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The Unitary Events (UE) method is one of the most popular and efficient methods

used this last decade to detect patterns of coincident joint spike activity among

simultaneously recorded neurons. The detection of coincidences is usually based

on binned coincidence count (Grün, 1996), which is known to be subject to loss in

synchrony detection (Grün et al., 1999). This defect has been corrected by the mul-

tiple shift coincidence count (Grün et al., 1999). The statistical properties of this

count have not been further investigated until the present work, the formula being

more difficult to deal with than the original binned count. First of all, we propose
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a new notion of coincidence count, the delayed coincidence count which is equal to

the multiple shift coincidence count when discretized point processes are involved

as models for the spike trains. Moreover, it generalizes this notion to non dis-

cretized point processes, allowing us to propose a new Gaussian approximation of

the count. Since unknown parameters are involved in the approximation, we per-

form a plug-in step, where unknown parameters are replaced by estimated ones,

leading to a modification of the approximating distribution. Finally the method

takes the multiplicity of the tests into account via a Benjamini and Hochberg ap-

proach (Benjamini & Hochberg, 1995), to guarantee a prescribed control of the

false discovery rate. We compare our new method, called MTGAUE for multi-

ple tests based on a Gaussian approximation of the Unitary Events, and the UE

method proposed in (Grün et al., 1999) over various simulations, showing that

MTGAUE extends the validity of the previous method. In particular, MTGAUE

is able to detect both profusion and lack of coincidences with respect to the in-

dependence case and is robust to changes in the underlying model. Furthermore

MTGAUE is applied on real data.

1 Introduction

The study of how neural networks transmit activity in the brain and somehow code

information implies to consider various aspects of spike activity. Historically, firing

rates have been firstly considered as the main way for neurons or populations of neurons

to transmit activity, in correlation with some experimental or behavioral events. Such

kinds of correlations have been shown mainly by the use of peristimulus time histogram

(PSTH) (Abeles, 1982; Gerstein & Perkel, 1969; Shinomoto, 2010).

However, beside the role of firing rate, it has been argued, first in theoretical stud-

ies, that the activity of ensemble of neurons may be coordinated in the spatiotemporal

domain (i.e. coordination of the occurrence of spikes between different neurons) to

form neuronal assemblies (Hebb, 1949; Palm, 1990; Sakurai, 1999; Von der Malsburg,

1981). Indeed, such assemblies could be constituted on the basis of specific spike tim-

ing, thanks to several mechanisms at the synaptic level (König et al., 1996; Rudolph

& Destexhe, 2003; Softky & Koch, 1993). The required neural circuitry could spon-

taneously emerge with spike-timing-dependent plasticity (Brette, 2012). Such coordi-

nated activity could easily propagate over neural networks (Abeles, 1991; Diesmann

et al., 1999; Goedeke & Diesmann, 2008) and be used as a potential ”code” for the

brain (Singer, 1993, 1999). Moreover simulation studies have shown how synchroniza-

tion emerges and propagates in neural networks, with or without oscillations (Diesmann

et al., 1999; Golomb & Hansel, 2000; Tiesinga & Sejnowski, 2004; Goedeke & Dies-

mann, 2008; Rudolph & Destexhe, 2003).

2



In addition to these theoretical considerations, many experimental evidences have

been accumulated, which show that coordination between neurons is indeed taking

place. In particular, it has been shown that the mechanisms of spike generation can

be very precise (Mainen & Sejnowski, 1995) under physiological conditions (Boucsein

et al., 2011; Konishi et al., 1988; Lestienne, 2001; Prescott et al., 2008). Spike synchro-

nization, with or without oscillations, has been shown to be involved in the so-called

binding problem (Engel & Singer, 2001; Singer & Gray, 1995; Singer, 1999; Super

et al., 2003). Spike synchronization has also been studied in relation with firing rate

(Abeles & Gat, 2001; Eyherabide et al., 2009; Gerstein, 2004; Grammont & Riehle,

1999, 2003; Heinzle et al., 2007; König et al., 1996; Kumar et al., 2010; Lestienne,

1996; Maldonado et al., 2000; Masuda & Aihara, 2007; Riehle et al., 1997; Vaadia

et al., 1995).

Most of these experimental evidences could not have been obtained without the de-

velopment of specific descriptive analysis methods of spike-timing over the last decades:

cross-correlogram (Perkel et al., 1967), gravitational clustering (Gerstein & Aertsen,

1985) or joint peristimulus time histogram (JPSTH) (Aertsen et al., 1989). However,

these methods do not necessarily answer to a major criticism that considers that spike

synchronization might just be an epiphenomenon of the variations of the firing rate.

That is why, in direct line with these methods, Grün and collaborators developed the

Unitary Events (UE) analysis method (Grün, 1996).

The UE method is originally based on a binned coincidence count (see also Section

2.1 for a more precise definition). This method has been continuously improved until

today (Grün et al., 2002a,b; Grün, 2009; Grün et al., 2010; Gütig et al., 2001; Grün

et al., 2003; Pipa & Grün, 2003; Pipa et al., 2003; Louis et al., 2010; Pipa et al., 2013).

It is a popular method which has been used successfully in several experimental studies

(Riehle et al., 1997, 2000; Grammont & Riehle, 1999, 2003; Maldonado et al., 2008;

Kilavik et al., 2009). However, these approaches suffer from several defects due to

the use of binned coincidence count. Indeed, as pointed out in (Grün et al., 1999,

2010), there may be, for instance, a large loss in synchrony detection, coincidences

being discarded when they correspond to two spikes lying in two adjacent distinct bins.

Actually, up to 60% of the coincidences can be lost when the bin length is the typical

delay/jitter between two spikes participating to the same coincidence. Another version

of the UE method has consequently been proposed: the multiple shift coincidence count

(Grün et al., 1999) (see Section 2.1 for precise definitions, see also (Pazienti, 2008) for

another development). However, and up to our knowledge, this notion has not been

as well explored as the notion of binned coincidence count. Indeed and as already

pointed out in (Grün et al., 2010), the various shifts can make the coincidence count

more complex than a sum of independent variables, depending on the underlying model.

Therefore the main aim of this article is to complete the study of this notion of mul-
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tiple shift coincidence count and to propose a new method which extends the validity

of the original multiple shift UE method (Grün et al., 1999). To do so, we focus on the

symmetric multiple shift coincidence count, which is much more adapted to the pur-

pose of testing independence between two spike trains on a given window (see Section

2.1 for the distinction between symmetric and asymmetric multiple shift coincidence

count). Then we generalize the notion, that was given for discretized spike trains at a

certain resolution level. The delayed coincidence count defined in Section 2.3 is exactly

the same coincidence count for discretized spike trains but this new formula can now

be also applied to non discretized point processes as well. This mathematical notion

allows us to compute the expectation and the variance in the simplest case of Poisson

processes, which approximate Bernoulli processes used in (Grün et al., 1999). There-

fore the Fano’s factor can be derived for the symmetric multiple shift / delayed coinci-

dence count, as it has been done for instance in (Pipa et al., 2013) for the more classical

notion of binned coincidence count. This also leads to a Gaussian approximation of the

distribution of the symmetric multiple shift / delayed coincidence count, when Poisson

or Bernoulli processes are involved as models for the spike trains.

However this approximation depends on unknown parameters in practice, namely

the underlying firing rates. Such problems due to unknown parameters can be bypassed

by several methods, mainly based on surrogate data (see (Louis et al., 2010) for dither-

ing or (Grün, 2009) for a more general review). On the binned coincidence count, there

are two main methods that can be easily statistically interpreted: trial-shuffling (Pipa &

Grün, 2003; Pipa et al., 2003), which is a permutation resampling method and condi-

tional distributions (Gütig et al., 2001). However trial-shuffling has in this case clearly

non trivial and specific implementation solutions and when working conditionally to the

observed number of spikes (Gütig et al., 2001), the solution is completely linked to the

form of the binned coincidence count and the use of Bernoulli models. Both solutions

are consequently not used here for the symmetric multiple shift/delayed coincidence

count, which is more intricate than classical binned coincidence count. We prefer to

look more carefully at the replacement of the unknown firing rates by estimated ones, a

step which is known in statistics as a plug-in step. By looking closely at the plug-in pro-

cedure, we show in Section 3.1 that it changes the variance of the asymptotic Gaussian

distribution, and, therefore, we correct the approximation to take this phenomenon into

account. Up to our knowledge, no correction due to the plug-in effect has been taken

into account even for the classical binned coincidence count. The last step (Section

3.2) of our procedure consists in carefully controlling the false discovery rate (FDR),

when several windows of analysis are considered, by using Benjamini and Hochberg

procedure (Benjamini & Hochberg, 1995).

Each time a thorough simulation study shows the actual performance of our proce-

dure. An analysis of real data is also performed in Section 4 on data that have already
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been partially published, so that the detection ability of the method can be demonstrated

in concrete situations. Finally, we discuss the overall improvements due to our proce-

dure with respect to the original method of (Grün et al., 1999) in Section 5.

In all the sequel, we write in italic technical expressions, the first time they are en-

countered and we give in the same paragraph their definition. We also use the following

notation, that is the one generally used in point process theory (Daley & Vere-Jones,

2003). A point process N is a random countable set of points (of R+ here). Each point

corresponds to the detection time of a spike of the considered neuron by the recording

electrode. For any set A of R+, N(A) is the number of points in A and N(dt) is the

associated point measure, that is N(dt) =
∑

S∈N δS where δS is the Dirac measure at

the point S. This means that for every function f ,
∫

f(t)N(dt) =
∑

S∈N f(S). The

point process corresponding to the spike train of neuron j is denoted Nj and when M

trials are recorded, the point process corresponding to the spike train of neuron j during

trial m is denoted N
(m)
j . In all the sequel and whatever the chosen model, we assume

that the M trials are independent and identically distributed (i.i.d.), which means er-

godicity across the trials, except when precisely stated otherwise. We denote by P the

probability measure, by E its corresponding expectation and by Var its corresponding

variance. Also 1A denotes the indicator function of the event A, which takes value 1

when A is true and 0 otherwise. Hence a function γ × 1A takes value γ on A and 0 on

the complementary event Ac.

