6= ∅.

Remark that, in Proposition 5, we can replace Q̃ by Q (by extending the definition of ψ).

Proof. For the second condition, remark that if α ∈ S\R is in R′, then Q′ is contained in Wα,P .
And, if α ∈ S\R′, Q′ ∩ Wα,P 6= ∅ is equivalent to Q′ ∩ Wα,P ′ 6= ∅ because Q′ ⊂ X(P ′) and
Wα,P ′ = X(P ′)∩Wα,P . Recall also that Q∩Wα,P 6= ∅ is equivalent to α ∈ FX (and Q′∩Wα,P ′ 6= ∅
is equivalent to α ∈ FX′).

By [Kno91], there exists a dominant G-equivariant morphism from X to X ′ if and only if, for
all colored cone (C,F) of X, there exists a colored cone (C′,F ′) of X ′ such that π∗(C) ⊂ C

′ and
any element α ∈ F , either α ∈ R′ or α ∈ F ′.
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In our case, since X and X ′ are complete, we can rewrite this characterization as follows.
Denote by yi with i ∈ {1, . . . , k} (resp. y′i with i ∈ {1, . . . , k′}) the primitive elements of the
egdes of the colored fan of X (resp. X ′). For all j ∈ {1, . . . , k}, let J ′

j be the minimal subset of
{1, . . . , k′} such that π∗(yj) is in the cone C′j generated by the y′i with i ∈ J

′
j (it is never empty

because X ′ is complete). We prove now that there exists a dominant G-equivariant morphism
from X to X ′ if and only if, for all (colored) cone C of X, generated by the yj with j ∈ JC ,
the cone generated by the y′i with i ∈ ∪j∈JCJ

′
j is contained in a (colored) cone of X ′; and FX is

contained in R′ ∪ FX′ .
Indeed, let C be a cone of X, generated by the yj with j ∈ JC . If there exists a cone C′ of X ′

such that π∗C ⊂ C
′, then C′ contains all yj with j ∈ JC . Then by minimality of the J ′

j , it contains
also cones C′j with j ∈ JC and also the cone generated by the y′i with i ∈ ∪j∈JCJ

′
j. Conversely, if

the cone generated by the y′i with i ∈ ∪j∈JCJ
′
j is contained in a cone C′ of X ′, then it is obvious

that π∗(C) ⊂ C
′ And the condition on colors is the same in both cases.

Now, the proposition comes from the bijective correspondence between colored cones of X
(resp. X ′) and faces of Q (resp. Q′), the first paragraph of the proof, and the following fact: the
intersection of some facets of Q is not empty if and only if the cone generated by the inward-
pointing normal vectors corresponding to these facets is included in a cone of X (and this latter
cone corresponds to the face defined as the intersection of these facets).

Corollary 6. Suppose there exists a dominant G-equivariant morphism φ from X to X ′. Let O
be the G-orbit in X associated to a face ∩F∈GF . Then φ(O) is the G-orbit in X ′ associated to a
face ∩F∈Gψ(F ).

Proof. Rewrite, in terms of polytopes, the fact that if O is the G-orbit in X associated to a
colored cone (C,F) then φ(O) is the G-orbit in X ′ associated to the minimal colored cone (C,F)
such that π∗(C) ⊂ C

′.

2.4 Curves in horospherical varieties

We begin this section by collecting, in the following Theorem, some results on curves in spherical
varieties due to M. Brion [Bri93]. We denote by N1(X) the group of numerical classes of 1-cycles
of the variety X. Recall that NE(X) is the convex cone in N1(X) generated by effective 1-cycles.
We denote by N1(X) the group of numerical classes of Q-Cartier divisors of X, it is the dual of
N1(X).

Theorem 7 (M. Brion). Let X be a complete spherical variety. Let Y and Z be two distinct
closed G-orbits in X. Note that Y and Z are flag varieties, so that they have exactly one point
fixed by B.

1. There exists a B-stable curve C containing the B-fixed points of Y and Z if and only if
the colored cones in the colored fan FX corresponding to the two closed G-orbits Y and
Z intersect along a one-codimensional colored cone µ). And, in that case, C is unique,
isomorphic to P1, we denote it by Cµ.
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2. The space N1(X)Q is generated by the classes of the curves Cµ where µ is any one-codimensional
colored cone in FX, and some classes [CD,Y ] where Y is any closed G-orbit of X and D is
any irreducible B-stable divisor of X not containing Y .

3. Any classes [CD,Y ] that is not in a ray generated by the class of a curve Cµ is represented by
a (not unique in general) B-stable curve CD,Y admitting the B-fixed point of Y as unique
B-fixed point.

4. The cone NE(X) is generated by the classes [Cµ] and [CD,Y ].

Now, in the particular case of horospherical varieties, we complete this collection of results by
the following proposition that describes an explicit curve in all classes of the form [CD,Y ]. Note
that a homogeneous G-space has a B-fixed point if and only if it is complete (projective), so that
the B-fixed points of a complete G-variety are the (unique) B-fixed points of its closed G-orbits.
Denote by sα the simple reflection associated to a simple root α, and denote by w0 the longest
element of the Weyl group of (G,T ).

Proposition 8. 1. Let X be a complete horospherical variety. If a B-stable curve C in X
contains a unique B-fixed point y, then C is contained in the closed G-orbit Y := G · y. In
particular, it is a Schubert subvariety of Y .

2. For any closed G-orbit Y and any divisor Dα that does not contain Y , the class of [CDα,Y ]
is represented by the Schubert variety of Y given by the simple root α (ie Bsα · y, where y
is the B-fixed point of Y ). We denote it by Cα,Y .

Proof. 1. Let C be a B-stable curve in X. Suppose that C is not contained in Y . By replacing
X by the closure of the biggest G-orbit of X that intersects C, we can assume that C
intersect the open G-orbit G/H that is at least of rank one. And then the intersection
C ∩ G/H is an open set of C. Recall that G/H is a G-equivariant torus fibration over the
flag variety G/P . Then C ∩ G/H is the fiber P/H of this fibration over P/P . Indeed,
the B-orbits of G/H are the inverse image of the Schubert cells of G/P . The (unique)
smallest one is P/H, but by hypothesis, P/H has positive dimension. Then, since C ∩G/H
is B-stable, it is P/H. Moreover P/H has to be one-dimensional.

Prove now that C has two B-fixed points. By the previous paragraph, P/H is one-
dimensional, ie X is of rank one. Then, there exists a P1-bundle X̃ over G/P and a
G-equivariant birational morphism φ : X̃ −→ X (X̃ is the toroidal variety over X, see
[Pas06, Example 1.13 (2)]). The closure of the P -orbit P/H in X̃ is the fiber P1 over P/P .
Then it has exactly two B-fixed points corresponding to the two C∗-fixed points of the
toric variety P1. Moreover, the two-closed G-orbits of X̃ are send, by φ, respectively to the
two-closed G-orbits of X (here we use that X is horospherical of rank one). Then C = φ(C̃)
has also two B-fixed points (and is isomorphic to P1).

2. Let Y be a G-closed orbit of X and let α ∈ S\R such that Dα does not contain Y . Let
Cα,Y := Bsα · y, where y is the B-fixed point of Y . Let D =

∑m
i=1 biXi +

∑

β∈S\R bβDβ

be a Cartier divisor of X. We want to compute D · Cα,Y . Since D is Cartier, there exists
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an eigenvector fY (D) of B in the set of rational function on X such that the support of
D−div(fY(D)) is in the union of irreducible B-stable divisors that do not contain Y . Denote
by χY (D) the weight of the eigenvector fY (D). But for any divisor Xi with i ∈ {1, . . . ,m}
such that Y 6⊂ Xi, we clearly have Xi · Cα,Y = 0 because Y and Xi are disjoint. Hence

D · Cα,Y = (D − div(fY(D))) · Cα,Y =
∑

β,Y 6⊂Dβ

(bβ − 〈χY(D), β∨M〉)Dβ · Cα,Y.

We conclude, by the following Lemma 9 and the formula given in [Bri93, 3.2].

Lemma 9. Let Y be a G-closed orbit of X and let α, β ∈ S\R such that Dα and Dβ do not
contain Y . Then Dβ · Cα,Y = δαβ , where δ is the Kronecker delta.

Proof. Denote by y the B-fixed point of Y . Remark that y is also fixed by P . By [Pas06, Lemma
2.8], there exists a unique G-equivariant morphism φ from the open G-stable set XY := {x ∈ X |
G · x ⊃ Y } to the closed G-orbit Y . Note that y = φ(H/H) because y is the only point of Y fixed
by U ⊂ H and, similarly, φ is the identity on Y .

Recall that Dβ is the closure in X of the B-orbit Bsβw0P/H. Then Dβ ∩ Y is contained
in (and then equals) the closure of φ(Bsβw0P/H) in Y , which is the Schubert variety Bsβw0 · y
of Y . Moreover, since Dβ does not contain Y , Dβ ∩ Y is a divisor of Y . Hence Dβ · Cα,Y =
(Dβ ∩ Y ) · Cα,Y = δαβ.

With the correspondence between colored fans and moment polytopes, if X is a horospherical
variety and D is a Q-Cartier divisor, we denote by Cµ for any edge µ of QD, and by Cα,v for
any α ∈ S\R and any vertex v not contained in Wα,P , the curves defined above in terms of
the colored fans (one-codimensional colored cones correspond to edges of moment polytopes, and
closed G-orbits correspond to maximal colored cones and then to vertices of moment polytopes).

