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Abstract

We describe the Minimal Model Program in the family of Q-Gorenstein projective horo-
spherical varieties, by studying a family of polytopes defined from the moment polytope of a
Cartier divisor of the variety we begin with. In particular, we generalize the results on MMP
in toric varieties due to M. Reid, and we complete the results on MMP in spherical varieties
due to M. Brion in the case of horospherical varieties.
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1 Introduction

The Minimal Model Program (MMP) takes an important place in birational algebraic geometry
in order to get a birational classification of algebraic varieties. A lot of progress has been done
in the last three decades. We come back here to an original version of the MMP, summarized by
Figure 1 where H denote a family of Q-factorial varieties (see [Mat02] to have a good overview
of this theory). For any Q-Gorenstein variety X, we denote by N E(X) the nef cone of curves of
X, by Kx a canonical divisor of X and by NE(X)g, <o (resp. NE(X)xk,>0) the intersection of
the nef cone with the open half-space of curves negative (resp. positive) along the divisor Kx.

When H is the family of Q-factorial toric varieties, M. Reid proved in 1983 that the MMP
works [Rei83]. In particular, the MMP ends (there is no infinite series of flips). Note that, for
this family, the cone NE(X) is polyhedral generated by finitely many rays, and is very well-
understood. Note also that, since toric varieties are rational varieties, a minimal model is then
a point. Moreover, M. Reid proved that the general fibers of the Mori fibrations, for Q-factorial
toric varieties, are weighted projective spaces.

When H is the family of Q-factorial spherical G-varieties, for any connected reductive algebraic
group G, M. Brion proved in 1993 that the MMP works [Bri93]. For this family, the cone N E(X)
is still polyhedral generated by finitely many rays and described in [Bri93|. Note that spherical
varieties are also rational varieties, so that minimal models are still points here. Nevertheless, it
is very difficult to compute concretely N E(X) and Kx, so that it makes difficult the application
of the MMP to explicit examples of this family. That is why we reduce the study to horospherical
varieties, for which a canonical divisor is well-known, and that is also why we present another
approach that does not need the computation of NE(X). Moreover, the general fibers of Mori
fibrations for Q-factorial spherical G-varieties are not known.

In this paper, we first consider the case where H is the family of Q-Gorenstein projective
horospherical G-varieties. The family of horospherical varieties is contained in the family of
spherical varieties and contains toric varieties. Using a different approach than the one used by
M. Reid or M. Brion, we obtain the main result of this paper.

Theorem 1. The MMP described by Figure 2 works if H is the family of Q-Gorenstein projective
horospherical G-varieties for any connected reductive algebraic group G. Moreover, for any X in

H and from any choice of an ample Cartier divisor of X, we can concretely describe each step of
this MMP until it ends.



Figure 1: Original MMP for Q-factorial varieties

yes END
@ ’ X is a minimal model }—»

no

There exist Y in H
attached to the contraction ¢ : X — Y
of a ray of NE(X)k <o

replace

XbyY

replace
X by Xt

Is dim(Y)
less than
dim(X)?

€es
Y ’ ¢ is a Mori fibration }M»

Is ¢
a divisorial contraction?
(ie contracts a divisor)

Y is in H,
in particular,
it is Q-factorial

yes

no

There exist X in H
attached to the contraction ¢ : XT — Y
of aray of NE(X)k >0
(called a flip)




Remark that the main difference with the original MMP is that a divisorial contraction can
give a flip,. It comes from the fact that the varieties are here not necessarily Q-factorial.

We use here convex geometry, and in particular continuous transformations of moment poly-
topes. That is why we need to restrict to projective varieties. To illustrate Theorem 1, we give
two first examples, both from the same toric variety X. Note that the result of the MMP applied
to a variety X is not unique: for the original MMP, it depends on the choices of a ray in the
effective cone of all varieties appearing in the beginning of each loop of the program, and here it
depends on the choice of a Q-Cartier ample divisor of the variety X (only in the beginning of the
program). To choose a Q-Cartier ample divisor of a projective toric variety is equivalent to choose
its moment polytope (see Section 2.2). We suppose here that the reader know the classification
of toric varieties in terms of fans, see [Ful93] or [Oda88] if it is not the case.

Example 1. In Q3 consider the simple polytope Q defined by the following inequations, where
(z,y, z) are the coordinates of a point in Q3.

z > -1
—r—y—2z > =5
2 — z > =3
—2r —z > -3
2y — z > =3
-2y —=z > —=3.

It is a pyramid whose summit is cut by a plane.

The edges of the fan Fx of the toric variety X associated to @ are z; := (0,0,1), zy :=
(—1,-1,-2), z3 := (2,0,—1), x4 := (—2,0,—1), x5 := (0,2, —1) and x¢ := (0,—2,—1). And the
maximal cones of Fx are the cones respectively generated by (x1,z3, 5), (z1, 3, z6), (1,24, T5),
(x1,24,%6), (x2,23,25), (T2, x3,%¢), (T2, x4, T5), (T2, x4, x¢). (See Section 2.2, to have an expla-
nation of the correspondence between moment polytopes and fans.)

Note that X is Q-factorial, because @ is simple (and Fx is simplicial).

We consider the family of polytopes Q€ defines by the following inequations:

z > —1l+4e
—r—y—2z > —5+c¢
2r — z > —3+¢€
—2r —z > —3+e€
2y — z > —3+4e€
-2y —=z > —3+e

Note that, for € > 0 and small enough, it is the moment polytope of D + eKx, where D is the
divisor of X whose moment polytope is @), and Kx is the canonical divisor.

For € € [0, 1], all polytopes Q¢ have the same structure so that they all correspond to the
toric variety X. For any e € [1,2[, the polytopes Q¢ are pyramids. They all correspond to the
toric variety Y whose fan Fy is described by the cones respectively generated by (x1,xs,s),



Figure 2: MMP for Q-Gorenstein projective horospherical G-varieties
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(x1,x3,26), (x1,24,25), (z1,24,%6), (T3, 24,75, 2¢). Remark that the last cone is not simplicial,
so that Y is not Q-factorial. The fact that Y is Q-Gorenstein comes from the fact that x3, x4,
x5 and xg are in a common plane. Note also that x5 is not an edge of Fy .

And for ¢ = 2, the polytope Q¢ is a point. Then the family (Qe)ee[O,Q} reveals a divisorial
contraction ¢ : X — Y and a Mori fibration from Y to a point.

We illustrate this example in Figure 3.

Polytope Q€ for e =1

[ ]
Polytope Q€ for e = 2

Polytope @

Figure 3: Evolution of Q¢ in Example 1 (view from the top of the pyramid)

Before to give the second example, we can notice that, in Example 1, the divisorial contraction
¢ goes from a Q-factorial variety to a not Q-factorial variety. It does not contradict the results
of M. Reid, because ¢ is not the contraction of a ray of NE(X) but of a 2-dimensional face of
NE(X). That gives a reason of considering first Q-Gorenstein varieties instead of Q-factorial
varieties. Fortunately, what occurs in Example 1 can be observed only in very particular cases
(see Theorem 2). Now, we consider a second example, with a more general divisor D.

Example 2. Let Q€ be the polytopes defined by the following inequations,

z > —1l+4e
—r—y—2z > —5+c¢
2 — z > —4d+e
—2r —z > —4+e
2y — 2 > —3+e€
—2y — =z > —3+e



The simple polytope QU is still a pyramid whose summit is cut by a plane. It is the moment
polytope of a Q-Cartier ample divisor of the toric variety X of Example 1.

For e € [0, %[, all polytopes Q€ have the same structure so that they all correspond to the toric
variety X.

Now, for € = %, Q° corresponds to the fan whose maximal cones are the cones respec-
tively generated by (z1,zs,5), (1,3, ¢), (1,24, 25), (21,24, 26), (T2, 24, 75), (T2, 24,26) and
(9,3, 25,x6). The associated toric variety Y is not Q-factorial. In fact, it is even not Q-
Gorenstein (because x, x3, 5 and xg are not in a common plane).

For € €] %, %[, the polytope Q€ is the moment polytope of a divisor of the toric variety X+ whose
fan has maximal cones respectively generated by (x1,x3,x5), (1,23, %), (1,24, 25), (z1, T4, Ts),
(2,24, 25), (x2,24,76), (T2,75,76) and (x3,75,76). The variety X is clearly Q-factorial, and
defines a flip X — YV +— XT.

Now, for € € [%,2[, Q¢ is a simple polytope with 6 vertices and the moment polytope of a
divisor of the toric variety Z whose fan has maximal cones respectively generated by (z1,x3,z5),
(x1,x3,%6), (1,24, 25), (x1,24,7¢), (3,25, 26) and (x4, 5, 7¢). And we get a divisorial contrac-
tion from X to Z.

To finish, for e = 2, Q¢ is the segment whose extremities are (—%,0, 1) and (%,O, 1), corre-
sponding to the toric variety P'. It gives a Mori fibration from Z to the projective line.

We illustrate this example in Figure 4.

Moreover, the general fiber of the Mori fibration is the toric variety associated to the polytope
in Q? defined by the inequalities z > —1, 2y — z > —3 and —2y — z > —3. Its fan is isomorphic to
the complete fan in Q? whose edges are (0,1), (—2,1) and (=2, —1). It is the weight projective
plane (1,1, 2).

Example 2 arises a natural question: can we recover the original MMP for Q-factorial pro-
jective horospherical varieties, by chosing a good divisor D? The answer is yes and given in the
following result.

Theorem 2. Suppose that X is Q-factorial. Then, by taking a general divisor D of X, we have
that

e at any loops of the MMP described in Figure 2 (until it ends), the morphisms ¢ and ¢™ are
contractions of rays of NE(X) and NE(X™);

o the MMP described in Figure 2 still works by replacing Q-Gorenstein singularities with
Q-factorial ones everywhere;

e the general fibers of Mori fibrations are projective Q-factorial horospherical varieties with
Picard number 1 (whose moment polytopes are simplexes intersecting all walls of a dominant
chamber along facets).

Remark 1. If X is smooth and D general, the general fibers of Mori fibrations are projective
smooth horospherical varieties with Picard number 1. These varieties have been classified in
[Pas09], in particular we get flag varieties and some two-orbit varieties. Hence, the general fibers
of Mori fibration are not only weighted projective spaces as in the toric case.