Fundamental notions for the present article are given in the following definition (see

also (Staude et al., 2010) for this kind of distinction).✬

✫

✩

✪

Definition 1: Real single unit data are recorded with a certain resolution h, which

is usually 10−3s or 10−4s depending on the experiment. Formally time is cut into

intervals of length h and of the form [ih − h/2, ih + h/2). Then one associates to

any point process, N , its associated sequence at resolution h, i.e. a sequence of 0

and 1, (Hn)n, where Hi = 1 corresponds to the presence of (at least) one point of

N in [ih − h/2, ih + h/2) (see also Figure 1.A). Reciprocally, to a sequence of 0

and 1, (Hn)n, we associate a point process N by taking the set of all points of the

type S = ih such that Hi = 1. Such point process that is forced to have only points

of the type ih, for some integer i, is called discretized at resolution h.

2 Probabilistic study of the coincidence count

2.1 The multiple shift coincidence count

A pair of neurons being recorded, the question is how to properly define a coincidence

and more precisely, the coincidence count. Usually those counts are computed over
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several windows of time. We focus in this section on only one window W of length

T , keeping in mind that this small window is strictly included in a much larger record-

ing. Because processes can be discretized, and to avoid tedious indexations, it is easier

to think that W corresponds to indices i = 1, ..., n with T = nh (see Figure 1.A).

However, the reader has to keep in mind that there are points outside this window, cor-

responding to indices i that can be non positive or larger than n.

In classical UE methods, both spike trains are usually represented by sequences of

0 and 1 of length r = T/(d × h), for some integer d ≥ 1 (Grün, 1996; Grün et al.,

2010). The presence of 1 at position i indicates that there is at least one spike in the

ith segment of length d × h. The segments of length d × h are usually called bins

and are centred around points of the type id × h. The previous construction means

that the real data have been binned at a coarser level (namely d× h) than their original

resolution h. We denote by D1
1, ..., D

1
r and by D2

1, ..., D
2
r , the associated sequence to the

first and second neuron respectively. According to this bin construction, a coincidence

at time C = id × h happens if D1
i = D2

i = 1. The coincidence count, in this binning

framework, is then the number of i’s such that D1
i = D2

i = 1. The problem, underlined

in (Grün et al., 1999), is that for reasonable d (typically d × h = 0.005s), a significant

number of spikes that are at distance less than d × h are not counted if they fall in two

adjacent and distinct bins: the binning effect generates a significative loss in synchrony

detection.

The multiple shift method, introduced in (Grün et al., 1999), uses a notion of coin-

cidence count that corrects this loss in synchrony detection by shifting one spike train

(N2) with respect to another spike train (N1), which is fixed, by step of size h, both

spike trains being kept at their original resolution level h. There are two ways of defin-

ing the multiple shift coincidence count depending on whether data outside the window

of interest, W , may enter or not when the spike train N2 is shifted as one can see on

Figure 1.B.

In the symmetric multiple shift coincidence count, both spike trains, N1 and N2, are

observed on a window W and data outside W are discarded. Those spike trains are

discretized at resolution h and are consequently considered as a sequence of 0 and 1,

denoted H1
1 , ..., H

1
n and H2

1 , ..., H
2
n respectively in the sequel. Then a (near) coincidence

is observed at time ih on the window W , if there exists a shift j, integer in {−d, ..., d},

such that H1
i = H2

i+j = 1. Note that this definition implies in particular that such a j

should also satisfy that

1 ≤ i+ j ≤ n (1)

since the recordings outside the window W of interest are discarded. The symmetric

multiple shift coincidence count is then defined by the total number of (near) coinci-
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A: Discretization of a spike train

time

Window W

h/2 nh+h/2h/2-dh nh+h/2+dh

Window Wd

x x x x xx x x x x

x = spike

Non discretized spike train N

Associated sequence 

       of N on W
1 1 00 1 0

Associated sequence

      of N on Wd
1 1 1 0 1 0 1 0 1 0

B: Multiple Shift coincidence count (d=2)

Symmetric Asymmetric

N1 on W

N2 on W

Shift of N2

j=0

j=1

j=-1

j=2

j=-2

N1 on W

N2 on Wd

1 0 1 0 1 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0 1

1

1

1

1 1

1

1

1

1

1 0

1 0

1 0

1 0

1 0

C: Interpretation in term of delay

Symmetric Asymmetric

1 0 1 0 1 0

1 1 0 0 0 0

1 0 1 0 1 0

1 11 0 0 0 0 0 1 1

4 coincidences 6 coincidences

N1 on W

N2 on W N2 on Wd

N1 on W

Figure 1: Discretization and multiple shift coincidence count. In A, illustration of the

discretization of a spike train on the window W and on the enlarged window Wd. In B,

illustration of both symmetric and asymmetric multiple shift coincidence counts. In C,

interpretation of those notions in term of delay: an edge corresponds to a couple (i, k),

where i (resp. k) is the position of a 1 in the first (resp. second) spike train, and for

which the delay |i − k| is less than d. The number of coincidences is then the number

of edges. In grey are represented data that are outside W but inside Wd and that are

therefore taken into account in the asymmetric notion but not in the symmetric one.
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dences on the window W , i.e. formally speaking

X =
n

∑

i=1

∑

j/|j|≤d and 1≤i+j≤n

1H1
i =H2

i+j=1. (2)

Taking k = i+ j in the previous sum, we obtain

X =
n

∑

i=1

n
∑

k=1

1|k−i|≤d1H1
i =11H2

k
=1. (3)

Hence, it can be also understood as the total number of couples (i, k) such that H1
i =

H2
k = 1, such that the delay |k − i| ≤ d and such that both i and k belong to {1, ..., n}.

Both i and k correspond to a spike in the window of interest W : this present notion is

therefore symmetric in the first and second spike trains (see Figure 1.C).

If condition (1) is not fulfilled and if j is free, then when the shift is performed, data

outside of W ”enter” and interact with data inside W (see Figure 1.B). This leads to the

asymmetric multiple shift coincidence count, formally defined as follows

Xa =
n

∑

i=1

∑

j/|j|≤d

1H1
i =H2

i+j=1. (4)

Taking k = i+ j in the previous sum, we obtain this time

Xa =
n

∑

i=1

∑

k∈Z

1|k−i|≤d1H1
i =11H2

k
=1 =

n
∑

i=1

n+d
∑

k=1−d

1|k−i|≤d1H1
i =11H2

k
=1. (5)

Hence, it can be also understood as the total number of couples (i, k) such that H1
i =

H2
k = 1, such that the delay |k− i| ≤ d, such that i (in {1, ..., n}) corresponds to a spike

of N1 in W and such that k (in {1 − d, ..., n + d}) corresponds to a spike of N2 in the

enlarged window Wd = {y = x+u, x ∈ W,u ∈ [−dh, dh]}. Note that with h = 10−3s,

it is quite usual to have n = 100 and up to d = 20. Hence, in the asymmetric notion,

one sequence can be 40% larger than the other one.

In the original Matlab code of (Grün et al., 1999), coincidences, i.e. couples (i, k)

such that |k − i| ≤ d, were identified at first and indexed by their position on the first

spike train, N1. Therefore when focusing on a given window W , all the coincidences

(i, k) for which i corresponds to a spike of the first spike train N1 in W were counted,

whatever the value of k. This is exactly the asymmetric multiple shift coincidence

count.

However, on the one hand, all coincidence counts are classically used to detect

dependence. They are compared to the distribution expected under the independence

hypothesis. Since the UE method aims at locally detecting the dependence, the inde-

pendence hypothesis is a local one, which depends on the underlying W , and which
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is classically understood as H0: ”N1 and N2 are independent on the window of in-

terest W ”. But using an asymmetric test statistic (as the asymmetric multiple shift

coincidence count) for testing a symmetric notion (namely the independence) can lead

to different detections with the same data set, depending on which spike train is re-

ferred as N1 (see also Figure 11 for a concrete example on real data for the original UE

method). Therefore the symmetric notion leading to symmetric answers to the question

of whether the two spike trains are independent or not, seems the more natural.

On the other hand, one faces the problem of understanding the distribution under

the independence hypothesis. Usually, models of independence consequently need to

be imposed and in many articles on the UE method (in particular in (Grün et al., 1999)),

the spike trains are modelled by independent Bernoulli processes. More precisely, the

Hj
i are assumed to be independent and identically distributed Bernoulli variables with

parameter pj = λjh, where λj is the firing rate of the neuron j. Based on the fact that

Uik = 1H1
i =11H2

k
=1 is also a Bernoulli variable of parameter p1p2, and that for each i

there are 2d+ 1 corresponding Uik in the sum of (5), it is easy to prove that

mg = λ1λ2h
2n(2d+ 1), (6)

is the expectation of the asymmetric multiple shift coincidence count, Xa (see (5)). This

is the main quantity used in (Grün et al., 1999) to understand the distribution under

the independence assumption (see (15) in (Grün et al., 1999)). The problem is more

complex for the symmetric multiple shift coincidence count. The main problem with

such a derivation for the symmetric notion is that when i is close to 1 or n one cannot

always find (2d+ 1) indices k such that |k − i| ≤ d and k ∈ {1, ..., n}. There could be

much less. This edge effect is negligible for small d but becomes more critical when d

is large. Because we consider that the symmetric notion is the most relevant one, one

of our first aim is to take this edge effect into account and we want to propose a correct

formula for X too.

Note also that when deriving (6) for the asymmetric notion Xa, we have been forced

to implicitly assume more than H0: ”N1 and N2 are independent on the window of

interest W ”, because the index k may correspond to points in the enlarged window Wd

that are not in the window of interest W . In fact, we have assumed that H ′
0: ”N1 on W is

independent on N2 on Wd”. This is actually this last asymmetric hypothesis H ′
0 which

is natural when considering the asymmetric multiple shift coincidence count, and not

the symmetric hypothesis H0. However, if one rephrases the independence hypothesis

as H ′
0, two different sets of windows need to be considered: one set of classical windows

for N1 and one set of enlarged windows for N2. This is not reasonable either, since again

conclusions of the UE detection method can be different when exchanging the role of

N1 and N2 (see also Figure 11).

Finally, in (Grün et al., 1999), the distribution of multiple shift coincidence count
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is approximated by a Poisson distribution, as it is classically done for binned coinci-

dence count, set-up where the Poisson distribution is viewed as the approximation of

a Binomial distribution. However, if it is true that the present coincidence count is a

sum of Bernoulli variables, these variables are not independent because the variable Hj
i

may participate in more than one coincidence, as already noted in (Grün et al., 2010).

