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The Unitary Events (UE) method is one of the most popular and efficient methods used this last decade to detect patterns of coincident joint spike activity among simultaneously recorded neurons. The detection of coincidences is usually based on binned coincidence count (Gr ün, 1996), which is known to be subject to loss in synchrony detection (Gr ün et al., 1999). This defect has been corrected by the multiple shift coincidence count (Gr ün et al., 1999). The statistical properties of this count have not been further investigated until the present work, the formula being more difficult to deal with than the original binned count. First of all, we propose a new notion of coincidence count, the delayed coincidence count which is equal to the multiple shift coincidence count when discretized point processes are involved as models for the spike trains. Moreover, it generalizes this notion to non discretized point processes, allowing us to propose a new Gaussian approximation of the count. Since unknown parameters are involved in the approximation, we perform a plug-in step, where unknown parameters are replaced by estimated ones, leading to a modification of the approximating distribution. Finally the method takes the multiplicity of the tests into account via a Benjamini and Hochberg approach [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF], to guarantee a prescribed control of the false discovery rate. We compare our new method, called MTGAUE for multiple tests based on a Gaussian approximation of the Unitary Events, and the UE method proposed in (Gr ün et al., 1999) over various simulations, showing that MTGAUE extends the validity of the previous method. In particular, MTGAUE is able to detect both profusion and lack of coincidences with respect to the independence case and is robust to changes in the underlying model. Furthermore MTGAUE is applied on real data.

Introduction

The study of how neural networks transmit activity in the brain and somehow code information implies to consider various aspects of spike activity. Historically, firing rates have been firstly considered as the main way for neurons or populations of neurons to transmit activity, in correlation with some experimental or behavioral events. Such kinds of correlations have been shown mainly by the use of peristimulus time histogram (PSTH) [START_REF] Abeles | Quantification, smoothing, and confidence-limits for single-units histograms[END_REF][START_REF] Gerstein | Simultaneous recorded trains of action potentials: analysis and functional interpretation[END_REF][START_REF] Shinomoto | Estimating the Firing Rate[END_REF].

However, beside the role of firing rate, it has been argued, first in theoretical studies, that the activity of ensemble of neurons may be coordinated in the spatiotemporal domain (i.e. coordination of the occurrence of spikes between different neurons) to form neuronal assemblies [START_REF] Hebb | Organization of behavior; a neuropsychological theory[END_REF][START_REF] Palm | Cell assemblies as a guideline for brain research[END_REF][START_REF] Sakurai | How do cell assemblies encode information in the brain?[END_REF][START_REF] Der Malsburg | The correlation theory of brain function[END_REF]. Indeed, such assemblies could be constituted on the basis of specific spike timing, thanks to several mechanisms at the synaptic level [START_REF] König | Integrator or coincidence detector? The role of the cortical neuron revisited[END_REF][START_REF] Rudolph | Tuning neocortical pyramidal neurons between integrators and coincidence detectors[END_REF][START_REF] Softky | The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs[END_REF]. The required neural circuitry could spontaneously emerge with spike-timing-dependent plasticity [START_REF] Brette | Computing with neural synchrony[END_REF]. Such coordinated activity could easily propagate over neural networks [START_REF] Abeles | Corticonics. Neural circuits in the cerebral cortex[END_REF][START_REF] Diesmann | Stable propagation of synchronous spiking in cortical neural networks[END_REF][START_REF] Goedeke | The mechanism of synchronization in feedforward neuronal networks[END_REF] and be used as a potential "code" for the brain [START_REF] Singer | Synchronization of cortical activity and its putative role in information processing and learning[END_REF][START_REF] Singer | Neuronal synchrony: a versatile code for the definition of relations?[END_REF]. Moreover simulation studies have shown how synchronization emerges and propagates in neural networks, with or without oscillations [START_REF] Diesmann | Stable propagation of synchronous spiking in cortical neural networks[END_REF][START_REF] Golomb | The number of synaptic inputs and the synchrony of large sparse neuronal networks[END_REF][START_REF] Tiesinga | Rapid temporal modulation of synchrony by competition in cortical interneuron networks[END_REF][START_REF] Goedeke | The mechanism of synchronization in feedforward neuronal networks[END_REF][START_REF] Rudolph | Tuning neocortical pyramidal neurons between integrators and coincidence detectors[END_REF].

In addition to these theoretical considerations, many experimental evidences have been accumulated, which show that coordination between neurons is indeed taking place. In particular, it has been shown that the mechanisms of spike generation can be very precise [START_REF] Mainen | Reliability of spike timing in neocortical neurons[END_REF] under physiological conditions [START_REF] Boucsein | Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround[END_REF][START_REF] Konishi | Neurophysiological and anatomical substrates of sound localization in the owl[END_REF][START_REF] Lestienne | Spike timing, synchronization and information processing on the sensory side of the central nervous system[END_REF][START_REF] Prescott | Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions[END_REF]. Spike synchronization, with or without oscillations, has been shown to be involved in the so-called binding problem [START_REF] Engel | Temporal binding and the neural correlates of sensory awareness[END_REF][START_REF] Singer | Visual feature integration and the temporal correlation hypothesis[END_REF][START_REF] Singer | Neuronal synchrony: a versatile code for the definition of relations?[END_REF][START_REF] Super | Internal state of monkey primary visual cortex (V1) predicts figure-ground perception[END_REF]. Spike synchronization has also been studied in relation with firing rate [START_REF] Abeles | Detecting precise firing sequences in experimental data[END_REF][START_REF] Eyherabide | Bursts generate a non-reducible spike-pattern code[END_REF][START_REF] Gerstein | Searching for significance in spatio-temporal firing patterns[END_REF]Grammont & Riehle, 1999, 2003;[START_REF] Heinzle | Modulation of synchrony without changes in firing rate[END_REF][START_REF] König | Integrator or coincidence detector? The role of the cortical neuron revisited[END_REF][START_REF] Kumar | Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding[END_REF][START_REF] Lestienne | Determination of the precision of spike timing in the visual cortex of anaesthetised cats[END_REF][START_REF] Maldonado | Dynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization[END_REF][START_REF] Masuda | Dual coding hypotheses for neural information representation[END_REF][START_REF] Riehle | Spike synchronization and rate modulation differentially involved in motor cortical function[END_REF][START_REF] Vaadia | Dynamics of neuronal interactions in monkey cortex in relation to behavioural events[END_REF].

Most of these experimental evidences could not have been obtained without the development of specific descriptive analysis methods of spike-timing over the last decades: cross-correlogram [START_REF] Perkel | Neuronal spike trains and stochastic point processes[END_REF], gravitational clustering [START_REF] Gerstein | Representation of cooperative firing activity among simultaneously recorded neurons[END_REF] or joint peristimulus time histogram (JPSTH) [START_REF] Aertsen | Dynamics of neuronal firing correlation: modulation of "effective connectivity[END_REF]. However, these methods do not necessarily answer to a major criticism that considers that spike synchronization might just be an epiphenomenon of the variations of the firing rate. That is why, in direct line with these methods, Grün and collaborators developed the Unitary Events (UE) analysis method [START_REF] Grün | Unitary joint-events in multiple-neuron spiking activity: Detection, significance and interpretation[END_REF].

The UE method is originally based on a binned coincidence count (see also Section 2.1 for a more precise definition). This method has been continuously improved until today (Grün et al., 2002a,b;[START_REF] Grün | Data-driven significance estimation for precise spike correlation[END_REF][START_REF] Grün | Unitary Events Analysis[END_REF][START_REF] Gütig | Statistical Significance of Coincident Spikes: Count-Based Versus Rate-Based Statistics[END_REF]Grün et al., 2003;Pipa & Grün, 2003;Pipa et al., 2003;Louis et al., 2010;[START_REF] Pipa | Impact of Spike Train Autostructure on Probability Distribution of Joint Spike Events[END_REF]. It is a popular method which has been used successfully in several experimental studies [START_REF] Riehle | Spike synchronization and rate modulation differentially involved in motor cortical function[END_REF][START_REF] Riehle | Dynamical changes and temporal precision of synchronised spiking activity in monkey motor cortex during movement preparation[END_REF]Grammont & Riehle, 1999, 2003;[START_REF] Maldonado | Synchronization of neuronal response in primary visual cortex of monkeys viewing natural images[END_REF][START_REF] Kilavik | Long-term modifications in motor cortical dynamics induced by intensive practice[END_REF]. However, these approaches suffer from several defects due to the use of binned coincidence count. Indeed, as pointed out in (Grün et al., 1999[START_REF] Grün | Unitary Events Analysis[END_REF], there may be, for instance, a large loss in synchrony detection, coincidences being discarded when they correspond to two spikes lying in two adjacent distinct bins. Actually, up to 60% of the coincidences can be lost when the bin length is the typical delay/jitter between two spikes participating to the same coincidence. Another version of the UE method has consequently been proposed: the multiple shift coincidence count (Grün et al., 1999) (see Section 2.1 for precise definitions, see also [START_REF] Pazienti | Effectiveness of systematic spike dithering depends on the precision of cortical synchronization[END_REF] for another development). However, and up to our knowledge, this notion has not been as well explored as the notion of binned coincidence count. Indeed and as already pointed out in [START_REF] Grün | Unitary Events Analysis[END_REF], the various shifts can make the coincidence count more complex than a sum of independent variables, depending on the underlying model.

Therefore the main aim of this article is to complete the study of this notion of mul-tiple shift coincidence count and to propose a new method which extends the validity of the original multiple shift UE method (Grün et al., 1999). To do so, we focus on the symmetric multiple shift coincidence count, which is much more adapted to the purpose of testing independence between two spike trains on a given window (see Section 2.1 for the distinction between symmetric and asymmetric multiple shift coincidence count). Then we generalize the notion, that was given for discretized spike trains at a certain resolution level. The delayed coincidence count defined in Section 2.3 is exactly the same coincidence count for discretized spike trains but this new formula can now be also applied to non discretized point processes as well. This mathematical notion allows us to compute the expectation and the variance in the simplest case of Poisson processes, which approximate Bernoulli processes used in (Grün et al., 1999). Therefore the Fano's factor can be derived for the symmetric multiple shift / delayed coincidence count, as it has been done for instance in [START_REF] Pipa | Impact of Spike Train Autostructure on Probability Distribution of Joint Spike Events[END_REF] for the more classical notion of binned coincidence count. This also leads to a Gaussian approximation of the distribution of the symmetric multiple shift / delayed coincidence count, when Poisson or Bernoulli processes are involved as models for the spike trains. However this approximation depends on unknown parameters in practice, namely the underlying firing rates. Such problems due to unknown parameters can be bypassed by several methods, mainly based on surrogate data (see (Louis et al., 2010) for dithering or [START_REF] Grün | Data-driven significance estimation for precise spike correlation[END_REF] for a more general review). On the binned coincidence count, there are two main methods that can be easily statistically interpreted: trial-shuffling (Pipa & Grün, 2003;Pipa et al., 2003), which is a permutation resampling method and conditional distributions [START_REF] Gütig | Statistical Significance of Coincident Spikes: Count-Based Versus Rate-Based Statistics[END_REF]. However trial-shuffling has in this case clearly non trivial and specific implementation solutions and when working conditionally to the observed number of spikes [START_REF] Gütig | Statistical Significance of Coincident Spikes: Count-Based Versus Rate-Based Statistics[END_REF], the solution is completely linked to the form of the binned coincidence count and the use of Bernoulli models. Both solutions are consequently not used here for the symmetric multiple shift/delayed coincidence count, which is more intricate than classical binned coincidence count. We prefer to look more carefully at the replacement of the unknown firing rates by estimated ones, a step which is known in statistics as a plug-in step. By looking closely at the plug-in procedure, we show in Section 3.1 that it changes the variance of the asymptotic Gaussian distribution, and, therefore, we correct the approximation to take this phenomenon into account. Up to our knowledge, no correction due to the plug-in effect has been taken into account even for the classical binned coincidence count. The last step (Section 3.2) of our procedure consists in carefully controlling the false discovery rate (FDR), when several windows of analysis are considered, by using Benjamini and Hochberg procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF].

