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The Unitary Events (UE) method is one of the most popular and efficient method
used this last decade to detect conspicuous patterns of coincident joint spike ac-
tivity among simultaneously recorded neurons. The detection of coincidences was
first based on a binning procedure (Griin, 1996), which lead to some defects. These
defects were then corrected with the Multiple Shifts (MS) procedure (Griin et al,
1999). Starting from this last step, we propose here some new improvements. We
mainly show that the delayed coincidences count cannot be Poisson distributed if
it is assumed that the spike trains are both Poisson and stationary processes. The
gap between the real distribution and the Poisson one increases with the firing rate
and the allowed delay for the coincidences. Moreover we precisely compute the
asymptotic Gaussian distribution of the difference between the observed coinci-
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dences count and an estimate of the expected count, showing that the replacement
of the expected count by an estimate changes the law itself. This leads to statistical
tests that are proved to be asymptotically of prescribed level a. In practice, the UE
method is applied simultaneously over different sliding windows and all the tests
with p-values less than 0.05 are declared detected. However it is well known in
multiple testing theory that this method does not guarantee any control in terms
of False Discovery Rate. We combine our new tests on sliding windows with a
Benjamini and Hochberg approach (1995) leading to the Multiple Tests based on
a Gaussian Approximation of the Unitary Events (MTGAUE) method. MTGAUE
is tested on simulated spike trains and applied on real neuronal data. Finally, MT-
GAUE is not only mathematically more rigorous but it also proves to be reliable
over a larger range of parameters than the original UE method.

1 Introduction

1.1 Theoretical aspects

The study of how natural neural networks transmit activity and somehow code infor-
mation implies to consider various aspects of cerebral activity. Several techniques exist
to record different aspects of this activity or some by-products of it like hemodynami-
cal fluctuations for instance. However there is broad agreement on the fact that action
potentials (spikes) constitute the main neural substrate of real-time information process-
ing in the brain. What dimensions of spike trains are relevant for the brain or at least
sufficiently informative for neurophysiologists and how can we study them?

Since the origins until today, firing rate has been considered as the main way that
neurons or populations of neurons use to transmit activity, from the peripheral level
of sensory receptors or medullary neurons to the cortical level. In most studies in this
domain, the aim is to establish a correlation between a motor, a sensory or a cognitive
event in a behaving animal and the occurrence of a variation of the firing rate of specific
neurons, before, during or after this event. This is how it can be shown that firing rate
modulates as a linear function of the pressure on the skin in sensory receptors at a very
basic level, or increases in individual cortical mirror neurons in relation to high level
cognitive processes (Rizzolatti & Craighero, 2004). Such kinds of correlations can be
shown by the use of Peri-Stimulus-Time-Histograms (PSTH) (Shinomoto, 2010).

One of the first and most famous approach to decipher the role of firing rate at
the cognitive and motor level is due to Georgopoulos and collaborators who showed
how a vectorial transformation of the firing rate of a sample of primary motor cortex
neurons could lead to an understanding of how the direction of movements is coded in
the primate primary motor cortex (Georgopoulos et al., 1986; Pouget et al., 2000, for
a review). Beyond the estimation of firing rate, different features of spike trains have
also been studied more precisely. The fact that the temporal structure of the spike trains
of individual cortical neurons may also be important to transmit information has been
explored in different ways (Victor & Purpura, 1996, 1997; Schreiber et al., 2003; Kreuz
et al., 2007; Chicharro et al., 2011).

However, these various approaches and techniques focus on the spike trains of in-



dividual neurons. Actually, the fact that the activity of ensembles of neurons may be
coordinated in the spatio-temporal domain (i.e. coordination of the production of spikes
between different neurons) to form neuronal assemblies in a way or another (Hebb,
1949; Palm, 1990; Sakurai, 1999) has been a topic of numerous and hot debates until
today (Masuda & Aihara, 2007). Theoretically, various historical conceptions used to
consider that neurons are mostly independent computational entities (Barlow, 1972). In
addition and more technically, the single unit activity of neurons has for a long time
been recorded only one by one in living animals. There was thus no possibility any-
way to study neuronal interactions because of technological constraints. As a matter
of facts, even after the democratization of multi- electrode single unit recording in the
eighties, these techniques were most often used to record more individual neurons at a
time and to study their variations of firing rate without paying attention, theoretically or
technically, to the cooperativity between neurons.