Therefore the present multiple shift coincidence count is not a Binomial variable when

Bernoulli processes are considered. This fact makes the behavior of this precise multi-

ple shift coincidence count different from other classical notions of coincidence count

based on binning. Therefore the present work proposes a limit distribution for the coin-

cidence count that takes this dependency into account, so that the approximation is valid

for a larger set of parameters than the Poisson approximation done in (Grün et al., 1999).

If it is quite difficult to directly do so for Bernoulli processes, this probabilistic result

can be easily derived if we approximate Bernoulli processes by Poisson processes.

2.2 Bernoulli and Poisson processes

Recall that Bernoulli processes are generated as follows. For a window W of length

T , at the resolution h, n = T/h independent Bernoulli variables, Bi, with parameter

p = λh are simulated, where λ is the firing rate of the considered neuron. The associated

point process (see Definition 1) is denoted NB in the sequel.

It is well known that when h tends to 0, then the Bernoulli process tends to a Poisson

process. This can for instance be seen because the number of points, NB(W ), is a

binomial variable that tends in distribution towards a Poisson variable with parameter

λT when h tends to 0. In particular the approximation is valid as soon as n ≥ 100

and p ≤ 0.1, (Hogg & Tanis, 2009, p. 159). Since, by construction, for any disjoint

sets A1, ..., Ak, NB(A1), ..., NB(Ak) are independent variables, we recover the classical

definition of a homogeneous Poisson process of intensity λ (see (Daley & Vere-Jones,

2003) for a precise definition). Note that Poisson processes are not discretized at any

resolution level, whereas Bernoulli processes are (see Definition 1).

More precisely, in our set-up, windows of length 0.1s are classically considered,

with firing rates less than 100Hz and with resolution h = 10−3s or h = 10−4s. We are

consequently typically in a case where the Poisson approximation is valid. In (Reynaud-

Bouret et al., 2013), several classical tests, originally due to (Ogata, 1988), have been

used to test whether a point process is a homogeneous Poisson process or not and we

refer the reader to this article for detailed explanations on the procedures. In Figure 2,
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we run those tests on a simulated Bernoulli process. The p-values2 are large, meaning

that the various tests accept the Poisson assumption (see also (Ventura, 2010) for precise

definitions of tests and p-values). Moreover the repartitions of the p-values are close to

the diagonal meaning that the distributions of the various statistics (positions, numbers

of spikes or delays between spikes) are the ones given by a classical Poisson process,

and they become closer to the diagonal when h decreases.

Hence, Bernoulli processes can be well approximated by Poisson processes on the

typical set of parameters used in neuroscience and they are even almost statistically

indistinguishable from Poisson processes, at the resolution h = 10−4s.

2.3 The delayed coincidence count

Let us focus now on the symmetric notion, at least in a first approach. If we want to use

Poisson processes instead of Bernoulli processes to perform the computations, we need

to rewrite the symmetric multiple shift coincidence count in terms of point processes

that are not necessarily discretized at the resolution level h (see Definition 1). To turn

(3) into a more generic formula valid for any point process, let us remark the following

phenomenon. Fix i ≤ k and fix some x = ih as point of N1. If N2 is not discretized

and if we consider its associated sequence (H2
1 , ..., H

2
n) at resolution h (see Definition

1), then a point y of N2 that corresponds to a k such that |k − i| ≤ d, could be as far as

d × h + h/2 and still counted as a near coincidence. In particular, when d = 0, y is in

the segment of center x with length h if and only if |y − x| ≤ h/2. Therefore, let

δ = d× h+ h/2. (7)

The delayed coincidence count, generalizing the notion of symmetric multiple shift

coincidence count for general point process, can be written as follows.✬

✫

✩

✪

Definition 2: The delayed coincidence count with delay δ on the window W is

given by

X =

∫

W 2

1|x−y|≤δN1(dx)N2(dy). (8)

When N1 and N2 are discretized with resolution h, both Equations (3) and (8) coin-

cide and both coincidence counts are exactly the same.

2A p-value is the random value of α for which a test of level α passes from ”accept” to ”reject”. Note

that usually when α = 0, the test always accepts, whereas it always rejects when α = 1: therefore there

is a limit value which depends on the observations for which one passes from one decision to another

one. If the test is of type I error exactly α for all α, then one can prove that the corresponding p-value is

uniformly distributed on [0, 1] under H0. Therefore their value as position of their normalized rank over

an i.i.d. sample should be close to the diagonal of the square.
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B: Uniformity test on 0.1 s 

over 40 trials
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D: Exponentiality test on 10s

Figure 2: Poisson approximation of the Bernoulli process. 2000 p-values for the fol-

lowing tests are displayed as function of their rank divided by 2000, the diagonal is also

represented. Two Bernoulli processes are simulated with λ = 30Hz and h = 10−3s or

10−4s. In A, for each simulation, Kolmogorov-Smirnov uniformity test is performed on

a Bernoulli process simulated on a window W = [h/2, T + h/2] of length T = 2s. The

test statistic is supx∈W |F̂ (x) − (x − h/2)/T | where F̂ (x) is the empirical cumulative

distribution function of the points of the considered process. If the test statistic is larger

than the 1−α quantile of the tabulated Kolmogorov-Smirnov distribution, then the uni-

formity hypothesis is rejected. In B, Kolmogorov-Smirnov uniformity test is performed

on the aggregated process over 40 simulated trials (i.e. the considered point process is

the union of 40 i.i.d. Bernoulli processes simulated on W with T = 0.1s). In C, the

chi-square Poisson test over 40 trials is performed on the total number of points per

trials for Bernoulli point processes simulated on W with T = 0.1s. In D, exponentiality

Test 1 (Reynaud-Bouret et al., 2013) of the delays (ISI) between points of a Bernoulli

process on W with T = 10s is performed. See Test 1 of (Reynaud-Bouret et al., 2013)

for more insight, here used with subsample size given by ”(total number of delays)2/3”.
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If the symmetric case is the most relevant one in our framework and if the delayed

coincidence count should always be understood as a symmetric quantity in (N1, N2),

note that however the same translation can be done for the asymmetric notion, and one

can also introduce

Xa =

∫

W

(
∫

Wδ

1|x−y|≤δN2(dy)

)

N1(dx), with Wδ = {y = x+u, x ∈ W,u ∈ [−δ, δ]}
(9)

which is clearly not symmetric.

Now let us translate the multiple shift UE method introduced by Grün and her col-

laborators to the general point process framework. Equation (6) can be easily rewritten

as

mg = 2δTλ1λ2, (10)

where T is the length of the window W .

In (Grün et al., 1999), the distribution of Xa is approximated by a Poisson distribu-

tion with parameter mg. We will see later in Section 3 that assuming X to be Poisson

distributed with parameter mg, may also lead in certain cases to a reasonably correct be-

havior of the UE procedure. Therefore in the sequel, we will always study both cases,

the UE symmetric procedure (UEs), where X is assumed to be Poisson distributed with

parameter mg, and the UE asymmetric procedure (UEa), where Xa is assumed to be

Poisson distributed with parameter mg.

Our new method focuses on the (symmetric) delayed coincidence count X . For this

count, assuming that both N1 and N2 are now Poisson processes, one can prove the

following result.

Theorem 1. Let us fix δ in (8) such that

0 < 2δ < T, (11)

where T is the length of the window W . If N1 and N2 are independent homogeneous

Poisson processes with respective intensities λ1 and λ2 on W , then the expectation of

the delayed coincidence count X and its variance are given by

m0 := E(X) = λ1λ2

[

2δT − δ2
]

(12)

and

σ2 := V ar(X) = λ1λ2

[

2δT − δ2
]

+
[

λ2
1λ2 + λ1λ

2
2

]

[

4δ2T − 10

3
δ3
]

. (13)

Moreover if M i.i.d. trials are available, then

√
M

m̄−m0√
σ2

L−→ N (0, 1), (14)

13



where m̄ is the average observed coincidence count with delay δ, i.e.

m̄ =
1

M

M
∑

m=1

X(m) with X(m) =

∫

W 2

1|x−y|≤δN
(m)
1 (dx)N

(m)
2 (dy). (15)

The symbol
L−→ means convergence in distribution when M tends to infinity. This

means for instance that the quantiles of
√

M/σ2 (m̄−m0) tend to those of N (0, 1),

when M becomes larger. The proof is given in the supplementary file.

This result states first that E(X) can be computed when both observed point pro-

cesses are independent homogeneous Poisson processes and that the edge effects appear

in m0 via a quadratic term in δ which is the difference with respect to mg. Therefore it

needs to be taken into account if one wants to compute delayed coincidence count with

large δ. Note that if (11) is not satisfied, then all the couples (x, y) in W are affected by

this edge effect and in this case, the above formula for the expectation and variance are

not valid anymore.

Note also that the Fano factor3 i.e.

F :=
Var(X)

E(X)
= 1 + 2(λ1 + λ2)δ(1 + o(1)), (16)

is strictly larger than 1. The gap between the variable X and a Poisson variable increases

with the firing rate and with δ. Several papers have also considered the Fano factor

for binned coincidence count showing that the distribution may be different from a

Poisson distribution, but up to our knowledge nothing has been done for the multiple

shift coincidence count. In particular, in the recent (Pipa et al., 2013), Fano factors for

renewal processes are computed only in the case of a coincidence count, which is binned

but not clipped. Multiple shift coincidence count and binned clipped coincidence count

are exactly the same when the size of the bin is h for the binned coincidence count and

when d = 0 in (2) or (4) for the multiple shift symmetric or asymmetric coincidence

count. The fact that coincidence counts are clipped or not has almost no effect for

very small resolution h. Since delayed coincidence count is a generalization of the

symmetric multiple shift coincidence count, it is logical that we recover results of the

same flavour as the ones of (Pipa et al., 2013), in the Poisson case, with δ = h/2 (i.e. (7)

with d = 0). Note however that both results are not equivalent since they are not based

on the same notion of coincidence count. Using Poisson processes instead of Bernoulli

processes allows us to produce such results for the generalization of the symmetric

multiple shift coincidence count to the more general not necessarily discretized point

process case.

Note that for the asymmetric notion, one can also show that E(Xa) = mg, when

Xa is defined by (9). We will see later on simulations that Xa (discretized or not) is

3In the following equation, o(1) denotes a quantity that tends to 0 when δ tends to 0.
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not Poisson either. Other similar computations would lead to another Gaussian approx-

imation of Xa. However we do not want to perform them and consequently correct the

asymmetric UE procedure in this way. Indeed, as stated before, the asymmetric notion

can lead to very awkward results that depend on which spike train is referred as N1,

when testing the independence hypothesis on W which is a symmetric statement (see

Figure 11 for a practical example). Even if we correct the approximation, those awk-

ward conclusions will remain and are intrinsic to the notion of asymmetric coincidence

count itself.