The following results is a direct consequence of the formula of [Bri93, section 3.2], already
used in the proof of Proposition 8.

Proposition 10. Let X be a horospherical variety and D an ample Q-Cartier divisor.
Then, for any edge µ of the moment polytope QD, the intersection number D.Cµ is the integral

length of µ, ie the length of µ divided by the length of the primitive element in the direction of µ.
And for any α ∈ S\R and for any vertex v of QD not in the wall Wα,P , we have D.Cα,v =

〈v, α∨〉.

3 One-parameter families of polytopes

In this section, we study particular one-parameter families of polytopes. This section can be
read independently from the rest of the paper. Corollary 21 is an essential tool in the proofs of
Theorems 1 and 2.
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3.1 A first one-parameter family of polytopes: definitions and results

First, we fix notations. Let n andm be two positive integers. Consider three matrices A, B and C
respectively in Mm×1(Q), Mm×1(Q) and Mm×n(Q). Then we define a first family of polyhedrons
indexed by ǫ ∈ Q as follows:

P ǫ := {x ∈ Qn | Ax ≥ B + ǫC}.

We do not exclude the case where some lines of A are zero. Note that P ǫ can be empty (even
for all ǫ ∈ Q).

If there exists ǫ ∈ Q such that P ǫ is a (not empty) polytope (ie is bounded), then there is no
non-zero x ∈ Qn satisfying Ax ≥ 0. Inversely, if there exists ǫ ∈ Q such that P ǫ is not bounded
then there exists a non-zero x ∈ Qn satisfying Ax ≥ 0 (because P ǫ contains at least an affine
half-line and x can be taken to be a generator of the direction of this half-line).

From now on, we suppose that there is no non-zero x ∈ Qn satisfying Ax ≥ 0.

Let I0 := {1, . . . ,m}. For any matrix M and any i ∈ I0, we denote by Mi the matrix
consisting of the line i of M. And more generally, for any subset I of I0 we denote by MI the
matrix consisting of the lines i ∈ I ofM.

Let ǫ ∈ Q. We denote by Hǫ
i

the hyperplane {x ∈ Qn | Aix = B + ǫC}. For any I ⊂ I0, denote by F ǫ
I the face of P ǫ

defined by

F ǫ
I := (

⋂

i∈I

Hǫ
i) ∩Q

ǫ.

Note that for any face F ǫ of P ǫ there exists a unique maximal I ⊂ I0 such that F ǫ = F ǫ
I (we

include the empty face and P ǫ itself).

Let I ⊂ I0. Define Ω0
I,I0

to be the set of ǫ ∈ Q such that F ǫ
I is not empty; define Ω1

I,I0
to be

the set of ǫ ∈ Q such that, if I ′ ⊂ I0 satisfies F ǫ
I = F ǫ

I′ , then I
′ ⊂ I. In other words, ǫ ∈ Ω0

I,I0
if

and only if there exists x ∈ Qn such that Ax ≥ B + ǫC, and ǫ ∈ Ω1
I,I0

if and only if there exists
x ∈ Qn such that AI = BI + ǫCI and AI0\I > BI0\I + ǫCI0\I .

To make the notations not to heavy, we often write i instead of {i}, for any i ∈ I0. Remark
that if ǫ ∈ Ω1

∅,I0
, the polytope P ǫ is of dimension n (ie has a non-empty interior). And, for any

i ∈ I0, if ǫ ∈ Ω1
i,I0

and Ai 6= 0, F ǫ
i is a facet of P ǫ.

Now, we define an equivalence on subfamily of (P ǫ)ǫ∈Q, that we extend to another family
(Qǫ)ǫ∈Q of polytopes constructed later (see Definition 3), and corresponding to the equivalence of
G/H-polytopes given in Definition 1 restricted to the family used in Section 4 (see Proposition 22).

Let K0 be the subset of I0 consisting of indices of zero lines of A.

Definition 2. Let K0 ⊂ K ⊂ I0.
We first define Ωmax

K,I0
:= Ω1

∅,I0
∩
⋂

i∈I0\K
Ω1
i,I0

Let ǫ and η both in Ωmax
K,I0

. We say that the polytopes P ǫ and P η are equivalent if, for any

I ⊂ I0, ǫ and η are either both in Ω1
I,I0

, either both in Q\Ω0
I,I0

, or both in Ω0
I,I0
\Ω1

I,I0
. (In other
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words, F ǫ
I and F ǫ

I are either both not empty faces with I maximal, either both empty, or both
not empty with I not maximal.)

Some properties of the family (P ǫ)ǫ∈Q are listed in the following result.

Theorem 11. With the notations above, let K0 ⊂ K ⊂ I0.

1. The set Ωmax
K,I0

is an open segment of Q (with extremities in Q ∪ {±∞}, or empty).

2. If Ωmax
K,I0

is not empty, there exist an integer k and α0 < · · · < αk in Q ∪ {±∞}, such that
the equivalent classes of polytopes in the family (P ǫ)ǫ∈Ωmax

K,I0
correspond exactly to the open

segments ]αi, αi+1[ for any i ∈ {0, . . . , k − 1} and the singletons {αi} for any i ∈ {0, . . . , k}
with αi ∈ Q. In particular, Ωmax

K,I0
=]α0, αk[.

3. Suppose that αk ∈ Q. If αk ∈ Ω∅,I0, there exists I1 ⊂ I0 containing K such that Pαk =
Pαk

I1
:= {x ∈ Qn | AI1x ≥ BI1 + αkCI1} and αk ∈ Ωmax

K,I1
(defined for the family (P ǫ

I1
)ǫ∈Q).

If αk 6∈ Ω∅,I0, there exist subsets J1 and I1 of I0 such that J1 ∩ I1 = ∅, P
αk = Pαk

I1,J1
:= {x ∈

⋂

j∈J1
Hαk

j | AI1x ≥ BI1 + αkCI1} and αk is in Ωmax
I1∩K,I1

(defined for the family (P ǫ
I1,J1

)ǫ∈Q
of polytopes in

⋂

j∈J1
Hαk

j ).

We have a similar result on the other extremity of Ωmax
K,I0

if α0 ∈ Q.

3.2 Proof of Theorem 11

We study all the sets Ω0
I,I0

and Ω1
I,I0

.

For any I ⊂ I0, denote by Ī the complementary of I in I0.

Lemma 12. For any I ⊂ I0, the sets Ω0
I,I0

and Ω1
I,I0

are convex subsets of Q (may be empty).

Proof. Let ǫ1 and ǫ2 be in Ω0
I,I0

. Then there exist x1 and x2 in Qn such that AIx1 = BI + ǫ1CI ,
AIx2 = BI + ǫ2CI , AĪx1 ≥ BĪ + ǫ1CĪ and AĪx2 ≥ BĪ + ǫ2CĪ . Then, for any rational number
λ ∈ [0, 1], we get easily by adding equalities and inequalities that AI(λx1 + (1 − λ)x2) = BI +
(λǫ1 + (1− λ)ǫ2)CI and AĪ(λx1 + (1− λ)x2) ≥ BĪ + (λǫ1 + (1− λ)ǫ2)CĪ , so that λǫ1 + (1− λ)ǫ2
is in Ω0

I,I0
.

By replacing ≥ by >, we similarly prove the convexity of Ω1
I,I0

.

Lemma 13. For any I ⊂ I0, the set Ω1
I,I0

is either reduced to a point, or an open subset of Q

(may be empty). Moreover, if Ω1
I,I0

is reduced to a point ǫ0, the system AIX = BI + ǫCI has at

least a solution only when ǫ = ǫ0; in particular, in that case, Ω0
I,I0

is also reduced to ǫ0.

Proof. Suppose that Ω1
I,I0

is neither empty nor reduced to a point. Let ǫ1 and ǫ2 two different

points of Ω1
I,I0

. Then there exist x1 and x2 in Qn such that AIx1 = BI + ǫ1CI , AIx2 = BI + ǫ2CI ,
AĪx1 > BĪ + ǫ1CĪ and AĪx2 > BĪ + ǫ2CĪ . In particular both linear systems AIX = BI and
AIX = CI have solutions, hence for any ǫ ∈ Q, the linear system AIX = BI + ǫCI has a set of
solutions, depending continuously on ǫ. More precisely, if xB and xC are some solutions of AIX =
BI and AIX = CI respectively, then the set of solutions of AIX = BI+ǫCI is ker(AI)+xB+ǫxC .
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Now, let ǫ ∈ Ω1
I,I0

, and let y := x0+xB + ǫxC with x0 ∈ ker(AI) such that AĪy > BĪ + ǫCĪ . Then
there clearly exists a neighborhood V of ǫ in Q such that AĪ(y + (η − ǫ)xC) > BĪ + ηCĪ for all
η ∈ V. We also check easily that AI(y + (η − ǫ)xC) = BI + ηCI so that V ⊂ Ω1

I,I0
.

To prove the last statement, we suppose that the system AIX = BI + ǫCI has a solution for
at least two values of ǫ, and then by the same arguments as above, we deduce that Ω1

I,I0
is open,

which gives a contradiction. The result follows immediately.