Since then however, numerous theoretical, experimental and simulation studies have
accumulated evidences showing that neurons do interact by coordinating in time the
production of their spikes. Indeed, it has been shown that despite the variability of
the cortical neurons discharge (Softky & Koch, 1993), that generally justifies the av-
eraging over a large number of trials, the mechanisms of spike generation can be very
precise (Mainen & Sejnowski, 1995) under physiological conditions (Konishi et al.,
1988; Lestienne, 2001; Prescott et al., 2008). Like this, different kinds of precise spike
patterns have been detected in spike trains beyond what could be expected by chance
(Lestienne, 1996; Abeles & Gat, 2001; Gerstein, 2004; Eyherabide et al., 2009).

Historically, spike synchronization, with or without oscillations, has first been shown
to be involved in the so-called binding problem (Von der Malsburg, 1981; Singer &
Gray, 1995; Engel & Singer, 2001). From there and progressively, various characteris-
tics of spike synchronization and its relation to firing rate have been discovered (Singer,
1999). The major criticism that has been formulated against the possibility that neurons
do interact by coordinating the production of their spikes to constitute neuronal assem-
blies is that spike synchronization might just be an epiphenomenon of the variations of
the firing rate. That is why most studies in this domain tried to show the relative inde-
pendence of synchronization over the firing rate (Riehle et al., 1997; Maldonado et al.,
2000; Heinzle et al., 2007). Moreover, it has been shown that neurons, as expected from
the theory (Hebb, 1949), are able to synchronize their spikes during short laps of time
with certain neurons and to change rapidly their partnership to synchronize their activ-
ity with other neurons, supposed to belong to other assemblies (Grammont & Riehle,
1999). Beside experimental studies, how synchronization emerges and propagates in
neural networks, with or without oscillations, has been studied extensively in simula-
tion studies (Diesmann et al., 1999; Golomb & Hansel, 2000; Tiesinga & Sejnowski,
2004; Goedeke & Diesmann, 2008).

In the end, given the accumulation of evidences obtained these last 30 years, deny-
ing the existence and the role of neuronal cooperativity and its implication in informa-
tion processing is now the matter of an obsolete scholastic debate. There is no reason
anymore not to consider that natural neural networks are able to use different modes
to transmit and to code information, notably by the variations of firing rate and/or the
precise coordination of the production of spikes between neurons (Grammont & Riehle,
2003; Heinzle et al., 2007; Masuda & Aihara, 2007; Kumar et al., 2010). The question



may rather be now: how to characterize it in the best way ?

Indeed, it remains true that despite the accumulation of evidences about neuronal
synchronization, the genuine neural mechanisms responsible for it are still broadly un-
known (Heinzle et al., 2007). Indeed, we never know at the same time what are the
activity of the neurons and the precise graph of their anatomical connections. Neither
do we know the synaptic weights of these connections, their evolution after each spike
and many other relevant parameters necessary to have a full understanding of the causal
role of neuronal cooperativity on the underlying network (Vlachos et al., 2012). Ac-
tually, we might have to wait for decades before we acquire the technical capacity to
characterize the nervous system in such a comprehensive way. That is why in the mean-
time, we must get the best out of the kind of data we are able to capture at the moment;
that is in our case, spike trains from multiple neurons recorded at the same time during
the behavior of an animal.