Each time a thorough simulation study shows the actual performance of our procedure. An analysis of real data is also performed in Section 4 on data that have already been partially published, so that the detection ability of the method can be demonstrated in concrete situations. Finally, we discuss the overall improvements due to our procedure with respect to the original method of (Grün et al., 1999) in Section 5.

In all the sequel, we write in italic technical expressions, the first time they are encountered and we give in the same paragraph their definition. We also use the following notation, that is the one generally used in point process theory [START_REF] Daley | An introduction to the theory of point processes[END_REF]. A point process N is a random countable set of points (of R + here). Each point corresponds to the detection time of a spike of the considered neuron by the recording electrode. For any set A of R + , N (A) is the number of points in A and N (dt) is the associated point measure, that is N (dt) = S∈N δ S where δ S is the Dirac measure at the point S. This means that for every function f , f (t)N (dt) = S∈N f (S). The point process corresponding to the spike train of neuron j is denoted N j and when M trials are recorded, the point process corresponding to the spike train of neuron j during trial m is denoted N (m) j

. In all the sequel and whatever the chosen model, we assume that the M trials are independent and identically distributed (i.i.d.), which means ergodicity across the trials, except when precisely stated otherwise. We denote by P the probability measure, by E its corresponding expectation and by Var its corresponding variance. Also 1 A denotes the indicator function of the event A, which takes value 1 when A is true and 0 otherwise. Hence a function γ × 1 A takes value γ on A and 0 on the complementary event A c .

Fundamental notions for the present article are given in the following definition (see also [START_REF] Staude | CuBIC: cumulant based inference of higherorder correlations in massively parallel spike trains[END_REF] for this kind of distinction). ✬ ✫ ✩ ✪ Definition 1: Real single unit data are recorded with a certain resolution h, which is usually 10 -3 s or 10 -4 s depending on the experiment. Formally time is cut into intervals of length h and of the form [ihh/2, ih + h/2). Then one associates to any point process, N , its associated sequence at resolution h, i.e. a sequence of 0 and 1, (H n ) n , where H i = 1 corresponds to the presence of (at least) one point of N in [ihh/2, ih + h/2) (see also Figure 1.A). Reciprocally, to a sequence of 0 and 1, (H n ) n , we associate a point process N by taking the set of all points of the type S = ih such that H i = 1. Such point process that is forced to have only points of the type ih, for some integer i, is called discretized at resolution h.

2 Probabilistic study of the coincidence count

The multiple shift coincidence count

A pair of neurons being recorded, the question is how to properly define a coincidence and more precisely, the coincidence count. Usually those counts are computed over several windows of time. We focus in this section on only one window W of length T , keeping in mind that this small window is strictly included in a much larger recording. Because processes can be discretized, and to avoid tedious indexations, it is easier to think that W corresponds to indices i = 1, ..., n with T = nh (see Figure 1.A). However, the reader has to keep in mind that there are points outside this window, corresponding to indices i that can be non positive or larger than n.

In classical UE methods, both spike trains are usually represented by sequences of 0 and 1 of length r = T /(d × h), for some integer d ≥ 1 [START_REF] Grün | Unitary joint-events in multiple-neuron spiking activity: Detection, significance and interpretation[END_REF][START_REF] Grün | Unitary Events Analysis[END_REF]. The presence of 1 at position i indicates that there is at least one spike in the ith segment of length d × h. The segments of length d × h are usually called bins and are centred around points of the type id × h. The previous construction means that the real data have been binned at a coarser level (namely d × h) than their original resolution h. We denote by D 1 1 , ..., D 1 r and by D 2 1 , ..., D 2 r , the associated sequence to the first and second neuron respectively. According to this bin construction, a coincidence at time

C = id × h happens if D 1 i = D 2 i = 1. The coincidence count, in this binning framework, is then the number of i's such that D 1 i = D 2 i = 1.
The problem, underlined in (Grün et al., 1999), is that for reasonable d (typically d × h = 0.005s), a significant number of spikes that are at distance less than d × h are not counted if they fall in two adjacent and distinct bins: the binning effect generates a significative loss in synchrony detection.

The multiple shift method, introduced in (Grün et al., 1999), uses a notion of coincidence count that corrects this loss in synchrony detection by shifting one spike train (N 2 ) with respect to another spike train (N 1 ), which is fixed, by step of size h, both spike trains being kept at their original resolution level h. There are two ways of defining the multiple shift coincidence count depending on whether data outside the window of interest, W , may enter or not when the spike train N 2 is shifted as one can see on Figure 1.B.

In the symmetric multiple shift coincidence count, both spike trains, N 1 and N 2 , are observed on a window W and data outside W are discarded. Those spike trains are discretized at resolution h and are consequently considered as a sequence of 0 and 1, denoted H 1 1 , ..., H 1 n and H 2 1 , ..., H 2 n respectively in the sequel. Then a (near) coincidence is observed at time ih on the window W , if there exists a shift j, integer in {-d, ..., d}, such that H 1 i = H 2 i+j = 1. Note that this definition implies in particular that such a j should also satisfy that

1 ≤ i + j ≤ n (1)
since the recordings outside the window W of interest are discarded. The symmetric multiple shift coincidence count is then defined by the total number of (near) coinci- 
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Figure 1: Discretization and multiple shift coincidence count. In A, illustration of the discretization of a spike train on the window W and on the enlarged window W d . In B, illustration of both symmetric and asymmetric multiple shift coincidence counts. In C, interpretation of those notions in term of delay: an edge corresponds to a couple (i, k), where i (resp. k) is the position of a 1 in the first (resp. second) spike train, and for which the delay |i -k| is less than d. The number of coincidences is then the number of edges. In grey are represented data that are outside W but inside W d and that are therefore taken into account in the asymmetric notion but not in the symmetric one.

dences on the window W , i.e. formally speaking

X = n i=1 j/|j|≤d and 1≤i+j≤n 1 H 1 i =H 2 i+j =1 . (2) 
Taking k = i + j in the previous sum, we obtain

X = n i=1 n k=1 1 |k-i|≤d 1 H 1 i =1 1 H 2 k =1 . (3) 
Hence, it can be also understood as the total number of couples (i, k) such that H 1 i = H 2 k = 1, such that the delay |k -i| ≤ d and such that both i and k belong to {1, ..., n}. Both i and k correspond to a spike in the window of interest W : this present notion is therefore symmetric in the first and second spike trains (see Figure 1.C).

If condition (1) is not fulfilled and if j is free, then when the shift is performed, data outside of W "enter" and interact with data inside W (see Figure 1.B). This leads to the asymmetric multiple shift coincidence count, formally defined as follows

X a = n i=1 j/|j|≤d 1 H 1 i =H 2 i+j =1 . (4) 
Taking k = i + j in the previous sum, we obtain this time

X a = n i=1 k∈Z 1 |k-i|≤d 1 H 1 i =1 1 H 2 k =1 = n i=1 n+d k=1-d 1 |k-i|≤d 1 H 1 i =1 1 H 2 k =1 . (5) 
Hence, it can be also understood as the total number of couples (i, k) such that H 1 i = H 2 k = 1, such that the delay |k -i| ≤ d, such that i (in {1, ..., n}) corresponds to a spike of N 1 in W and such that k (in {1d, ..., n + d}) corresponds to a spike of N 2 in the enlarged window W d = {y = x + u, x ∈ W, u ∈ [-dh, dh]}. Note that with h = 10 -3 s, it is quite usual to have n = 100 and up to d = 20. Hence, in the asymmetric notion, one sequence can be 40% larger than the other one.

In the original Matlab code of (Grün et al., 1999), coincidences, i.e. couples (i, k) such that |k -i| ≤ d, were identified at first and indexed by their position on the first spike train, N 1 . Therefore when focusing on a given window W , all the coincidences (i, k) for which i corresponds to a spike of the first spike train N 1 in W were counted, whatever the value of k. This is exactly the asymmetric multiple shift coincidence count.

However, on the one hand, all coincidence counts are classically used to detect dependence. They are compared to the distribution expected under the independence hypothesis. Since the UE method aims at locally detecting the dependence, the independence hypothesis is a local one, which depends on the underlying W , and which is classically understood as H 0 : "N 1 and N 2 are independent on the window of interest W ". But using an asymmetric test statistic (as the asymmetric multiple shift coincidence count) for testing a symmetric notion (namely the independence) can lead to different detections with the same data set, depending on which spike train is referred as N 1 (see also Figure 11 for a concrete example on real data for the original UE method). Therefore the symmetric notion leading to symmetric answers to the question of whether the two spike trains are independent or not, seems the more natural.

On the other hand, one faces the problem of understanding the distribution under the independence hypothesis. Usually, models of independence consequently need to be imposed and in many articles on the UE method (in particular in (Grün et al., 1999)), the spike trains are modelled by independent Bernoulli processes. More precisely, the H j i are assumed to be independent and identically distributed Bernoulli variables with parameter p j = λ j h, where λ j is the firing rate of the neuron j. Based on the fact that

U ik = 1 H 1 i =1 1 H 2 k =1
is also a Bernoulli variable of parameter p 1 p 2 , and that for each i there are 2d + 1 corresponding U ik in the sum of (5), it is easy to prove that

m g = λ 1 λ 2 h 2 n(2d + 1), (6) 
is the expectation of the asymmetric multiple shift coincidence count, X a (see ( 5)). This is the main quantity used in (Grün et al., 1999) to understand the distribution under the independence assumption (see (15) in (Grün et al., 1999)). The problem is more complex for the symmetric multiple shift coincidence count. The main problem with such a derivation for the symmetric notion is that when i is close to 1 or n one cannot always find (2d + 1) indices k such that |k -i| ≤ d and k ∈ {1, ..., n}. There could be much less. This edge effect is negligible for small d but becomes more critical when d is large. Because we consider that the symmetric notion is the most relevant one, one of our first aim is to take this edge effect into account and we want to propose a correct formula for X too. Note also that when deriving (6) for the asymmetric notion X a , we have been forced to implicitly assume more than H 0 : "N 1 and N 2 are independent on the window of interest W ", because the index k may correspond to points in the enlarged window W d that are not in the window of interest W . In fact, we have assumed that H ′ 0 : "N 1 on W is independent on N 2 on W d ". This is actually this last asymmetric hypothesis H ′ 0 which is natural when considering the asymmetric multiple shift coincidence count, and not the symmetric hypothesis H 0 . However, if one rephrases the independence hypothesis as H ′ 0 , two different sets of windows need to be considered: one set of classical windows for N 1 and one set of enlarged windows for N 2 . This is not reasonable either, since again conclusions of the UE detection method can be different when exchanging the role of N 1 and N 2 (see also Figure 11). Finally, in (Grün et al., 1999), the distribution of multiple shift coincidence count is approximated by a Poisson distribution, as it is classically done for binned coincidence count, set-up where the Poisson distribution is viewed as the approximation of a Binomial distribution. However, if it is true that the present coincidence count is a sum of Bernoulli variables, these variables are not independent because the variable H j i may participate in more than one coincidence, as already noted in [START_REF] Grün | Unitary Events Analysis[END_REF]. Therefore the present multiple shift coincidence count is not a Binomial variable when Bernoulli processes are considered. This fact makes the behavior of this precise multiple shift coincidence count different from other classical notions of coincidence count based on binning. Therefore the present work proposes a limit distribution for the coincidence count that takes this dependency into account, so that the approximation is valid for a larger set of parameters than the Poisson approximation done in (Grün et al., 1999). If it is quite difficult to directly do so for Bernoulli processes, this probabilistic result can be easily derived if we approximate Bernoulli processes by Poisson processes.