Polytope Q€ for ¢ = %

Polytope Q

Polytope Q€ for e = 2

€ _ 3
Polytope Q° for e = 5

Polytope Q€ for e =1

Figure 4: Evolution of Q¢ in Example 2 (view from the top of the pyramid)



The paper is organized as follows.

In Section 2, we recall the theory of horospherical varieties, we state the correspondence
between polarized horospherical varieties and moment polytopes, we rewrite the existence criterion
of an equivariant morphism between two horospherical varieties in terms of polytopes, and we
describe the curves of horospherical varieties from a moment polytope.

In Section 3, we study particular (linear) one-parameter families of polytopes in Q™ and we
define some equivalence relation in these families.

In Section 4, we prove Theorems 1 and 2, by using the previous two sections. In particular,
we construct a one-parameter families of moment polytopes whose equivalent classes describe all
loops of the MMP given in Figure 2.

In Section 5, we give five examples to illustrate what can happen in the MMP for horospherical
(and not toric) varieties.

2 Horospherical varieties and polytopes

2.1 Notations and horospherical embedding theory

We begin by recalling briefly the Luna-Vust theory of horospherical embeddings and by setting
the notations used in the rest of the paper. For more details, the reader could have a look at
[Pas08], or in more generalities at the Luna-Vust theory of spherical embeddings in [Kno91].

We fix a connected reductive algebraic group G. A closed subgroup H of G is said to be
horospherical if it contains the unipotent radical U of a Borel subgroup B of G. It is equivalent
to say that G/H is a torus fibration over a flag variety G/P. The parabolic subgroup P is the
normalizer Ng(H) of H in G and contains B. We fix a maximal torus T of B. Then we denote
by S the set of simple roots of (G,B,T). Also denote by R the subset of S of simple roots
of P. Let X(T) (respectively X (T')") be the lattice of characters of T' (respectively the set of
dominant characters). Similarly, we define X (P) and X (P)* = X(P)NX(T)". Note that X(P)
is generated by the fundamental weights w, with a € S\R. Let M be the sublattice of X (P)
consisting of characters of P vanishing on H. The rank of M is called the rank of G/H and
denoted by n. Let N := Homgz(M,Z). For any free lattice L, we denote by Lg the Q-vector
space L ®z Q. For any simple root o € S\ R, the restriction of the coroot a¥ to M is a point of
N, which we denote by «j,. For any o € S\R, we also denote by W, p the hyperplane defined
by {m € X(P)qg | (m,a") =0} (note that it corresponds to a wall of the dominant chamber of
characters of P).

A G/H-embedding is couple (X, z), where X is a normal algebraic G-variety and z a point
of X such that G - x is open in X and isomorphic to G/H. By abuse of notation, we will forget
the point z.

The G/H-embeddings are classified by colored fans in Ng. A colored fan is a set of colored
cones in Ng stable by taking colored subcones and without overlap (see for example [Pas08] for
the complete definition of a colored fan). A colored cone is a couple (C,F), where F is a subset
of S\R such that ay, # 0 for all « € F, and C is a strictly convex cone generated by the ay, with
« € F and a finite set of points in V.

If G =(C*)" and H = {1}, we get the well-known classification of toric varieties.



The colored fans of complete G/ H-embeddings are the complete ones (ie such that Ng is the
union of the colored cones of the colored fan).

If X is a G/H-embedding, we denote by Fx the colored fan of X in Ng and we denote by
Fx the set Ue ryery F C S\R of colors of X.

Moreover, the set of G-orbits of a G/H-embedding X is naturally in bijection with the set
of colored cones of Fx (reversing usual orders). In particular, the G-stable irreducible divisors
correspond to the colored edges of Fx of the form (C,@). We denote them by X, ..., X,,, and
for any ¢ € {1,...,m}, we denote by z; the primitive element in N of the corresponding edge.

2.2 Correspondence between projective horospherical varieties and polytopes

In this section, we list results coming directly from the characterization of Cartier, Q-Cartier and
ample divisors of horospherical varieties due to M. Brion in the more general case of spherical va-
rieties ([Bri89]). And we classify projective G/H-embeddings in terms of G/H-polytopes (defined
below in Definition 1).

First, describe the B-stable irreducible divisors of a G/H-embedding X. We already defined
the G-stable divisors Xi,...,X,,. The other ones are the closures in X of B-stable irreducible
divisors of G/H, which are the inverse images by the torus fibration G/H — G/P of the
Schubert divisors of the flag variety G/P. We denote these divisors of X by D,, for any o € S\R.

In all the paper, a divisor of a horospherical variety is always supposed to be B-stable.

Let X be a projective G/H-embedding and let D = >"", a;X; + zaeS\R aq D, be an ample
Cartier divisor of X. Then the set

Qx.p=Qp:={me My | (muz;)>—a;, Vi € {1,...,m} and (m,a};) > —aq, Ya € Dx}

is a lattice polytope in Mg (ie with vertices in M) of maximal dimension. If D is only Q-Cartier,
then QD is a polytope in Mg of maximal dimension. The polytope Qx,p = @Qp = 00 + QD in
X (P)qg, where 00 = ZaeS\R (o6 Wa, is called the moment polytope of the polarized variety (X, D)
(or of D in X). We call Qp the pseudo-moment polytope of (X, D).

Moreover, the moment polytope of an ample Q-Cartier divisor D in a G/H-embedding X is
always contained in the dominant chamber X (P)*, and Qp N Wy, p # 0 if and only if a € Fx.
We note also that, since any a € Fx satisfies oy, # 0, a moment polytope is contained in no wall
me, with a € S\R

An important tool of the paper is the fact that the colored fan of X is reconstructible from
the moment polytope @p of (X, D) for any ample Q-Cartier (B-stable) divisor D. Indeed, any
maximal colored cone of the complete colored fan Fx can be defined from a vertex of Qp as
follows. Let v be a vertex of Qp. We define C, to be the cone of Ng generated by inward-pointing
normal vectors of the facets of Qp containing v. And we set F, = {a € S\R | v € W, p}. Then
(Cy, Fp) is a maximal colored cone of Fx.

Moreover, the divisor D can also be computed from the pair (Q, Q) Indeed, the coefficients
a, with a € S\R are given by the translation vector in X (P)* that maps Q to Q. And, for any
i€ {l,...,m}, the coefficient a; is given by (v;, z;) for any element v; € Mg in the facet of Q for
which z; is an inward-pointing normal vector.
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In order to classify projective G/H-embeddings in terms of polytopes, we give the following
definition.

Definition 1. Let @ be a polytope in X(P)&. We say that @ is a G/H-polytope, if its direction
is Mg and if it is contained in no wall W, p with a € S\R.

Let @ and Q" be two G/H-polytopes in X(P)&. Consider any polytopes @ and Q' in My
obtained by translations of @ and @’ respectively. We say that @ and @’ are equivalent G/H-
polytopes if the following conditions are satisfied.

1. There exist an integer j, 2j affine half-spaces H, ... ,Hj and H'],. .. ,H’;L of Mg (respec-
tively delimited by the affine hyperplanes H;,...,H; and H'y,...,H’;) such that Q is the
intersection of the H;", Q' is the intersection of the #';, and for all 7 € {1,...,7}, H s
the image of H';” by a translation.

2. With notations of the previous item, for all subset J of {1,...,j}, the intersections N;c ;H;N
Q and N;c;H'; N Q' have the same dimension.

3. @ and @’ intersect exactly the same walls W, p of X(P)* (with o € S\R).

Remark that this definition does not depend on the choice of Q and @Q’. As a corollary of
what we say just above, we obtain the following result.

Proposition 3. The correspondence between moment polytopes and colored fans gives a bijec-
tion between the set of classes of G/H-polytopes and (isomorphic classes of ) projective G/H -
embeddings.

Moreover, the set of G-orbits of a projective G/H -embedding is in bijection with the set of
faces of one of its moment polytope (preserving the respective orders).

In section 4.6, we need precise description of the G/H-embedding associated to a G/H-
polytope. For any dominant weight x, we denote by V(x) the irreducible G-module of highest
weight x, and we fix a highest weight vector v, in V' (x). The Borel subgroup of G opposite to B
is denoted by B~.

Proposition 4. Suppose D is Cartier and very ample, then X is isomorphic to the closure of
G- D ye@oanng vxl i P(@yeworanngV (X))-

Remark 2. If D is Cartier and only ample, then (n —1)D is very ample ([Pas06, Theorem 0.3]).
In particular, the assumptions Cartier and very ample, instead of Q-Cartier and ample, are not
really restrictive. Indeed, if D is Q-Cartier and ample, then there exists a non-zero integer p such
that pD is Cartier and very ample, and X is isomorphic to the closure of G - [er(pvo L M)NPO) Uy ]

in P(@xe(pvo—l—M)ﬂpQV(X))'

Proof. First, since Q is lattice polytope of maximal dimension, the G-orbit G - [er(vo LMNQ Uy
is isomorphic to G/H. By [Pas06, Lemma 5.1], the closure X’ of this G-orbit is normal, and
then a G/H-embedding. Now, if yg is a vertex of @), the intersection of the closure of the G-
orbit with the affine space NP(Dyepuoy M)meV(X))v;O;AO is the B~ -stable affine variety whose
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:;;0 of P(@xe(vo—l—M)ﬂQV(X))?
with xo # x € (v°+M)NQ. It is also the B~-stable affine variety constructed from the maximal
colored cone of Fx associated to the vertex yo of . Hence, the colored fan of X is the same as
the colored fan of X’ and X is isomorphic to X'. O

structure ring is the B~ -module generated by the rational functions

2.3 (G-equivariant morphisms and polytopes

The existence of G-equivariant morphisms between horospherical varieties can be characterized
in terms of colored fans [Kno91]. In this section, we rewrite this characterization in terms of
moment polytopes.

Let (X, D) be a polarized G/H-embedding, let (X', D) be a polarized G/H’-embedding and
denote by @ and @’ the corresponding moment polytopes respectively. (We denote all data
corresponding to G/H’ and X’ with primes: H', P, R/, M’, N',...). We denote by Q and Q' the
pseudo-moment polytopes.

A first necessary condition to the existence of a dominant G-equivariant morphism from X to
X', is that there exists a projection 7 from G/H to G/H'. In particular H' > H, P’ > P, R' D R.
The projection 7 induces an injective morphism 7* from M’ to M and a surjective morphism T,
from N to N’. We suppose that this necessary condition is satisfied in all the rest of the section
and we identify M’ with 7. (M’).