The approach we want to promote in this article is to combine the best statistical
methods available to detect the expression of neuronal interactions with the constraints
provided by the structure of Cognitive Neurosciences protocols. Both rigorous statisti-
cal methods and precise Cognitive Neurosciences protocols are necessary to make sense
of neuronal data. One without the other cannot work. Such an approach has to respect
3 steps: 1. the method of analysis must be as mathematically rigorous as possible, 2.
the method of analysis must be applied on compatible data, 3. the behavioral protocol
must isolate the cognitive process studied and force its occurrence at precise moments.
Indeed, a method can be perfectly rigorous mathematically and nonetheless be applied
on non-compatible data or detect events that are statistically significant but biologically
irrelevant, either because it detects epiphenomena or artefacts, or else. In Cognitive
Neurosciences, behavioral protocols must be structured in order to rigorously isolate
and identify the variables involved in the studied process so as to force their occurrence
at certain moments of the protocol. If the method of analysis detects some positive
events in a random manner along the protocol rather than at the specific expected mo-
ments, it may mean that it is not adapted to the neuronal and behavioral data studied,
how rigorous it might be mathematically. Like this, the protocol constitutes a last con-
straint. At the end and in any case, the kind of event detected has to make sense bio-
logically. Of course, we may remain unaware of some internal cognitive processes that
could hardly be controlled in time and that would provide real positive events detected
by the method of analysis. This gives the occasion to discover unexpected cognitive
processes (Grammont & Riehle, 2003; Riehle et al., 2006).

1.2 Technical aspects

Historically, several methods have been developed to analyze single unit activity in
terms of spike synchronization. There is a parentage between these different methods
as well as between the researchers who developed them. Most often, these are the
failures or limits of one method which have driven the development of a new method.
In this article, we follow the same logic and try to bring our own contribution to this
scientific inquiry. In the following we are thus going to quickly review several steps of
the development of these analysis methods in order to identify the crucial questions at



stake, the failures and the improvements which have been brought up to now.

The cross-correlogram (Perkel et al., 1967) was one of the first methods used. It
allows detecting systematically the delay between each spike of two distinct neurons
(delay from O milliseconds up to a given limit). All these delays are then accumulated
along each trial and averaged over the whole length of the trials in order to check if there
is a specific temporal relation between the activities of the two neurons or if the various
delays follow a random probability distribution. Depending on the result obtained, two
kinds of interpretations can be formulated: one in terms of coding strategy (e.g. spike
synchronization as a sign of neuronal cooperativity), the other in terms of neuronal
connectivity (Glaser & Ruchkin, 1976). Indeed, if the cross-correlogram shows that
a neuron fires regularly after another one has fired, it may be interpreted as the sign
that these two neurons are linked by a direct excitatory connection. However, such a
pattern could also be explained by the fact that these two neurons are both stimulated
by a common source, directly for the first one and through one or several synapses for
the second one. If the cross-correlogram is helpful to study neuronal synchronization
and functional connectivity, we see that it cannot give any definitive answer about the
real anatomical structure of the underlying network, as we already mentioned (Vlachos
et al., 2012). Interpreting the precise anatomical connectivity of the underlying network
remains thus out of the scope of this kind of methods, as well as for the method we
propose in this article.

Another point concerning the cross-correlogram, which became crucial for the fol-
lowing methods of analysis, is the fact that the experimental protocols generally tend
to provoke some increases in the firing rate of neurons at certain moments of the trial.
This is the aim of such protocols in Cognitive Neurosciences. This covariation of the
firing rate of the neurons generates mechanically more coincidences between the spikes
of the two studied neurons, which are not necessarily meaningful in terms of coding
strategy (Riehle et al., 1997). In order to counterbalance such artefacts, people have
used the so-called shift-predictor (Gerstein & Perkel, 1969, 1972). Schematically, it
compares the moments of occurrence of the spikes from a given trial of a first neuron
with the moments of occurrence of the spikes of another trial of a second neuron. To-
day, we would call this a shuffling algorithm (Pipa & Griin, 2003; Pipa et al., 2003).
Doing so, the supposedly real and functional coincidences are destroyed and the ones
produced by the firing covariation are kept. It remains to subtract this last result to the
raw cross-correlogram first obtained. This method limits the influence of the firing rate
on the detection of meaningful coincidences and relevant delays by roughly discarding
the coincidences produced just by chance. We will see in the following that this point
became the cornerstone of this family of methods.