Lemma 14. For any I ⊂ I0 such that Ω1
I,I0

is not empty, we have Ω1
I,I0
⊂ Ω0

I,I0
⊂ Ω1

I,I0
.

Proof. The first inclusion is obvious.
To prove the second one, remark that for all ǫ1 ∈ Ω1

I,I0
and ǫ2 ∈ Ω0

I,I0
, the segment [ǫ1, ǫ2[

(or ]ǫ2, ǫ1]) is contained in Ω1
I,I0

. Indeed, if there exists x1 and x2 such that AIx1 = BI + ǫ1CI ,
AIx2 = BI + ǫ2CI , AĪx1 > BĪ + ǫ1CĪ and AĪx2 ≥ BĪ + ǫ2CĪ , then for any λ ∈]0, 1], xλ :=
λx1 + (1− λ)x2 and ǫλ := λǫ1 + (1− λ)ǫ2 clearly satisfy AIxλ = BI + ǫλCI , AĪxλ > BĪ + ǫλCĪ ,

so that ǫλ ∈ Ω1
I,I0

. This remark implies directly that any ǫ2 ∈ Ω0
I,I0

is in Ω1
I,I0

.

Lemma 15. Let I ⊂ I0 be such that Ω1
I,I0

is not empty. Then the supremum and the infimum

(well-defined in R) of Ω1
I,I0

are either infinite or rational numbers. Moreover, Ω0
I,I0

= Ω1
I,I0

.

Proof. If Ω1
I,I0

is reduced to a point, by Lemma 14 we have nothing to prove, so we suppose that

Ω1
I,I0

contains at least two points.
Here (and only here), we need to consider the family of polytopes (P ǫ)ǫ∈R. Note that all

definitions and all results given until now are still available replacing Q by R. When it is necessary,
we denote by Ω(Q) and by Ω(R) the sets Ω defined at the beginning of the section respectively
in Q and in R. Now, by Lemmas 12 and 14, it is enough to prove that, if they are finite, the
supremum and the infimum of Ω1

I,I0
(R) are rational numbers contained in the set Ω0

I,I0
(Q).

Suppose that the supremum ǫ0 ∈ R of Ω1
I,I0

(R) is finite. Let ǫ1 ∈ Ω1
I,I0

(R). Then, for any
ǫ ∈ [ǫ1, ǫ0], the polytope P ǫ is contained in the polytope

P [ǫ1,ǫ0] := {x ∈ Rn | Ax ≥ Min(B + ǫ1C,B + ǫ0C)},

where the mimimum Min is taken line by line. Now for all ǫ ∈ [ǫ1, ǫ0[, let x
ǫ ∈ F ǫ

I such that
AĪx

ǫ > BĪ + ǫCĪ (and AIx
ǫ = BI + ǫCI). Since the points xǫ are in the compact set P [ǫ1,ǫ0] of

Rn, there exists x0 ∈ R
n such that AIx0 = BI + ǫ0CI and AĪx0 ≥ BĪ + ǫ0CĪ , ie x0 ∈ F

ǫ0
I . It

means that ǫ0 is in Ω0
I,I0

(R).
Define the maximal subset J of I0 containing I such that for any x ∈ F ǫ0

I we have AJx =
BJ + ǫ0CJ . In particular, AJ̄x0 > BJ̄ + ǫ0CJ̄ . We now prove that, for any ǫ1 ∈ Ω1

I,I0
, the face

F ǫ1
J is empty. Indeed, if it is not empty, there exists x1 ∈ R

n such that AJx1 = BJ + ǫ1CJ and
AJ̄x1 ≥ BJ̄ + ǫ1CJ̄ . Let η > 0, let x2 := x0 + η(x0 − x1) and let ǫ2 := ǫ0 + η(ǫ0 − ǫ1). Then we
have AJx2 = BJ + ǫ2CJ and, for η small enough, we have AJ̄x2 > BJ̄ + ǫ2CJ̄ . Hence F

ǫ2
I ⊃ F ǫ2

J

is not empty, which contradicts the fact that ǫ2 > ǫ0 is not in Ω0
I,I0

(see Lemma 14).
We now claim that the intersection of the vector space Im(AJ) with the affine line {BJ+ǫCJ |

ǫ ∈ R} is reduced to the point ǫ0. Indeed, ǫ0 clearly belongs to this intersection, which can be
either reduced to a point or the affine line. But, if some ǫ ∈ Ω1

I,I0
is in this intersection, then
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there exists x3 ∈ R
n such that AJx3 = BJ + ǫCJ . Then, for η > 0 small enough, we can prove

that ηx3 + (1 − η)x0 is in F ǫ1
J with ǫ1 = ηǫ + (1 − η)ǫ0, which is not possible because F ǫ1

J is
necessarily empty. To conclude that ǫ0 ∈ Q, it is now enough to recall that A, B and C have
rational coefficients.

It remains to prove that x0 can be chosen in Qn so that ǫ0 is in Ω0
I,I0

(Q). But x0 can be
taken in an open set of the set of solutions of AJx = BJ + ǫ0CJ . We conclude by noticing that
BJ + ǫ0CJ have rational coefficients.

For the infimum of Ω1
I,I0

, it is the same proof (for example by replacing ǫ and C by their
opposites).

Corollary 16. Let I ⊂ I0. We have the following cases:

1. Ω1
I,I0

is an open segment of Q (with extremities in Q∪{±∞}) and Ω0
I,I0

is the closed segment

Ω1
I,I0

(may both be empty);

2. Ω1
I,I0

is a reduced to a point ǫ0, then it equals Ω0
I,I0

and the system AIX = BI + ǫCI has at
least a solution only when ǫ = ǫ0;

3. Ω1
I,I0

is empty and Ω0
I,I0

is the closure of some Ω1
J,I0

with I  J ⊂ I0.

Moreover, if I = ∅ or reduced to an index i ∈ I0\K0, then only Cases 1 and 3 are possible, so
that Ω1

I,I0
is open (or empty).

Proof. The two first items, and the fact that we cannot have more cases, can be deduced directly
from Lemmas 13 and 15.

Suppose now that Ω1
I,I0

is empty, but not Ω0
I,I0

. Let J ⊂ I0 be the maximal set containing I
such that, for all ǫ ∈ Q, F ǫ

I = F ǫ
J . Then J 6= I by hypothesis. Indeed, if I = J then there exist

subsets J1, . . . , Jk of I0 whose intersection is I, and also rational numbers ǫ1, . . . , ǫk respectively
in Ω1

J1,I0
, . . . ,Ω1

Jk,I0
. Hence ǫ1+···+ǫk

k
is in Ω1

I,I0
that is not possible.

Then Ω0
I,I0

= Ω0
J,I0

and by maximality of J , Ω1
J,I0

is not empty. We conclude by using the
first two items.

Now, for the last statement remark that, if I = ∅ or reduced to an index i ∈ I0\K0, the system
AIX = BI + ǫCI has solutions for all ǫ and then, we cannot be in Case 2.

We now prove three lemmas to get the connexity of K-equivalent classes of polytopes.

Lemma 17. Let I ⊂ I0 such that Ω0
I,I0

is bounded, but neither empty nor reduced to a point.

Denote by ǫ1 and ǫ2 the extremities of Ω0
I,I0

. Then, there exist J1 and J2 containing I such that

{ǫ1} = Ω1
J1,I0

and {ǫ2} = Ω1
J2,I0

. In particular, if ǫ1 and ǫ2 are in Ωmax
K,I0

, P ǫ1 is not equivalent to
P ǫ2.

Proof. By Corollary 16, we can suppose that Ω0
I,I0

= Ω1
I,I0

= [ǫ1, ǫ2]. Then, there exists j ∈ Ī
such that x ∈ Qǫ1 and AIx = BI + ǫ1CI imply that Ajx = Bj + ǫCj. Let J1 be the union of I
with the set of all such indices j. In particular, ǫ1 ∈ Ω1

J1,I0
. Moreover, since Ω1

J1,I0
is contained

in Ω0
I,I0

= [ǫ1, ǫ2], it cannot be open, and then by Corollary 16, Ω1
J1,I0

is reduced to ǫ1.
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Similarly, we prove the existence of J2.
In particular, if ǫ1 and ǫ2 are in Ωmax

K,I0
, by definition, the classes of P ǫ1 and P ǫ2 are both

reduced to one polytope and then distinct.

Lemma 18. Let I ⊂ I0 such that Ω0
I,I0

= {ǫ0}, with ǫ0 ∈ Ωmax
K,I0

. There exists I1 ⊂ I0 such that

the upper extremity of Ω0
I1,I0

is ǫ0.

Proof. First, we can suppose that I is the maximal subset of I0 such that Ω0
I,I0

= {ǫ0}, (ie such

that Ω1
I,I0

= {ǫ0}). Then there exists x0 ∈ Q
n satisfying AIx0 = BI+ǫ0CI and AĪx0 > BĪ+ǫ0CĪ .

Consider a subset I1 of I such that there exists ǫ1 < ǫ0 in Ω0
I1,I0

. Choose I1 maximal in I with
this property. It exists (but can be empty) because ǫ0 is in the open set Ωmax

K,I0
. Moreover I1 6= I.

Then there exist ǫ1 < ǫ0 and x1 ∈ Q
n such that AI1x1 = BI1 + ǫ1CI1 and AĪ1

x1 ≥ BĪ1
+ ǫ1CĪ1

.

