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Supplementary material for “Multiple tests based
on a Gaussian approximation of the Unitary Events
method with delayed coincidence count”

Christine Tuleau-Malot, Amel Rouis, Franck Grammont, Patricia
Reynaud-Bouret

Abstract: The aim of this supplementary material is to provide the proofs of The-
orems 1 and 2 and to describe more precisely the distinction between Hawkes and in-
jection models. In both proofs, the window W is assumed to be equal to [a, b] such that
T = b− a.

A Proof of Theorem 1

Proof. Since N1 et N2 are independent homogeneous Poisson processes with intensity
λ1 and λ2, one has that

E(X) = E
(∫ b

a

∫ b

a

1|x−y|≤δN1(dx)N2(dy)

)
One can prove (see (Daley & Vere-Jones, 2003)), that

E(X) = λ1λ2

∫ b

a

∫ b

a

1|x−y|≤δdxdy.

But∫ b

a

∫ b

a

1|x−y|≤δdxdy =

∫ b

a

[min(b, x+ δ)−max(a, x− δ)]dx

=

∫ a+δ

a

[x+ δ − a]dx+

∫ b−δ

a+δ

2δdx+

∫ b

b−δ
[b+ δ − x]dx

=
(a+ δ)2 − a2

2
+ δ(δ − a) + 2δ[(b− a)− 2δ] + δ(b+ δ)− b2 − (b− δ)2

2
= 2δ(b− a)− δ2
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since a + δ ≤ b − δ. Similarly, we can compute E(X2). If Diag = {(x, y) | x = y ∈
[a, b]} and [a, b](2) = [a, b]2\Diag, one can decompose

E(X2) = E

(∫
[a,b]4

1|x−y|≤δ1|t−u|≤δN1(dx)N1(dt)N2(dy)N2(du)

)

= E

(∫
([a,b](2))2

1|x−y|≤δ1|t−u|≤δN1(dx)N1(dt)N2(dy)N2(du)

)
+

+ E

(∫
[a,b](2)×Diag

1|x−y|≤δ1|t−u|≤δN1(dx)N1(dt)N2(dy)N2(du)

)
+

+ E

(∫
Diag×[a,b](2)

1|x−y|≤δ1|t−u|≤δN1(dx)N1(dt)N2(dy)N2(du)

)
+

+ E
(∫

Diag2
1|x−y|≤δ1|t−u|≤δN1(dx)N1(dt)N2(dy)N2(du)

)
This leads by classical properties of the moment measure of Poisson processes (see

(Daley & Vere-Jones, 2003)) to

E(X2) = E(X)2 + λ21λ2

∫
[a,b]3

1|x−y|≤δ1|t−y|≤δdxdydt+

+λ1λ
2
2

∫
[a,b]3

1|x−y|≤δ1|x−u|≤δdxdydu+ λ1λ2

∫ b

a

∫ b

a

1|x−y|≤δdxdy

Hence

Var(X) = λ1λ2[2δ(b− a)− δ2] + [λ21λ2 + λ1λ
2
2]

∫ b

a

(∫ b

a

1|x−y|≤δdy

)2

dx.

It remains to compute as before∫ b

a

(∫ b

a

1|x−y|≤δdx

)2

dy =

∫ b

a

[min(b, x+ δ)−max(a, x− δ)]2dx

=

∫ a+δ

a

[x+ δ − a]2dx+

∫ b−δ

a+δ

[2δ]2dx+

∫ b

b−δ
[b+ δ − x]2dx

=
(a+ δ)3 − a3

3
+ [(a+ δ)2 − a2](δ − a) + δ(δ − a)2

+[2δ]2[(b− a)− 2δ] +

+
b3 − (b− δ)3

3
− [b2 − (b− δ)2](b+ δ) + δ(b+ δ)2

= 4δ2(b− a)− 10

3
δ3

The last part of Theorem 1 on the convergence in distribution is just a direct application
of the Central Limit Theorem (Bickel & Doksum, 2000).

�
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B Proof of Theorem 2

Proof. Let X(m) =
∫
[a,b]2

1|x−y|≤δN
(m)
1 (dx)N

(m)
2 (dy) be the coincidences count with

delay δ on [a, b] for the couple (N
(m)
1 , N

(m)
2 ) observed during trial m.

First we apply the vectorial central limit theorem (Bickel & Doksum, 2000)

M−1/2
M∑
m=1


 X(m)

N
(m)
1 ([a, b])

N
(m)
2 ([a, b])

−
λ1λ2[2δ(b− a)− δ2]

λ1(b− a)

λ2(b− a)


 L−→ N3(0,Γ),

where Γ is the corresponding covariance matrix, i.e.

Γ =

λ1λ2[2δ(b− a)− δ2] + [λ21λ2 + λ1λ
2
2][4δ

2(b− a)− 10
3
δ3] λ1λ2[2δ(b− a)− δ2] λ1λ2[2δ(b− a)− δ2]

λ1λ2[2δ(b− a)− δ2] λ1(b− a) 0

λ1λ2[2δ(b− a)− δ2] 0 λ2(b− a)

 .