The other main weaknesses of the basic cross-correlogram and other similar meth-
ods are that it provides an averaged measure over the whole length of the trial and
supposes the activity to be stationary all along. First, the activity of real neurons is
not stationary over long periods of time, especially not during an experimental protocol
designed to provoke some fluctuations of the activity at some specific moments (e.g.
presentation of a sensory stimulus). More complex methods like the gravitational clus-
tering (Gerstein et al, 1985; Gerstein & Aertsen, 1985) have proposed some solutions
to deal with this problem. Second, we know from the theory (Hebb, 1949) and experi-
mental results (Grammont & Riehle, 1999) that interactions between neurons may occur



during very short laps of time. Such short periods of coincident firing would be diluted
in the averaging of the cross-correlation over the length of the trial. This problem of
averaging has been tackled by Aertsen and collaborators with the Joint- PSTH by deal-
ing with short time scale, stimulus-locked variations of near-coincident firing (Aertsen
et al., 1989; Palm et al., 1988). Schematically, the Joint-PSTH detects the coincidences
(with or without delay) between the spikes of two neurons recorded simultaneously as
the cross-correlogram does. However, it provides a matrix representation in which all
the coincidences are accumulated along the length of the trial. Like this, it becomes
possible to detect some particular moments of correlation between two neurons during
short periods of time, as a function of the stimuli occurring over the time of the trial.
However, as for the cross-correlogram there are several problems. More spikes are
required for the Joint-PSTH than for the cross-correlogram as it detects coincidences
along the duration of the trial but without averaging. Moreover, the Joint-PSTH analysis
is maybe not structured at best to apply statistical methods in order to test the statistical
significance of the number of coincidences detected. Its structure is too complex to al-
low the application of a statistical test in a simple and reliable manner. This is precisely
one of the key points that is going to be addressed by the following analysis methods.
Following these previous approaches and their inherent problems, Griin and collabora-
tors developed the Unitary Events analysis method (Griin, 1996). This method has been
continuously improved until today (Griin et al, 1999; Griin et al., 2001a,b; Griin, 2009;
Griin et al, 2010). It is a popular method which has been used successfully in several
experimental studies (Riehle et al., 1997, 2000; Grammont & Riehle, 1999, 2003; Mal-
donado et al., 2008). Our own work introduced in this article, is directly inspired from
this last method. The Unitary Events (UE) analysis method came with several objec-
tives. It is designed to detect precise spike coincidences between two or even more neu-
rons. It does so along the time of the experimental protocol (i.e. the trial) and thus, as a
function of the stimuli presented. Above all, it allows applying some tests to check the
statistical significance of the difference between the number of coincidences detected
and the number of coincidences expected on the basis of the firing rate of both neurons.
This is a different approach than the ones discussed above which simply subtract an
estimate of the number of coincidences occurring by chance from the total number of
coincidences detected (Gerstein & Perkel, 1969, 1972). Additionally, the analysis is
performed into small sliding windows of time in order to deal, at least partially, with
the problem of non-stationarity of neuronal data. To describe the basis of this analysis
method in a few more words, neuronal activity is represented under the form of spike
trains with a time step usually equal to 1 ms (millisecond), given the duration of an ac-
tion potential. In a first version (Griin, 1996), a binning procedure was applied on spike
trains in order to detect the coincidences between the spikes of the studied neurons. The
bin is defined as a function of the maximal delay accepted between two spikes of the
two neurons to be considered as a coincidence. If one is interested by a delay of 5 ms,
the whole spike train is discretized with a binning grid of 5 ms bins. It becomes easy
in algorithmic terms to detect the coincidences as the presence of at least one spike in
the same bin in both neurons. However, this technique suffers from several defects as
the size of the bins increases. The larger the bins are, the more data are lost, as any
additional spike present in a bin is clipped in order that its value never exceeds one.
In the same vein, many coincidences between spikes may not be detected even if the