In addition, let us conclude this section with some simulations to underline the fact

that the present approximation of (14) is not only valid for Poisson processes in theory

but also for Bernoulli processes in practice and also to show that the distributions of X

or Xa are not Poisson in any case.

In Figure 3, the coincidence counts are symmetric. The three distributions, i.e. the

one of the delayed coincidence counts for Poisson processes with δ = d × h, the one

with δ = d×h+h/2 and the one of the symmetric multiple shift coincidence counts for

Bernoulli processes with resolution h are almost indistinguishable. They are all three

very well approximated by the Gaussian approximation N (Mm0,Mσ2) of (14) and the

distinction between δ = d×h or δ = d×h+h/2 cannot be made when h = 10−4s. On

the contrary, all the Poisson distributions either with mean Mmg (biased with neglected

edge effects) or Mm0 (unbiased with edge effects taken into account), with δ = d × h

or δ = d × h + h/2 are not fitting the coincidence count distribution: the variance is

larger than what it is predicted by the Poisson approximation.

In Figure 4, the coincidence counts are asymmetric. It is once again clear that the

asymmetric multiple shift coincidence count on Bernoulli processes is almost indistin-

guishable from its generalization on Poisson processes. It is also clear that they are not

Poisson distributed, in particular for large δ, even if mg correctly matches the mean,

the difference being less obvious for small δ. Once again there is no real difference in

considering δ = d× h or δ = d× h+ h/2 when h is small (h = 10−4s).

As a summary of this section, note consequently that

• Symmetric coincidence count are much more adapted to the purpose of testing an

independence hypothesis between N1 and N2 on a fixed window W , which is a

symmetric statement.

• It is equivalent to simulate Poisson or Bernoulli processes for coincidence counts

(symmetric or not).

• Symmetric multiple shift coincidence counts are distributed as delayed coinci-

dence counts, the latter being just the generalization of the former to the general

point process theory. A similar version exists for the asymmetric case.
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Figure 3: Repartition of the symmetric total coincidence count (i.e. the sum of the co-

incidence counts over M trials). In all the experiments, λ = 30Hz, M = 40 trials and

a window W of length T = 0.1s are used. Bernoulli processes have been simulated

with resolution h. Are plotted histograms over 5000 runs of symmetric multiple shift

coincidence count for Bernoulli processes (see (2)) and of delayed coincidence count

with δ = x or δ = x + h/2 for Poisson processes (see Definition 2). Are also plotted

densities of the corresponding Gaussian approximation as well as probability distribu-

tion functions of the corresponding Poisson approximation with mean Mmg or Mm0,

for the different choices of δ.

• In either case, the distribution is not Poisson.

• In both cases (Poisson or Bernoulli processes), the Gaussian approximation of

(14) is valid for the symmetric notion, on the classical set of parameters.

• Edge effects need to be taken into account for large δ, when dealing with the

symmetric notion of coincidence count.

• Considering δ = d × h or δ = d × h + h/2 with h = 10−4s is completely

equivalent.

Therefore, in the sequel, we use delayed coincidence count with δ of the type d×h.

Bernoulli processes are replaced by Poisson processes when necessary. When real data
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Figure 4: Repartition of the asymmetric total coincidence count. In all the experiments,

λ = 30Hz, M = 40 trials and a window W of length T = 0.1s are used. Bernoulli

processes have been simulated with resolution h. Are plotted histograms over 5000

runs of asymmetric multiple shift coincidence count (see (4)) for Bernoulli processes

and of Xa (see (9)) with δ = x or δ = x + h/2 for Poisson processes. Are also

plotted probability distribution functions of the corresponding Poisson approximation

with mean Mmg, for the different choices of δ.

are considered, we use the resolution h = 10−4s, which is the machine resolution of the

recorded spike trains.

3 Statistical study of the independence tests

The previous section gives a probability result, namely the Gaussian approximation.

Now let us see how this approximation can be turned into a fully operational statistical

method. There are two main points that need to be taken into account. First, we do

not know the value of m0 in practice and we therefore need to plug an estimate in:

how does this plug-in affect the distribution? Secondly, we usually consider several

windows, therefore several tests are performed at once: how can one guarantee a small

false discovery rate for all the tests at once?
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3.1 Plug-in and modification of the Gaussian approximation

Equation (14) depends on m0 and σ that are unknown. Hence to perform the approx-

imation in practice, we need to replace them by corresponding estimates, based on the

observations. This step is known in statistics as a plug-in step and it is known to some-

times dramatically modify the distribution. One of the most famous example is the

Gaussian distribution which has to be replaced by a Student distribution when the vari-

ance is unknown and estimated by an empirical mean over less than 30 realizations 4

(Hogg & Tanis, 2009, Table VI, p 658).

Theoretical study

In the present set-up, as far as asymptotic in the number of trials M is concerned, the

plug-in of an estimate of σ does not change the Gaussian distribution, whereas the plug-

in of an estimate of m0 changes the variance of the limit, as we can see in the following

result.

Theorem 2. With the same notation as in Theorem 1, let λ̂j be the unbiased estimate of

λj , the firing rate of neuron j, defined by

λ̂j :=
1

MT

M
∑

m=1

N
(m)
j (W ). (17)

Let also m̂0 be an estimate of m0 defined by

m̂0 := λ̂1λ̂2[2δT − δ2]. (18)

Then under the assumptions of Theorem 1,

√
M (m̄− m̂0)

L−→ N (0, v2), (19)

where

v2 := λ1λ2

[

2δT − δ2
]

+ λ1λ2 [λ1 + λ2]

[

2

3
δ3 − T−1δ4

]

. (20)

Moreover v2 can be estimated by

v̂2 := λ̂1λ̂2

[

2δT − δ2
]

+ λ̂1λ̂2

[

λ̂1 + λ̂2

]

[

2

3
δ3 − T−1δ4

]

(21)

and √
M

m̄− m̂0√
v̂2

L−→ N (0, 1). (22)

The proof is given in the supplementary file.

4More precisely, if X1, ..., Xn are i.i.d. Gaussian variables with mean m and variance σ2 then
√

n/σ2
∑

n

i=1
(Xi − m) ∼ N (0, 1) whereas

√

n/σ̂2
∑

n

i=1
(Xi − m) ∼ T (n − 1) where σ̂2 is the

unbiased estimate of σ2.
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Figure 5: Repartition of the different renormalizations of the various coincidence

counts. Each time 5000 simulations of two independent Poisson processes with

λ1 = λ2 = 30Hz, M = 40 trials, a window W of length T = 0.1s and δ = 0.02s

are performed. In A, histograms of
√
M(m̄ − m0)/σ, of

√
M(m̄ − m̂0)/v and of√

M(m̄ − m̂0)/v̂ with m̄ the average delayed coincidence count. In B, histogram of√
M(m̄ − m̂0)/σ and of

√
M(m̄ − m̂0)/σ̂ with m̄ the average delayed coincidence

count. In C, histogram of
√
M(m̄−mg)/

√
mg and of

√
M(m̄− m̂g)/

√

m̂g with m̄ the

average delayed coincidence count. In D, same thing as in C but with m̄, the average of

Xa (see (9)), the asymmetric coincidence count.

Figure 5 illustrates the impact of the plug-in in the renormalized coincidence count

distribution. When using plug-in, we need to renormalize the count since at each run a

new value for the estimate is drawn. Therefore our reference in Figure 5 is the standard

Gaussian variable. First we see that the Gaussian approximation of (14) is still valid,

but more importantly that the plug-in steps of (19) and (22) are valid on Figure 5.A.

Instead of the new variance v2 and its estimate v̂2, we have also plugged m̂0 in with the

original variance, σ2, or a basic estimate of σ2, namely

σ̂2 = λ̂1λ̂2

[

2δT − δ2
]

+
[

λ̂2
1λ̂2 + λ̂1λ̂

2
2

]

[

4δ2T − 10

3
δ3
]

. (23)
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The result in Figure 5.B clearly shows that the variance σ2 or the plug-in σ̂2 are wrong.

Hence the plug-in correction definitely needs to be taken into account. Figure 5.C and

Figure 5.D show what happens for the Poisson approximation of (Grün et al., 1999).

More precisely, Poisson variables with parameter θ are well approximated by N (θ, θ),

as soon as θ is large enough. So the variables are accordingly renormalized so that

they can be plotted in the same space as the standard Gaussian variables. The Poisson

approximation with parameter Mmg or its estimation Mm̂g with

m̂g = 2λ̂1λ̂2δT, (24)

are clearly not satisfactory for the symmetric count (see Figure 5.C), because of a bias

towards the left due to the neglected edge effects. For the asymmetric count (see Fig-

ure 5.D), if the variance is too large when using mg, the approximation is much more

accurate when replacing mg by m̂g.

The Gaussian approximation of the UE method - denoted GAUE in the following -

given by Theorem 2, leads to three different single tests depending on what needs to be

detected.✬

✫

✩

✪

Definition 3: The GAUE tests

• the symmetric test ∆sym
GAUE(α) of H0: ”N1 and N2 are independent” versus

H1: ”N1 and N2 are dependent”, which rejects H0 when m̄ and m̂0 are too

different:

|m̄− m̂0| ≥ z1−α/2

√

v̂2

M
(25)

• the unilateral test by upper value ∆+
GAUE(α) which rejects H0 when m̄ is too

large:

m̄ ≥ m̂0 + z1−α

√

v̂2

M
(26)

• the unilateral test by lower value ∆−
GAUE(α) which rejects H0 when m̄ is too

small:

m̄ ≤ m̂0 − z1−α

√

v̂2

M
(27)

where zt is the t-quantile of N (0, 1), i.e. the real number zt such that

P(N (0, 1) ≤ zt) = t,

and where m̄ is the average delayed coincidence count (see Definition 2).