Now, we define an application 1 from the set of facets of Q to the set of faces of Q'. First,
note a general fact on polytopes: if P is a polytope in Q", then for any affine half-space H™
delimited by the affine hyperplane H in Q", there exists a unique face F' of P such that there
exists x € Q" such that F is defined by x + H (ie F =P N (x+H) and P C v+ HT). Then, for
any facet F of Q, let H be the affine half-space in Mg containing F. If H* N M@ # M(’@, it is

an affine half-space in M@ and, applying the fact above to P = @', it gives a unique face F' of
Q. We set ¢(F) = F'. And if HT N Mg = Mg, we set ¢(F) = Q.

Proposition 5. Under the above conditions, there exists a dominant G-equivariant morphism
from X to X', if and only if

1. for any subset G of facets of Q, NpegF # O implies Npeg(F) # 0, and
2. for any o € S\R such that QN Wy p # 0 , we have Q' N Wy p # 0.
Remark that, in Proposition 5, we can replace Q by Q (by extending the definition of ).

Proof. For the second condition, remark that if « € S\R is in R’, then @' is contained in W, p.
And, if @« € S\R', Q' "Wy p # 0 is equivalent to Q" N W, pr # 0 because Q' C X(P') and
Wa.pr = X(P')NW,,p. Recall also that QNW,, p # 0 is equivalent to a € Fx (and Q'MW pr # 0
is equivalent to a € Fx).

By [Kno91], there exists a dominant G-equivariant morphism from X to X’ if and only if, for
all colored cone (C,F) of X, there exists a colored cone (C', F’") of X’ such that m,(C) C ¢’ and
any element o € F, either « € R or a € F'.

12



In our case, since X and X’ are complete, we can rewrite this characterization as follows.
Denote by y; with ¢ € {1,...,k} (resp. y; with ¢ € {1,...,k’}) the primitive elements of the
egdes of the colored fan of X (resp. X'). For all j € {1,...,k}, let J; be the minimal subset of
{1,..., Kk} such that m(y;) is in the cone C’; generated by the y; with i € J; (it is never empty
because X’ is complete). We prove now that there exists a dominant G-equivariant morphism
from X to X’ if and only if, for all (colored) cone C of X, generated by the y; with j € Je,
the cone generated by the y; with i € Uje,.J; is contained in a (colored) cone of X'; and Fy is
contained in R U Fx.

Indeed, let C be a cone of X, generated by the y; with j € Je. If there exists a cone C’ of X’
such that 7,C C C’, then C’ contains all y; with j € Je. Then by minimality of the JJ’», it contains
also cones C'; with j € Je and also the cone generated by the y with i € Ujc, J]’». Conversely, if
the cone generated by the y; with i € Uje . J; is contained in a cone C" of X', then it is obvious
that 7,.(C) C C" And the condition on colors is the same in both cases.

Now, the proposition comes from the bijective correspondence between colored cones of X
(resp. X') and faces of @ (resp. Q'), the first paragraph of the proof, and the following fact: the
intersection of some facets of @) is not empty if and only if the cone generated by the inward-
pointing normal vectors corresponding to these facets is included in a cone of X (and this latter
cone corresponds to the face defined as the intersection of these facets). O

Corollary 6. Suppose there exists a dominant G-equivariant morphism ¢ from X to X'. Let O
be the G-orbit in X associated to a face NpegF. Then ¢(O) is the G-orbit in X' associated to a

face Npeg(F).

Proof. Rewrite, in terms of polytopes, the fact that if O is the G-orbit in X associated to a
colored cone (C, F) then ¢(O) is the G-orbit in X’ associated to the minimal colored cone (C, F)
such that 7.(C) C C'. O

2.4 Curves in horospherical varieties

We begin this section by collecting, in the following Theorem, some results on curves in spherical
varieties due to M. Brion [Bri93]. We denote by N;(X) the group of numerical classes of 1-cycles
of the variety X. Recall that N E(X) is the convex cone in Nj(X) generated by effective 1-cycles.
We denote by N1(X) the group of numerical classes of Q-Cartier divisors of X, it is the dual of
Ny (X).

Theorem 7 (M. Brion). Let X be a complete spherical variety. Let Y and Z be two distinct
closed G-orbits in X. Note that Y and Z are flag varieties, so that they have exactly one point
fized by B.

1. There exists a B-stable curve C containing the B-fized points of Y and Z if and only if
the colored cones in the colored fan Fx corresponding to the two closed G-orbits Y and
Z intersect along a one-codimensional colored cone p). And, in that case, C is unique,
isomorphic to P', we denote it by Cy.
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2. The space N1(X)q is generated by the classes of the curves C,, where p is any one-codimensional
colored cone in Fx, and some classes [Cpy] where Y is any closed G-orbit of X and D is
any irreducible B-stable divisor of X not containing Y.

3. Any classes [Cp y]| that is not in a ray generated by the class of a curve C,, is represented by
a (not unique in general) B-stable curve Cpy admitting the B-fized point of Y as unique
B-fized point.

4. The cone NE(X) is generated by the classes [C,,] and [Cp y].

Now, in the particular case of horospherical varieties, we complete this collection of results by
the following proposition that describes an explicit curve in all classes of the form [Cp y]. Note
that a homogeneous G-space has a B-fixed point if and only if it is complete (projective), so that
the B-fixed points of a complete G-variety are the (unique) B-fixed points of its closed G-orbits.
Denote by s, the simple reflection associated to a simple root «, and denote by wy the longest
element of the Weyl group of (G, T).

Proposition 8. 1. Let X be a complete horospherical variety. If a B-stable curve C in X
contains a unique B-fixed point y, then C is contained in the closed G-orbit Y := G -y. In
particular, it is a Schubert subvariety of Y.

2. For any closed G-orbit Y and any divisor D that does not contain Y, the class of [Cp, y]
is represented by the Schubert variety of Y given by the simple root « (ie Bsy -y, where y
is the B-fized point of Y ). We denote it by Cyy .

Proof. 1. Let C be a B-stable curve in X. Suppose that C' is not contained in Y. By replacing
X by the closure of the biggest G-orbit of X that intersects C, we can assume that C
intersect the open G-orbit G/H that is at least of rank one. And then the intersection
C N G/H is an open set of C. Recall that G/H is a G-equivariant torus fibration over the
flag variety G/P. Then C N G/H is the fiber P/H of this fibration over P/P. Indeed,
the B-orbits of G/H are the inverse image of the Schubert cells of G/P. The (unique)
smallest one is P/H, but by hypothesis, P/H has positive dimension. Then, since CNG/H
is B-stable, it is P/H. Moreover P/H has to be one-dimensional.

Prove now that C' has two B-fixed points. By the previous paragraph, P/H is one-
dimensional, ie X is of rank one. Then, there exists a P!-bundle X over G/P and a
G-equivariant birational morphism ¢ : X — X (X' is the toroidal variety over X, see
[Pas06, Example 1.13 (2)]). The closure of the P-orbit P/H in X is the fiber P! over P/P.
Then it has exactly two B-fixed points corresponding to the two C*-fixed points of the
toric variety P!. Moreover, the two-closed G-orbits of X are send, by ¢, respectively to the
two-closed G-orbits of X (here we use that X is horospherical of rank one). Then C' = ¢(C)
has also two B-fixed points (and is isomorphic to P*).

2. Let Y be a G-closed orbit of X and let a € S\R such that D, does not contain Y. Let
Cay = Bsq -y, where y is the B-fixed point of Y. Let D = Y ", b;X; + ZBES\R bsDg
be a Cartier divisor of X. We want to compute D - C y. Since D is Cartier, there exists
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an eigenvector fy (D) of B in the set of rational function on X such that the support of
D —div(fy(D)) is in the union of irreducible B-stable divisors that do not contain Y. Denote
by xy (D) the weight of the eigenvector fy (D). But for any divisor X; with ¢ € {1,...,m}
such that Y ¢ X;, we clearly have X; - C,y = 0 because Y and X; are disjoint. Hence

D-Cuy = (D —div(fy(D))) - Co,y = Z (bg — (xy (D), By1))Dg - Cay-
B,YZDg

We conclude, by the following Lemma 9 and the formula given in [Bri93, 3.2].
O

Lemma 9. Let Y be a G-closed orbit of X and let a, B € S\R such that D, and Dg do not
contain Y. Then Dg - Cyy = do3, where § is the Kronecker delta.

Proof. Denote by y the B-fixed point of Y. Remark that y is also fixed by P. By [Pas06, Lemma
2.8], there exists a unique G-equivariant morphism ¢ from the open G-stable set Xy := {x € X |
G -z D Y} to the closed G-orbit Y. Note that y = ¢(H/H) because y is the only point of Y fixed
by U C H and, similarly, ¢ is the identity on Y.

Recall that Dgs is the closure in X of the B-orbit BsgwoP/H. Then DgNY is contained
in (and then equals) the closure of ¢(BsgwoP/H) in Y, which is the Schubert variety Bsgwy -y
of Y. Moreover, since Dg does not contain Y, DgNY is a divisor of Y. Hence Dg-C,y =
(DgNY)-Cqy = 0ap- O

With the correspondence between colored fans and moment polytopes, if X is a horospherical
variety and D is a Q-Cartier divisor, we denote by C), for any edge p of @p, and by C, , for
any o € S\R and any vertex v not contained in W, p, the curves defined above in terms of
the colored fans (one-codimensional colored cones correspond to edges of moment polytopes, and
closed G-orbits correspond to maximal colored cones and then to vertices of moment polytopes).

The following results is a direct consequence of the formula of [Bri93, section 3.2], already
used in the proof of Proposition 8.

Proposition 10. Let X be a horospherical variety and D an ample Q-Cartier divisor.
Then, for any edge p of the moment polytope Qp, the intersection number D.C,, is the integral
length of u, ie the length of p divided by the length of the primitive element in the direction of p.
And for any a € S\R and for any vertex v of Qp not in the wall W, p, we have D.Cq, =
(v, V).

3 One-parameter families of polytopes

In this section, we study particular one-parameter families of polytopes. This section can be
read independently from the rest of the paper. Corollary 21 is an essential tool in the proofs of
Theorems 1 and 2.
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3.1 A first one-parameter family of polytopes: definitions and results

First, we fix notations. Let n and m be two positive integers. Consider three matrices A, B and C'
respectively in M,x1(Q), My, x1(Q) and M,,x,(Q). Then we define a first family of polyhedrons
indexed by € € Q as follows:

P :={reQ" | Ax > B+ eC}.