Hence, for any ǫ ∈]ǫ1, ǫ0[, the element xǫ := (ǫ0−ǫ)x1+(ǫ−ǫ1)x0

ǫ0−ǫ1
satisfies AI1x

ǫ = BI1 + ǫCI1 and

AĪ1
xǫ > BĪ1

+ ǫCĪ1
by maximality of I1. It proves that ]ǫ1, ǫ0[⊂ Ω1

I1,I0
. In particular, with

Corollary 16, Ω1
I1,I0

is open with closure equal to Ω0
I1,I0

.

It is now enough to prove that the upper extremity of Ω0
I1,I0

is ǫ0. Suppose the contrary, then
there exists ǫ2 > ǫ0 and x2 ∈ Q

n such that AI1x2 = BI1 + ǫ2CI1 and AĪ1
x2 ≥ BĪ1

+ ǫ2CĪ1
. For any

ǫ ∈]ǫ0, ǫ2[, the element yǫ := (ǫ2−ǫ)x0+(ǫ−ǫ0)x2

ǫ2−ǫ0
satisfies AI1y

ǫ = BI1 + ǫCI1 and AĪ1
yǫ > BĪ1

+ ǫCĪ1
.

Moreover, for ǫ = ǫ0 (ie yǫ = x0), we have AIy
ǫ = BI + ǫCI and AĪy

ǫ > BĪ + ǫCĪ . Then
by continuity, for any ǫ < ǫ0 big enough, we have AI1y

ǫ = BI1 + ǫCI1 , AĪy
ǫ > BĪ + ǫCĪ and

AI\I1y
ǫ < BI\I1 + ǫCI\I1 . Choose such an ǫ in ]ǫ1, ǫ0[. Hence, there exist z

ǫ in the segment ]xǫ, yǫ[
and some j ∈ I\I1 such that AI1z

ǫ = BI1 + ǫCI1 , AĪ1
zǫ ≥ BĪ1

+ ǫCĪ1
and Ajz

ǫ = Bj + ǫCj. This
contradicts the maximality of I1, so that we have proved that the upper extremity of Ω0

I1,I0
is

ǫ0.

Lemma 19. Let η < ǫ in Ωmax
K,I0

such that there exists I ⊂ I0 satisfying Ω0
I,I0
⊂]η, ǫ[. Then P η is

not equivalent to P ǫ.

Proof. Among the set of subsets I of I0 satisfying Ω0
I,I0
⊂]η, ǫ[, choose the one whose lower

extremity is minimal.
There are two cases: in the first one, Ω0

I,I0
= {ǫ0}. By the Lemma 18, there exist I1 ⊂ I0 and

ǫ1 < ǫ0 (may be −∞) such that Ω0
I1,I0

= [ǫ1, ǫ0]. By hypothesis of minimality, η is in Ω0
I1,I0

. But

ǫ is not in Ω0
I1,I0

, so that P η is not equivalent to P ǫ.

Consider the second case: Ω0
I,I0

= [ǫ1, ǫ2] with ǫ1 < ǫ2. Let J be the maximal subset of I0
such that x ∈ Qǫ1 and AIx = BI + ǫ1CI imply that AJx = BJ + ǫ1CJ . In particular, J strictly
contains I and ǫ1 ∈ Ω1

J,I0
. Then Ω1

J,I0
⊂ Ω0

I,I0
cannot be open, hence it is reduced to a point and

we conclude by the first case.

Proof of Theorem 11. 1. It comes directly from the last statement of Corollary 16.

2. Now, let ǫ0 ∈ Ωmax
K,I0

. Prove that the equivalent class of P ǫ0 corresponds to a segment of
Ωmax
K,I0

or is reduced to P ǫ0 .
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If there exists I ⊂ I0 such that Ω1
I,I0

= {ǫ0}, then the equivalent class of P ǫ0 is clearly
reduced to P ǫ0 . By Lemma 17, we get the same conclusion if there exists I ⊂ I0 such that
Ω1
I,I0

is not empty and ǫ0 ∈ Ω0
I,I0
\Ω1

I,I0
(ie if there exists I ⊂ I0 such that ǫ0 is an extremity

of Ω0
I,I0

, by Corollary 16 Case 3).

Suppose now that for all subsets I of I0, Ω
1
I,I0
6= {ǫ0}, and ǫ0 is not an extremity of Ω0

I,I0
.

Then the set of ǫ ∈ Ωmax
K,I0

such that P ǫ is equivalent to P ǫ0 is the intersection of open

segment of Q. Indeed, it is the intersection of open segments of type Ω1
I,I0

and connected

components of some Q\Ω0
I,I0

(by Lemma 19).

3. Now, let ǫ1 be an extremity of Ωmax
K,I0

. Suppose that ǫ1 ∈ Ω1
∅,I0

. Define I2 to be the set

of indices i ∈ I0\K such that ǫ1 is not in Ω1
i,I0

. Denote by I1 the complementary of I2
in I0. Then by definition, I1 contains K and ǫ1 is in the set Ωmax

K,I1
. Denote by P ǫ1

I1
the

polyhedron {x ∈ Qn | AI1x ≥ BI1 + ǫ1CI1}, and prove that P ǫ1 = P ǫ1
I1
. We clearly

have P ǫ1 ⊂ P ǫ1
I1
, so that we have to prove that P ǫ1

I1
is contained in all closed half-spaces

H+ǫ1
i := {x ∈ Qn | Aix ≥ Bi + ǫ1Ci} with i ∈ I2, or equivalently that the interior
{x ∈ Qn | AI1x > BI1 + ǫ1CI1} of P

ǫ1
I1

(that is not empty because ǫ1 ∈ Ω1
∅,I0

) is contained

in all open half-spaces H++ǫ1
i := {x ∈ Qn | Aix > Bi+ ǫ1Ci} with i ∈ I2. Since the interior

of P ǫ1
I1

intersects the connected component
⋂

i∈I2
H++ǫ1

i of Qn\
⋃

i∈I2
Hǫ1

i , it is enough to
prove that the interior of P ǫ1

I1
does not intersect the union of hyperplanes

⋃

i∈I2
Hǫ1

i .

Let i ∈ I2. Suppose that the interior of P ǫ1
I1

intersects the hyperplane Hǫ1
i . There exists

x1 ∈ Q
n such that AI1x1 > BI1 + ǫ1CI1 and Aix1 = Bi + ǫ1Ci. Since there also exists

x0 ∈ Q
n such that Ax0 > B + ǫ1C, an element x2 of the segment [x1, x0[ is in the interior

of P ǫ1
I1
, in P ǫ1 and in Hǫ1

j for at least one j ∈ I2. Let J ⊂ I2 the maximal set such that
AJx2 = BJ + ǫ1CJ . Then the set C := {x ∈ Qn | AJx ≥ BJ + ǫ1CJ} is a cone (of apex
x2 + ker(AJ)) with non-empty interior. Let j ∈ J such that Hǫ1

j ∩ C is a facet of C. By
Lemma 20 below, all hyperplanes Hǫ1

j with j ∈ J are different, then there exists y ∈ Hǫ1
j ∩C

that is not in the other hyperplanes Hǫ1
i with j 6= i ∈ J . Since x2 is in the interior of P ǫ1

I0\J
,

for any rational number λ > 0 small enough, the point x2 + λ(y − x2) is in the interior of
P ǫ1
I0\J

, also in Hǫ1
j ∩C and not in Hǫ1

i for all i ∈ J different from j. This contradicts the fact

that ǫ1 6∈ Ω1
j,I0

.

Suppose now that ǫ1 6∈ Ω1
∅,I0

. Let J1 the maximal subset of I0 such that P ǫ1 is contained in

the subspace HJ1 :=
⋂

j∈J1
Hǫ1

j of Qn. Then P ǫ1 is clearly the polytope {x ∈
⋂

j∈J1
Hǫ1

j |

AI0\J1x ≥ BI0\J1 + ǫ1CI0\J1}. Then ǫ1 ∈ Ω1
∅,I0\J1

(defined in for the family of polytopes in

HJ1). If ǫ1 ∈ Ωmax
K∩(I0\J1),I0\J1

, then I1 = I0\J1 gives the result. If not, ǫ1 is an extremity of

Ωmax
K∩(I0\J1),I0\J1

and ǫ1 ∈ Ω1
∅,I0\J1

. Then we apply that we prove in the previous paragraph,

in order to find I1 ⊂ I0\J1 that gives the result.

Lemma 20. If Ωmax
K,I0

is not empty, then for any i and j in I0\K, the existence of λ ∈ Q>0 such
that Ai = λAj , implies that i = j.
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Proof. Let ǫ ∈ Ωmax
K,I1

. Suppose that there exists i 6= j in I0\K such that Ai = λAj for some

λ ∈ Q>0. Then, since ǫ ∈ Ω1
i,I0
∩ Ω1

j,I0
, there exist x and y in Qn, such that Aix = Bi + ǫCi,

Ajx > Bj + ǫCj, Ajy = Bj + ǫCj and Aiy > Bi+ ǫCi. And we have λ(Bj + ǫCj) < λAjx = Aix =
BiǫCi < Aiy = λAjy = λ(Bj + ǫCj), which gives a contradiction.

3.3 A second one-parameter family of polytopes

In section 4, we apply Theorem 11 to a family (Q̃ǫ)ǫ∈Q≥0
constructed by iteration from the family

(P ǫ)ǫ∈Q, using the last statement of Theorem 11 in the following way.