By Theorem 2, those three tests are asymptotically of type I error α, if the pro-

cesses Nj are homogeneous Poisson processes. It means that under this assumption,

the probability that the test rejects the independence hypothesis, whereas the processes

are independent, tends to α when the number of trials M tends to infinity.
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The original UE multiple shift method of (Grün et al., 1999) can be formalized in

the same way.✬

✫

✩

✪

Definition 4: The UE tests

• a symmetric test ∆sym
UE (α) which rejects H0 when Mm̄ ≤ qα/2 or Mm̄ ≥

q1−α/2

• the unilateral test by upper value ∆+
UE(α) which rejects H0 when Mm̄ ≥

q1−α

• the unilateral test by lower value ∆−
UE(α) which rejects H0 when Mm̄ ≤ qα

where qt is the t-quantile of a Poisson variable whose parameter is given by

Mm̂g = 2MδTλ̂1λ̂2.

Each of the previous tests exists in two versions (UEs or UEa respectively) depend-

ing on whether m̄ is the average delayed coincidence count (symmetric notion, see

(8)) or the average Xa (asymmetric notion, see (9) ).

Up to our knowledge, no other operational method based on multiple shift coin-

cidence count has been developed. In particular, the distribution free methods such

as trial-shuffling methods developped by Pipa and collaborators, which avoid plug-in

problems, are based on binned coincidence count (Pipa & Grün, 2003; Pipa et al., 2003)

and not on multiple shift coincidence count. Plug-in effects can also be avoided in an-

other way, on binned coincidence count, by considering conditional distribution (Gütig

et al., 2001).

Simulation study on one window

The simulation study is consequently restricted to the two previous sort of tests (GAUE

and UE) to focus on this particular notion of delayed/multiple shift coincidence count,

which is drastically different from binned coincidence count.

Simulated processes Several processes have been simulated. The Poisson processes

have already been described in Section 2.2. They constitute a particular case of more

general counting processes, called the Hawkes processes, which can be simulated by

thinning algorithms (Daley & Vere-Jones, 2003; Ogata, 1981; Reimer et al., 2012). Af-

ter a brief apparition in (Chornoboy et al., 1988), they have recently been used again

to model spike trains in (Krumin et al., 2010; Pernice et al., 2011, 2012). A bivariate

Hawkes process (N1, N2) is described by its respective conditional intensities with re-

spect to the past, (λ1(.), λ2(.)). Informally, the quantity λj(t)dt gives the probability

that a new point on Nj appears in [t, t+dt] given the past. We refer the reader to (Brown
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et al., 2002) for a more precise definition. General bivariate Hawkes processes are given

for all time t and all indexes i 6= j in {1, 2} by

λj(t) =

(

νj +

∫

u<t

hj→j(t− u)Nj(du) +

∫

u<t

hi→j(t− u)Ni(du)

)

+

. (28)

The νj’s are real parameters called the spontaneous parameters. The functions hj→j ,

representing self-interaction, and hi→j , representing the interaction of neuron i on neu-

ron j, are functions with support in R+ and are called the interaction functions. This

equation means in particular that before the first occurrence of a spike, the Nj’s behave

like homogeneous Poisson processes with intensity νj . The first occurrence of a spike

(and the next ones) affects all the processes by increasing or decreasing the conditional

intensities via the interaction functions.

For instance, if hi→j takes large positive values in the neighborhood of a delay

x = 5ms and is null elsewhere, then 5ms after a spike in Ni, the probability to have a

new spike in Nj will significantly increase: the process Ni excites the process Nj . On

the contrary, if hi→j is negative around x, then 5ms after a spike in Ni, the probabil-

ity to have a new spike in Nj will significantly decrease: the process Ni inhibits the

process Nj . So Hawkes processes enable us to model lack of coincidences as well as

profusion of coincidences depending on the sign of the interaction functions. The pro-

cesses (N1, N2) in this Hawkes model are independent if and only if h1→2 = h2→1 = 0.

Note also that the self-interaction functions hj→j , when very negative at short range,

model refractory periods, making the Hawkes model more realistic than Poisson pro-

cesses with respect to real data sets, even in the independence case. In particular when

hj→j = −νj × 1[0,x], all the other interaction functions being null, the couple of sim-

ulated processes are independent Poisson processes with dead time x (PPD), modeling

strict refractory periods of length x (Reimer et al., 2012). Finally Hawkes processes are

not discretized at any resolution level as well as Poisson processes.

Another popular example is the injection model, which is discretized at the reso-

lution h and which is used in (Grün et al., 1999). Two independent Bernoulli pro-

cesses NB1
and NB2

are generated with respective firing rates ν1 and ν2. Then a third

Bernoulli process Nc is generated with firing rate νc. A fourth point process N ′
c is gen-

erated from Nc by moving independently each point of Nc by a random uniform shift

in {−x, ..., x} × h, for a prescribed nonnegative integer x. Then the two spike trains

are given by N1 = NB1
∪ Nc and N2 = NB2

∪ N ′
c (see (Grün et al., 1999) for more

details). This injection model can only model profusion of coincidences and not lack of

coincidences. We refer the interested reader to the supplementary file for a more precise

correspondence of the parameters between Hawkes and injection models.

Injection and Hawkes models are stationary, which means that their distribution

does not change by shift in time (see (Daley & Vere-Jones, 2003, p. 178) for a more

precise definition). This is also the case of homogeneous Poisson processes. One can
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also simulate inhomogeneous Poisson processes, which correspond to a conditional

intensity t → λ(t) which is deterministic but not constant. These inhomogeneous

Poisson processes are therefore non stationary in time (see (Daley & Vere-Jones, 2003)

for more details).

Figure 6 gives the percentage of rejections over various numerical experiments, that

have been led on those simulated processes.

Type I error Since H0 refers to ”N1 and N2 are independent on W ” (or ”N1 on W

is independent of N2 on Wδ” for UEa), we have simulated various situations of inde-

pendence. Our theoretical work proves that the level is asymptotically guaranteed if the

processes are homogeneous Poisson processes. Our aim is now twofolds: First check

whether the level is controlled for a finite, relatively small, number of trials (Experi-

ments A and B). Next check if it still holds, when the processes are not homogeneous

Poisson processes (Experiments C, D and E). Moreover we want to compare our results

to the ones of UEs and UEa. The upper left part of Figure 6 shows that the three forms

of GAUE (symmetric, upper and lower value) guarantee a level of roughly 5% and this

even for a very small number of trials (M = 20) with a very small firing rate (λ = 3Hz)

or with large δ (δ = 0.02s). In this sense, it clearly extends the validity of the original

UE method (UEa in the lower part of Figure 6), which is known to be inadequate for

firing rates less than 7Hz (Roy et al., 2000), as one can see with Experiments A. Note

also that the level for GAUE as well as for UEa seems robust to changes in the model:

non stationarity for inhomogeneous Poisson processes (Experiments C), refractory pe-

riods when using Hawkes processes (Experiments D and E). Note finally that the UEs

method does not guarantee the correct level except for the test by upper value, which is

much smaller than 5%.

Power Several dependence situations have been tested in the right part of Figure 6:

GAUE tests by upper value can adequately detect profusion of coincidences induced

by injection models (see Experiments F and G) or Hawkes models (see Experiments

H and I). GAUE tests by lower value can on the contrary detect lack of coincidences,

simulated by inhibitory Hawkes processes (see Experiments J and K). Note moreover

that symmetric GAUE tests can detect both situations. The same conclusions are true

for both UE methods, the power being of the same order as the GAUE tests except for

the injection case with low νc (Experiments F with δ = 0.02 and M = 100) where

GAUE is clearly better.

As a partial conclusion, the Gaussian approximation of Theorem 1 needs to be mod-

ified to take into account the plug-in effect. Once this modification is done (see The-

orem 2) the Gaussian approximation leads to tests that are shown to be of asymptotic

level α. Our simulation study has shown (see Figure 6) that MTGAUE type I error is
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of order 5% even for small firing rates and that those tests seem robust to variations

in the model (non stationarity, refractory periods). Moreover symmetric GAUE tests

are able to detect both profusion and lack of coincidences. Except for very small firing

rates where its level is not controlled, the original UE method (UEa) shares the same

properties, whereas the level of UEs is not controlled in any cases except for the test by

upper values.

3.2 Multiple tests and false discovery rate

Classical UE analysis (Grün, 1996; Grün et al., 1999) is performed on several windows,

so that dependence regions can be detected through time. We want to produce the same

kind of analysis with GAUE. However, since a test is by essence a random answer, it is

not true that the control of one test at level α automatically induces a controlled number

of false rejections.

Indeed, let us consider a collection W of possibly overlapping windows W , with

cardinality K and, to illustrate the problem, let us assume that we observe two indepen-

dent homogeneous Poisson processes. Now let us perform any of the previous GAUE

tests at level α on each of the previous windows. Then by linearity of the expectation,

one has that

E(number of rejections) = KP(one test rejects) →M→∞ Kα. (29)

Moreover, if L is the maximal number of disjoint windows in W , then the probability

that the K tests accept the independence hypothesis is upper bounded by

P(the L tests accept) = P(one test accepts)L →M→∞ (1− α)L →L→∞ 0, (30)

by independence of the test statistics between disjoint windows. This means that for

large M , this procedure is doomed to reject in average Kα tests and the procedure will

reject at least one test, when L grows. Consequently, one cannot apply multiple tests

procedure without correcting them for multiplicity. Ventura also underlined the problem

of the multiplicity of the tests, and proposed a procedure which is not as general as the

one described here (Ventura, 2010).

Multiple testing correction: a Benjamini and Hochberg approach

Let us denote ∆W the test considered on the window W .

One way to control multiple testing procedure based on the ∆W ’s, is to control the

so called familywise error rate (FWER) (Hochberg & Tamhame, 1987), which consists

in controlling

FWER = P(∃W ∈ W ,∆W wrongly rejects). (31)
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This can be easily done by Bonferroni bounds:

P(∃W ∈ W ,∆W wrongly rejects) ≤
∑

W∈W

P(∆W wrongly rejects) →M→∞ Kα.

(32)

So Bonferroni’s method (Holm, 1979) consists in applying the ∆W tests at level α/K

instead of α to guarantee a FWER less than α. However, the smaller the type I error, the

more difficult it is to make a rejection. Usually, the rejected tests are called detections

(or discoveries). So when K is large, Bonferroni’s procedure potentially leads to no

discovery/detection at all, even in cases where dependent structures exist.

Another notion, popularized by (Benjamini & Hochberg, 1995) has consequently been

introduced in the multiple testing areas leading to a large amount of publications in

statistics, genomics, medicine etc in the past ten years (Benjamini, 2010). This is the

false discovery rate (FDR). Actually, a false discovery (also named false detection) is

not that bad if the ratio of the number of false discoveries divided by the total number

of discoveries is small.