We do not exclude the case where some lines of A are zero. Note that P¢ can be empty (even
for all e € Q).

If there exists € € QQ such that P€ is a (not empty) polytope (ie is bounded), then there is no
non-zero x € Q™ satisfying Az > 0. Inversely, if there exists ¢ € Q such that P€ is not bounded
then there exists a non-zero x € Q" satisfying Az > 0 (because P¢ contains at least an affine
half-line and = can be taken to be a generator of the direction of this half-line).

From now on, we suppose that there is no non-zero x € Q™ satistying Ax > 0.

Let Iy := {1,...,m}. For any matrix M and any i € Iy, we denote by M; the matrix
consisting of the line ¢ of M. And more generally, for any subset I of Iy we denote by M the
matrix consisting of the lines ¢ € I of M.

Let € € Q. We denote by H

the hyperplane {z € Q" | A;x = B+ eC}. For any I C Iy, denote by Fj the face of P¢
defined by

Ff= (M) N Q"
iel
Note that for any face F¢ of P¢ there exists a unique maximal I C Iy such that F° = Ff (we
include the empty face and P€ itself).

Let I C Iy. Define Q(I]JO to be the set of € € Q such that Fy is not empty; define Q}Jo to be
the set of € € Q such that, if I’ C Iy satisfies F§ = F¥,, then I’ C I. In other words, € € Q(I],Io if
and only if there exists x € Q™ such that Ax > B+ €C, and € € Q} 1, if and only if there exists
x € Q" such that A; = By + ¢Ct and A[O\[ > B[O\[ + GCIO\I-

To make the notations not to heavy, we often write ¢ instead of {i}, for any ¢ € Iy. Remark
that if € € (201)7 1,0 the polytope P€ is of dimension n (ie has a non-empty interior). And, for any
1€ Iy, if e € Qzl,lo and A; # 0, Ff is a facet of P¢.

Now, we define an equivalence on subfamily of (P€).cq, that we extend to another family
(Q)ecq of polytopes constructed later (see Definition 3), and corresponding to the equivalence of
G/ H-polytopes given in Definition 1 restricted to the family used in Section 4 (see Proposition 22).

Let Ky be the subset of Iy consisting of indices of zero lines of A.

Definition 2. Let Ky C K C I.
.— 0Ol 1
We first define QR == Qy 1 N Nicp\ i i 1,
Let € and 1 both in QR9". We say that the polytopes P and P" are equivalent if, for any
I C Iy, € and 7 are either both in Q},Io’ either both in @\Q%IO, or both in Q?,IO\Q},IO' (In other
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words, F; and F} are either both not empty faces with I maximal, either both empty, or both
not empty with I not maximal.)

Some properties of the family (P€).cq are listed in the following result.
Theorem 11. With the notations above, let Ky C K C Ij.
1. The set QYR is an open segment of Q (with extremities in QU {£oc}, or empty).

2. If Q%“If) is not empty, there exist an integer k and o < -+ < oy in QU {£o00}, such that
the equivalent classes of polytopes in the family (PE)€€Q7KVLGIS(C) correspond exactly to the open
segments |a, aiip1] for any i € {0,..., k — 1} and the singletons {«;} for any i € {0,... k}

with o; € Q. In particular, QR =|ag, ag|.

3. Suppose that oy, € Q. If a € Qy ,, there ewists Iy C Iy containing K such that P* =
pPrr={z € Q" | Az > By, + ;O } and oy, € QEF (defined for the family (Pf))ceq)-
If ag & Qp 1, there exist subsets Jy and Iy of Iy such that NIy =0, P* = Pp*, = {z €
Njen Hi* | Anz > Br, + arCr} and ay, is in QR 1, (defined for the family (P, 5 )ecq
of polytopes in ﬂjeJl 7—[;’”“)
We have a similar result on the other extremity of QYR if o € Q.

3.2 Proof of Theorem 11

We study all the sets Q(},Io and Q},Io'
For any I C Iy, denote by I the complementary of I in I.

Lemma 12. For any I C Iy, the sets Q? 1, and Q} 1, are conver subsets of Q (may be empty).

Proof. Let €1 and €3 be in Q(},Io' Then there exist 21 and zo in Q™ such that Ajx1 = By + 1Cy,
Arze = By + €Cr, Ajry > By + €,Cr and Ajrs > Bj + e2Cf. Then, for any rational number
A € [0,1], we get easily by adding equalities and inequalities that A;(Az1 + (1 — A)z2) = Br +
(Ae1 + (1 = N)e2)Cr and Aj(Ax1 + (1 — N)za) > Bi + (Aer + (1 — N)ea)Cy, so that Aep + (1 — A)ez
is in Q(I],Io'

By replacing > by >, we similarly prove the convexity of Q} Iy O

Lemma 13. For any I C Iy, the set Q},Io is either reduced to a point, or an open subset of Q
(may be empty). Moreover, if Q}Jo is reduced to a point €g, the system A;X = By + e¢Ct has at
least a solution only when € = €g; in particular, in that case, Q?,Io 1s also reduced to €.

Proof. Suppose that 9}7 1, is neither empty nor reduced to a point. Let €; and €z two different
points of Q},Io' Then there exist 1 and x5 in Q" such that Ajx1 = Br+€1Cy, Arxe = B+ 6307,
Afr1 > Bj + €,C7 and Ajre > Bj + e2C7. In particular both linear systems A;X = B and
ArX = C7 have solutions, hence for any € € Q, the linear system A;X = By + ¢C; has a set of
solutions, depending continuously on €. More precisely, if 5 and xz¢ are some solutions of A; X =
Br and A X = Cf respectively, then the set of solutions of A; X = Br+¢€Cris ker(A;)+xp+exc.
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Now, let € € Q},Io’ and let y := xo+xp + exc with xg € ker(Ay) such that Ayy > Bj+¢C7. Then
there clearly exists a neighborhood V of € in Q such that Az(y + (n — €)xc) > Bf + nCj for all
n € V. We also check easily that A;(y + (n — €)z¢) = Br +nCr so that V C Q},Io'

To prove the last statement, we suppose that the system A; X = By + ¢CT has a solution for
at least two values of €, and then by the same arguments as above, we deduce that Q} I, 1s open,
which gives a contradiction. The result follows immediately. O

Lemma 14. For any I C Iy such that Q}Jo is not empty, we have Q}Jo C Q?,Io col Io-

Proof. The first inclusion is obvious.

To prove the second one, remark that for all ¢; € Q} I and ey € Q% Io® the segment [e;, €]
(or ]esg, €1]) is contained in Q}Jo' Indeed, if there exists x1 and x9 such that Ajx; = By + €1Cj,
Arzo = By + eC, Ajz1 > Bi+ 6C; and Ajxa > Bj + €Cf, then for any A €]0,1], z) :=
Az1 + (1 — N)zg and €y := Aeg + (1 — N)eg clearly satisfy Ajzy = Br + e\Cr, Ajzy > B + e)Cj,
so that €) € 9}7 1,- This remark implies directly that any e; € Q% I, s 1n Q; Iy O

Lemma 15. Let I C Iy be such that Q} 1, s not empty. Then the supremum and the infimum

(well-defined in R) of Q},Io are either infinite or rational numbers. Moreover, Q(},Io = Q},Io‘

Proof. If 9}7 I, 1s reduced to a point, by Lemma 14 we have nothing to prove, so we suppose that
9}7 1, contains at least two points.

Here (and only here), we need to consider the family of polytopes (P¢)c.cr. Note that all
definitions and all results given until now are still available replacing Q by R. When it is necessary,
we denote by Q(Q) and by Q(R) the sets Q defined at the beginning of the section respectively
in Q and in R. Now, by Lemmas 12 and 14, it is enough to prove that, if they are finite, the
supremum and the infimum of Q} 1,(R) are rational numbers contained in the set Q% 1, (Q).

Suppose that the supremum ¢y € R of Q}JO(IR{) is finite. Let € € Q}JO(R). Then, for any
€ € [e1, €o], the polytope P€ is contained in the polytope

plevcol .= {2 e R" | Az > Min(B + €,C, B + ¢,C)},

where the mimimum Min is taken line by line. Now for all € € [e1, €], let 2 € Ff such that
Azz® > By + €C (and Ajz€ = By + €Cy). Since the points 2¢ are in the compact set Pl of
R", there exists zp € R™ such that A;zg = By + €Cy and Ajrg > Bf + €Cf, ie xp € F[°. It
means that € is in Q(},Io (R).

Define the maximal subset J of Iy containing I such that for any « € F[° we have Ajz =
Bj + ¢Cjy. In particular, Ajrg > By + ¢C7. We now prove that, for any €¢; € Q},Io’ the face
F$' is empty. Indeed, if it is not empty, there exists z; € R" such that Ayz1 = By + ¢C and
Ajzr1 > Bj+¢€.Cy. Let n > 0, let x9 := xo + n(xg — 1) and let € := €9 + n(ep — €1). Then we
have Ajxy = By + €2C; and, for 1 small enough, we have Ajzry > By + 2C;. Hence F}* D F}?
is not empty, which contradicts the fact that ez > €g is not in Q% 1, (see Lemma 14).

We now claim that the intersection of the vector space Im(A ) with the affine line {B;+¢€C} |
e € R} is reduced to the point €. Indeed, €y clearly belongs to this intersection, which can be
either reduced to a point or the affine line. But, if some € € 9}7 I, 18 in this intersection, then
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there exists x5 € R™ such that Ajzs = By + €Cy. Then, for n > 0 small enough, we can prove
that nrs + (1 —n)zg is in F}' with ¢, = ne + (1 — 1)eg, which is not possible because Fj' is
necessarily empty. To conclude that ¢y € Q, it is now enough to recall that A, B and C have
rational coefficients.

It remains to prove that zg can be chosen in Q™ so that ¢y is in Q% Io(@)' But x¢ can be
taken in an open set of the set of solutions of Ajx = By + ¢gCy. We conclude by noticing that
By + ¢9Cy have rational coefficients.

For the infimum of 9}7 I,» 1t is the same proof (for example by replacing ¢ and C by their
opposites). O

Corollary 16. Let I C Iy. We have the following cases:

1. O} 1, s an open segment of Q (with extremities in QU{=xoo}) and QY 1, 8 the closed segment

ol 1, (may both be empty);

2. Q}Jo 18 a reduced to a point €y, then it equals Q?,Io and the system A;X = Br+€Ct has at
least a solution only when € = €y,

3. Q}Jo is empty and Q?,Io is the closure of some Q}]JO with I & J C Iy.

Moreover, if I = () or reduced to an index i € Iy\ Ky, then only Cases 1 and 3 are possible, so
that Q1 1, 18 open (or empty).