Bernoulli and Poisson processes

Recall that Bernoulli processes are generated as follows. For a window W of length T , at the resolution h, n = T /h independent Bernoulli variables, B i , with parameter p = λh are simulated, where λ is the firing rate of the considered neuron. The associated point process (see Definition 1) is denoted N B in the sequel.

It is well known that when h tends to 0, then the Bernoulli process tends to a Poisson process. This can for instance be seen because the number of points, N B (W ), is a binomial variable that tends in distribution towards a Poisson variable with parameter λT when h tends to 0. In particular the approximation is valid as soon as n ≥ 100 and p ≤ 0.1, (Hogg & Tanis, 2009, p. 159). Since, by construction, for any disjoint sets A 1 , ..., A k , N B (A 1 ), ..., N B (A k ) are independent variables, we recover the classical definition of a homogeneous Poisson process of intensity λ (see [START_REF] Daley | An introduction to the theory of point processes[END_REF] for a precise definition). Note that Poisson processes are not discretized at any resolution level, whereas Bernoulli processes are (see Definition 1).

More precisely, in our set-up, windows of length 0.1s are classically considered, with firing rates less than 100Hz and with resolution h = 10 -3 s or h = 10 -4 s. We are consequently typically in a case where the Poisson approximation is valid. In [START_REF] Reynaud-Bouret | Spike trains as (in)homogeneous Poisson processes or Hawkes processes: non-parametric adaptive estimation and goodness-of-fit tests[END_REF], several classical tests, originally due to [START_REF] Ogata | Statistical models for earthquakes occurrences and residual analysis for point processes[END_REF], have been used to test whether a point process is a homogeneous Poisson process or not and we refer the reader to this article for detailed explanations on the procedures. In Figure 2, we run those tests on a simulated Bernoulli process. The p-values 2 are large, meaning that the various tests accept the Poisson assumption (see also [START_REF] Ventura | Bootstrap Tests of Hypotheses[END_REF] for precise definitions of tests and p-values). Moreover the repartitions of the p-values are close to the diagonal meaning that the distributions of the various statistics (positions, numbers of spikes or delays between spikes) are the ones given by a classical Poisson process, and they become closer to the diagonal when h decreases.

Hence, Bernoulli processes can be well approximated by Poisson processes on the typical set of parameters used in neuroscience and they are even almost statistically indistinguishable from Poisson processes, at the resolution h = 10 -4 s.

The delayed coincidence count

Let us focus now on the symmetric notion, at least in a first approach. If we want to use Poisson processes instead of Bernoulli processes to perform the computations, we need to rewrite the symmetric multiple shift coincidence count in terms of point processes that are not necessarily discretized at the resolution level h (see Definition 1). To turn (3) into a more generic formula valid for any point process, let us remark the following phenomenon. Fix i ≤ k and fix some x = ih as point of N 1 . If N 2 is not discretized and if we consider its associated sequence (H2 1 , ..., H 2 n ) at resolution h (see Definition 1), then a point y of N 2 that corresponds to a k such that |k -i| ≤ d, could be as far as d × h + h/2 and still counted as a near coincidence. In particular, when d = 0, y is in the segment of center x with length h if and only if |y -x| ≤ h/2. Therefore, let

δ = d × h + h/2. ( 7 
)
The delayed coincidence count, generalizing the notion of symmetric multiple shift coincidence count for general point process, can be written as follows.

✬ ✫ ✩ ✪
Definition 2: The delayed coincidence count with delay δ on the window W is given by

X = W 2 1 |x-y|≤δ N 1 (dx)N 2 (dy). (8) 
When N 1 and N 2 are discretized with resolution h, both Equations ( 3) and ( 8) coincide and both coincidence counts are exactly the same. for more insight, here used with subsample size given by "(total number of delays) 2/3 ".

If the symmetric case is the most relevant one in our framework and if the delayed coincidence count should always be understood as a symmetric quantity in (N 1 , N 2 ), note that however the same translation can be done for the asymmetric notion, and one can also introduce

X a = W W δ 1 |x-y|≤δ N 2 (dy) N 1 (dx), with W δ = {y = x+u, x ∈ W, u ∈ [-δ, δ]} (9) which is clearly not symmetric.
Now let us translate the multiple shift UE method introduced by Grün and her collaborators to the general point process framework. Equation ( 6) can be easily rewritten as

m g = 2δT λ 1 λ 2 , ( 10 
)
where T is the length of the window W .

In (Grün et al., 1999), the distribution of X a is approximated by a Poisson distribution with parameter m g . We will see later in Section 3 that assuming X to be Poisson distributed with parameter m g , may also lead in certain cases to a reasonably correct behavior of the UE procedure. Therefore in the sequel, we will always study both cases, the UE symmetric procedure (UE s ), where X is assumed to be Poisson distributed with parameter m g , and the UE asymmetric procedure (UE a ), where X a is assumed to be Poisson distributed with parameter m g .

Our new method focuses on the (symmetric) delayed coincidence count X. For this count, assuming that both N 1 and N 2 are now Poisson processes, one can prove the following result.

Theorem 1. Let us fix δ in (8) such that 0 < 2δ < T, ( 11 
)
where T is the length of the window W . If N 1 and N 2 are independent homogeneous Poisson processes with respective intensities λ 1 and λ 2 on W , then the expectation of the delayed coincidence count X and its variance are given by

m 0 := E(X) = λ 1 λ 2 2δT -δ 2 (12)
and

σ 2 := V ar(X) = λ 1 λ 2 2δT -δ 2 + λ 2 1 λ 2 + λ 1 λ 2 2 4δ 2 T - 10 3 δ 3 . ( 13 
) Moreover if M i.i.d. trials are available, then √ M m -m 0 √ σ 2 L -→ N (0, 1), ( 14 
)
where m is the average observed coincidence count with delay δ, i.e.

m = 1 M M m=1 X (m) with X (m) = W 2 1 |x-y|≤δ N (m) 1 (dx)N (m) 2 (dy). (15) 
The symbol L -→ means convergence in distribution when M tends to infinity. This means for instance that the quantiles of M/σ 2 ( mm 0 ) tend to those of N (0, 1), when M becomes larger. The proof is given in the supplementary file. This result states first that E(X) can be computed when both observed point processes are independent homogeneous Poisson processes and that the edge effects appear in m 0 via a quadratic term in δ which is the difference with respect to m g . Therefore it needs to be taken into account if one wants to compute delayed coincidence count with large δ. Note that if (11) is not satisfied, then all the couples (x, y) in W are affected by this edge effect and in this case, the above formula for the expectation and variance are not valid anymore.

Note also that the Fano factor 3 i.e.

F := Var(X) E(X) = 1 + 2(λ 1 + λ 2 )δ(1 + o(1)), (16) 
is strictly larger than 1. The gap between the variable X and a Poisson variable increases with the firing rate and with δ. Several papers have also considered the Fano factor for binned coincidence count showing that the distribution may be different from a Poisson distribution, but up to our knowledge nothing has been done for the multiple shift coincidence count. In particular, in the recent [START_REF] Pipa | Impact of Spike Train Autostructure on Probability Distribution of Joint Spike Events[END_REF], Fano factors for renewal processes are computed only in the case of a coincidence count, which is binned but not clipped. Multiple shift coincidence count and binned clipped coincidence count are exactly the same when the size of the bin is h for the binned coincidence count and when d = 0 in (2) or (4) for the multiple shift symmetric or asymmetric coincidence count. The fact that coincidence counts are clipped or not has almost no effect for very small resolution h. Since delayed coincidence count is a generalization of the symmetric multiple shift coincidence count, it is logical that we recover results of the same flavour as the ones of [START_REF] Pipa | Impact of Spike Train Autostructure on Probability Distribution of Joint Spike Events[END_REF], in the Poisson case, with δ = h/2 (i.e. ( 7) with d = 0). Note however that both results are not equivalent since they are not based on the same notion of coincidence count. Using Poisson processes instead of Bernoulli processes allows us to produce such results for the generalization of the symmetric multiple shift coincidence count to the more general not necessarily discretized point process case. Note that for the asymmetric notion, one can also show that E(X a ) = m g , when X a is defined by ( 9). We will see later on simulations that X a (discretized or not) is not Poisson either. Other similar computations would lead to another Gaussian approximation of X a . However we do not want to perform them and consequently correct the asymmetric UE procedure in this way. Indeed, as stated before, the asymmetric notion can lead to very awkward results that depend on which spike train is referred as N 1 , when testing the independence hypothesis on W which is a symmetric statement (see Figure 11 for a practical example). Even if we correct the approximation, those awkward conclusions will remain and are intrinsic to the notion of asymmetric coincidence count itself.

In addition, let us conclude this section with some simulations to underline the fact that the present approximation of ( 14) is not only valid for Poisson processes in theory but also for Bernoulli processes in practice and also to show that the distributions of X or X a are not Poisson in any case.

In Figure 3, the coincidence counts are symmetric. The three distributions, i.e. the one of the delayed coincidence counts for Poisson processes with δ = d × h, the one with δ = d×h+h/2 and the one of the symmetric multiple shift coincidence counts for Bernoulli processes with resolution h are almost indistinguishable. They are all three very well approximated by the Gaussian approximation N (M m 0 , M σ 2 ) of ( 14) and the distinction between δ = d × h or δ = d × h + h/2 cannot be made when h = 10 -4 s. On the contrary, all the Poisson distributions either with mean M m g (biased with neglected edge effects) or M m 0 (unbiased with edge effects taken into account), with δ = d × h or δ = d × h + h/2 are not fitting the coincidence count distribution: the variance is larger than what it is predicted by the Poisson approximation.

In Figure 4, the coincidence counts are asymmetric. It is once again clear that the asymmetric multiple shift coincidence count on Bernoulli processes is almost indistinguishable from its generalization on Poisson processes. It is also clear that they are not Poisson distributed, in particular for large δ, even if m g correctly matches the mean, the difference being less obvious for small δ. Once again there is no real difference in considering

δ = d × h or δ = d × h + h/2 when h is small (h = 10 -4 s).
As a summary of this section, note consequently that • Symmetric coincidence count are much more adapted to the purpose of testing an independence hypothesis between N 1 and N 2 on a fixed window W , which is a symmetric statement.

• It is equivalent to simulate Poisson or Bernoulli processes for coincidence counts (symmetric or not).

• Symmetric multiple shift coincidence counts are distributed as delayed coincidence counts, the latter being just the generalization of the former to the general point process theory. A similar version exists for the asymmetric case. • In either case, the distribution is not Poisson.

• In both cases (Poisson or Bernoulli processes), the Gaussian approximation of ( 14) is valid for the symmetric notion, on the classical set of parameters.