More formally, let us use the notation given in Table 1.

Number of W such that ∆W accepts ∆W rejects Total

Independence on W Tnd = ” number of Fd = ”number of K0=”number of windows

correct non discoveries” false discoveries” where independence is satisfied”

Dependence on W Fnd = ”number of Td = ”number of K1=”number of windows

false discoveries” correct discoveries” where dependence exists”

Total K − R R= ”discoveries” K

Table 1: Repartition of the answers for the multiple testing procedure.

Then the false discovery rate is defined by

FDR = E

(

Fd

R
1R>0

)

. (33)

Note that when both spike trains are independent for all windows, K1 = 0, which leads

to Td = 0 and Fd = R. Hence, the FDR in the full independent case is also a control of

P(∃W ∈ W ,∆W wrongly rejects), i.e. the FWER. In all other cases, FDR ≤ FWER.

This means that when there are some W for which the independence assumption does

not hold, controlling the FDR is less stringent, whereas the relative confidence that we

can have in the discoveries is still good: if we make 100 discoveries with a FDR of 5%,

this means that on average only 5 of those discoveries will be potentially wrong.
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The question now is: how to guarantee a small FDR? To do so, Benjamini and Hochberg

(Benjamini & Hochberg, 1995) proposed the following procedure: for each test ∆W ,

the corresponding p-value PW is computed. They are next ordered such that:

P
(1)
W (1) ≤ ... ≤ P

(ℓ)
W (ℓ) ≤ ... ≤ P

(K)
W (K). (34)

Let q ∈ [0, 1] be a fixed upper bound that we desire on the FDR and define:

k = max{ℓ such that P
(ℓ)
W (ℓ) ≤ ℓq/K}. (35)

Then the discoveries of this BH-method are given by the windows W (1), ...,W (k) cor-

responding to the k smallest p-values.

The theoretical result of (Benjamini & Hochberg, 1995) can be translated in our frame-

work as follows: if the p-values are uniformly and independently distributed under the

null hypothesis, then the procedure guarantees a FDR less than q.

Now let us finish to describe our method named MTGAUE, for multiple tests based

on a Gaussian approximation of the Unitary Events, which is based on symmetric tests

to be able to detect both profusion and lack of coincidences.✬

✫

✩

✪

Definition 5: MTGAUE

- For each W in the collection W of possible overlapping windows, compute the

p-value of the symmetric GAUE test (see Definition 3).

- For a fixed parameter q, which controls the FDR, order the p-values according to

(34) and find k satisfying (35).

- Return as set of detections, the k windows corresponding to the k smallest p-

values.

The corresponding program in R is available at

math.unice.fr/∼malot/liste-MTGAUE.html
Note that in our case, the assumptions required in the approach of Benjamini-

Hochberg are not satisfied. Indeed, the tests ∆sym
GAUE are only asymptotically of type

I error α, which is equivalent to the fact that asymptotically and not for fixed M , the

p-values are uniformly distributed. Therefore, there is a gap between theory and what

we have in practice. However, as we illustrate hereafter in simulations, this difference

does not seem to significantly impact the FDR.

Moreover, to have independent p-values we should have considered disjoint windows

W . However, it is possible that we miss some detections because the dependence region

is small and straddles two disjoint windows. Therefore, it is preferable to consider slid-

ing windows that overlap. In theory, few results exist in this context - see for instance

(Benjamini & Yekutieli, 2001). In practice, we will see in the next section that this lack

of independence does not impact the FDR as well.

Finally note that when the FDR parameter q grows, there are more and more detections.
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Hence if a window is detected for q = q0, it is detected for all q ≥ q0. Therefore there

is a monotony of the set of detected windows as a function of q, in terms of inclusion.

Simulation study

On Figure 7, we see an example of detection by both methods: MTGAUE and UE with

symmetric tests. Note that UE is here performed without corrections due to the multi-

plicity of the tests as in (Grün et al., 1999) and therefore its parameter is α, which should

reflect the level of each individual test. MTGAUE clearly detects relevant regions and

very few false positives and this even for large delays δ, with a clear continuity in δ:

once a region has been detected for a small δ, it remains generally detected for a larger

δ, until the number of imposed coincidences is diluted because δ is much too large.

Therefore there is usually an interval of possible δ around the actual maximal true inter-

action (here 0.02s, whatever the model, injection or Hawkes) where the same window

is detected. Note also that profusion of coincidences in Hawkes model (Experiments

G) or in the injection model (Experiments I) are usually detected and that the detected

regions correspond to positive values for the difference m̄ − m̂0. Reciprocally nega-

tive interactions in Hawkes model (Experiments K), i.e. lack of coincidences, are also

detected and correspond to negative values of m̄ − m̂0, since they appear on Figure 7

but not in the positive detections part. Both UE methods have a much larger number of

false discoveries except when considering the positive detections of UEs.

Figure 8 gives the FDR and the false non-discovery rate. Clearly MTGAUE ensures

a FDR less than 5% as expected by the choice of the parameter q = 0.05 and this, in

all simulations. Moreover the proportion of false non discoveries is relatively small

(less than 30%) and clearly decreases when M and δ increase. Note also than even if

the trials are not i.i.d. (Case L), the method still guarantees a controlled FDR and a

reasonable amount of false negative. Both UE methods have a large FDR except the

UEs method with tests by upper values and the UEa method by lower values.

4 Real data study

MTGAUE being validated on simulated data, the method is now applied on real data,

that have already been partially published. This study is an illustration which shows

that MTGAUE is able to detect phenomenons in line with the time of the experiment.

Furthermore some novel aspects are revealed thanks to this method, completing the

existing results on those data.
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Figure 7: Detections with symmetric tests of MTGAUE with q = 0.05 and of both UEs

and UEa methods with α = 0.05, on one run with M = 20. The positive detections of

MTGAUE or UEs correspond to the detections for which m̄ > m̂0 for MTGAUE, or

detections for which m̄ > m̂g for UE (see Definition 4). 1900 single tests have been

performed on 1900 overlapping (sliding) windows of length 0.1s shifted by 0.001s.

The corresponding detections are marked by a point at the center of the windows. Each

line corresponds to a different delay: 40 different delays δ from 0.001s to 0.04s are

considered. Each time, two homogeneous independent Poisson processes are simulated

on [0, 0.5] ∪ [0.7, 1.5] ∪ [1.6, 2]s with firing rates λ1 = λ2 = 30Hz. On [0.5, 0.7]s
and [1.5, 1.6]s two dependent processes are simulated. Those dependent processes are

simulated according to Experiments G, I or K (see Figure 6). The black vertical lines

delimit the regions where the tests should detect a dependence, that is each time the

window W intersects a dependence region.
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4.1 Description of the data

Behavioral procedure The data used in this theoretical article to test the detection

ability of the MTGAUE method were already partially published in previous experi-

mental studies (Riehle et al., 2000; Grammont & Riehle, 2003; Riehle et al., 2006).

These data were collected on a 5-year-old male Rhesus monkey who was trained to per-

form a delayed multidirectional pointing task. The animal sat in a primate chair in front

of a vertical panel on which seven touch-sensitive light-emitting diodes were mounted,

one in the center and six placed equidistantly (60 degrees apart) on a circle around it.

The monkey had to initiate a trial by touching and then holding with the left hand the

central target. After a fix delay of 500ms, the preparatory signal (PS) was presented by

illuminating one of the six peripheral targets in green. After a delay of either 600ms

or 1200ms, selected at random with various probability, it turned red, serving as the

response signal and pointing target. During the first part of the delay, the probability

presp for the response signal to occur at (500+600)ms =1.1s was either 0.3, 0.5 or 0.7,

depending on the experimental condition. Once this moment passed without signal oc-

currence, the conditional probability for the signal to occur at (500+600+600)ms =1.7s

changed to 1. The monkey was rewarded by a drop of juice after each correct trial. Re-

action time (RT) was defined as the release of the central target. Movement time (MT)

was defined as the touching of the correct peripheral target.

Recording technique Signals recorded from up to seven microelectrodes (quartz in-

sulated platinum-tungsten electrodes, impedance: 2-5MΩ at 1000Hz) were amplified

and band-pass filtered from 300Hz to 10kHz. Using a window discriminator, spikes

from only one single neuron per electrode were then isolated. Neuronal data along with

behavioral events (occurrences of signals and performance of the animal) were stored

on a PC for off-line analysis with a time resolution of 10kHz.

In the following study, only trials where the response signal occurs at 1.7s are consid-

ered. When presp = 0.3 (respectively 0.5 or 0.7), the corresponding data are called

Data30 (respectively Data50 and Data70). There are respectively 43, 34 and 27 pairs

of neurons that have been registered in respectively Data30, Data50 and Data70.

Assuming that the synchrony only depends on the time of signal occurrences and not

of the movement directions, we test for the independence of neuron pairs in a pooled

fashion over all direction of movement, as already done in the previous study but in

a different way (Grammont & Riehle, 2003). Note that a study with respect to the

movement directions could also have been done if data with less than 20 trials per

direction were discarded, but then Data70 would have almost completely disappeared.

Note also that small heterogeneity in the data as shown with Case L of Figure 8 does

not really affect the method. Moreover, we did not discard pairs of neurons whose firing
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rate is smaller than 7Hz (Roy et al., 2000), as done by Riehle et al. (2000) or Grammont

& Riehle (2003) because even in this case the MTGAUE detections can be trusted (see

Figure 6).

4.2 Symmetric detections

Before making the analysis of the whole three data sets, let us focus on some examples

to underline the main difference between MTGAUE and both UE methods. MTGAUE

(see Definition 5) has been applied on the activity of two pairs of neurons (pairs 13

and 40 of Data30), recorded during the experiment described in Section 4.1, for var-

ious choices for the FDR control parameter q. Both multiple shift UE methods with

symmetric tests and with parameter α = 0.05 have also been applied. The results are

displayed in Figure 9.