Proof. The two first items, and the fact that we cannot have more cases, can be deduced directly
from Lemmas 13 and 15.

Suppose now that Q} 1.1, is empty, but not Q . Let J C Iy be the maximal set containing [
such that, for all € € Q, F P =F95 Then J # 1 by hypothesis. Indeed, if I = J then there exist
subsets Jy, ..., J of Iy whose intersection is I, and also rational numbers €y, ..., € respectively
in Q‘tho’ e ’Qle,Io' Hence % is in Q},Io that is not possible.

Then Q% I = QOJ, 1, and by maximality of J, Q}L I, s not empty. We conclude by using the
first two items.

Now, for the last statement remark that, if I = () or reduced to an index i € Ip\ Ky, the system
A;X = By + €Cy has solutions for all € and then, we cannot be in Case 2. O

We now prove three lemmas to get the connexity of K-equivalent classes of polytopes.

Lemma 17. Let I C Iy such that Q? 1, 8 bounded, but neither empty nor reduced to a point.
Denote by €1 and eo the extremities of Q? Io- Then, there exist J1 and Jo containing I such that
{1} = QlJl,Io and {es} = ng,lo' In particular, if €1 and ez are in Q. P is not equivalent to

P2,

Proof. By Corollary 16, we can suppose that QI I = Q} I = [€1,€2]. Then, there exists j € T
such that x € Q°* and Ajx = By + ¢;Ct imply that Ajr = Bj 4 €C;. Let J; be the union of I
with the set of all such indices j. In particular, e; € QlJl’ 1,- Moreover, since QlJl’ 1, is contained
in Q? I = [€1, €2], it cannot be open, and then by Corollary 16, QlJl 1, 1s reduced to ;.
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Similarly, we prove the existence of Js.

In particular, if € and ez are in QE%, by definition, the classes of P' and P are both
reduced to one polytope and then distinct. ]

Lemma 18. Let I C Iy such that Q(},Io = {eo}, with ey € QG- There exists Iy C Iy such that
the upper extremity of Q%, Iy 1S €0-

Proof. First, we can suppose that I is the maximal subset of Iy such that Q% Iy = {€0}, (ie such
that Q}Jo = {€eo}). Then there exists xy € Q" satisfying Ajzg = Br+€oCr and Ajzg > Bj+¢Cj.

Consider a subset I of I such that there exists €1 < ¢q in Q%, Io- Choose I} maximal in I with
this property. It exists (but can be empty) because ¢ is in the open set Q. Moreover Iy # 1.
Then there exist €; < ¢p and z; € Q" such that Ay, x1 = By, + €1Cp, and Aflxl > B, + qul.
Hence, for any € €lep, g, the element z¢ := (o—gr1te=e)ro gutisfies Apx© = B, + €Cr, and

€0—€1

Apx > Bp, + ¢Cp by maximality of I;. It proves that ]ei, eg[C Q}I,IO' In particular, with

Corollary 16, Q}h 1, 1s open with closure equal to Q(I]h Io-

It is now enough to prove that the upper extremity of Q%, I, 1S €0 Suppose the contrary, then
there exists €2 > €9 and xo € Q" such that Ay, o = By, +€2C, and Aflxg > Bj, +eCf,. For any
€ €lep, €2, the element y* := (62_5)21;_50)362 satisfies Ay, y© = B, +¢Cp, and Apy® > By, +€Cf,.
Moreover, for € = ¢ (ie y© = zg), we have Ary¢ = By + eCr and Ajy¢ > Bj + eC;. Then
by continuity, for any ¢ < €y big enough, we have Ay y® = By, + €Cy,, Ajy¢ > Bj + ¢Cf and
Apny© < Bpr +¢Cn - Choose such an € in Jeq, eg[. Hence, there exist z¢ in the segment |z<, y|
and some j € I\I1 such that Ay, 2 = By, +¢€Cr,, Af,2° > Bj, +€Cy, and A;2° = Bj + ¢Cj. This
contradicts the maximality of I;, so that we have proved that the upper extremity of Q?L I, 18
€0-

Lemma 19. Let n < e in Qg such that there exists I C Iy satisfying Q(},Io Cln,€[. Then P" is
not equivalent to P€.

Proof. Among the set of subsets I of Iy satisfying Q% Io Cln, €[, choose the one whose lower
extremity is minimal.

There are two cases: in the first one, Q% I, = 1€o}. By the Lemma 18, there exist I; C Iy and
€1 < €9 (may be —o0) such that Q(IJI,IO = [e1, €0]. By hypothesis of minimality, 1 is in Q(I]l,lo' But
€ is not in Q%, 1> SO that P is not equivalent to P<.

Consider the second case: Q% Iy = [€1,€2] with €; < eg. Let J be the maximal subset of I
such that x € Q° and Ajx = By + €1Ct imply that Ayjzr = By + €1Cy. In particular, J strictly
contains I and € € Q}, I, Then Q}, I C Q% 1, cannot be open, hence it is reduced to a point and
we conclude by the first case. O

Proof of Theorem 11. 1. It comes directly from the last statement of Corollary 16.

2. Now, let ¢g € QR". Prove that the equivalent class of P corresponds to a segment of
Q%‘lﬁ) or is reduced to P.
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If there exists I C Iy such that Q} 1, = {€o}, then the equivalent class of P is clearly
reduced to P®°. By Lemma 17, we get the same conclusion if there exists I C Iy such that
Q} I, 1s not empty and € € Q% 10\9}7 1, (e if there exists I C Iy such that € is an extremity
of Q(I],Io’ by Corollary 16 Case 3).

Suppose now that for all subsets I of I, Q},Io # {ep}, and ¢ is not an extremity of Q?,Io'
Then the set of e € Q% such that P¢ is equivalent to P is the intersection of open
segment of Q. Indeed, it is the intersection of open segments of type Q} 1, and connected
components of some @\Q% 1, (by Lemma 19).

3. Now, let €; be an extremity of Q??}g Suppose that €; € Q(%),Io' Define Is to be the set
of indices i € Ip\K such that €; is not in Qll 1,- Denote by I; the complementary of I
in fo. Then by definition, /; contains K and € is in the set Q%". Denote by P;ll the
polyhedron {z € Q" | Apx > By + e1Cp,}, and prove that Pt = P!, We clearly
have Pt C P?, so that we have to prove that P;ll is contained in all closed half-spaces
7—[;61 ={x € Q" | Az > B; + €C;} with i € I, or equivalently that the interior
{z € Q" | Apz > Br, + e1Cp, } of ;! (that is not empty because €1 € Q(}J,Io) is contained
in all open half-spaces ’H:"Fel ={r e Q" | Ajx > B;+¢€,C;} with ¢ € I5. Since the interior
of P;! intersects the connected component (;cp, HIT of QM\U,e 1, Hi's it is enough to
prove that the interior of Pfll does not intersect the union of hyperplanes | J,.;, H;'.

Let ¢ € I5. Suppose that the interior of Pfll intersects the hyperplane H;'. There exists
x1 € Q™" such that Ar,x1 > By, + €,Cr, and A;x; = B; + € C;. Since there also exists
xg € Q" such that Axg > B + €1C, an element x5 of the segment [z1, zo[ is in the interior
of Pfll, in P! and in 7-[;1 for at least one j € I5. Let J C Is the maximal set such that
Ajxg = By + €1Cy. Then the set C := {x € Q" | Ajx > By + €1Cy} is a cone (of apex
z2 + ker(A;)) with non-empty interior. Let j € J such that H;' NC is a facet of C. By
Lemma 20 below, all hyperplanes 7—[;1 with j € J are different, then there exists y € ’H;l ne
that is not in the other hyperplanes H;' with j # ¢ € J. Since x5 is in the interior of P;;\J,
for any rational number A > 0 small enough, the point xo + A(y — z2) is in the interior of

i€ls

Pleol\ ;> also in H5'NC and not in H;* for all i € J different from j. This contradicts the fact
that ey & Q] .

Suppose now that €; & Qé I Let J; the maximal subset of I such that P€! is contained in
the subspace Hj, = (s, H;' of Q" Then P is clearly the polytope {z € ;s H;' |
Ap\n® = B\ g, + €10\ g, ) Then €1 € Q(}),Io\Jl (defined in for the family of polytopes in
Hy) Ife € Q%?Wm(lo\Jl),Io\Jl’ then Iy = Iy\Jy gives the result. If not, €; is an extremity of
Q%‘{’E To\J1) I\ and €] € Qé I\ Then we apply that we prove in the previous paragraph,
in order to find I1 C Iy\J; that gives the result.

]

Lemma 20. If QR is not empty, then for any i and j in Io\K, the existence of A € Qxo such
that A; = NA;j, implies that i = j.
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Proof. Let e € Q. Suppose that there exists ¢ 7 j in Ip\K such that A; = AA; for some
A € Qso. Then, since ¢ € Qil’[o N Q},Io’ there exist = and y in Q", such that A;x = B; + €C;,

Ajx > Bj+€Cj, Ajy = Bj+eCj and A;y > B;+€C;. And we have A\(Bj +€C)) < Mz = Ajx =
BieC; < Ajy = MAjy = X\(Bj + €C}), which gives a contradiction. O

3.3 A second one-parameter family of polytopes

In section 4, we apply Theorem 11 to a family (QE)66Q20 constructed by iteration from the family
(P€)ecq, using the last statement of Theorem 11 in the following way.

Definition 3. Let A, B and C be as in Theorem 11. Let K C Iy containing K. Suppose that
0e Q%Iﬁ) For any € € Q¢ N Q%Iﬁ), define Q¢ to be P¢. If Q??}g has a finite supremum €; and
if €1 € Qg 7, consider I as in Theorem 11. Then define for any € € [e1, +00[NQETF,, Q° to be the
polytope Py .

If €1 € Qp 1,, we stop the construction and we define Q¢ = 0 for any € > €; by convention.

Iterating the construction, we obtain a family of polytopes (Q6)6€Q>0. Remark that the
construction depends on K. -

We say that Q€ is K-equivalent to Q" in the family (QE)€€Q>O if they are both defined at the
same step of the construction above, ie if they correspond to 15; and PI", with € and 7 both in
Q??f’ for some I C Iy containing K, and P§ and P} are equivalent (according to Definition 2).