• Edge effects need to be taken into account for large δ, when dealing with the symmetric notion of coincidence count.

• Considering δ = d × h or δ = d × h + h/2 with h = 10 -4 s is completely equivalent.
Therefore, in the sequel, we use delayed coincidence count with δ of the type d × h. Bernoulli processes are replaced by Poisson processes when necessary. When real data are considered, we use the resolution h = 10 -4 s, which is the machine resolution of the recorded spike trains.

Statistical study of the independence tests

The previous section gives a probability result, namely the Gaussian approximation. Now let us see how this approximation can be turned into a fully operational statistical method. There are two main points that need to be taken into account. First, we do not know the value of m 0 in practice and we therefore need to plug an estimate in: how does this plug-in affect the distribution? Secondly, we usually consider several windows, therefore several tests are performed at once: how can one guarantee a small false discovery rate for all the tests at once?

3.1 Plug-in and modification of the Gaussian approximation Equation ( 14) depends on m 0 and σ that are unknown. Hence to perform the approximation in practice, we need to replace them by corresponding estimates, based on the observations. This step is known in statistics as a plug-in step and it is known to sometimes dramatically modify the distribution. One of the most famous example is the Gaussian distribution which has to be replaced by a Student distribution when the variance is unknown and estimated by an empirical mean over less than 30 realizations 4 (Hogg & Tanis, 2009, Table VI, p 658).

Theoretical study

In the present set-up, as far as asymptotic in the number of trials M is concerned, the plug-in of an estimate of σ does not change the Gaussian distribution, whereas the plugin of an estimate of m 0 changes the variance of the limit, as we can see in the following result.

Theorem 2. With the same notation as in Theorem 1, let λj be the unbiased estimate of λ j , the firing rate of neuron j, defined by

λj := 1 M T M m=1 N (m) j (W ). ( 17 
)
Let also m0 be an estimate of m 0 defined by

m0 := λ1 λ2 [2δT -δ 2 ]. ( 18 
)
Then under the assumptions of Theorem 1,

√ M ( m -m0 ) L -→ N (0, v 2 ), (19) 
where

v 2 := λ 1 λ 2 2δT -δ 2 + λ 1 λ 2 [λ 1 + λ 2 ] 2 3 δ 3 -T -1 δ 4 . ( 20 
)
Moreover v 2 can be estimated by

v2 := λ1 λ2 2δT -δ 2 + λ1 λ2 λ1 + λ2 2 3 δ 3 -T -1 δ 4 (21) and √ M m -m0 √ v2 L -→ N (0, 1). ( 22 
)
The proof is given in the supplementary file. In D, same thing as in C but with m, the average of X a (see ( 9)), the asymmetric coincidence count.

M σ × (m -m 0 ) M v × (m -m ^0) M v ^× (m -m ^0) M σ × (m -m ^0) M σ ^× (m -m ^0) M m g × (m -m g ) M m ^g × (m -m ^g
Figure 5 illustrates the impact of the plug-in in the renormalized coincidence count distribution. When using plug-in, we need to renormalize the count since at each run a new value for the estimate is drawn. Therefore our reference in Figure 5 is the standard Gaussian variable. First we see that the Gaussian approximation of ( 14) is still valid, but more importantly that the plug-in steps of ( 19) and ( 22) are valid on Figure 5.A. Instead of the new variance v 2 and its estimate v2 , we have also plugged m0 in with the original variance, σ 2 , or a basic estimate of σ 2 , namely

σ2 = λ1 λ2 2δT -δ 2 + λ2 1 λ2 + λ1 λ2 2 4δ 2 T - 10 3 δ 3 . ( 23 
)
The result in Figure 5.B clearly shows that the variance σ 2 or the plug-in σ2 are wrong.

Hence the plug-in correction definitely needs to be taken into account. Figure 5.C and Figure 5.D show what happens for the Poisson approximation of (Grün et al., 1999). More precisely, Poisson variables with parameter θ are well approximated by N (θ, θ), as soon as θ is large enough. So the variables are accordingly renormalized so that they can be plotted in the same space as the standard Gaussian variables. The Poisson approximation with parameter M m g or its estimation M mg with mg = 2 λ1 λ2 δT,

are clearly not satisfactory for the symmetric count (see Figure 5.C), because of a bias towards the left due to the neglected edge effects. For the asymmetric count (see Figure 5.D), if the variance is too large when using m g , the approximation is much more accurate when replacing m g by mg .

The Gaussian approximation of the UE method -denoted GAUE in the followinggiven by Theorem 2, leads to three different single tests depending on what needs to be detected. • the symmetric test ∆ sym GAU E (α) of H 0 : "N 1 and N 2 are independent" versus H 1 : "N 1 and N 2 are dependent", which rejects H 0 when m and m0 are too different:

| m -m0 | ≥ z 1-α/2 v2 M (25) 
• the unilateral test by upper value ∆ + GAU E (α) which rejects H 0 when m is too large:

m ≥ m0 + z 1-α v2 M (26) 
• the unilateral test by lower value ∆ - GAU E (α) which rejects H 0 when m is too small:

m ≤ m0 -z 1-α v2 M ( 27 
)
where z t is the t-quantile of N (0, 1), i.e. the real number z t such that

P(N (0, 1) ≤ z t ) = t,
and where m is the average delayed coincidence count (see Definition 2).

By Theorem 2, those three tests are asymptotically of type I error α, if the processes N j are homogeneous Poisson processes. It means that under this assumption, the probability that the test rejects the independence hypothesis, whereas the processes are independent, tends to α when the number of trials M tends to infinity.

The original UE multiple shift method of (Grün et al., 1999) can be formalized in the same way.

✬ ✫ ✩ ✪ Definition 4: The UE tests • a symmetric test ∆ sym U E (α) which rejects H 0 when M m ≤ q α/2 or M m ≥ q 1-α/2
• the unilateral test by upper value ∆ + U E (α) which rejects H 0 when M m ≥ q 1-α

• the unilateral test by lower value ∆ - U E (α) which rejects H 0 when M m ≤ q α where q t is the t-quantile of a Poisson variable whose parameter is given by M mg = 2M δT λ1 λ2 .

Each of the previous tests exists in two versions (UE s or UE a respectively) depending on whether m is the average delayed coincidence count (symmetric notion, see ( 8)) or the average X a (asymmetric notion, see ( 9) ).

Up to our knowledge, no other operational method based on multiple shift coincidence count has been developed. In particular, the distribution free methods such as trial-shuffling methods developped by Pipa and collaborators, which avoid plug-in problems, are based on binned coincidence count (Pipa & Grün, 2003;Pipa et al., 2003) and not on multiple shift coincidence count. Plug-in effects can also be avoided in another way, on binned coincidence count, by considering conditional distribution [START_REF] Gütig | Statistical Significance of Coincident Spikes: Count-Based Versus Rate-Based Statistics[END_REF].

Simulation study on one window

The simulation study is consequently restricted to the two previous sort of tests (GAUE and UE) to focus on this particular notion of delayed/multiple shift coincidence count, which is drastically different from binned coincidence count.

Simulated processes Several processes have been simulated. The Poisson processes have already been described in Section 2.2. They constitute a particular case of more general counting processes, called the Hawkes processes, which can be simulated by thinning algorithms [START_REF] Daley | An introduction to the theory of point processes[END_REF][START_REF] Ogata | On Lewis Simulation Method for Point Processes[END_REF][START_REF] Reimer | Modeling and analyzing higher-order correlations in non-Poissonian spike trains[END_REF]. After a brief apparition in [START_REF] Chornoboy | Maximum likelihood identification of neural point process systems[END_REF], they have recently been used again to model spike trains in [START_REF] Krumin | Correlation-based analysis and generation of multiple spike trains using Hawkes models with an exogenous input[END_REF][START_REF] Pernice | How structure determines correlations in neuronal networks[END_REF]Pernice et al., , 2012)). A bivariate Hawkes process (N 1 , N 2 ) is described by its respective conditional intensities with respect to the past, (λ 1 (.), λ 2 (.)). Informally, the quantity λ j (t)dt gives the probability that a new point on N j appears in [t, t+dt] given the past. We refer the reader to [START_REF] Brown | The time rescaling theorem and its application to neural spike train analysis[END_REF] for a more precise definition. General bivariate Hawkes processes are given for all time t and all indexes i = j in {1, 2} by

λ j (t) = ν j + u<t h j→j (t -u)N j (du) + u<t h i→j (t -u)N i (du) + .
(28)

The ν j 's are real parameters called the spontaneous parameters. The functions h j→j , representing self-interaction, and h i→j , representing the interaction of neuron i on neuron j, are functions with support in R + and are called the interaction functions. This equation means in particular that before the first occurrence of a spike, the N j 's behave like homogeneous Poisson processes with intensity ν j . The first occurrence of a spike (and the next ones) affects all the processes by increasing or decreasing the conditional intensities via the interaction functions. For instance, if h i→j takes large positive values in the neighborhood of a delay x = 5ms and is null elsewhere, then 5ms after a spike in N i , the probability to have a new spike in N j will significantly increase: the process N i excites the process N j . On the contrary, if h i→j is negative around x, then 5ms after a spike in N i , the probability to have a new spike in N j will significantly decrease: the process N i inhibits the process N j . So Hawkes processes enable us to model lack of coincidences as well as profusion of coincidences depending on the sign of the interaction functions. The processes (N 1 , N 2 ) in this Hawkes model are independent if and only if h 1→2 = h 2→1 = 0. Note also that the self-interaction functions h j→j , when very negative at short range, model refractory periods, making the Hawkes model more realistic than Poisson processes with respect to real data sets, even in the independence case. In particular when h j→j = -ν j × 1 [0,x] , all the other interaction functions being null, the couple of simulated processes are independent Poisson processes with dead time x (PPD), modeling strict refractory periods of length x [START_REF] Reimer | Modeling and analyzing higher-order correlations in non-Poissonian spike trains[END_REF]. Finally Hawkes processes are not discretized at any resolution level as well as Poisson processes.

Another popular example is the injection model, which is discretized at the resolution h and which is used in (Grün et al., 1999). Two independent Bernoulli processes N B 1 and N B 2 are generated with respective firing rates ν 1 and ν 2 . Then a third Bernoulli process N c is generated with firing rate ν c . A fourth point process N ′ c is generated from N c by moving independently each point of N c by a random uniform shift in {-x, ..., x} × h, for a prescribed nonnegative integer x. Then the two spike trains are given by N (Grün et al., 1999) for more details). This injection model can only model profusion of coincidences and not lack of coincidences. We refer the interested reader to the supplementary file for a more precise correspondence of the parameters between Hawkes and injection models.

1 = N B 1 ∪ N c and N 2 = N B 2 ∪ N ′ c (see
Injection and Hawkes models are stationary, which means that their distribution does not change by shift in time (see (Daley & Vere-Jones, 2003, p. 178) for a more precise definition). This is also the case of homogeneous Poisson processes. One can also simulate inhomogeneous Poisson processes, which correspond to a conditional intensity t → λ(t) which is deterministic but not constant. These inhomogeneous Poisson processes are therefore non stationary in time (see [START_REF] Daley | An introduction to the theory of point processes[END_REF] for more details).

Figure 6 gives the percentage of rejections over various numerical experiments, that have been led on those simulated processes.