Definition 3. Let A, B and C be as in Theorem 11. Let K ⊂ I0 containing K0. Suppose that
0 ∈ Ωmax

K,I0
. For any ǫ ∈ Q≥0 ∩ Ωmax

K,I0
, define Q̃ǫ to be P ǫ. If Ωmax

K,I0
has a finite supremum ǫ1 and

if ǫ1 ∈ Ω∅,I0 consider I1 as in Theorem 11. Then define for any ǫ ∈ [ǫ1,+∞[∩Ωmax
K,I1

, Q̃ǫ to be the
polytope P ǫ

I1
.

If ǫ1 6∈ Ω∅,I0 , we stop the construction and we define Q̃ǫ = ∅ for any ǫ > ǫ1 by convention.

Iterating the construction, we obtain a family of polytopes (Q̃ǫ)ǫ∈Q≥0
. Remark that the

construction depends on K.
We say that Q̃ǫ is K-equivalent to Q̃η in the family (Q̃ǫ)ǫ∈Q≥0

if they are both defined at the
same step of the construction above, ie if they correspond to P ǫ

I and P η
I , with ǫ and η both in

Ωmax
K,I for some I ⊂ I0 containing K, and P ǫ

I and P η
I are equivalent (according to Definition 2).

Applying Theorem 11 to each subfamilies (P ǫ
Ii
) of the family (Q̃ǫ)ǫ∈Q≥0

, we obtain immediately
the following result.

Corollary 21 (of Theorem 11). Suppose that Q̃0 and Q̃ǫ are equivalent for ǫ > 0 small enough.
There exist non-negative integers k, j0, . . . , jk, rational numbers αi,j for i ∈ {0, . . . , k} and j ∈

{0, . . . , ji} and αk,jk+1 ∈ Q>0∪{+∞} ordered as follows with the convention that αi,ji+1 = αi+1,0

for any i ∈ {0, . . . , k − 1}:

1. α0,0 = 0;

2. for any i ∈ {0, . . . , k}, and for any j < j′ in {0, . . . , ji + 1} we have αi,j < αi,j′;

and such that the K-equivalent classes in the family of polytopes (Q̃ǫ)ǫ∈Q≥0
is given by the following

segments:

1. [αi,0, αi,1[, with i ∈ {0, . . . , k};

2. ]αi,j , αi,j+1[, with i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};

3. {αi,j} with i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};

4. if αk,jk+1 6= +∞, {αk,jk+1} and ]αk,jk ,+∞[.
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Remarks 3. For any i ∈ {0, . . . , k}, the rational numbers αi,0, . . . , αi,ji can come from several
consecutive steps of the construction of (Q̃ǫ)ǫ∈Q≥0

. Indeed, for example, α0,j0 is not necessarily

the supremum ǫ1 of Ωmax
K,I0

because {Q̃ǫ1} may be an equivalent class.

We have αk,jk+1 = +∞ if, in the construction of (Q̃ǫ)ǫ∈Q≥0
, some set Ωmax

K,I has no upper
bound. And if αk,jk+1 6= +∞, it is the upper extremity of some Ωmax

K,I that is not an element of

Ω1
∅,I . In this latter case, ]αk,jk+1,+∞[ is the class of empty polytopes and αk,jk+1 corresponds to

the last not empty polytope. If C > 0, we are always in that case.

4 MMP via a one-parameter family of polytopes

Let X be a projective horospherical G-variety, with open G-orbit isomorphic to G/H. Let D be
an ample Q-Cartier divisor. Suppose that X is Q-Gorenstein (ie the canonical divisor KX of X
is Q-Cartier). We keep the notations given in Sections 2.

4.1 The one-parameter family of polytopes

To construct the one-parameter family of polytopes that permits to run the MMP from X, we
start the same way as in the classical approach of the MMP. Indeed, for ǫ > 0 small enough,
the divisor D + ǫKX is still ample (and Q-Cartier by hypothesis), so that it defines a moment
polytope Qǫ and a pseudo-moment polytope Q̃ǫ. More precisely, (for ǫ small enough) Qǫ := {x ∈
vǫ +MQ | Ax ≥ B + ǫC} and Q̃ǫ := {x ∈MQ | Ax ≥ B̃ + ǫC̃} where the matrices A, B, C, B̃,
C̃ and the vector vǫ are defined below.

Recall that x1, . . . , xm denote the primitive elements of the rays of the colored fan of X
that are not generated by a vector α∨

M with α ∈ FX . We choose an order in S\R and we
then denote by α1, . . . , αr its elements. We fix a basis B of M . Now define A ∈ Mm+r,n(Q)
whose first m lines are the coordinates of the vectors xi in the basis B with i ∈ {1, . . . ,m}
and whose last r lines are the coordinates of the vectors α∨

jM in B with j ∈ {1, . . . , r}. Let

B̃ be the column vector such that the pseudo-moment polytope of D is defined by {x ∈ MQ |
Ax ≥ B̃}. In fact, if D =

∑m
i=1 biXi +

∑

α∈S\R bαDα, then B̃ is the column matrix associated

to the vector (−b1, . . . ,−bm,−bα1
, . . . ,−bαr). Similarly, the column matrix C̃ corresponds to

the vector (1, . . . , 1, cα1
, . . . , cαr ), where −KX =

∑m
i=1Xi +

∑

α∈S\R cαDα (the coefficients are

explicitly defined with cα = 〈2ρP , α
∨〉, where ρP is the sum of positive roots of G that are not

roots of P ). Now, define vǫ :=
∑

α∈S\R(bα − ǫcα)̟α. Since Qǫ = vǫ + Q̃ǫ, we compute that B
and C are respectively the column matrices associated to (−b1 + 〈x1,

∑

α∈S\R bα̟α〉, . . . ,−bm +
〈xm,

∑

α∈S\R bα̟α〉, 0, . . . , 0) and (1− 〈x1,
∑

α∈S\R cα̟α〉, . . . , 1− 〈xm,
∑

α∈S\R cα̟α〉, 0, . . . , 0).

From the matrices A, B̃ and C̃ we construct the family (Q̃ǫ)ǫ∈Q≥0
of polytopes in MQ as in

Section 3. And for any ǫ ≥ 0 we define Qǫ = vǫ + Q̃ǫ. Since C̃ > 0, by Remark 3, there exists
ǫmax ∈ Q>0 (it is the number αk,jk+1 given in Corollary 21) such that for all ǫ ∈ [0, ǫmax[, Q

ǫ

is a G/H-polytope and for all ǫ > ǫmax, Q
ǫ = ∅. The polytope Qǫmax is neither empty nor a

G/H-polytope, but it is a G/H1-poltyope with some subgroup H1 of G containing H (see later).
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Proposition 22. The two partitions of [0, ǫmax[ given by equivalence classes of G/H-polytopes
(Definition 1) in the family (Qǫ)ǫ∈[0,ǫmax[ and by equivalent classes in the family (Q̃ǫ)ǫ∈[0,ǫmax[

according to Definition 3 with K = {m+ 1, . . . ,m+ r} are the same.

Proof. Let ǫ and η be two rational numbers.
Suppose that Qǫ and Qη are equivalent G/H-polytopes. In Definition 1, take j to be minimal,

so that the hyperplanes H1, . . . ,Hj and H
′
1, . . . ,H

′
j corresponds respectively to Hǫ

i1
, . . . ,Hǫ

ij
and

Hη
i1
, . . . ,Hη

ij
for J := {i1, . . . , ij} ⊂ {1, . . . ,m+ r}. Then, if we denote by I the union J ∪K, the

polytopes Q̃ǫ and Q̃η respectively equal P ǫ
I and P η

I such that ǫ and η are in Ωmax
K,I . Then we have

to prove that P ǫ
I and P η

I are equivalent according to Definition 2, which comes directly from the
definition of equivalence of G/H-polytopes.

Suppose now that Q̃ǫ and Q̃η are equivalent according to Definition 3. They are constructed
at the same step so that there exists I ⊂ {1, . . . ,m + r} containing K such that Q̃ǫ and Q̃η

respectively equal P ǫ
I and P η

I , with ǫ and η in Ωmax
K,I . Then Q̃

ǫ = {x ∈MQ | AI ≥ B̃I + ǫC̃I} and

Q̃η = {x ∈MQ | AI ≥ B̃I + ηC̃I}). This directly gives the first item of Definition 1. The second
item is also clear from Definition 2. And the third item comes from the fact that Ω0

i,I contains
both ǫ and η or no of the two, for any i ∈ K.

4.2 Construction of varieties and morphisms

We apply Corollary 21 to the family (Q̃ǫ)ǫ∈Q≥0
. Then the family (Qǫ)ǫ∈Q≥0

gives a list of G/H-
embeddings:

1. Xi,j for any i ∈ {0, . . . , k} and j ∈ {0, . . . , ji}, respectively associated to moment polytopes
Qǫ with ǫ ∈]αi,j, αi,j+1[;

2. Yi,j for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji}, respectively associated to moment polytopes
Qαi,j ;

It also gives a projective horosphericalG-variety Z associated to the moment polytopeQαk,jk+1 =
Qαmax . Indeed, let M1

Q be the minimal vector subspace containing Q̃αmax and letM1 :=M1
Q∩M .