delay between the spikes is inferior to the size of the bin. Indeed, it is sufficient that the
spike of the first neuron falls in a bin and that the spike of the second neuron falls one
millisecond after, but in the next bin. These problems and others have been addressed
by using the multiple shifts method (Griin et al, 1999). Here, there is no binning any-
more and data are kept in their original time resolution (typically 1 ms per time step),
(see Definition 2 in Section 2.1 for a precise formula in this case). Beyond the question
of the accurate detection of coincidences with more or less delay, one has to determine
whether these coincidences are statistically significant or not. If so, they will be con-
sidered as good candidates for being the sign of a real functional interaction between
the two neurons concerned. For the first time, UE analysis proposed a framework in
which it became much easier to apply statistical tests. Basically, the method compares
the number of occurrences of the observed coincidences to the expected number of pat-
terns, calculated on the basis of the joint probability of occurrence of the particular 0-1
configuration (presence or absence of a spike) assuming statistical independence. The
difference is considered to be statistically significant if the number of observed coin-
cidences deviates significantly from the center of the coincidence distribution resulting
from independent processes (i.e. exceeds the joint-p-value; Griin, 2009). Classically in
this domain, people use a Poisson distribution to describe analytically the distribution
of spikes of real neurons, but also assume that the number of coincidences can be de-
scribed by a Poisson distribution as well. At this point however several questions are
raised. The statistical significance obviously depends on the nature of the chosen distri-
bution. A given empirical value will be significant with a given reference distribution
but not necessarily with another one. Choosing a Poisson distribution or another one is
a matter of debates among researchers (Oram et al., 1999; Amarasingham et al., 2006;
Maimon & Assad, 2009). We address this question in this article and propose a new ap-
proach. We still use a Poisson representation of the spike trains however we prove that
this is incompatible with a Poisson distribution of the number of coincidences (see Sec-
tion 2.1). We approximate very precisely the distribution of the coincidences count by
a Gaussian law and we explain how the estimation of the underlying parameters modify
the law itself in order to provide meaningful tests and p-values (see Section 2.2). This
new precise approximation improve the range of parameters (firing rate, delay, win-
dows length, number of trials) for which the previous analysis were valid. UE analysis
is classically applied independently into short windows of time in order to deal with the
non-stationarity of neuronal activity along the trial. Because some important changes
in the firing rate can occur even into a given window, these windows are overlapped in
order to smooth such effects, hence the term of sliding window. Once all the tests in
all the sliding windows have been performed, their results are considered as a set. If all
the tests are recklessly performed at level «, the set of answers is doomed to contain a
lot of false detections. But as a set, there are different notions of errors (developed in
Section 3.1) and depending on them, there are several ways to control the amount of
false detections of dependence.

This is why in this article we propose to apply the multiple testing procedure due to
(Benjamini & Hochberg, 1995) which controls the false discovery rate (FDR; see Sec-
tion 3). To better understand the role of this procedure we need to introduce a definition
of false positives based on testing theory. In the field of Neurosciences, false positive
coincidences are often defined as the coincidences detected as significant because of



an artefact. For instance, if the expected number of coincidences is underestimated be-
cause of a problem of non-stationarity of the firing rate in time or across trials, it will
be easier for the number of observed coincidences to reach the threshold of significance
(Griin, 2009). However, in testing theory there is no need of a cause to explain false
positive. Indeed, when a statistical test is performed with level o = (.05, it means that
in 5 % of the cases and even in an ideal world, the test will wrongly reject and detect
a false positive. Therefore if several tests are applied together (say 1000) in average 50
of them will reject the independence anyway. This is precisely what happens in the UE
method. Thus, to avoid these false detections, or at least control their rate (and not sys-
tematically increase them when the number of tests increases), we couple the multiple
testing procedure of Benjamini & Hochberg to our Gaussian Approximation of the UE
method (see Section 3).