Type I error Since H 0 refers to "N 1 and N 2 are independent on W " (or "N 1 on W is independent of N 2 on W δ " for UE a ), we have simulated various situations of independence. Our theoretical work proves that the level is asymptotically guaranteed if the processes are homogeneous Poisson processes. Our aim is now twofolds: First check whether the level is controlled for a finite, relatively small, number of trials (Experiments A and B). Next check if it still holds, when the processes are not homogeneous Poisson processes (Experiments C, D and E). Moreover we want to compare our results to the ones of UE s and UE a . The upper left part of Figure 6 shows that the three forms of GAUE (symmetric, upper and lower value) guarantee a level of roughly 5% and this even for a very small number of trials (M = 20) with a very small firing rate (λ = 3Hz) or with large δ (δ = 0.02s). In this sense, it clearly extends the validity of the original UE method (UE a in the lower part of Figure 6), which is known to be inadequate for firing rates less than 7Hz [START_REF] Roy | Rate Limitations of Unitary Event Analysis[END_REF], as one can see with Experiments A. Note also that the level for GAUE as well as for UE a seems robust to changes in the model: non stationarity for inhomogeneous Poisson processes (Experiments C), refractory periods when using Hawkes processes (Experiments D and E). Note finally that the UE s method does not guarantee the correct level except for the test by upper value, which is much smaller than 5%.

Power Several dependence situations have been tested in the right part of Figure 6: GAUE tests by upper value can adequately detect profusion of coincidences induced by injection models (see Experiments F and G) or Hawkes models (see Experiments H and I). GAUE tests by lower value can on the contrary detect lack of coincidences, simulated by inhibitory Hawkes processes (see Experiments J and K). Note moreover that symmetric GAUE tests can detect both situations. The same conclusions are true for both UE methods, the power being of the same order as the GAUE tests except for the injection case with low ν c (Experiments F with δ = 0.02 and M = 100) where GAUE is clearly better.

As a partial conclusion, the Gaussian approximation of Theorem 1 needs to be modified to take into account the plug-in effect. Once this modification is done (see Theorem 2) the Gaussian approximation leads to tests that are shown to be of asymptotic level α. Our simulation study has shown (see Figure 6) that MTGAUE type I error is of order 5% even for small firing rates and that those tests seem robust to variations in the model (non stationarity, refractory periods). Moreover symmetric GAUE tests are able to detect both profusion and lack of coincidences. Except for very small firing rates where its level is not controlled, the original UE method (UE a ) shares the same properties, whereas the level of UE s is not controlled in any cases except for the test by upper values.

Multiple tests and false discovery rate

Classical UE analysis [START_REF] Grün | Unitary joint-events in multiple-neuron spiking activity: Detection, significance and interpretation[END_REF]Grün et al., 1999) is performed on several windows, so that dependence regions can be detected through time. We want to produce the same kind of analysis with GAUE. However, since a test is by essence a random answer, it is not true that the control of one test at level α automatically induces a controlled number of false rejections.

Indeed, let us consider a collection W of possibly overlapping windows W , with cardinality K and, to illustrate the problem, let us assume that we observe two independent homogeneous Poisson processes. Now let us perform any of the previous GAUE tests at level α on each of the previous windows. Then by linearity of the expectation, one has that E(number of rejections) = KP(one test rejects) → M →∞ Kα.

(29)

Moreover, if L is the maximal number of disjoint windows in W, then the probability that the K tests accept the independence hypothesis is upper bounded by

P(the L tests accept) = P(one test accepts) L → M →∞ (1 -α) L → L→∞ 0, (30) 
by independence of the test statistics between disjoint windows. This means that for large M , this procedure is doomed to reject in average Kα tests and the procedure will reject at least one test, when L grows. Consequently, one cannot apply multiple tests procedure without correcting them for multiplicity. Ventura also underlined the problem of the multiplicity of the tests, and proposed a procedure which is not as general as the one described here [START_REF] Ventura | Bootstrap Tests of Hypotheses[END_REF].

Multiple testing correction: a Benjamini and Hochberg approach

Let us denote ∆ W the test considered on the window W . One way to control multiple testing procedure based on the ∆ W 's, is to control the so called familywise error rate (FWER) [START_REF] Hochberg | Multiple comparison procedures[END_REF], which consists in controlling FWER = P(∃W ∈ W, ∆ W wrongly rejects). ( 31)

This can be easily done by Bonferroni bounds:

P(∃W ∈ W, ∆ W wrongly rejects) ≤ W ∈W P(∆ W wrongly rejects) → M →∞ Kα.
(32) So Bonferroni's method [START_REF] Holm | A simple sequentially rejection multiple test procedure[END_REF] consists in applying the ∆ W tests at level α/K instead of α to guarantee a FWER less than α. However, the smaller the type I error, the more difficult it is to make a rejection. Usually, the rejected tests are called detections (or discoveries). So when K is large, Bonferroni's procedure potentially leads to no discovery/detection at all, even in cases where dependent structures exist.

Another notion, popularized by [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] has consequently been introduced in the multiple testing areas leading to a large amount of publications in statistics, genomics, medicine etc in the past ten years [START_REF] Benjamini | Discovering the false discovery rate[END_REF]. This is the false discovery rate (FDR). Actually, a false discovery (also named false detection) is not that bad if the ratio of the number of false discoveries divided by the total number of discoveries is small. More formally, let us use the notation given in Table 1.

Number of W such that ∆ W accepts ∆ W rejects Total
Independence on W T nd = " number of F d = "number of K 0 ="number of windows correct non discoveries" false discoveries" where independence is satisfied"

Dependence on W F nd = "number of T d = "number of K 1 ="number of windows false discoveries" correct discoveries" where dependence exists"

Total K -R R= "discoveries" K
Table 1: Repartition of the answers for the multiple testing procedure.

Then the false discovery rate is defined by

FDR = E F d R 1 R>0 . ( 33 
)
Note that when both spike trains are independent for all windows, K 1 = 0, which leads to T d = 0 and F d = R. Hence, the FDR in the full independent case is also a control of P(∃W ∈ W, ∆ W wrongly rejects), i.e. the FWER. In all other cases, FDR ≤ FWER. This means that when there are some W for which the independence assumption does not hold, controlling the FDR is less stringent, whereas the relative confidence that we can have in the discoveries is still good: if we make 100 discoveries with a FDR of 5%, this means that on average only 5 of those discoveries will be potentially wrong.

The question now is: how to guarantee a small FDR? To do so, Benjamini and Hochberg [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] proposed the following procedure: for each test ∆ W , the corresponding p-value P W is computed. They are next ordered such that:

P (1) W (1) ≤ ... ≤ P (ℓ) W (ℓ) ≤ ... ≤ P (K) W (K) . ( 34 
)
Let q ∈ [0, 1] be a fixed upper bound that we desire on the FDR and define:

k = max{ℓ such that P (ℓ) W (ℓ) ≤ ℓq/K}. ( 35 
)
Then the discoveries of this BH-method are given by the windows W (1), ..., W (k) corresponding to the k smallest p-values.

The theoretical result of [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] can be translated in our framework as follows: if the p-values are uniformly and independently distributed under the null hypothesis, then the procedure guarantees a FDR less than q. Now let us finish to describe our method named MTGAUE, for multiple tests based on a Gaussian approximation of the Unitary Events, which is based on symmetric tests to be able to detect both profusion and lack of coincidences. -For a fixed parameter q, which controls the FDR, order the p-values according to (34) and find k satisfying (35).

-Return as set of detections, the k windows corresponding to the k smallest pvalues. The corresponding program in R is available at math.unice.fr/∼malot/liste-MTGAUE.html Note that in our case, the assumptions required in the approach of Benjamini-Hochberg are not satisfied. Indeed, the tests ∆ sym GAU E are only asymptotically of type I error α, which is equivalent to the fact that asymptotically and not for fixed M , the p-values are uniformly distributed. Therefore, there is a gap between theory and what we have in practice. However, as we illustrate hereafter in simulations, this difference does not seem to significantly impact the FDR. Moreover, to have independent p-values we should have considered disjoint windows W . However, it is possible that we miss some detections because the dependence region is small and straddles two disjoint windows. Therefore, it is preferable to consider sliding windows that overlap. In theory, few results exist in this context -see for instance [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. In practice, we will see in the next section that this lack of independence does not impact the FDR as well. Finally note that when the FDR parameter q grows, there are more and more detections.

Hence if a window is detected for q = q 0 , it is detected for all q ≥ q 0 . Therefore there is a monotony of the set of detected windows as a function of q, in terms of inclusion.

Simulation study

On Figure 7, we see an example of detection by both methods: MTGAUE and UE with symmetric tests. Note that UE is here performed without corrections due to the multiplicity of the tests as in (Grün et al., 1999) and therefore its parameter is α, which should reflect the level of each individual test. MTGAUE clearly detects relevant regions and very few false positives and this even for large delays δ, with a clear continuity in δ: once a region has been detected for a small δ, it remains generally detected for a larger δ, until the number of imposed coincidences is diluted because δ is much too large.

Therefore there is usually an interval of possible δ around the actual maximal true interaction (here 0.02s, whatever the model, injection or Hawkes) where the same window is detected. Note also that profusion of coincidences in Hawkes model (Experiments G) or in the injection model (Experiments I) are usually detected and that the detected regions correspond to positive values for the difference m -m0 . Reciprocally negative interactions in Hawkes model (Experiments K), i.e. lack of coincidences, are also detected and correspond to negative values of m -m0 , since they appear on Figure 7 but not in the positive detections part. Both UE methods have a much larger number of false discoveries except when considering the positive detections of UE s .

Figure 8 gives the FDR and the false non-discovery rate. Clearly MTGAUE ensures a FDR less than 5% as expected by the choice of the parameter q = 0.05 and this, in all simulations. Moreover the proportion of false non discoveries is relatively small (less than 30%) and clearly decreases when M and δ increase. Note also than even if the trials are not i.i.d. (Case L), the method still guarantees a controlled FDR and a reasonable amount of false negative. Both UE methods have a large FDR except the UE s method with tests by upper values and the UE a method by lower values.

Real data study

MTGAUE being validated on simulated data, the method is now applied on real data, that have already been partially published. This study is an illustration which shows that MTGAUE is able to detect phenomenons in line with the time of the experiment. Furthermore some novel aspects are revealed thanks to this method, completing the existing results on those data. 1) giving the false dis-covery rate and of the ratio F nd /(K -R) giving the false non-discovery rate. Each time, in the three first columns (G, I, K), two homogeneous independent Poisson pro-cesses are simulated on [0, 0.5] ∪ [0.7, 1.5] ∪ [1.6, 2]s with firing rates λ 1 = λ 2 = 30Hz. On [0.5, 0.7]s and [1.5, 1.6]s two dependent processes are simulated. Those dependent processes are simulated according to Experiments G, I or K (see Figure 6). In the fourth column (L), 50% of the trials are simulated as for column I, 25% trials are similar to column I except that the dependence regions are slightly modified (now [0.55, 0.75]s and [1.45, 1.6]s), 25% of the trials are pure independent Poisson processes with inten-sity λ 1 = λ 2 = 30Hz. A window W is declared a false discovery (respectively false non discovery) if it is detected whereas it does not intersect [0, 0.5] ∪ [0.7, 1.5] ∪ [1.6, 2]s (respectively it is not detected whereas it does intersect [0, 0.5] ∪ [0.7, 1.5] ∪ [1.6, 2]s). The horizontal line refers to the expected rate of 5% for the false discovery rate (FDR).