Applying Theorem 11 to each subfamilies (Pf) of the family (Q)eeq.,, We obtain immediately
the following result.

Corollary 21 (of Theorem 11). Suppose that Q° and Q¢ are equivalent for € > 0 small enough.

There exist non-negative integers k, jo, . . ., ji, rational numbers o j fori € {0,...,k} and j €
{0,...,7:} and g j+1 € QsoU {400} ordered as follows with the convention that oy j,+1 = 11,0
forany i€ {0,...,k—1}:

1. apo=0;
2. for any i € {0,...,k}, and for any j < j' in {0,...,7; + 1} we have a;; < o jo;

and such that the K -equivalent classes in the family of polytopes (Qe)eGQZO is given by the following
segments:

1. [Oéi,o,Oéi,l[, with 1 € {0, RN k‘},
2. ]O%j, Oéi,j-i-l[; with 1 € {O, R ,/{?} and j € {1, e ,ji};
3. {ai;} withie{0,... .k} and j € {1,...,5};

4. if g g1 # +0o, {agj 1} and Jay i, +ool.
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Remarks 3. For any i € {0,...,k}, the rational numbers «;,...,q®; j, can come from several
consecutive steps of the construction of (Qe)ee(@>0 Indeed, for example, ayg j, is not necessarily

the supremum €; of Q" because {Q'} may be an equivalent class.

We have ay, j,+1 = +oo if, in the construction of (Q )eeQ>07 some set Qmam has no upper
bound. And if oy, j, 41 # +00, it is the upper extremity of some Q?“f” that is not an element of
Q@ ;- In this latter case, Jay, j, +1,+00] is the class of empty polytopes and oy, j, +1 corresponds to
the last not empty polytope. If C > 0, we are always in that case.

4 MMP via a one-parameter family of polytopes

Let X be a projective horospherical G-variety, with open G-orbit isomorphic to G/H. Let D be
an ample Q-Cartier divisor. Suppose that X is Q-Gorenstein (ie the canonical divisor Kx of X
is Q-Cartier). We keep the notations given in Sections 2.

4.1 The one-parameter family of polytopes

To construct the one-parameter family of polytopes that permits to run the MMP from X, we
start the same way as in the classical approach of the MMP. Indeed, for ¢ > 0 small enough,
the divisor D + eKx is still ample (and Q-Cartier by hypothesis), so that it defines a moment
polytope () and a pseudo-moment polytope Q°. More precisely, (for € small enough) Q€ := {x €
v+ Mg | Az > B +¢C} and Q° := {x € Mg | Az > B + ¢C} where the matrices A, B, C, B

C and the vector v¢ are defined below.

Recall that zi,...,x,, denote the primitive elements of the rays of the colored fan of X
that are not generated by a vector a), with o € Fx. We choose an order in S\R and we
then denote by a,...,a, its elements. We fix a basis B of M. Now define A € M,4,,(Q)
whose first m lines are the coordinates of the vectors x; in the basis B with ¢ € {1,...,m}
and whose last r lines are the coordinates of the vectors aVM in B with j € {1,...,r}. Let

B be the column vector such that the pseudo-moment polytope of D is defined by {x € Mg |
Az > B}. In fact, if D = 37 b;X; + 3 aes\r baDa, then B is the column matrix associated

to the vector (=by,...,—bm, —bay,...,—bqa,). Similarly, the column matrix C corresponds to
the vector (1,...,1,¢qay,-.,Ca,), Where —Kx = 37", X; + 37 o\ g CaDa (the coefficients are
explicitly defined with ¢, = (2pp, "), where pp is the sum of positive roots of G that are not
roots of P). Now, define v := ¢\ p(ba — €ca)wa. Since Q° = v + Q°, we compute that B
and C are respectively the column matrices associated to (—b; + (1, ZaeS\R baTa)y -y —bm +
(T, ZaeS\R boaw@a),0,...,0) and (1 — (z1, ZaeS\R CaTa)y -y L — (T, ZaeS\R Ca@a),0,...,0).

From the matrices A, B and C' we construct the family (QE)EEQ>O of polytopes in Mg as in
Section 3. And for any € > 0 we define Q¢ = v¢ + Q°. Since C > 0, by Remark 3, there exists
€maz € Qso (it is the number oy j, 41 given in Corollary 21) such that for all € € [0, €42], Q°
is a G/H-polytope and for all € > €4, Q° = 0. The polytope Qe is neither empty nor a
G/ H-polytope, but it is a G/ H!'-poltyope with some subgroup H' of G containing H (see later).
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Proposition 22. The two partitions of [0, €maz| given by equivalence classes of G/ H -polytopes
(Definition 1) in the family (Q)cc(o,emas| @nd by equivalent classes in the family (QF)ec(0,emas|
according to Definition 3 with K ={m+1,...,m +r} are the same.

Proof. Let € and n be two rational numbers.

Suppose that Q¢ and Q" are equivalent G/H-polytopes. In Definition 1, take j to be minimal,
so that the hyperplanes H1,...,H; and H'y,...,H; corresponds respectively to Hi,- - ,ng and
HZ,...,HZ for J := {i1,...,i;} C {1,...,m+r}. Then, if we denote by I the union JU K, the
polytopes Q¢ and Q" respectively equal Pf and P} such that € and n are in Q72%. Then we have
to prove that P§ and P} are equivalent according to Definition 2, which comes’directly from the
definition of equivalence of G/ H-polytopes.

Suppose now that Q¢ and Q" are equivalent according to Definition 3. They are constructed
at the same step so that there exists I C {1,...,m + r} containing K such that Q¢ and Q"
respectively equal Pf and P}, with € and 7 in Q%ff Then Q¢ = {reMy | A > Br + eé’l} and
Q" ={x € Mg | A; > By +nCr}). This directly gives the first item of Definition 1. The second
item is also clear from Definition 2. And the third item comes from the fact that Y, contains
both € and 1 or no of the two, for any i € K. , O

4.2 Construction of varieties and morphisms

We apply Corollary 21 to the family (Q)eeqs,- Then the family (Q°)ccq., gives a list of G/ H-
embeddings:

1. X;j forany i € {0,...,k} and j € {0,...,;}, respectively associated to moment polytopes
QE with € E]Oé@j, Oéi,j-i-l[;

2. Y, forany i € {0,...,k} and j € {1,...,J;}, respectively associated to moment polytopes
Q%

It also gives a projective horospherical G-variety Z associated to the moment polytope Q“*Jk+1 =
Qe Indeed, let Mé be the minimal vector subspace containing Qe+ and let M! := Mé NM.
Let R! be the union of R with the set of a € S\R such that Q%mes is contained in the wall
W, p. Then we define the subgroup H' of P! := Pp1 to be the intersection of kernels of char-
acters of P! in M'. Then Q%ma= is a G/H!'-polytope and corresponds to a G/H'-embedding Z.
Remark that, by definition M' C M and R C R! so that we have a projection 7 : G/H — G/H!.

Now, by Proposition 5, we get G-equivariant morphisms:

1. ¢ij: Xijo1 — Yy  forany i € {0,...,k} and j € {1,...,J;};
2. qS:j : X — Y forany i € {0,...,k} and j € {1,...,J;};
3. ¢i: Xij, — Xijp10 for any i € {0,...,k —1};

4. and ¢ : Xy 5, — Z.
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In the next section, we prove that the morphisms ¢; ; and qﬁl'-fj give flips (may be divisorial, see
Remark 3 and Example 7), the morphisms ¢; are divisorial contractions and the morphism ¢ is
a Mori fibration.

4.3

Description of the contracted curves

Proposition 23. 1. Foranyi€{0,...,k} and j € {1,...,J;}, the curves C contracted by the

3.

morphism ¢; j satisfy Kx, ;_, -C <0; for anyi € {0,...,k— 1}, the curves C contracted by
the morphism ¢; satisfy Kx, ;. -C < 0; and the the curves C' contracted by the morphism ¢
satisfy KXk,jk -C < 0.

For any i € {0,...,k} and 7 € {1,...,4;}, the curves C contracted by the morphism gb;rj
satisfy Kx, ;- C > 0.

For any i € {0,...,k — 1}, the morphism ¢; contracts (at least) a G-stable divisor of X j,.

Proof. 1. Let |a,b| or [a,b] corresponding to an equivalent class in the family of polytopes

(Q)eeqs,- In particular, there exists I C {1,...,m + r} containing K such that for any
¢ €la, b, Q° = Pf and € € Q.

Denote by X the variety given by the G//H-polytopes Q¢ with e €]a, b[, denote by Y? the
variety given by the G//H-polytope QP or to the G//H'-polytope Q¥ (as we define Z in the
previous section). And denote by ¢ the projective G-equivariant morphism from X to Y.

Fix ¢ €]a, b[. Recall that a G-orbit of X corresponding to a face F'§ of Q° with J C I, is sent
to the G-orbit of Y corresponding to the face FIb of Qb. Recall also that we describe the
curves of horospherical varieties in Section 2.4. Hence, a curve C, of X is contracted by ¢
if and only if the G-orbit of X intersecting C,, in an open set (ie the G-orbit corresponding
to the edge u of Q°) is sent to a closed G-orbit of Y?; and a curve Ca,» of X is contracted
by ¢ if the closed G-orbit corresponding to v is sent to a closed G-orbit isomorphic to G/ P’
where « is a root of the parabolic subgroup P’. In other words, C), is contracted by ¢ if
and only if for any J C I such that y = F¢, the face F}} of QY is in fact a vertex of QP.
And C,, is contracted by ¢ if and only if for any J C I such that v = F§ (which is not in
We, p), the vertex F}} of QY is in Wa,p-

Let D¢ be the Q-Cartier divisor defined by the moment polytope Q¢ and the pseudo-moment
polytope Q°. Then, for any € € [¢, b] the Q-Cartier (and ample) divisor defined by (Q¢, Q¢)
is D+ (e — ¢)Kx. But, by Proposition 10, (D + (¢ — ¢)Kx) - C,, is the integral length of
the edge p in Q° for any € € [c, b], we get by continuity that C), is contracted by ¢ if and
only if (D + (b—¢)Kx)-Cy = 0. Similarly, since (D + (e — gamma)Kx) - Cq,», = (v, ") for
any € € [c,b], we get that C,, 4 is contracted by ¢ if and only if (D + (b—¢)Kx) - Cq,» = 0.
In particular, for any curve C' contracted by ¢, we have Kx - C' < 0.