The black points correspond to MTGAUE detections with q = 0.01 and conse-

quently at the most 1% of those detections are false discoveries in average. Those are

the safest detections. Because of the monotonicity in terms of q, the classical detections

with q = 0.05 correspond to the union of black and magenta points. At the opposite,

yellow circles correspond to untrusted detections since they are detected only for a FDR

control parameter q strictly larger than 80%. In this respect, on Figure 9, several periods

are detected by MTGAUE which correlate with the occurrence of specific events of the

behavorial protocol (see also Figure 12 in this respect). Interestingly, there is no real

gain by looking at the detections for q = 0.05. Most of them are already detected for

q = 0.01 for larger δ and therefore, these detections are really significant. Both UE

methods with symmetric tests and with α = 0.05 detect several intervals correspond-

ing to q > 0.8 and therefore, those are untrusted (yellow) detections for the MTGAUE

method.

4.3 Is the count significantly too low or too large ?

For single tests, the detection of ∆sym at level α = 0.05 is just the detection of both

tests ∆+ and ∆− at level α = 0.025 and this for both UE and GAUE methods (see

Definitions 3 and 4). When dealing with a collection of tests, this result is still valid for

the UE method which does not correct for multiplicity. However, it is not valid anymore

for MTGAUE (see Definition 5) since this method is based on the rank of all the p-

values of all the symmetric tests. Indeed the set of considered p-values corresponds to a

set of test statistics whose positive and negative values are mixed and whose rank only

corresponds to their absolute value. The result of Benjamini and Hochberg procedure

is consequently intertwining positive and negative detections (i.e. detections for which

m̄ > m̂0 or m̄ < m̂0). Since the interest lies in both distinct detections (upper and

lower values) on the experimental data, it is meaningless to independently perform tests
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Figure 9: Representation of the detections of the three methods (MTGAUE, UEs, UEa)

as a function of the FDR control parameter q of the MTGAUE method, performed over

sliding windows of length 0.1s shifted by 0.001s on pairs 13 and 40 of Data30. Each

line corresponds to a different value of δ from 0.001s to 0.04s. Each window is associ-

ated to a colored point at the center of the window, whose color depends on the value

of the parameter q in the MTGAUE method for which this window is detected. For the

UEs and UEa methods, the colored point exists if and only if the corresponding window

was detected by the method with symmetric tests at the level α = 0.05. For MTGAUE,

all the colored points, i.e. all the windows, are represented. The first black vertical bar

corresponds to the preparatory signal (PS), the blue vertical bar to the expected signal

(ES), the second black vertical bar to the response signal (RS). The first hatched box

corresponds to the interval [mean reaction time (RT) minus its standard deviation, mean

reaction time (RT) plus its standard deviation], the second hatched box corresponds to

the same thing but for the movement time (MT).
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Figure 10: Detections according to the sign of the test statistics for MTGAUE and UEs

(symmetric count). Both methods have been run on pairs 13 and 40 with δ = 0.02s and

q = α = 0.05 over sliding windows of length 0.1s shifted by 0.001s with symmetric

tests. Lines correspond to trials, first bottom half corresponding to N1 and second upper

half to N2. Points correspond to spikes: by default their color is grey. Couples of points

(x, y) with delay less than δ are then colored in red if they belong to a window, which is

a positive detection by the considered method, i.e. m̄ > m̂0 (for MTGAUE) or m̄ > m̂g

(for UEs). They are colored in blue if they belong to a window, which is a negative

detection by the considered method, i.e. m̄ < m̂0 (for MTGAUE) or m̄ < m̂g (for

UEs).

by upper values and then tests by lower values. The correct way to use the method is

consequently to perform MTGAUE with the symmetric tests, as defined in Definition

5. Once a window is detected, one can then ask the question whether this detection was

due to a low count or a large count by looking at the sign of m̄− m̂0, which is coherent

with Figure 7.

Figures 10 and 11 show the detections according to their signs. On Figure 10, the

UEs positive detections are more or less included in the ones of MTGAUE and the

detections that are done by UEs and not MTGAUE are mostly negative detections, both

facts being coherent with Figure 7. On Figure 11, UEa detects more coincidence than

MTGAUE, fact which is also coherent with Figure 7. More importantly, we see here on

real data, that exchanging the role of N1 and N2 can drastically change the conclusion:
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Figure 11: Detections according to the sign of the test statistics for UEa, the original UE

method. Since the coincidence count is not symmetric in N1/N2 (see (9)), the method

has been run twice on pairs 13 and 40 with δ = 0.02s and α = 0.05 over sliding

windows of length 0.1s shifted by 0.001s with symmetric tests (see Definition 4). The

first time, in the asymmetric count Xa (see (9)), points of N1 belong to W and points

of N2 belong to the enlarged window Wδ. The second time, the role of N1 and N2 have

been exchanged: points of N2 belong to W and points of N1 belong to the enlarged Wδ

in the coincidence count Xa. Lines correspond to trials, first bottom half corresponding

to N1 and second upper half to N2. Points correspond to spikes: by default their color is

grey. For the first case, couples of points (x, y) with delay less than δ are then colored

in red if the point x of N1 belongs to a window W , which is a positive detection, i.e.

m̄ > m̂g (the point y of N2 belonging to the enlarged window Wδ). They are colored

in blue if the point x of N1 belongs to a window W , which is a negative detection, i.e.

m̄ < m̂g (the point y of N2 belonging to the enlarged window Wδ). In the second case,

the roles of N1 and N2 have been exchanged.
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whole regions are detected or not depending on which spike train is restricted to the

family of windows W and which spike train is allowed to be in the family of enlarged

windows Wδ. Note that those regions are not present in MTGAUE detections (see

Figure 10).

4.4 Aggregation of the results obtained from several recording ses-

sions

We run the MTGAUE method over the three different data sets: Data30, Data50 and

Data70. The main point here is to see the influence of presp, the probability of occur-

rence of (RS) at 1.1s on the synchronized activity. Note that, despite the fact that this

pool of data has already been published (Grammont & Riehle, 2003), there has been no

systematic analysis in terms of the impact of this varying probability. There has been

no systematic analysis of proportion of lack of coincidences either.

MTGAUE has been performed on each pair of neurons, leading to the positive (re-

spectively negative) detections of windows, i.e. detections for which m̄ > m̂0 (respec-

tively m̄ < m̂0) meaning that on those windows, this pair is significantly synchronized

(respectively anti-synchronized). Then, an aggregation of the detections over all pairs

of each data set was performed. The proportion of these significantly synchronized/anti-

synchronized pairs are displayed in Figure 12. As already observed in (Grammont &

Riehle, 2003) and as a confirmation of our approach, the maximal proportions of sig-

nificantly synchronized pairs of neurons occur in correlation with the occurrence of

the different behavioral events of the task (preparatory, expected and response signals).

Note that the significant synchronized activity observed before the preparatory signal

can be explained by the fact that this signal occurred always after a fix delay of 500ms,

which could perfectly be anticipated by the monkey. It is also the case when the re-

sponse signal occurs finally 1200ms after the preparatory signal.

There is a huge proportion of detections (up to 40% of the pairs) that are due to

a coincidence count that is significantly too low, whereas at most, 20% of the pairs

have a coincidence count significantly too large. In other terms, at a given moment of

the task a maximum of about 20% of the pairs can be significantly synchronized and a

maximum of 40% of them can be anti-synchronized. The fact that a bigger proportion

of pairs can be anti-synchronized at a given moment of the task remains to be explained

in neurophysiological terms and is beyond the scope of this article. Actually and as

far as we know, although anti-synchronization can technically be studied more or less

rigorously by most analysis method in this domain, none systematic study has been

performed on this phenomenon from a more neurophysiological point of view. We

know few examples where such anti-synchronizations are mentioned: in (Grammont

& Riehle, 1999), with the classical UE method based on binned coincidence count
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Figure 12: Proportion of positive detections/negative detections, i.e. of significantly

synchronized/anti-synchronized pairs of neurons using MTGAUE method (sliding win-

dows of length 0.1s shifted by 0.001s, q = 0.05) through time. Each line represents a

different parameter δ ∈ {1, ..., 40} × 10−3s. (PS) was presented at 0.5s (first vertical

black line), (RS) at 1.7s (third vertical black line). Even if those trials are not used in

the present average, a response signal at 1.1s ((ES)=second vertical black line) was also

presented to the animal in 30% of the cases for Data30, in 50% of the cases for Data50

and in 70% of the cases for Data70.
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(Grün, 1996), and in (Riehle et al., 2000) with the UE method based on multiple shift

coincidence count (Grün et al., 1999).

• Significantly too large coincidence count.

The proportion of significantly synchronized pairs in Figure 12 is much more

important on Data30, showing two maxima, just after the expected signal (ES)

and just after the response signal (RS). When the probability of (ES) increases

(Data50 and Data70), those maxima still appear but in a lower proportion. There-

fore it appears with this new analysis that the proportion of synchronized pairs

tends to diminish when the probability of (RS) at 1.1s increases. Moreover, when

the response signal at 1.1s is much more likely than the response signal at 1.7s (in

Data70), those maxima are shifted in time as if the animal continued to expect

the signal for a longer time.

• Significantly too low coincidence count.

In Figure 12, it appears that all the three data sets have roughly the same maximal

proportion of pairs that are significantly anti-synchronized. The main difference

comes from the localization and the fuzziness of the proportion of pairs. The

maxima are large and strong in Data30 in particular around the preparatory and

expected signals. In Data70, the only localizations reaching such high scores are

just before and after (ES). In Data50, the signal is fuzzier and it is harder to give

a rigorous interpretation.

5 Discussion

We presented a generalization, namely the delayed coincidence count, of the notion

of multiple shift coincidence count (Grün et al., 1999) to point processes that are not

discretized at a given resolution.

The multiple shift notion is already known to clearly outperform classical binned

coincidence count, since there is, in particular, no loss in synchrony detection due to

binning effects as already pointed out in (Grün et al., 1999). However, this notion is

not as popular as the binned coincidence count mainly because its statistical properties

were much more opaque, until the present work. Actually, the multiple shift coinci-

dence count can be interpreted in two ways: symmetric and asymmetric (see Figure

1). But when testing a symmetric hypothesis, namely the independence of both spike

trains, the use of an asymmetric notion, which is the original version that has been

programmed in the UE method, leads to answers that depend on which spike train is

referred as N1 (see Figure 11 for an example on real data). Therefore we focused in

this article on the symmetric notion of multiple shift coincidence count to prevent this
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effect. The delayed coincidence count, introduced in this article, is the generalization

of the symmetric multiple shift coincidence count to the non discretized point process

framework. This notion allows us to perform complete computations when Poisson

processes are involved. It consequently also reveals some basic properties of the (sym-

metric) multiple shift coincidence count for Bernoulli processes, this model being very

well approximated by Poisson processes as proved in Section 2.3.