Description of the data

Behavioral procedure The data used in this theoretical article to test the detection ability of the MTGAUE method were already partially published in previous experimental studies [START_REF] Riehle | Dynamical changes and temporal precision of synchronised spiking activity in monkey motor cortex during movement preparation[END_REF][START_REF] Grammont | Spike synchronisation and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time[END_REF][START_REF] Riehle | Cancellation of a planned movement in monkey motor cortex[END_REF]. These data were collected on a 5-year-old male Rhesus monkey who was trained to perform a delayed multidirectional pointing task. The animal sat in a primate chair in front of a vertical panel on which seven touch-sensitive light-emitting diodes were mounted, one in the center and six placed equidistantly (60 degrees apart) on a circle around it. The monkey had to initiate a trial by touching and then holding with the left hand the central target. After a fix delay of 500ms, the preparatory signal (PS) was presented by illuminating one of the six peripheral targets in green. After a delay of either 600ms or 1200ms, selected at random with various probability, it turned red, serving as the response signal and pointing target. During the first part of the delay, the probability p resp for the response signal to occur at (500+600)ms =1.1s was either 0.3, 0.5 or 0.7, depending on the experimental condition. Once this moment passed without signal occurrence, the conditional probability for the signal to occur at (500+600+600)ms =1.7s changed to 1. The monkey was rewarded by a drop of juice after each correct trial. Reaction time (RT) was defined as the release of the central target. Movement time (MT) was defined as the touching of the correct peripheral target.

Recording technique Signals recorded from up to seven microelectrodes (quartz insulated platinum-tungsten electrodes, impedance: 2-5MΩ at 1000Hz) were amplified and band-pass filtered from 300Hz to 10kHz. Using a window discriminator, spikes from only one single neuron per electrode were then isolated. Neuronal data along with behavioral events (occurrences of signals and performance of the animal) were stored on a PC for off-line analysis with a time resolution of 10kHz.

In the following study, only trials where the response signal occurs at 1.7s are considered. When p resp = 0.3 (respectively 0.5 or 0.7), the corresponding data are called Data30 (respectively Data50 and Data70). There are respectively 43, 34 and 27 pairs of neurons that have been registered in respectively Data30, Data50 and Data70.

Assuming that the synchrony only depends on the time of signal occurrences and not of the movement directions, we test for the independence of neuron pairs in a pooled fashion over all direction of movement, as already done in the previous study but in a different way [START_REF] Grammont | Spike synchronisation and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time[END_REF]. Note that a study with respect to the movement directions could also have been done if data with less than 20 trials per direction were discarded, but then Data70 would have almost completely disappeared. Note also that small heterogeneity in the data as shown with Case L of Figure 8 does not really affect the method. Moreover, we did not discard pairs of neurons whose firing rate is smaller than 7Hz [START_REF] Roy | Rate Limitations of Unitary Event Analysis[END_REF], as done by [START_REF] Riehle | Dynamical changes and temporal precision of synchronised spiking activity in monkey motor cortex during movement preparation[END_REF] or [START_REF] Grammont | Spike synchronisation and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time[END_REF] because even in this case the MTGAUE detections can be trusted (see Figure 6).

Symmetric detections

Before making the analysis of the whole three data sets, let us focus on some examples to underline the main difference between MTGAUE and both UE methods. MTGAUE (see Definition 5) has been applied on the activity of two pairs of neurons (pairs 13 and 40 of Data30), recorded during the experiment described in Section 4.1, for various choices for the FDR control parameter q. Both multiple shift UE methods with symmetric tests and with parameter α = 0.05 have also been applied. The results are displayed in Figure 9.

The black points correspond to MTGAUE detections with q = 0.01 and consequently at the most 1% of those detections are false discoveries in average. Those are the safest detections. Because of the monotonicity in terms of q, the classical detections with q = 0.05 correspond to the union of black and magenta points. At the opposite, yellow circles correspond to untrusted detections since they are detected only for a FDR control parameter q strictly larger than 80%. In this respect, on Figure 9, several periods are detected by MTGAUE which correlate with the occurrence of specific events of the behavorial protocol (see also Figure 12 in this respect). Interestingly, there is no real gain by looking at the detections for q = 0.05. Most of them are already detected for q = 0.01 for larger δ and therefore, these detections are really significant. Both UE methods with symmetric tests and with α = 0.05 detect several intervals corresponding to q > 0.8 and therefore, those are untrusted (yellow) detections for the MTGAUE method.

Is the count significantly too low or too large ?

For single tests, the detection of ∆ sym at level α = 0.05 is just the detection of both tests ∆ + and ∆ -at level α = 0.025 and this for both UE and GAUE methods (see Definitions 3 and 4). When dealing with a collection of tests, this result is still valid for the UE method which does not correct for multiplicity. However, it is not valid anymore for MTGAUE (see Definition 5) since this method is based on the rank of all the pvalues of all the symmetric tests. Indeed the set of considered p-values corresponds to a set of test statistics whose positive and negative values are mixed and whose rank only corresponds to their absolute value. The result of Benjamini and Hochberg procedure is consequently intertwining positive and negative detections (i.e. detections for which m > m0 or m < m0 ). Since the interest lies in both distinct detections (upper and lower values) on the experimental data, it is meaningless to independently perform tests q ≤ 0.01 0.01 < q ≤ 0.05 0.05 < q ≤ 0.8 q > 0.8

Figure 9: Representation of the detections of the three methods (MTGAUE, UE s , UE a ) as a function of the FDR control parameter q of the MTGAUE method, performed over sliding windows of length 0.1s shifted by 0.001s on pairs 13 and 40 of Data30. Each line corresponds to a different value of δ from 0.001s to 0.04s. Each window is associated to a colored point at the center of the window, whose color depends on the value of the parameter q in the MTGAUE method for which this window is detected. For the UE s and UE a methods, the colored point exists if and only if the corresponding window was detected by the method with symmetric tests at the level α = 0.05. For MTGAUE, all the colored points, i.e. all the windows, are represented. The first black vertical bar corresponds to the preparatory signal (PS), the blue vertical bar to the expected signal (ES), the second black vertical bar to the response signal (RS). The first hatched box corresponds to the interval [mean reaction time (RT) minus its standard deviation, mean reaction time (RT) plus its standard deviation], the second hatched box corresponds to the same thing but for the movement time (MT). by upper values and then tests by lower values. The correct way to use the method is consequently to perform MTGAUE with the symmetric tests, as defined in Definition 5. Once a window is detected, one can then ask the question whether this detection was due to a low count or a large count by looking at the sign of m -m0 , which is coherent with Figure 7.

Figures 10 and11 show the detections according to their signs. On Figure 10, the UE s positive detections are more or less included in the ones of MTGAUE and the detections that are done by UE s and not MTGAUE are mostly negative detections, both facts being coherent with Figure 7. On Figure 11, UE a detects more coincidence than MTGAUE, fact which is also coherent with Figure 7. More importantly, we see here on real data, that exchanging the role of N 1 and N 2 can drastically change the conclusion: whole regions are detected or not depending on which spike train is restricted to the Since the coincidence count is not symmetric in N 1 /N 2 (see ( 9)), the method has been run twice on pairs 13 and 40 with δ = 0.02s and α = 0.05 over sliding windows of length 0.1s shifted by 0.001s with symmetric tests (see Definition 4). The first time, in the asymmetric count X a (see ( 9)), points of N 1 belong to W and points of N 2 belong to the enlarged window W δ . The second time, the role of N 1 and N 2 have been exchanged: points of N 2 belong to W and points of N 1 belong to the enlarged W δ in the coincidence count X a . Lines correspond to trials, first bottom half corresponding to N 1 and second upper half to N 2 . Points correspond to spikes: by default their color is grey. For the first case, couples of points (x, y) with delay less than δ are then colored in red if the point x of N 1 belongs to a window W , which is a positive detection, i.e. m > mg (the point y of N 2 belonging to the enlarged window W δ ). They are colored in blue if the point x of N 1 belongs to a window W , which is a negative detection, i.e. m < mg (the point y of N 2 belonging to the enlarged window W δ ). In the second case, the roles of N 1 and N 2 have been exchanged. family of windows W and which spike train is allowed to be in the family of enlarged windows W δ . Note that those regions are not present in MTGAUE detections (see Figure 10).

Aggregation of the results obtained from several recording sessions

We run the MTGAUE method over the three different data sets: Data30, Data50 and Data70. The main point here is to see the influence of p resp , the probability of occurrence of (RS) at 1.1s on the synchronized activity. Note that, despite the fact that this pool of data has already been published [START_REF] Grammont | Spike synchronisation and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time[END_REF], there has been no systematic analysis in terms of the impact of this varying probability. There has been no systematic analysis of proportion of lack of coincidences either. MTGAUE has been performed on each pair of neurons, leading to the positive (respectively negative) detections of windows, i.e. detections for which m > m0 (respectively m < m0 ) meaning that on those windows, this pair is significantly synchronized (respectively anti-synchronized). Then, an aggregation of the detections over all pairs of each data set was performed. The proportion of these significantly synchronized/antisynchronized pairs are displayed in Figure 12. As already observed in [START_REF] Grammont | Spike synchronisation and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time[END_REF] and as a confirmation of our approach, the maximal proportions of significantly synchronized pairs of neurons occur in correlation with the occurrence of the different behavioral events of the task (preparatory, expected and response signals). Note that the significant synchronized activity observed before the preparatory signal can be explained by the fact that this signal occurred always after a fix delay of 500ms, which could perfectly be anticipated by the monkey. It is also the case when the response signal occurs finally 1200ms after the preparatory signal.

There is a huge proportion of detections (up to 40% of the pairs) that are due to a coincidence count that is significantly too low, whereas at most, 20% of the pairs have a coincidence count significantly too large. In other terms, at a given moment of the task a maximum of about 20% of the pairs can be significantly synchronized and a maximum of 40% of them can be anti-synchronized. The fact that a bigger proportion of pairs can be anti-synchronized at a given moment of the task remains to be explained in neurophysiological terms and is beyond the scope of this article. Actually and as far as we know, although anti-synchronization can technically be studied more or less rigorously by most analysis method in this domain, none systematic study has been performed on this phenomenon from a more neurophysiological point of view. We know few examples where such anti-synchronizations are mentioned: in (Grammont & Riehle, 1999), with the classical UE method based on binned coincidence count [START_REF] Grün | Unitary joint-events in multiple-neuron spiking activity: Detection, significance and interpretation[END_REF], and in [START_REF] Riehle | Dynamical changes and temporal precision of synchronised spiking activity in monkey motor cortex during movement preparation[END_REF] with the UE method based on multiple shift coincidence count (Grün et al., 1999).

• Significantly too large coincidence count.

The proportion of significantly synchronized pairs in Figure 12 is much more important on Data30, showing two maxima, just after the expected signal (ES) and just after the response signal (RS). When the probability of (ES) increases (Data50 and Data70), those maxima still appear but in a lower proportion. Therefore it appears with this new analysis that the proportion of synchronized pairs tends to diminish when the probability of (RS) at 1.1s increases. Moreover, when the response signal at 1.1s is much more likely than the response signal at 1.7s (in Data70), those maxima are shifted in time as if the animal continued to expect the signal for a longer time.

• Significantly too low coincidence count.

In Figure 12, it appears that all the three data sets have roughly the same maximal proportion of pairs that are significantly anti-synchronized. The main difference comes from the localization and the fuzziness of the proportion of pairs. The maxima are large and strong in Data30 in particular around the preparatory and expected signals. In Data70, the only localizations reaching such high scores are just before and after (ES). In Data50, the signal is fuzzier and it is harder to give a rigorous interpretation.