. By very similar arguments, we prove that if ]a,b] is an equivalent class in the family of

polytopes (Q°)ecqs,, if Y is the G/ H-embedding associated to the G/ H-polytope Q“, and
if 7 : X — Y® denote the G-equivariant morphism, then for any curve C contracted by
¢T, we have Kx - C > 0.
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3. Now consider the case where |a, b[ (or [a, b]) and [b, b'[ correspond to two successive equivalent
classes in the family of polytopes (Q)eeqs,- The subset I of {1,...,m+r}, the varieties X
and Y?, and the morphism ¢ are defined as above. Here, by hypothesis, b & Q7% and there

exists a proper subset I’ of I containing K such that Q” = PY. Then for any c €la,b] and
for any ¢ € I\I' C {1,...,m}, Ff is a facet of Q¢ (and corresponds to a G-stable divisor of
X), but Fib is not a facet of Q° (and corresponds to a G-stable divisor of Y of codimension
at least 2). Hence, ¢ contracts (at least) a G-stable divisor of X.

O

4.4 (Q-Gorenstein singularities

In this section, we prove in particular that all the varieties X;; defined in Section 4.2 are Q-
Gorenstein. We begin by giving a Q-Gorenstein criterion in terms of moment polytopes.

Proposition 24. Let X be a projective G/H -embedding and let D be an ample Q-Cartier divisor.
Denote by Q the pseudo-moment polytope of (X,D). Let A and C be the matrices defined in
Section 4.1. For any vertex v of Q, we denote by I, the maximal subset of {1,...,m +r} such
that v = FJ,.

Then X is Q-Gorenstein if and only if, for any vertez v of Q, the linear system A, X = C’Iv
have (at least) a solution.

Proof. The proposition is just a translation, in terms of moment polytopes, of the criterion of
Q-Cartier divisor, applied to the divisor Kx. O

By applying this criterion to the family (QE)eEQZO, we easily get the following result.

Corollary 25. Let € > 0 such that Q° is a G/H-polytope. Let X¢ be the G/H-embedding
corresponding to the G/H -polytope Q°. Denote by I the subset of Iy containing K, such that
Qf = Pr and e € QYEF. For any vertex v° of Q, we denote by I the mazimal subset of I such
that v = Fy,. .

Then X€ is Q-Gorenstein if and only if for any vertez v¢ of Q¢, the linear system A X = C’Ive
have (at least) a solution.

Now, using Section 3, we can know exactly when X€ is Q-Gorenstein (except for 7).

Proposition 26. The varieties X; ; with i € {0,...,k} and j € {0,...,7;} are Q-Gorenstein.
And the varieties Y; j with i € {0,...,k} and j € {0,...,7;} are not Q-Gorenstein.

Proof. Let i € {0,...,k} and j € {0,...,;}. The variety X;; is defined by G/H-poltyopes Q°
with € in an open segment of Q>¢. In particular, for all these rational numbers €, for any vertex
v€ of QE, the linear system A7 . X = Blve + eCN'IUS have a solution. Hence, A7 . X = CN'IU6 has also
a solution. It proves that X ; is Q-Gorenstein.

Now, let i € {0,...,k} and j € {0,...,7;}. The variety Y; ; is defined by the G/H-poltyope
Q*. By Corollary 16, there exist J and I subsets of {1,...,m + r} such that J C I and o ;
is the extremity of the segment Q?L jor{a;j} = Q}, ;- But by Lemma 17, we can always choose
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J and I such that {a;;} = Q}, ;- Moreover, by taking J maximal with this property, we get a
vertex v of Q% satisfying {a; ;} = Q}U,I' In particular, by Corollary 16, the system A;, X = C’Iv
have no solution. It proves that Y; ; is not Q-Gorenstein. U

4.5 Q-factorial singularities

In this section, we prove that, for D general, the MMP works in the family of projective Q-factorial
horospherical varieties.

Proposition 27. Suppose that X is Q-factorial. Choose D such that the vector B is in the open

set
U w7 (@ Im(4))),

I1c{1,....m+r}, |I|>n

where 71 is the canonical projection of Q™" to its vector subspace of Q™" corresponding to the
coordinates in 1.
Then, for any i € {0,...,k} and j € {0,...,5;}, the variety X, ; is Q-factorial.

Proof. A horospherical variety X is Q-factorial if and only if the colored cones of Fx are all
simplicial and any color of X is the unique color of a colored edge of Fx. In terms of moment
polytopes, if @ is a moment polytope of X, then X is Q-factorial if and only if @ is simple (ie
each vertex belongs exactly to n facets, where n is the dimension of @), @ intersects a wall W, p,
with a € S\R, only along one of its facets and a facet is never in 2 walls W, p and Wjp p with
a# e S\R.

Leti e {0,...,k—1}and j € {0,...,;}. Let € €]ay ;, o j41[ so that Q° is a moment polytope
of X; ;. Let I C Iy containing K such that QF = P; and € € QY.

Let v be a vertex of Q)¢. Denote by I, the maximal subset of T such that v = Fj . Note
that [I,| > n. We want to prove that |I,| = n. In particular, € is a point of Q} , which is open
(because contains ]a; j, ; j41[). It implies that, for any 7 € Q, By, +nCr, is in the image of Ay, .
In particular, B 1, is in the image of Ay . By hypothesis on D, the cardinality of I, has to be n.
This proves that X; ; is Q-factorial. O

Remark 4. The open set where B is chosen, is clearly not empty and dense in Q™" because
for any I of cardinality greater than n, the image of Ay is of codimension at least one. But, since
X is Q-factorial, any vector B € Q™" gives a Q-Cartier divisor.

Taking D general, we also get the following result.

Proposition 28. Suppose that X is Q-factorial. If D is general in the set of ample Q-Cartier
divisors, all morphisms ¢; ;, gb;rj, ¢; and ¢ defined in Section 4.2 are contractions of rays of the
corresponding effective cones NE(X ;).

Proof. Let Y be a projective Q-factorial G/H-embedding whose colored fan is made from some
edges generated by x; with ¢ € {1,...,m} and ay, with a € S\R. In particular, the vector space
Cartier(X)qg of Q-Cartier divisors of X projects on the vector space Cartier(Y)g of Q-Cartier
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divisors of Y. Denote by py this projection. Let V be a vector subspace of Ni(Y)g of dimension
at least 2. Denote by V* the dual of V in Nl(X)Q. Then V* 4+ QKy is a proper vector subspace
of N1(X)g. Hence, the intersection Zy, for all faces of NE(X) of dimension at least 2 of direction
the vector subspace V, of N}(Y)\(V*+QKy) is a dense open set of N}(Y)g. If we denote by gy
the projection of Cartier(Y)g on N1(Y)g, then (gy opy)™1(Zy) is open and dense in Cartier(X)g.

Consider now, an ample Q-Cartier divisor D in the dense open intersection of the set given
in Proposition 27 with the sets (qy o py)~'(Zy) for all projective Q-factorial G /H-embeddings
Y whose colored fan is made from some edges generated by z; with i € {1,...,m} and ay), with
a € S\R. Then, for any i € {0,...,k} and j € {1,...,j;}, the divisor px, ; ,(D) + a; ;Kx, ,_,
vanishes at most on a ray of NE(X;;_1), so that ¢; ; is the contraction of a ray of NE(X;;_1).
Similarly, for any i € {0,...,k} and j € {1,...,;}, the divisor px, ;(D) + a; jKx, ; vanishes at
most on a ray of NE(X,;), so that qﬁl'-fj is the contraction of a ray of NE(X; ;). And for any
i € {0,...,k}, the divisor px;, ; (D) + a;j+1Kx, ; vanishes at most on a ray of NE(X; ), so
that ¢; (¢ if ¢ = k) is the contraction of a ray of NE(X, ;,). O

This result seems to be true without the hypothesis of Q-factoriality, nevertheless the proof
above really uses this hypothesis.

4.6 General fibers of Mori fibrations

In this section, we study the general fibers of the morphism ¢ : X}, ;, — Z defined in Section 4.2
and prove the last statement of Theorem 2. To simplify the notations, we suppose that k£ = 1
and jo = 0, in particular X, , = X. We also denote by €; the rational number a;4. We
distinguish two cases.

First suppose that Q¢* and ) have the same dimension. It implies that Q¢! is in some wall
W, p with o € S\R, ie R' # R. By Proposition 28, if X is Q-factorial, then for D general, we
have | R\ R| = 1 and then P!/P of Picard number 1. Indeed, if |R'\ R| > 1, ¢ is not a contraction
of an extremal ray, because G/P — G/P! is clearly not a contraction of an extremal ray. In
that case, the fibers of the morphism ¢ is a flag variety of Picard number one.

Secondly, suppose that the dimension of Q¢! is less than the dimension of Q.

Let z¢ (resp. x3) be the unique point of the open G-orbit of X (resp. Z) fixed by H (resp.
H'). We claim that the general fiber of ¢ is the closure in X of the H'-orbit H! - zg. Indeed,
since G - z{ is open in Z, the fiber ¢1(z}) is a general fiber of ¢. This fiber intersected by the
open G-orbit G -z of X is H'-xy. We conclude the claim by the fact that, since X is irreducible,
a general fiber of ¢ is also irreducible. Denote by F, the H'-variety ¢—!(x}).

Since an open set of X is isomorphic to the bundle G x H' Fy, we get that Fj, has the
same singularities as X (normal and Q-Gorenstein, and Q-factorial or smooth according to the
hypothesis done on X ). Moreover, the unipotent radical R, (H*') of H' (which is also the unipotent
radical of P!) acts trivially on g, then it also acts trivially on H' -z and Fyhi. Hence, Fy is a
Ll-variety, where L' = H'/R,(H") is reductive. Let H? := H/R,(H"). Then the open L!-orbit
of I is isomorphic to L'/H? and is horospherical, because H? contains the unipotent radical
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U/R,(H') of the Borel subgroup B/R,(H') of L'. In the rest of the section, we describe the
L'/H?-embedding Fy.

First describe the combinatorial data associated to the the horospherical homogeneous space
L'/H?. The simple roots of L' are those of P!, ie the simple roots in the set R'. Then the
normalizer P? of H? in L' is the parabolic subgroup of L' whose set of simple roots is R.
Moreover, the set of characters of P? trivial on H? is isomorphic to the quotient of the set of
characters of P trivial on H with M'. Then we set M? := M/M"'. The set of colors of the
horospherical homogeneous space L'/H? is R'\R.