Let R1 be the union of R with the set of α ∈ S\R such that Qαmax is contained in the wall
Wα,P . Then we define the subgroup H1 of P 1 := PR1 to be the intersection of kernels of char-
acters of P 1 in M1. Then Qαmax is a G/H1-polytope and corresponds to a G/H1-embedding Z.
Remark that, by definitionM1 ⊂M and R ⊂ R1 so that we have a projection π : G/H −→ G/H1.

Now, by Proposition 5, we get G-equivariant morphisms:

1. φi,j : Xi,j−1 −→ Yi,j for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};

2. φ+i,j : Xi,j −→ Yi,j for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};

3. φi : Xi,ji −→ Xi+1,0 for any i ∈ {0, . . . , k − 1};

4. and φ : Xk,jk −→ Z.
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In the next section, we prove that the morphisms φi,j and φ+i,j give flips (may be divisorial, see
Remark 3 and Example 7), the morphisms φi are divisorial contractions and the morphism φ is
a Mori fibration.

4.3 Description of the contracted curves

Proposition 23. 1. For any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji}, the curves C contracted by the
morphism φi,j satisfy KXi,j−1

·C < 0; for any i ∈ {0, . . . , k− 1}, the curves C contracted by
the morphism φi satisfy KXi,ji

·C < 0; and the the curves C contracted by the morphism φ
satisfy KXk,jk

· C < 0.

2. For any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji}, the curves C contracted by the morphism φ+i,j
satisfy KXi,j

· C > 0.

3. For any i ∈ {0, . . . , k − 1}, the morphism φi contracts (at least) a G-stable divisor of Xi,ji.

Proof. 1. Let ]a, b[ or [a, b[ corresponding to an equivalent class in the family of polytopes
(Qǫ)ǫ∈Q≥0

. In particular, there exists I ⊂ {1, . . . ,m + r} containing K such that for any

ǫ ∈]a, b[, Q̃ǫ = P ǫ
I and ǫ ∈ Ωmax

K,I .

Denote by X the variety given by the G/H-polytopes Qǫ with ǫ ∈]a, b[, denote by Y b the
variety given by the G/H-polytope Qb or to the G/H ′-polytope Qb (as we define Z in the
previous section). And denote by φ the projective G-equivariant morphism from X to Y b.

Fix c ∈]a, b[. Recall that a G-orbit of X corresponding to a face F c
J of Qc with J ⊂ I, is sent

to the G-orbit of Y b corresponding to the face F b
I of Qb. Recall also that we describe the

curves of horospherical varieties in Section 2.4. Hence, a curve Cµ of X is contracted by φ
if and only if the G-orbit of X intersecting Cµ in an open set (ie the G-orbit corresponding
to the edge µ of Qc) is sent to a closed G-orbit of Y b; and a curve Cα,v of X is contracted
by φ if the closed G-orbit corresponding to v is sent to a closed G-orbit isomorphic to G/P ′

where α is a root of the parabolic subgroup P ′. In other words, Cµ is contracted by φ if
and only if for any J ⊂ I such that µ = F c

J , the face F b
J of Qb is in fact a vertex of Qb.

And Cα,v is contracted by φ if and only if for any J ⊂ I such that v = F c
J (which is not in

Wα,P ), the vertex F b
J of Qb is in Wα,P .

Let Dc be the Q-Cartier divisor defined by the moment polytope Qc and the pseudo-moment
polytope Q̃c. Then, for any ǫ ∈ [c, b[ the Q-Cartier (and ample) divisor defined by (Qǫ, Q̃ǫ)
is Dc + (ǫ − c)KX . But, by Proposition 10, (D + (ǫ − c)KX) · Cµ is the integral length of
the edge µ in Qǫ for any ǫ ∈ [c, b[, we get by continuity that Cµ is contracted by φ if and
only if (D+(b− c)KX) ·Cµ = 0. Similarly, since (D+(ǫ− gamma)KX ) ·Cα,v = 〈v, α∨〉 for
any ǫ ∈ [c, b[, we get that Cv,α is contracted by φ if and only if (D + (b− c)KX ) · Cα,v = 0.
In particular, for any curve C contracted by φ, we have KX · C < 0.

2. By very similar arguments, we prove that if ]a, b[ is an equivalent class in the family of
polytopes (Qǫ)ǫ∈Q≥0

, if Y a is the G/H-embedding associated to the G/H-polytope Qa, and
if φ+ : X −→ Y a denote the G-equivariant morphism, then for any curve C contracted by
φ+, we have KX · C > 0.
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3. Now consider the case where ]a, b[ (or [a, b[) and [b, b′[ correspond to two successive equivalent
classes in the family of polytopes (Qǫ)ǫ∈Q≥0

. The subset I of {1, . . . ,m+ r}, the varieties X

and Y b, and the morphism φ are defined as above. Here, by hypothesis, b 6∈ Ωmax
K,I and there

exists a proper subset I ′ of I containing K such that Q̃b = P b
I′ . Then for any c ∈]a, b[ and

for any i ∈ I\I ′ ⊂ {1, . . . ,m}, F c
i is a facet of Qc (and corresponds to a G-stable divisor of

X), but F b
i is not a facet of Qb (and corresponds to a G-stable divisor of Y b of codimension

at least 2). Hence, φ contracts (at least) a G-stable divisor of X.

4.4 Q-Gorenstein singularities

In this section, we prove in particular that all the varieties Xi,j defined in Section 4.2 are Q-
Gorenstein. We begin by giving a Q-Gorenstein criterion in terms of moment polytopes.

Proposition 24. Let X be a projective G/H-embedding and let D be an ample Q-Cartier divisor.
Denote by Q̃ the pseudo-moment polytope of (X,D). Let A and C̃ be the matrices defined in
Section 4.1. For any vertex v of Q̃, we denote by Iv the maximal subset of {1, . . . ,m + r} such
that v = FIv .

Then X is Q-Gorenstein if and only if, for any vertex v of Q̃, the linear system AIvX = C̃Iv

have (at least) a solution.

Proof. The proposition is just a translation, in terms of moment polytopes, of the criterion of
Q-Cartier divisor, applied to the divisor KX .

By applying this criterion to the family (Q̃ǫ)ǫ∈Q≥0
, we easily get the following result.

Corollary 25. Let ǫ ≥ 0 such that Qǫ is a G/H-polytope. Let Xǫ be the G/H-embedding
corresponding to the G/H-polytope Qǫ. Denote by I the subset of I0 containing K, such that
Q̃ǫ = P ǫ

I and ǫ ∈ Ωmax
K,I . For any vertex vǫ of Q̃, we denote by Ivǫ the maximal subset of I such

that v = FIvǫ .
Then Xǫ is Q-Gorenstein if and only if for any vertex vǫ of Q̃ǫ, the linear system AIvǫX = C̃Ivǫ

have (at least) a solution.

Now, using Section 3, we can know exactly when Xǫ is Q-Gorenstein (except for Z).

Proposition 26. The varieties Xi,j with i ∈ {0, . . . , k} and j ∈ {0, . . . , ji} are Q-Gorenstein.
And the varieties Yi,j with i ∈ {0, . . . , k} and j ∈ {0, . . . , ji} are not Q-Gorenstein.

Proof. Let i ∈ {0, . . . , k} and j ∈ {0, . . . , ji}. The variety Xi,j is defined by G/H-poltyopes Qǫ

with ǫ in an open segment of Q≥0. In particular, for all these rational numbers ǫ, for any vertex
vǫ of Q̃ǫ, the linear system AIvǫX = B̃Ivǫ + ǫC̃Ivǫ have a solution. Hence, AIvǫX = C̃Ivǫ has also
a solution. It proves that Xi,j is Q-Gorenstein.

Now, let i ∈ {0, . . . , k} and j ∈ {0, . . . , ji}. The variety Yi,j is defined by the G/H-poltyope
Qαi,j . By Corollary 16, there exist J and I subsets of {1, . . . ,m + r} such that J ⊂ I and αi,j

is the extremity of the segment Ω0
J,I or {αi,j} = Ω1

J,I . But by Lemma 17, we can always choose
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J and I such that {αi,j} = Ω1
J,I . Moreover, by taking J maximal with this property, we get a

vertex v of Qαi,j satisfying {αi,j} = Ω1
Iv,I

. In particular, by Corollary 16, the system AIvX = C̃Iv

have no solution. It proves that Yi,j is not Q-Gorenstein.

4.5 Q-factorial singularities

In this section, we prove that, forD general, the MMP works in the family of projective Q-factorial
horospherical varieties.

Proposition 27. Suppose that X is Q-factorial. Choose D such that the vector B̃ is in the open
set

⋃

I⊂{1,...,m+r}, |I|>n

π−1
I (Q|I|\ Im(AI)),

where πI is the canonical projection of Qm+r to its vector subspace of Qm+r corresponding to the
coordinates in I.

Then, for any i ∈ {0, . . . , k} and j ∈ {0, . . . , ji}, the variety Xi,j is Q-factorial.

Proof. A horospherical variety X is Q-factorial if and only if the colored cones of FX are all
simplicial and any color of X is the unique color of a colored edge of FX . In terms of moment
polytopes, if Q is a moment polytope of X, then X is Q-factorial if and only if Q is simple (ie
each vertex belongs exactly to n facets, where n is the dimension of Q), Q intersects a wall Wα,P ,
with α ∈ S\R, only along one of its facets and a facet is never in 2 walls Wα,P and Wβ,P with
α 6= β ∈ S\R.