Discussion

We presented a generalization, namely the delayed coincidence count, of the notion of multiple shift coincidence count (Grün et al., 1999) to point processes that are not discretized at a given resolution.

The multiple shift notion is already known to clearly outperform classical binned coincidence count, since there is, in particular, no loss in synchrony detection due to binning effects as already pointed out in (Grün et al., 1999). However, this notion is not as popular as the binned coincidence count mainly because its statistical properties were much more opaque, until the present work. Actually, the multiple shift coincidence count can be interpreted in two ways: symmetric and asymmetric (see Figure 1). But when testing a symmetric hypothesis, namely the independence of both spike trains, the use of an asymmetric notion, which is the original version that has been programmed in the UE method, leads to answers that depend on which spike train is referred as N 1 (see Figure 11 for an example on real data). Therefore we focused in this article on the symmetric notion of multiple shift coincidence count to prevent this effect. The delayed coincidence count, introduced in this article, is the generalization of the symmetric multiple shift coincidence count to the non discretized point process framework. This notion allows us to perform complete computations when Poisson processes are involved. It consequently also reveals some basic properties of the (symmetric) multiple shift coincidence count for Bernoulli processes, this model being very well approximated by Poisson processes as proved in Section 2.3.

The first novel property is that the multiple shift coincidence count (symmetric or not), as well as the delayed coincidence count, is not Poisson distributed, but more dispersed, when both spike trains are independent homogeneous Poisson processes. The Fano factor computed in ( 16) for the delayed coincidence count and Poisson processes, is strictly larger than 1 and this gap tends to increase with the firing rate and the delay δ. In (Grün et al., 1999), the distribution of the (asymmetric) multiple shift coincidence count is approximated by a Poisson distribution with mean m g (see ( 6) or ( 10)). However Figures 3 and4 show that neither the symmetric nor the asymmetric multiple shift coincidence count is Poisson, whereas the Gaussian approximation that has been derived in Theorem 1, correctly approximates the symmetric multiple shift coincidence count, when Poisson or Bernoulli processes are involved. Moreover, when considering symmetric multiple shift coincidence count, there is an edge effect in the mean (m 0 and not m g , see ( 12)) that needs to be taken into account (see again Figure 3 and also Theorem 1). For asymmetric multiple shift coincidence count, the mean is correctly predicted by m g but not the variance.

Those properties would be useless, if they could not be turned into a real statistical test. To do so, we investigated the plug-in step, showing that a modification of the variance need to be taken into account (see Theorem 2). Our GAUE (for Gaussian approximation of the Unitary Events) tests (see also Definition 3) are therefore proved to be of asymptotical level α, when homogeneous Poisson processes are considered as models of the spike trains. They are also proved to be robust on simulations where small firing rates, non stationarity or refractory periods have been imposed and this even for the test by lower value, which is able to detect lack of coincidences (see Figure 6). We also see that for large enough firing rate λ (λ = 30Hz), the three original UE a tests of (Grün et al., 1999), based on the asymmetric count (see also Definition 4) have type I error α = 5%. This is in the range of parameters where the original UE method with the multiple shift coincidence count, based on a Poissonian approximation, can be used. For very small firing rates, the type I errors of all UE tests (with symmetric or asymmetric count) are huge, fact which is consistent with [START_REF] Roy | Rate Limitations of Unitary Event Analysis[END_REF] (see Figure 6, Experiments A). For large δ and large firing rates, the UE s test by upper values (with symmetric count) becomes too conservative (see Figure 6, Experiments B). On the contrary, both UE s tests (symmetric or by lower values) have very large type I error (more than 20%), and this can even increase with the number of trials M . This is coherent with Figure 5, where we clearly see that the Poisson approximation of the asymmetric count is quite accurate but that the Poisson approximation of the symmetric count is not correctly centred, making the UE s test by upper values more conservative but the other UE s tests (symmetric and by lower values) untrustworthy. In this sense, even if UE s tests (symmetric or by lower values) have larger power than GAUE tests for detecting lack of coincidences (see Figure 6, Experiments J and K), they cannot be preferred to the GAUE tests since there is no control of their type I error. Finally note that all UE a methods and UE s method by upper values have level α = 0.05 when non stationary processes or refractory periods with small δ are tested (Experiments C, D and E). But both UE s tests (symmetric and by lower values) with large δ have a type I error which clearly becomes huge when M , the number of trials, grows and when refractory periods are present (Experiments D and E).

Two other methods in the literature do not need plug-in steps. On the one hand, conditional probability computations can be performed on binned coincidence count [START_REF] Gütig | Statistical Significance of Coincident Spikes: Count-Based Versus Rate-Based Statistics[END_REF], but it will be, in our opinion very difficult to transfer those computations to the delayed coincidence count, since the use of independent Bernoulli variables is fundamental. On the other hand, trial-shuffling methods (Pipa et al., 2003;Pipa & Grün, 2003) have also been used for binned coincidence count. This kind of resampling methods could be mathematically adapted to the delayed coincidence count and could furnish a prescribed type I error control of the resulting test. However, the combinatorics of the delayed coincidence count is much more complex than the binned coincidence count. Therefore, a first step in this direction would be to develop a fast algorithm of delayed coincidence count. As a second step, classical parallel programming could make the trial-shuffling procedure combined with delayed coincidence count effective in practice [START_REF] Denker | Practically Trivial Parallel Data Processing in a Neuroscience Laboratory[END_REF]. More generally, many other surrogate data methods exist (see (Louis et al., 2010) for dithering or [START_REF] Grün | Data-driven significance estimation for precise spike correlation[END_REF] for a more general review). In our opinion, it would be decisive, as a future work, to find a procedure which combines an effective surrogate data method of this kind with a prescribed type I error control.

The final step of our procedure is the use of Benjamini and Hochberg's method to control the false discovery rate (FDR) by the choice of a parameter q [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Our method, MTGAUE, is proved on various simulations to guarantee the correct FDR (see Figure 8). On the contrary, the classical UE method is not corrected for multiplicity. Simulations show that this choice leads to a huge FDR, sometimes as high as 80%. Only for the UE s method with tests by upper values for large delays δ (δ = 0.02s) and only for the UE a method with tests by lower values for very large M (M = 100) and large δ (δ = 0.02s), is the UE method trustworthy. This is coherent with the visualisation of both methods on just one run (see Figure 7). Clearly for large δ the number of false discoveries by the symmetric UE method (UE s or UE a ) is huge whereas the detections by upper values of UE s are globally adequate, with a tendency to be less accurate for small δ. This phenomenon can be explained as follows.

For large δ and reasonable firing rates, the UE s tests by upper values are too conservative (see Experiments B of Figure 6) because the edge effects have not been taken into account. Therefore the fact that the method is not corrected for the multiplicity of tests somehow compensates for its conservativeness leading in this precise situation to a reasonable method. But this happens only for this range of parameters and only for the detection of profusion of coincidences. In the same range of parameters, the original method UE a with tests by lower values seems also reasonable: it is still of the order of 5%, even if the FDR of UE s with tests by upper values is much smaller. In all other situations (for the symmetric or the original asymmetric count), there is no guarantee in term of FDR for the multiple shift UE method of (Grün et al., 1999).

To summarize those simulations, MTGAUE, which relies on a theoretical approximation of the distribution of the coincidence count by a Gaussian distribution, seems to be robust with respect to small firing rates, non stationarity in time, refractory periods and non ergodicity across trials. It guarantees a control of the FDR via the choice of the parameter q. This method is also able to detect both profusion and lack of coincidences. It therefore clearly extends the range of situations where the original multiple shift UE method applies, the latter being trustworthy only for delays of the order 0.02s (see Figure 8), reasonable firing rates (λ > 7Hz, see [START_REF] Roy | Rate Limitations of Unitary Event Analysis[END_REF]) and detections when the coincidence count is significantly too large for UE s (symmetric count) or detections when the coincidence count is significantly too low for UE a (asymmetric count).

Therefore, when MTGAUE is applied on real data (already partly published in [START_REF] Grammont | Spike synchronisation and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time[END_REF]), it can in particular detect lack of coincidences (see Figures 10 and 12) whereas the detections of UE cannot be in general trusted in this range of parameters. This in particular leads to new insights on these already published data. Note that on the same data, the symmetric UE method (with symmetric or asymmetric count) declares statistically significant, regions for which the parameter q of MTGAUE needs to be larger than 80% (see Figure 9). In accordance with our observations on the previous simulation studies, those detections are therefore quite likely to be false discoveries. The fact that the previous published results appear to be nicely coherent in neurophysiological, cognitive and behavioral terms is probably due to the fact that the biological phenomenon was sufficiently strong and the data aggregated to provide some averaged results reducing in practice the hypersensitivity of the original UE method, feature which leads on simulations to high FDR (see Figure 8).

MTGAUE also allows studying coincidences for values of δ up to T /2, where T is the size of the considered window (see Theorem 1 for instance). Here we have stopped the study at δ = 0.04s, whereas T = 0.1s because the results were of the same flavour on [0.041, 0.049]s with a larger computational time. However, there is no absolute criterium from the neurophysiological point of view to determine what are the relevant δ. It remains an exploratory question. It depends mainly on the patterns of local and global connectivity of the specific cerebral structure under study, both on the structural and functional plan. In previous studies, δ's up to 0.02s were generally studied, mainly because of the limitations of the UE method [START_REF] Grammont | Spike synchronisation and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time[END_REF]. MTGAUE allows to study coincidences with larger δ and thus to explore potentially more complex patterns of synchrony.

Note finally, that once MTGAUE has been performed, one can use the sign of the test statistics to classify the detections in two types: positive detections, which reveal profusion of coincidences and negative detections, which reveal lack of coincidences. Figure 10 shows that UE s method gives roughly the same trustworthy positive detections as MTGAUE whereas its negative detections are likely to be false detections because of the large FDR in this case (see Figures 8 and9). Figure 11 combined with Figure 9 also shows that the original UE a can detect additional windows that correspond to large FDR parameter q. More importantly, it shows that the original UE a method does not give the same answer when exchanging the role of the first and second spike trains. This is due to the fact that the coincidence count is in this case asymmetric and even if the method could be corrected for multiplicity, it will never avoid this potential lack of symmetry in the answers.

In conclusion, it was already known that the UE method with multiple shift coincidence count (Grün et al., 1999) allowed to avoid loss in synchrony detection compared to the classical UE method based on binned coincidence count [START_REF] Grün | Unitary joint-events in multiple-neuron spiking activity: Detection, significance and interpretation[END_REF]. In this article, we show that MTGAUE notably extends the properties of this UE method with multiple shift coincidence count thanks to its clear control of the false discovery rate, its robustness, its ability to detect both lack and profusion of coincidences and this for large set of parameters (delays, number of trials, firing rates). Moreover and contrary to the original multiple shift method (UE a ), MTGAUE answer remains identical when exchanging the role of both spike trains, since MTGAUE relies on a symmetric test statistics, namely the delayed coincidence count.