Let I be the maximal subset of {1,...,m+7} such that Q< € {x € M | Ajx = Bi+€e,Cr}. In
particular, Mé equals the kernel of A;. Now, we prove that the projection of Q on Mé = Mg /Mé

is the polytope Q% := {z € Mg/ Ker(Ar) | Ajz > By}. One inclusion is obvious. To prove the
second one, let x + Ker(A;) € Q? be a vertex F? of Q? where J C I. Then Ajz = By and
Az > BI Moreover, by maximality of I, there ex1sts x’ € Mg such that Az’ = BI + elCI
and Alx > Bj + €,C7 (where T = {1,...,m +r}\I). Hence, for A > 0 small enough, we have

=Xz + (1-N\)2 satlsﬁes Ay’ = BJ—l—e”C'J Alaz” > BI +¢'Cr and Azz” > By + €'C5, with

= (1 — A)eq, so that 2” is a point of the face Fj of Q. Since 0 < €’ < ¢, the face Fy of Q is

not empty. But every point of F; projects on F?2 which is a point. Then, every vertex of Q? is
the image of a point of Q by the projection on Mg 2 that proves the second inclusion.

By translation, we get that the projection of Q on X(P)g / is the polytope Q2 := {x €
v0 + Mg/ Ker(Ar) | Arz > By}, where o0 is the image of v in X(P)@/M(ll).

Suppose now that D is Cartier and very ample (or replace D by a multiple of D, see Re-
mark 2). Then, by Proposition 4, X is isomorphic to the closure of G - [3_, (04100 V] I
P(®ye@wo+anngV (x))- Then Fy is isomorphic to L' - D e@oranng vyl in P(Byeworanng Vet (X))
But, for any y € X(P) and any ' € M, the L'-modules V;1(x) and V;1(x + X’) are isomorphic,
so that Y is isomorphic to L' - > e@ormzyngz U I P(®, o4 ar2yng2 Vi (x))- 1t proves that Fy
is the L'/H?2-embedding associated to the polytope Q2. Remark that Q2 is of maximal dimension
in Mé because () is of maximal dimension in Mg.

Suppose now that X is Q-factorial. We prove that, for D general, I is of cardinality codim(Q )+
1 = dim(Q?) +1, and that Q? is a simplex of Mé such that all wall W2 in X (P?)g with « € R'\R
gives a facet of Q2. Suppose that D (and then B) satisfies the following condition: for any subset
J of {1,...,m 4 r} with |J| > dim(Im(A;)) + 2, By is not in the (proper) vector subspace of
QM*" generated by Im(Ay) and Cy. Such a D is general, since X is Q-factorial. Note that
codim(Q") = codim(Ker(Ar)) = dim(Im(Ay)). Now, if |[I| > codim(Q) + 1 then by hypothesis
on D, By +¢eCy is never in Im(As), which contradicts that F7' = Q' is not empty. Moreover, Q?
is a polytope (and then bounded) of maximal dimension in Mé, so the number |I| of inequations
defining Q? must be at least dim(Q?) + 1. Hence, |I| = dim(Q?) + 1 and then Q? is a simplex
of Mé The set R'\R of colors of L'/H? is clearly contained in I by definition of I and R!, so
that, for any a € R\ R, W2 N Q? is a face of Q2. But, since each i € I correspond necessarily to
a facet of Q2 because |I| = dim(Q?) + 1, this latter face is necessarily a facet.

In that case, Fy is a projective Q-factorial L!/H?-embedding of Picard number 1 (cf [Pas06,
Eq. (4.5.1)] for an explicit formula of the Picard number of Q-factorial horospherical varieties).
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5 Examples

In this section we give 5 examples with G = SLs. The first three ones give the MMP for the
same horospherical smooth variety but with a different ample Cartier divisor. The forth one
gives a flip consisting of exchanging colors (see [Bri93, Section 4.5]). And the last one give the
MMP for a Q-Gorenstein (not Q-factorial) variety, we observe in particular a flip from a divisorial
contraction.

Fix a Borel subgroup B of G. Denote by « and § the two simple roots of G.

Example 3. Consider the horospherical subgroup H defined as the kernel of the character w, +
wg of B. In that case we have N and M isomorphic to Z. The horospherical homogeneous space
has two colors a and 8 whose image in N are respectively a), = 8y, = 1.

If x is a character of B, we denote by C, the line C where B acts by b-z = x(b)z for any
be Band z € C.

Let X be the P!-bundle X = GxPP(Cy®Cq,4w,) over G/B, it is a smooth G/H-embedding.
Its colored fan is the unique complete fan (of dimension 1) without color. Denote by X; and X,
the two irreducible G-stable divisors of X, respectively corresponding to the primitive elements
z1 =1 and x9 = —1 of N. Here —Kx = X1 + Xo + 2D, + 2Dg.

Choose D = X1 +2X5 + 2D, + 2Dg. Then the moment polytope @ is the segment [w, +
wg, 4(wq + wp)| in the dominant chamber of (G, B).

The family (Q)e>0 is given by:

e for any € € [0, 1], Q° is the segment [(1 — €)(wqo + wg), (4 — 3€)(wa + ws));

e for any € € [1, 3], Q° is the segment [0, (4 — 3€)(wwa + wg)];

. Q% is the point 0.

Hence, the MMP from (X, D) gives a divisorial contraction from X to the projective G/H-
embedding with the two colors o and 3, which is not Q-factorial but Q-Gorenstein, and Fano. It
finishes by a Mori fibration from this Fano variety to a point.

Note that, here, the divisorial contraction contracts 2 divisors: the zero and infinite section
of the P-bundle X. In particular, it is not the contraction of a ray of NFE(X).

Example 4. We keep the same G/H-embedding X but we choose another ample divisor D =
X1+ 2X5+4 3D, +2Dg. Then the moment polytope @ is the segment [2w, + wg, 5o, + 4wg).
The family (Q)e>0 is given by:

o for any e € [0, 1], Q° is the segment [2ww, + wp — €(wqa + @g), bwa + 4w — 3e(wa + wg)];
e for any € € [1, 3], Q° is the segment [wy, 5w, + 4ws — 3€(wa + wg));
. Q% is the point wg.

Hence, the MMP from (X, D) gives a divisorial contraction from X to the projective G/H-
embedding with the color 8. This is a contraction of the ray of NE(X) generated by Cg x,. It
finishes by a Mori fibration from this Q-factorial variety to the flag variety G/P,,.
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Example 5. We still keep the same G/H-embedding X and we choose now the ample divisor
D = X5+ 2D, + 2Dg. Then the moment polytope @ is the segment [2(w, + wg), 3(wa + w3)].
The family (Q)e>o is given by:

e for any € € [0, 2], Q¢ is the segment [2(w, +wg) +€(—wa +@5), 3(@Wa +w5) — 3e(wa +p)];
. Q% is the point 3(w, + w@g).

Hence, the MMP from (X, D) gives the Mori fibration X — G/B, whose fibers are projective
lines.

In the following example, we illustrate a flip consisting of exchanging colors.

Example 6. Consider the horospherical subgroup H defined as the kernel of the character w, +
2wg of B. In that case we have NV and M isomorphic to Z. The horospherical homogeneous space
has two colors a and 3 whose image in N are respectively o, = 1 and gy, = 2.

Let X be the Q-factorial G/H-embedding whose colored fan is the complete fan with color
B. Denote by X the irreducible G-stable divisor of X, corresponding to the primitive elements
z1 = —1. Here —Kx = X1 + 2D, + 2Dg.

Consider D = 3X1+2D,+2Dg. Then the moment polytope @ is the segment [, 5w +8wpg].

The family (Q)e>o is given by:

e for any € € [0, 1], Q€ is the segment [(1 — €)wy, b + 8w — €(3w, + 4wg));
e Q! is the segment [0, 2w, + 4ows);

e for any € €]1, 2[, Q¢ is the segment [2(e — 1)wg, 5w, + 8wp — €(3wa + 4wp));
. Q% is the point %W5.

Hence, the MMP from (X, D) first gives a flip X — Y «— X where Y is the G/H-
embedding corresponding to the complete colored fan with the two colors o and 3 and X is
the G/H-embedding corresponding to the complete colored fan with the color «. It finishes by a
Mori fibration from X to the flag variety G/Pg.

Example 7. Consider the case where the horospherical subgroup H is the maximal unipotent U
subgroup of B. Then the lattice M is the lattice of characters of B with basis (wq,wg), and N
is the coroot lattice with basis (", 3Y). Here a¥ = o}, and Y = ;.

Let X be the G/H-embedding whose colored fan is the complete colored fan with color 3,
and edges generated by x1 := —Y, 29 := oY and 23 := 3 — . Note that X is not Q-factorial
because 3" is not in an edge of Fx. An anticanonical divisor of X is Xy + Xo + X3+ 2D, + 2Dg,
and it is Cartier so that X is Q-Gorenstein.

Consider D = 3X; + X3 + Dy + Dg. Then D is an ample Cartier divisor whose moment
polytope @ is the triangle with vertices w,, @wq + 4wg and 5w, + 4wg. The matrices defining
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the family (Q)e>o are

0 -1 —4
1 0 1
A= -1 1 |,B=] =1
1 0 0
0 1 0

Then the family (Q)e>o is given by:

and C =

o O =

e for any € € [0, 1], Q€ is the triangle with vertices (1 — €)w,, wq + 4w — €(wq + 3ws) and

5w + dwg — €(4wq + 3wp);

e Q! is the triangle with vertices 0, wg and @, + wg;

e for any € €]1, 2[, Q° is the triangle with vertices (¢ — 1)wg, (4 — 3¢)ws and 5w, + 4wg —

€(4wq + 3wg);

° Q% is the point %wﬁ-

Figure 5: Evolution of Q¢ in Example 7
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We illustrate the first three classes of the family (Q¢)e>o in Figure 5.

Hence, the MMP from (X, D) first gives a flip X — Y «— X where Y is the G/H-
embedding corresponding to the same complete colored fan as X but with the two colors o and
B and X is the G/H-embedding corresponding to the same complete colored fan as X but with
the color a (instead of ). Note that the map X — Y contracts the divisor Xy and that the
map X — Y does not contract a divisor. It finishes by a Mori fibration from X+ to the flag
variety G/Pg.
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