Let i ∈ {0, . . . , k−1} and j ∈ {0, . . . , ji}. Let ǫ ∈]αi,j, αi,j+1[ so that Qǫ is a moment polytope
of Xi,j . Let I ⊂ I0 containing K such that Q̃ǫ = P ǫ

I and ǫ ∈ Ωmax
K,I .

Let v be a vertex of Qǫ. Denote by Iv the maximal subset of I such that v = F ǫ
Iv
. Note

that |Iv| ≥ n. We want to prove that |Iv| = n. In particular, ǫ is a point of Ω1
Iv
, which is open

(because contains ]αi,j , αi,j+1[). It implies that, for any η ∈ Q, B̃Iv + ηC̃Iv is in the image of AIv .
In particular, B̃Iv is in the image of AIv . By hypothesis on D, the cardinality of Iv has to be n.
This proves that Xi,j is Q-factorial.

Remark 4. The open set where B̃ is chosen, is clearly not empty and dense in Qm+r, because
for any I of cardinality greater than n, the image of AI is of codimension at least one. But, since
X is Q-factorial, any vector B̃ ∈ Qm+r gives a Q-Cartier divisor.

Taking D general, we also get the following result.

Proposition 28. Suppose that X is Q-factorial. If D is general in the set of ample Q-Cartier
divisors, all morphisms φi,j, φ

+
i,j , φi and φ defined in Section 4.2 are contractions of rays of the

corresponding effective cones NE(Xi,j).

Proof. Let Y be a projective Q-factorial G/H-embedding whose colored fan is made from some
edges generated by xi with i ∈ {1, . . . ,m} and α

∨
M with α ∈ S\R. In particular, the vector space

Cartier(X)Q of Q-Cartier divisors of X projects on the vector space Cartier(Y )Q of Q-Cartier
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divisors of Y . Denote by pY this projection. Let V be a vector subspace of N1(Y )Q of dimension
at least 2. Denote by V ∗ the dual of V in N1(X)Q. Then V

∗ +QKY is a proper vector subspace
of N1(X)Q. Hence, the intersection IY , for all faces of NE(X) of dimension at least 2 of direction
the vector subspace V , of N1(Y )\(V ∗+QKY ) is a dense open set of N1(Y )Q. If we denote by qY
the projection of Cartier(Y )Q on N1(Y )Q, then (qY ◦pY )

−1(IY ) is open and dense in Cartier(X)Q.
Consider now, an ample Q-Cartier divisor D in the dense open intersection of the set given

in Proposition 27 with the sets (qY ◦ pY )
−1(IY ) for all projective Q-factorial G/H-embeddings

Y whose colored fan is made from some edges generated by xi with i ∈ {1, . . . ,m} and α
∨
M with

α ∈ S\R. Then, for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji}, the divisor pXi,j−1
(D) + αi,jKXi,j−1

vanishes at most on a ray of NE(Xi,j−1), so that φi,j is the contraction of a ray of NE(Xi,j−1).
Similarly, for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji}, the divisor pXi,j

(D) + αi,jKXi,j
vanishes at

most on a ray of NE(Xi,j), so that φ+i,j is the contraction of a ray of NE(Xi,j). And for any
i ∈ {0, . . . , k}, the divisor pXi,ji

(D) + αi,ji+1KXi,ji
vanishes at most on a ray of NE(Xi,ji), so

that φi (φ if i = k) is the contraction of a ray of NE(Xi,ji).

This result seems to be true without the hypothesis of Q-factoriality, nevertheless the proof
above really uses this hypothesis.

4.6 General fibers of Mori fibrations

In this section, we study the general fibers of the morphism φ : Xk,jk −→ Z defined in Section 4.2
and prove the last statement of Theorem 2. To simplify the notations, we suppose that k = 1
and j0 = 0, in particular Xk−1,jk−1

= X. We also denote by ǫ1 the rational number α1,0. We
distinguish two cases.

First suppose that Qǫ1 and Q have the same dimension. It implies that Qǫ1 is in some wall
Wα,P with α ∈ S\R, ie R1 6= R. By Proposition 28, if X is Q-factorial, then for D general, we
have |R1\R| = 1 and then P 1/P of Picard number 1. Indeed, if |R1\R| > 1, φ is not a contraction
of an extremal ray, because G/P −→ G/P 1 is clearly not a contraction of an extremal ray. In
that case, the fibers of the morphism φ is a flag variety of Picard number one.

Secondly, suppose that the dimension of Qǫ1 is less than the dimension of Q.
Let x0 (resp. x10) be the unique point of the open G-orbit of X (resp. Z) fixed by H (resp.

H1). We claim that the general fiber of φ is the closure in X of the H1-orbit H1 · x0. Indeed,
since G · x10 is open in Z, the fiber φ−1(x10) is a general fiber of φ. This fiber intersected by the
open G-orbit G ·x0 of X is H1 ·x0. We conclude the claim by the fact that, since X is irreducible,
a general fiber of φ is also irreducible. Denote by Fφ the H1-variety φ−1(x10).

Since an open set of X is isomorphic to the bundle G ×H1

Fφ, we get that Fφ has the
same singularities as X (normal and Q-Gorenstein, and Q-factorial or smooth according to the
hypothesis done onX). Moreover, the unipotent radical Ru(H

1) ofH1 (which is also the unipotent
radical of P 1) acts trivially on x0, then it also acts trivially on H1 · x0 and Fphi. Hence, Fφ is a
L1-variety, where L1 = H1/Ru(H

1) is reductive. Let H2 := H/Ru(H
1). Then the open L1-orbit

of Fφ is isomorphic to L1/H2 and is horospherical, because H2 contains the unipotent radical
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U/Ru(H
1) of the Borel subgroup B/Ru(H

1) of L1. In the rest of the section, we describe the
L1/H2-embedding Fφ.

First describe the combinatorial data associated to the the horospherical homogeneous space
L1/H2. The simple roots of L1 are those of P 1, ie the simple roots in the set R1. Then the
normalizer P 2 of H2 in L1 is the parabolic subgroup of L1 whose set of simple roots is R.
Moreover, the set of characters of P 2 trivial on H2 is isomorphic to the quotient of the set of
characters of P trivial on H with M1. Then we set M2 := M/M1. The set of colors of the
horospherical homogeneous space L1/H2 is R1\R.

Let I be the maximal subset of {1, . . . ,m+r} such that Q̃ǫ1 ⊂ {x ∈M | AIx = B̃I+ǫ1C̃I}. In
particular,M1

Q equals the kernel of AI . Now, we prove that the projection of Q̃ onM2
Q := MQ/M

1
Q

is the polytope Q̃2 := {x ∈ MQ/Ker(AI) | AIx ≥ B̃I}. One inclusion is obvious. To prove the
second one, let x + Ker(AI) ∈ Q̃2 be a vertex F 2

J of Q̃2 where J ⊂ I. Then AJx = B̃J and
AIx ≥ B̃I . Moreover, by maximality of I, there exists x′ ∈ MQ such that AIx

′ = B̃I + ǫ1C̃I

and AĪx
′ > B̃Ī + ǫ1C̃Ī (where Ī = {1, . . . ,m + r}\I). Hence, for λ > 0 small enough, we have

x′′ := λx+ (1− λ)x′ satisfies AJx
′′ = B̃J + ǫ′′C̃J , AIx

′′ ≥ B̃I + ǫ′′C̃I and AĪx
′′ > B̃Ī + ǫ′′C̃Ī , with

ǫ′′ = (1− λ)ǫ1, so that x′′ is a point of the face F ǫ′′

J of Q̃ǫ′′ . Since 0 ≤ ǫ′′ < ǫ1, the face FJ of Q̃ is
not empty. But every point of FJ projects on F 2

J , which is a point. Then, every vertex of Q̃2 is
the image of a point of Q̃ by the projection on M2

Q, that proves the second inclusion.

By translation, we get that the projection of Q on X(P )Q/M
1
Q is the polytope Q2 := {x ∈

v̄0 +MQ/Ker(AI) | AIx ≥ BI}, where v̄0 is the image of v0 in X(P )Q/M
1
Q.

Suppose now that D is Cartier and very ample (or replace D by a multiple of D, see Re-
mark 2). Then, by Proposition 4, X is isomorphic to the closure of G · [

∑

χ∈(v0+M)∩Q vχ] in

P(⊕χ∈(v0+M)∩QV (χ)). Then Fφ is isomorphic to L1 ·[
∑

χ∈(v0+M)∩Q vχ] in P(⊕χ∈(v0+M)∩QVL1(χ)).