This matrix is obtained by the previous computations, the fact that N1 is independent of
N2 and the following fact,

E(XN1([a, b])) = E(

∫
[a,b]3

1|x−y|≤δN1(dx)N1(dt)N2(dy))

= E(

∫
[a,b](2)×[a,b]

1|x−y|≤δN1(dx)N1(dt)N2(dy)) +

+E(

∫
Diag×[a,b]

1|x−y|≤δN1(dx)N1(dt)N2(dy))

= λ21λ2

∫
[a,b]3

1|x−y|≤δdxdtdy + λ1λ2

∫
[a,b]2

1|x−y|≤δdxdy

= E(X)E(N1([a, b])) + λ1λ2[2δ(b− a)− δ2]

Next we can rewrite

√
M (m̄− m̂0) =

√
M

[
g

(
1

M

M∑
m=1

X(m),
1

M

M∑
m=1

N
(m)
1 ([a, b]),

1

M

M∑
m=1

N
(m)
2 ([a, b])

)

−g(E(X(1)), λ1(b− a), λ2(b− a))

]
,

where m̄ and m̂0 are respectively defined by Equations (11) and (14), and with g(x, u, v) =

x− uv[2δ(b− a)− δ2](b− a)−2. Therefore the delta method (Bickel & Doksum, 2000)
gives that √

M (m̄− m̂0)
L−→ N (0, D′ΓD),

where D is the gradient of g in (E(X), λ1(b− a), λ2(b− a)). That is

D =

 1

−λ2[2δ(b− a)− δ2](b− a)−1

−λ1[2δ(b− a)− δ2](b− a)−1

 .
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time t
Parents = N1

Children

Orphans
= N2

0

Function h1->2

Figure 1: Interpretation of (N1, N2) in terms of parents, children and orphans.

We recognise that σ2 = D′ΓD and the last result is just a classical application of
Slustky’s lemma (Bickel & Doksum, 2000), since v̂ converges in probability towards v.
�

C Another look at the Hawkes and injection models

In some special cases, bivariate Hawkes processes, as introduced by Hawkes (1971),
can be linked with injection models. Let us focus on the particular bivariate Hawkes
process (N1, N2) whose conditional intensities are given by

λ1(t) = ν1 and λ2(t) = ν2 +

∫ t−

−∞
h1→2(t− u)N1(du), (1)

where the function h1→2 has support in R∗+. In this case, one can see the process N1 as
the arrival times of ”parents”. This a homogeneous Poisson process of constant inten-
sity ν1. A parent, arriving at time u, is giving birth to ”children” according to an inho-
mogeneous Poisson process of intensity h1→2(. − u). There are also orphans arriving
according to a homogeneous Poisson process of constant intensity ν2. The collection of
the orphans and of all the children whatever their parents are is then forming the point
process N2 (see Figure 1).

More generally, as soon as all the interaction functions are non negative, there is
a more general interpretation of the Hawkes process in terms of branching process
(Hawkes & Oakes, 1974; Daley & Vere-Jones, 2003), i.e. several generations of par-
ents and children. However as soon as there is inhibition (negative interaction func-
tions), there is no interpretation in terms of branching processes anymore, even if thin-
ning constructions allow to simulate the process (Ogata, 1981; Brémaud & Massoulié,
1996).
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Let us go back to the case described by (1). In classical cases, one can usually
assume that

0 < µ :=

∫
h1→2(x)dx < 1.

This implies that the number of children per parent is in average less than 1. In particular
the probability to have no children is e−µ ' 1− µ, as soon as µ is small enough. Note
however that it is possible to have more than one child per parent even if the probability
of occurrence is very small. Moreover the positions of the children with respect to the
parents are random and distributed accorded to h1→2(.)/µ. In particular if the support
of h1→2 is really large, typically h1→2 = γ× 1[0,δ] with large δ, the position of the child
can be very far away from its parent but can also be very close to the parent with equal
chance.

In this respect, if h1→2 tends toward µδ0, where δ0 is the dirac mass in 0, a child (if
it appears) is positioned at the same place as its parent. Note also that a child appears
with probability close to µ as soon as µ is small enough. In this limit case, we are
consequently very close to an injection model generated as follows. Take NB1 , NB2

and Nc three independent Bernoulli processes with firing rates ν1(1 − µ), ν2 and ν1µ.
Then form the injection model as described in Section 3.1 with N ′c = Nc (i.e. x = 0),
N inj

1 = NB1 ∪Nc and N inj
2 = NB2 ∪N ′c = NB2 ∪Nc. With this correspondence, N inj

1

correspond to the points (parents) in N1, NB1 correspond to the parents in N1 that have
no child, Nc to the ones with child, NB2 to the orphans and N ′c to the children with
parents. In this case the main difference between both models is that it may happen that
several children have the same parent with the Hawkes model (even in the limit case),
which is not possible with the injection model. However the probability that such things
happen is so small, when µ is small that the resulting processes will be most of the time
indistinguishable.

Injection models have near coincidences that are not only due to chance, by taking
x > 0. In this case, indeed, an additional near coincidence correspond to a couple
(S, S ′), with S ∈ Nc, and with S ′ = S + U in N ′c, where U is a random uniform
variable on {−x, ..., x} × h. Therefore the delay S ′ − S is uniformly distributed in
{−x, ..., x} × h. In the Hawkes model with h1→2 = γ × 1[0,δ], an additional near
coincidence correspond to a couple (S, S ′), with S ∈ N1, parent conditioned on having
a child, and with S ′ child of S. The delay S ′ − S is uniformly distributed in [0, δ]: the
child in N2 is always after its parent and there can be several children for one parent,
since the number of children per parent is a Poisson variable, even if it is rare when
µ =

∫
h1→2(x)dx = γδ is small.

Note finally that taking h1→2 not a multiple of some 1[0,δ], leads to other distributions
for the delay S ′ − S than the uniform one.
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