In terms of perspective, it should be possible to extend the use of the delayed coincidence count to the analysis of more than two neurons at a time, as it has already been done for the binned coincidences (see for instance [START_REF] Grün | Unitary joint-events in multiple-neuron spiking activity: Detection, significance and interpretation[END_REF][START_REF] Grün | Unitary Events Analysis[END_REF]). This would allow the more direct study of neuronal assemblies. Adaptation of trial-shuffling or other surrogate data methods should also be considered. However, we think that pure testing procedures do not give fully satisfying answers and that it would be legitimate to provide an estimation of the dependence notably, through the Hawkes model [START_REF] Krumin | Correlation-based analysis and generation of multiple spike trains using Hawkes models with an exogenous input[END_REF]. It is already known that this model can easily deal with more than two neurons [START_REF] Daley | An introduction to the theory of point processes[END_REF][START_REF] Pernice | How structure determines correlations in neuronal networks[END_REF]Pernice et al., , 2012;;[START_REF] Chornoboy | Maximum likelihood identification of neural point process systems[END_REF]. However, it is only in a recent work that we have proposed theoretical statistical methods to deal with several neurons and large delays of interaction through Lasso methods [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF]. We aim at generalizing those results to non stationary data in time.
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 2 Figure 2: Poisson approximation of the Bernoulli process. 2000 p-values for the following tests are displayed as function of their rank divided by 2000, the diagonal is also represented. Two Bernoulli processes are simulated with λ = 30Hz and h = 10 -3 s or 10 -4 s. In A, for each simulation, Kolmogorov-Smirnov uniformity test is performed on a Bernoulli process simulated on a windowW = [h/2, T + h/2] of length T = 2s. The test statistic is sup x∈W | F (x) -(xh/2)/T | where F (x)is the empirical cumulative distribution function of the points of the considered process. If the test statistic is larger than the 1α quantile of the tabulated Kolmogorov-Smirnov distribution, then the uniformity hypothesis is rejected. In B, Kolmogorov-Smirnov uniformity test is performed on the aggregated process over 40 simulated trials (i.e. the considered point process is the union of 40 i.i.d. Bernoulli processes simulated on W with T = 0.1s). In C, the chi-square Poisson test over 40 trials is performed on the total number of points per trials for Bernoulli point processes simulated on W with T = 0.1s. In D, exponentiality Test 1[START_REF] Reynaud-Bouret | Spike trains as (in)homogeneous Poisson processes or Hawkes processes: non-parametric adaptive estimation and goodness-of-fit tests[END_REF] of the delays (ISI) between points of a Bernoulli process on W with T = 10s is performed. See Test 1 of[START_REF] Reynaud-Bouret | Spike trains as (in)homogeneous Poisson processes or Hawkes processes: non-parametric adaptive estimation and goodness-of-fit tests[END_REF] for more insight, here used with subsample size given by "(total number of delays) 2/3 ".

Figure 3 :

 3 Figure3: Repartition of the symmetric total coincidence count (i.e. the sum of the coincidence counts over M trials). In all the experiments, λ = 30Hz, M = 40 trials and a window W of length T = 0.1s are used. Bernoulli processes have been simulated with resolution h. Are plotted histograms over 5000 runs of symmetric multiple shift coincidence count for Bernoulli processes (see (2)) and of delayed coincidence count with δ = x or δ = x + h/2 for Poisson processes (see Definition 2). Are also plotted densities of the corresponding Gaussian approximation as well as probability distribution functions of the corresponding Poisson approximation with mean M m g or M m 0 , for the different choices of δ.
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 4 Figure 4: Repartition of the asymmetric total coincidence count. In all the experiments, λ = 30Hz, M = 40 trials and a window W of length T = 0.1s are used. Bernoulli processes have been simulated with resolution h. Are plotted histograms over 5000 runs of asymmetric multiple shift coincidence count (see (4)) for Bernoulli processes and of X a (see (9)) with δ = x or δ = x + h/2 for Poisson processes. Are also plotted probability distribution functions of the corresponding Poisson approximation with mean M m g , for the different choices of δ.
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 5 Figure 5: Repartition of the different renormalizations of the various coincidence counts. Each time 5000 simulations of two independent Poisson processes with λ 1 = λ 2 = 30Hz, M = 40 trials, a window W of length T = 0.1s and δ = 0.02s are performed. In A, histograms of √ M ( mm 0 )/σ, of √ M ( m -m0 )/v and of √ M ( m -m0 )/v with m the average delayed coincidence count. In B, histogram of √ M ( m -m0 )/σ and of √ M ( m -m0 )/σ with m the average delayed coincidence count. In C, histogram of √ M ( mm g )/ √ m g and of √ M ( mmg )/ mg with m the average delayed coincidence count.In D, same thing as in C but with m, the average of X a (see (9)), the asymmetric coincidence count.

  W in the collection W of possible overlapping windows, compute the p-value of the symmetric GAUE test (see Definition 3).
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 7 Figure 7: Detections with symmetric tests of MTGAUE with q = 0.05 and of both UE s and UE a methods with α = 0.05, on one run with M = 20. The positive detections of MTGAUE or UE s correspond to the detections for which m > m0 for MTGAUE, or detections for which m > mg for UE (see Definition 4). 1900 single tests have been performed on 1900 overlapping (sliding) windows of length 0.1s shifted by 0.001s. The corresponding detections are marked by a point at the center of the windows. Each line corresponds to a different delay: 40 different delays δ from 0.001s to 0.04s are considered. Each time, two homogeneous independent Poisson processes are simulated on [0, 0.5] ∪ [0.7, 1.5] ∪ [1.6, 2]s with firing rates λ 1 = λ 2 = 30Hz. On [0.5, 0.7]s and [1.5, 1.6]s two dependent processes are simulated. Those dependent processes are simulated according to Experiments G, I or K (see Figure 6). The black vertical lines delimit the regions where the tests should detect a dependence, that is each time the window W intersects a dependence region.
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 8 Figure8: Average over 5000 runs of the ratio F d /R (see Table1) giving the false dis-covery rate and of the ratio F nd /(K -R) giving the false non-discovery rate. Each time, in the three first columns (G, I, K), two homogeneous independent Poisson pro-cesses are simulated on [0, 0.5] ∪ [0.7, 1.5] ∪ [1.6, 2]s with firing rates λ 1 = λ 2 = 30Hz. On [0.5, 0.7]s and [1.5, 1.6]s two dependent processes are simulated. Those dependent processes are simulated according to Experiments G, I or K (see Figure6). In the fourth column (L), 50% of the trials are simulated as for column I, 25% trials are similar to column I except that the dependence regions are slightly modified (now [0.55, 0.75]s and [1.45, 1.6]s), 25% of the trials are pure independent Poisson processes with inten-sity λ 1 = λ 2 = 30Hz. A window W is declared a false discovery (respectively false non discovery) if it is detected whereas it does not intersect [0, 0.5] ∪ [0.7, 1.5] ∪ [1.6, 2]s (respectively it is not detected whereas it does intersect [0, 0.5] ∪ [0.7, 1.5] ∪ [1.6, 2]s). The horizontal line refers to the expected rate of 5% for the false discovery rate (FDR).
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Figure 10 :

 10 Figure10: Detections according to the sign of the test statistics for MTGAUE and UE s (symmetric count). Both methods have been run on pairs 13 and 40 with δ = 0.02s and q = α = 0.05 over sliding windows of length 0.1s shifted by 0.001s with symmetric tests. Lines correspond to trials, first bottom half corresponding to N 1 and second upper half to N 2 . Points correspond to spikes: by default their color is grey. Couples of points (x, y) with delay less than δ are then colored in red if they belong to a window, which is a positive detection by the considered method, i.e. m > m0 (for MTGAUE) or m > mg (for UE s ). They are colored in blue if they belong to a window, which is a negative detection by the considered method, i.e. m < m0 (for MTGAUE) or m < mg (for UE s ).

  a tive d e te ctio n p o sitive d e te ctio n

Figure 11 :

 11 Figure11: Detections according to the sign of the test statistics for UE a , the original UE method. Since the coincidence count is not symmetric in N 1 /N 2 (see (9)), the method has been run twice on pairs 13 and 40 with δ = 0.02s and α = 0.05 over sliding windows of length 0.1s shifted by 0.001s with symmetric tests (see Definition 4). The first time, in the asymmetric count X a (see (9)), points of N 1 belong to W and points of N 2 belong to the enlarged window W δ . The second time, the role of N 1 and N 2 have been exchanged: points of N 2 belong to W and points of N 1 belong to the enlarged W δ in the coincidence count X a . Lines correspond to trials, first bottom half corresponding to N 1 and second upper half to N 2 . Points correspond to spikes: by default their color is grey. For the first case, couples of points (x, y) with delay less than δ are then colored in red if the point x of N 1 belongs to a window W , which is a positive detection, i.e. m > mg (the point y of N 2 belonging to the enlarged window W δ ). They are colored in blue if the point x of N 1 belongs to a window W , which is a negative detection, i.e. m < mg (the point y of N 2 belonging to the enlarged window W δ ). In the second case, the roles of N 1 and N 2 have been exchanged.

Figure 12 :

 12 Figure12: Proportion of positive detections/negative detections, i.e. of significantly synchronized/anti-synchronized pairs of neurons using MTGAUE method (sliding windows of length 0.1s shifted by 0.001s, q = 0.05) through time. Each line represents a different parameter δ ∈ {1, ..., 40} × 10 -3 s. (PS) was presented at 0.5s (first vertical black line), (RS) at 1.7s (third vertical black line). Even if those trials are not used in the present average, a response signal at 1.1s ((ES)=second vertical black line) was also presented to the animal in 30% of the cases for Data30, in 50% of the cases for Data50 and in 70% of the cases for Data70.

A p-value is the random value of α for which a test of level α passes from "accept" to "reject". Note that usually when α = 0, the test always accepts, whereas it always rejects when α = 1: therefore there is a limit value which depends on the observations for which one passes from one decision to another one. If the test is of type I error exactly α for all α, then one can prove that the corresponding p-value is uniformly distributed on [0, 1] under H 0 . Therefore their value as position of their normalized rank over an i.i.d. sample should be close to the diagonal of the square.

In the following equation, o(1) denotes a quantity that tends to 0 when δ tends to 0.

More precisely, if X 1 , ..., X n are i.i.d. Gaussian variables with mean m and variance σ 2 then n/σ 2 n i=1 (X im) ∼ N (0, 1) whereas n/σ 2 n i=1 (X im) ∼ T (n -1) where σ2 is the unbiased estimate of σ 2 .
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For UE a (asymmetric count), data for N 2 have been simulated on the corresponding enlarged window W δ = [-δ, T + δ]. For the experiments under H 0 , the horizontal line corresponds to the expected level 0.05. Experiments A and B correspond to independent homogeneous Poisson processes with respectively λ 1 = λ 2 = 3Hz and λ 1 = λ 2 = 30Hz. Experiments C correspond to independent inhomogeneous Poisson processes with intensity λ 1 (t) = λ 2 (t) = 15 × 1 t<0 + (300 × t + 15) × 1 t∈W + 45 × 1 t>T . Experiments D and E correspond to Hawkes processes with ν 1 = ν 2 = 30Hz and with respectively h 1→1 = h 2→2 = -10 × 1 [0,0.02] and h 1→1 = h 2→2 = -30 × 1 [0,0.02] , the other interaction functions being null. Experiments F and G correspond to injection models with resolution h = 10 -4 s, ν 1 = ν 2 = 30Hz, x = 200 and respectively ν c = 5 and ν c = 10. Experiments H, I, J and K correspond to Hawkes processes with ν 1 = ν 2 = 30Hz and only one non zero interaction function given by respectively h 2→1 = 10 × 1 [0,0.02] , h 2→1 = 30 × 1 [0,0.02] , h 2→1 = -10 × 1 [0,0.02] and h 2→1 = -30 × 1 [0,0.02] .