The first novel property is that the multiple shift coincidence count (symmetric or

not), as well as the delayed coincidence count, is not Poisson distributed, but more dis-

persed, when both spike trains are independent homogeneous Poisson processes. The

Fano factor computed in (16) for the delayed coincidence count and Poisson processes,

is strictly larger than 1 and this gap tends to increase with the firing rate and the delay

δ. In (Grün et al., 1999), the distribution of the (asymmetric) multiple shift coincidence

count is approximated by a Poisson distribution with mean mg (see (6) or (10)). How-

ever Figures 3 and 4 show that neither the symmetric nor the asymmetric multiple shift

coincidence count is Poisson, whereas the Gaussian approximation that has been de-

rived in Theorem 1, correctly approximates the symmetric multiple shift coincidence

count, when Poisson or Bernoulli processes are involved. Moreover, when considering

symmetric multiple shift coincidence count, there is an edge effect in the mean (m0

and not mg, see (12)) that needs to be taken into account (see again Figure 3 and also

Theorem 1). For asymmetric multiple shift coincidence count, the mean is correctly

predicted by mg but not the variance.

Those properties would be useless, if they could not be turned into a real statistical

test. To do so, we investigated the plug-in step, showing that a modification of the

variance need to be taken into account (see Theorem 2). Our GAUE (for Gaussian

approximation of the Unitary Events) tests (see also Definition 3) are therefore proved

to be of asymptotical level α, when homogeneous Poisson processes are considered as

models of the spike trains. They are also proved to be robust on simulations where small

firing rates, non stationarity or refractory periods have been imposed and this even for

the test by lower value, which is able to detect lack of coincidences (see Figure 6). We

also see that for large enough firing rate λ (λ = 30Hz), the three original UEa tests of

(Grün et al., 1999), based on the asymmetric count (see also Definition 4) have type

I error α = 5%. This is in the range of parameters where the original UE method

with the multiple shift coincidence count, based on a Poissonian approximation, can

be used. For very small firing rates, the type I errors of all UE tests (with symmetric

or asymmetric count) are huge, fact which is consistent with (Roy et al., 2000) (see

Figure 6, Experiments A). For large δ and large firing rates, the UEs test by upper

values (with symmetric count) becomes too conservative (see Figure 6, Experiments

B). On the contrary, both UEs tests (symmetric or by lower values) have very large type

I error (more than 20%), and this can even increase with the number of trials M . This
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is coherent with Figure 5, where we clearly see that the Poisson approximation of the

asymmetric count is quite accurate but that the Poisson approximation of the symmetric

count is not correctly centred, making the UEs test by upper values more conservative

but the other UEs tests (symmetric and by lower values) untrustworthy. In this sense,

even if UEs tests (symmetric or by lower values) have larger power than GAUE tests

for detecting lack of coincidences (see Figure 6, Experiments J and K), they cannot be

preferred to the GAUE tests since there is no control of their type I error. Finally note

that all UEa methods and UEs method by upper values have level α = 0.05 when non

stationary processes or refractory periods with small δ are tested (Experiments C, D and

E). But both UEs tests (symmetric and by lower values) with large δ have a type I error

which clearly becomes huge when M , the number of trials, grows and when refractory

periods are present (Experiments D and E).

Two other methods in the literature do not need plug-in steps. On the one hand, con-

ditional probability computations can be performed on binned coincidence count (Gütig

et al., 2001), but it will be, in our opinion very difficult to transfer those computations to

the delayed coincidence count, since the use of independent Bernoulli variables is fun-

damental. On the other hand, trial-shuffling methods (Pipa et al., 2003; Pipa & Grün,

2003) have also been used for binned coincidence count. This kind of resampling meth-

ods could be adapted to the delayed coincidence count. However, the combinatorics

of the delayed coincidence count is much more complex than the binned coincidence

count. Hence, despite the use of trial-shuffling, which is the quickest way to generate

surrogate data (Louis et al., 2010), the computational burden will be very high. Never-

theless, the use of surrogate data, to bypass dependency in the underlying model for the

delayed coincidence count, is fundamental. Therefore, the adaptation of trial-shuffling

to delayed coincidence count via adequate programming is one of the questions that

deserves in our opinion a full and complete study in a future work.

The final step of our procedure is the use of Benjamini and Hochberg’s method to

control the false discovery rate (FDR) by the choice of a parameter q (Benjamini &

Hochberg, 1995). Our method, MTGAUE, is proved on various simulations to guar-

antee the correct FDR (see Figure 8). On the contrary, the classical UE method is

not corrected for multiplicity. Simulations show that this choice leads to a huge FDR,

sometimes as high as 80%. Only for the UEs method with tests by upper values for

large delays δ (δ = 0.02s) and only for the UEa method with tests by lower values for

very large M (M = 100) and large δ (δ = 0.02s), is the UE method trustworthy. This is

coherent with the visualisation of both methods on just one run (see Figure 7). Clearly

for large δ the number of false discoveries by the symmetric UE method (UEs or UEa)

is huge whereas the detections by upper values of UEs are globally adequate, with a

tendency to be less accurate for small δ. This phenomenon can be explained as follows.

For large δ and reasonable firing rates, the UEs tests by upper values are too conser-
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vative (see Experiments B of Figure 6) because the edge effects have not been taken

into account. Therefore the fact that the method is not corrected for the multiplicity of

tests somehow compensates for its conservativeness leading in this precise situation to a

reasonable method. But this happens only for this range of parameters and only for the

detection of profusion of coincidences. In the same range of parameters, the original

method UEa with tests by lower values seems also reasonable: it is still of the order of

5%, even if the FDR of UEs with tests by upper values is much smaller. In all other

situations (for the symmetric or the original asymmetric count), there is no guarantee in

term of FDR for the multiple shift UE method of (Grün et al., 1999).

To summarize those simulations, MTGAUE, which relies on a theoretical approxi-

mation of the distribution of the coincidence count by a Gaussian distribution, seems to

be robust with respect to small firing rates, non stationarity in time, refractory periods

and non ergodicity across trials. It guarantees a control of the FDR via the choice of the

parameter q. This method is also able to detect both profusion and lack of coincidences.

It therefore clearly extends the range of situations where the original multiple shift UE

method applies, the latter being trustworthy only for delays of the order 0.02s (see Fig-

ure 8), reasonable firing rates (λ > 7Hz, see (Roy et al., 2000)) and detections when

the coincidence count is significantly too large for UEs (symmetric count) or detections

when the coincidence count is significantly too low for UEa (asymmetric count).

Therefore, when MTGAUE is applied on real data (already partly published in

(Grammont & Riehle, 2003)), it can in particular detect lack of coincidences (see Fig-

ures 10 and 12) whereas the detections of UE cannot be in general trusted in this range

of parameters. This in particular leads to new insights on these already published data.

Note that on the same data, the symmetric UE method (with symmetric or asymmetric

count) declares statistically significant, regions for which the parameter q of MTGAUE

needs to be larger than 80% (see Figure 9). In accordance with our observations on

the previous simulation studies, those detections are therefore quite likely to be false

discoveries. The fact that the previous published results appear to be nicely coherent in

neuropsysiological, cognitive and behavioral terms is probably due to the fact that the

biological phenomenon was sufficiently strong and the data aggregated to provide some

averaged results reducing the lack of precision of the original UE method.

MTGAUE also allows studying coincidences for values of δ up to T/2, where T is

the size of the considered window (see Theorem 1 for instance). Here we have stopped

the study at δ = 0.04s, whereas T = 0.1s because the results were of the same flavour

on [0.041, 0.049]s with a larger computational time. However, there is no absolute cri-

terium from the neurophysiological point of view to determine what are the relevant

δ. It remains an exploratory question. It depends mainly on the patterns of local and

global connectivity of the specific cerebral structure under study, both on the structural

and functional plan. In previous studies, δ’s up to 0.02s were generally studied, mainly
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because of the limitations of the UE method (Grammont & Riehle, 2003). MTGAUE

allows to study coincidences with larger δ and thus to explore potentially more complex

patterns of synchrony.

Note finally, that once MTGAUE has been performed, one can use the sign of the

test statistics to classify the detections in two types: positive detections, which reveal

profusion of coincidences and negative detections, which reveal lack of coincidences.

Figure 10 shows that UEs method gives roughly the same trustworthy positive detec-

tions as MTGAUE whereas its negative detections are likely to be false detections be-

cause of the large FDR in this case (see Figures 8 and 9). Figure 11 combined with Fig-

ure 9 also shows that the original UEa can detect additional windows that correspond to

large FDR parameter q. More importantly, it shows that the original UEa method does

not give the same answer when exchanging the role of the first and second spike trains.

This is due to the fact that the coincidence count is in this case asymmetric and even if

the method could be corrected for multiplicity, it will never avoid this potential lack of

symmetry in the answers.

In conclusion, it was already known that the UE method with multiple shift coinci-

dence count (Grün et al., 1999) allowed to avoid loss in synchrony detection compared

to the classical UE method based on binned coincidence count (Grün, 1996). In this

article, we show that MTGAUE notably extends the properties of this UE method with

multiple shift coincidence count thanks to its clear control of the false discovery rate,

its robustness, its ability to detect both lack and profusion of coincidences and this for

large set of parameters (delays, number of trials, firing rates). Moreover and contrary

to the original multiple shift method (UEa), MTGAUE answer remains identical when

exchanging the role of both spike trains, since MTGAUE relies on a symmetric test

statistics, namely the delayed coincidence count.

In terms of perspective, it should be possible to extend the use of the delayed coin-

cidence count to the analysis of more than two neurons at a time, as it has already been

done for the binned coincidences (see for instance (Grün, 1996; Grün et al., 2010)).

This would allow the more direct study of neuronal assemblies. Adaptation of trial-

shuffling should also be considered. However, we think that pure testing procedures do

not give fully satisfying answers and that it would be legitimate to provide an estima-

tion of the dependence notably, through the Hawkes model (Krumin et al., 2010). It is

already known that this model can easily deal with more than two neurons (Daley &

Vere-Jones, 2003; Pernice et al., 2011, 2012; Chornoboy et al., 1988). However, it is

only in a recent work that we have proposed theoretical statistical methods to deal with

several neurons and large delays of interaction through Lasso methods (Hansen et al.,

2012). We aim at generalizing those results to non stationary data in time.
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