But, for any χ ∈ X(P ) and any χ′ ∈M1, the L1-modules VL1(χ) and VL1(χ+χ′) are isomorphic,
so that Y is isomorphic to L1 · [

∑

χ∈(v̄0+M2)∩Q2 vχ] in P(⊕χ∈(v̄0+M2)∩Q2VL1(χ)). It proves that Fφ

is the L1/H2-embedding associated to the polytope Q2. Remark that Q2 is of maximal dimension
in M2

Q because Q is of maximal dimension in MQ.
Suppose now thatX isQ-factorial. We prove that, forD general, I is of cardinality codim(Qǫ1)+

1 = dim(Q2)+1, and that Q2 is a simplex ofM2
Q such that all wall W 2

α in X(P 2)Q with α ∈ R1\R

gives a facet of Q2. Suppose that D (and then B̃) satisfies the following condition: for any subset
J of {1, . . . ,m + r} with |J | ≥ dim(Im(AJ)) + 2, B̃J is not in the (proper) vector subspace of
Qm+r generated by Im(AJ) and C̃J . Such a D is general, since X is Q-factorial. Note that
codim(Qǫ1) = codim(Ker(AI)) = dim(Im(AI)). Now, if |I| > codim(Qǫ1) + 1 then by hypothesis
on D, B̃I + ǫC̃I is never in Im(AI), which contradicts that F ǫ1

I = Qǫ1 is not empty. Moreover, Q2

is a polytope (and then bounded) of maximal dimension in M2
Q, so the number |I| of inequations

defining Q2 must be at least dim(Q2) + 1. Hence, |I| = dim(Q2) + 1 and then Q2 is a simplex
of M2

Q. The set R1\R of colors of L1/H2 is clearly contained in I by definition of I and R1, so

that, for any α ∈ R1\R, W 2
α ∩Q

2 is a face of Q2. But, since each i ∈ I correspond necessarily to
a facet of Q2 because |I| = dim(Q2) + 1, this latter face is necessarily a facet.

In that case, Fφ is a projective Q-factorial L1/H2-embedding of Picard number 1 (cf [Pas06,
Eq. (4.5.1)] for an explicit formula of the Picard number of Q-factorial horospherical varieties).
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5 Examples

In this section we give 5 examples with G = SL3. The first three ones give the MMP for the
same horospherical smooth variety but with a different ample Cartier divisor. The forth one
gives a flip consisting of exchanging colors (see [Bri93, Section 4.5]). And the last one give the
MMP for a Q-Gorenstein (not Q-factorial) variety, we observe in particular a flip from a divisorial
contraction.

Fix a Borel subgroup B of G. Denote by α and β the two simple roots of G.

Example 3. Consider the horospherical subgroup H defined as the kernel of the character ̟α+
̟β of B. In that case we have N and M isomorphic to Z. The horospherical homogeneous space
has two colors α and β whose image in N are respectively α∨

M = β∨M = 1.
If χ is a character of B, we denote by Cχ the line C where B acts by b · z = χ(b)z for any

b ∈ B and z ∈ C.
Let X be the P1-bundleX = G×BP(C0⊕C̟α+̟β

) over G/B, it is a smooth G/H-embedding.
Its colored fan is the unique complete fan (of dimension 1) without color. Denote by X1 and X2

the two irreducible G-stable divisors of X, respectively corresponding to the primitive elements
x1 = 1 and x2 = −1 of N . Here −KX = X1 +X2 + 2Dα + 2Dβ .

Choose D = X1 + 2X2 + 2Dα + 2Dβ . Then the moment polytope Q is the segment [̟α +
̟β, 4(̟α +̟β)] in the dominant chamber of (G,B).

The family (Qǫ)ǫ≥0 is given by:

• for any ǫ ∈ [0, 1[, Qǫ is the segment [(1− ǫ)(̟α +̟β), (4 − 3ǫ)(̟α +̟β)];

• for any ǫ ∈ [1, 43 [, Q
ǫ is the segment [0, (4 − 3ǫ)(̟α +̟β)];

• Q
4

3 is the point 0.

Hence, the MMP from (X,D) gives a divisorial contraction from X to the projective G/H-
embedding with the two colors α and β, which is not Q-factorial but Q-Gorenstein, and Fano. It
finishes by a Mori fibration from this Fano variety to a point.

Note that, here, the divisorial contraction contracts 2 divisors: the zero and infinite section
of the P1-bundle X. In particular, it is not the contraction of a ray of NE(X).

Example 4. We keep the same G/H-embedding X but we choose another ample divisor D =
X1 + 2X2 + 3Dα + 2Dβ . Then the moment polytope Q is the segment [2̟α +̟β , 5̟α + 4̟β].

The family (Qǫ)ǫ≥0 is given by:

• for any ǫ ∈ [0, 1[, Qǫ is the segment [2̟α +̟β − ǫ(̟α +̟β), 5̟α + 4̟β − 3ǫ(̟α +̟β)];

• for any ǫ ∈ [1, 43 [, Q
ǫ is the segment [̟α, 5̟α + 4̟β − 3ǫ(̟α +̟β)];

• Q
4

3 is the point ̟α.

Hence, the MMP from (X,D) gives a divisorial contraction from X to the projective G/H-
embedding with the color β. This is a contraction of the ray of NE(X) generated by Cβ,X1

. It
finishes by a Mori fibration from this Q-factorial variety to the flag variety G/Pα.
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Example 5. We still keep the same G/H-embedding X and we choose now the ample divisor
D = X2 + 2Dα + 2Dβ . Then the moment polytope Q is the segment [2(̟α +̟β), 3(̟α +̟β)].

The family (Qǫ)ǫ≥0 is given by:

• for any ǫ ∈ [0, 12 [, Q
ǫ is the segment [2(̟α+̟β)+ǫ(−̟α+̟β), 3(̟α+̟β)−3ǫ(̟α+̟β)];

• Q
1

2 is the point 3
2(̟α +̟β).

Hence, the MMP from (X,D) gives the Mori fibration X −→ G/B, whose fibers are projective
lines.

In the following example, we illustrate a flip consisting of exchanging colors.

Example 6. Consider the horospherical subgroup H defined as the kernel of the character ̟α+
2̟β of B. In that case we have N andM isomorphic to Z. The horospherical homogeneous space
has two colors α and β whose image in N are respectively α∨

M = 1 and β∨M = 2.
Let X be the Q-factorial G/H-embedding whose colored fan is the complete fan with color

β. Denote by X1 the irreducible G-stable divisor of X, corresponding to the primitive elements
x1 = −1. Here −KX = X1 + 2Dα + 2Dβ .

ConsiderD = 3X1+2Dα+2Dβ. Then the moment polytopeQ is the segment [̟α, 5̟α+8̟β ].
The family (Qǫ)ǫ≥0 is given by:

• for any ǫ ∈ [0, 1[, Qǫ is the segment [(1− ǫ)̟α, 5̟α + 8̟β − ǫ(3̟α + 4̟β)];

• Q1 is the segment [0, 2̟α + 4̟β ];

• for any ǫ ∈]1, 53 [, Q
ǫ is the segment [2(ǫ− 1)̟β , 5̟α + 8̟β − ǫ(3̟α + 4̟β)];

• Q
5

3 is the point 4
3̟β .

Hence, the MMP from (X,D) first gives a flip X −→ Y ←− X+, where Y is the G/H-
embedding corresponding to the complete colored fan with the two colors α and β and X+ is
the G/H-embedding corresponding to the complete colored fan with the color α. It finishes by a
Mori fibration from X+ to the flag variety G/Pβ .

Example 7. Consider the case where the horospherical subgroup H is the maximal unipotent U
subgroup of B. Then the lattice M is the lattice of characters of B with basis (̟α,̟β), and N
is the coroot lattice with basis (α∨, β∨). Here α∨ = α∨

M and β∨ = β∨M .
Let X be the G/H-embedding whose colored fan is the complete colored fan with color β,

and edges generated by x1 := −β
∨, x2 := α∨ and x3 := β∨ − α∨. Note that X is not Q-factorial

because β∨ is not in an edge of FX . An anticanonical divisor of X is X1+X2+X3+2Dα +2Dβ,
and it is Cartier so that X is Q-Gorenstein.

Consider D = 3X1 + X3 + Dα + Dβ . Then D is an ample Cartier divisor whose moment
polytope Q is the triangle with vertices ̟α, ̟α + 4̟β and 5̟α + 4̟β . The matrices defining
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the family (Qǫ)ǫ≥0 are

A =













0 −1
1 0
−1 1
1 0
0 1













, B =













−4
1
−1
0
0













and C =













3
−1
1
0
0













.

Then the family (Qǫ)ǫ≥0 is given by:

• for any ǫ ∈ [0, 1[, Qǫ is the triangle with vertices (1 − ǫ)̟α, ̟α + 4̟β − ǫ(̟α + 3̟β) and
5̟α + 4̟β − ǫ(4̟α + 3̟β);

• Q1 is the triangle with vertices 0, ̟β and ̟α +̟β;

• for any ǫ ∈]1, 54 [, Q
ǫ is the triangle with vertices (ǫ − 1)̟β , (4 − 3ǫ)̟β and 5̟α + 4̟β −

ǫ(4̟α + 3̟β);

• Q
5

4 is the point 1
4̟β .

Q1

Q
11

10

Q0

0
̟α

0

̟α

0

̟α

̟β

̟β

̟β

Figure 5: Evolution of Qǫ in Example 7
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We illustrate the first three classes of the family (Qǫ)ǫ≥0 in Figure 5.
Hence, the MMP from (X,D) first gives a flip X −→ Y ←− X+, where Y is the G/H-

embedding corresponding to the same complete colored fan as X but with the two colors α and
β and X+ is the G/H-embedding corresponding to the same complete colored fan as X but with
the color α (instead of β). Note that the map X −→ Y contracts the divisor X2 and that the
map X+ −→ Y does not contract a divisor. It finishes by a Mori fibration from X+ to the flag
variety G/Pβ .
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