At the end, with this article we want to propose some new improvements, both at
the level of mathematical rigor and in terms of the sensitivity of the method. Section
2 is devoted to the introduction of the Gaussian Approximation of the Unitary Events
(UE) method on one single window. Then we detail the multiple testing procedure in
Section 3. The new resulting method is applied first on simulated data (see Section 4)
and then on single unit activity recorded in a behavioral context (see Section 5). These
experimental data were already partially published (Grammont & Riehle, 2003; Riehle
et al., 2006). We thus have elements of comparison to assess the relevance of our new
method.

2 Single test of independence

As said previously, the aim of this work is to detect the local dependence between
neurons. Before describing the multiple testing procedure, let us first describe what
happens for a single test, on one window |a, b]. Those single tests will next be performed
on several small windows of time (classically around 100 ms) and Section 3 will explain
how we combine them with Benjamini and Hochberg’s procedure.

Let N, and N, be the spike trains of two neurons, the single test aims at differenti-
ating between:

Hj (the null hypothesis): “N; is independent of N5 on [a, b]”
versus
H; (the alternative): “N; and N, are dependent on [a, b]”

To perform this test, some models are required for NV, and N,. Here spike trains are
considered as a random collection of points, that is a point process (Daley & Vere-Jones,
2003). From this we assume that:

Assumption 1. The processes N1 and Ny are both Poisson processes.

Assumption 1 can be actually reduced to an independence property between disjoint
intervals: what happens in [a, b] is independent of what happens in [, d] if [a, b|N[c, d] =
(). Indeed if this property is true for any set [a, b] and [c, d] and if there is no accumu-
lation of pointsz, it can be proved that under H, both processes are Poisson processes

2This assumption is a direct consequence of the classical behavior of neurons.
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(Daley & Vere-Jones, 2003). Note consequently that Assumption 1 is quite classical in
Neurosciences even if it is not always precisely identified as a Poisson assumption (Roy
et al., 2000; Griin et al., 2001a,b; Griin et al, 2010).

Assumption 2. The processes N1 and Ny are stationary on the time period [a, b).

In practice, we just need the intensities (i.e. the firing rate) of both processes to be well
approximated by constant functions.

Of course, only one realization of this couple of processes is not sufficient to de-
cide whether the spike trains are dependent or not. During the experiment, M trials are
recorded, which leads to the observation of (Nl(l), Nz(l)), e (NI(M), NQ(M)), M realiza-
tions of the couple (N1, N5). As in the rest of the literature, we assume here that these
realizations are independent and identically distributed.

In the sequel we denote by E(7"), for some quantity 7" depending on (N7, N,), the
expectation of 7" with respect to the law of (N7, Ny). Heuristically this refers to the
empirical mean over trials, when the number M of trials is infinite. In particular this
is a deterministic quantity. This is only approximated by the empirical mean when the
number of trials is finite. The empirical mean 3 for finite M is a random quantity which
fluctuates around the corresponding expectation E(7"), and can only be considered as
an estimate of E(7'), the fluctuation becoming smaller when M grows. To avoid confu-
sion, all the estimates are denoted by [ or OJ, where OJ represents any letter, and those
estimates have to be considered as random whereas the corresponding deterministic
quantities have nothing on the top.

The probability associated to [E is denoted P: if we denote for any set A, by 14(7)
the indicator function with value 1 when 7" is in A and value 0 otherwise, E(14(7")) =
P(T € A). As an example of the previous notation, p = P(T" € A) is deterministic
and only approximated by the empirical frequency p (i.e. the number of trials for which
T the realization of T for the trial i, lies in A divided by M), which is a random
quantity.

2.1 Two definitions of coincidences

The statistic on which the single test is based is the coincidences count. However this
notion actually covers two definitions: one within the binning framework (Griin, 1996),
the other one within the Multiple Shifts method framework (Griin et al, 1999).

The binning framework In the binning approach (Griin, 1996; Griin et al, 2010, see
section 10.2.1), the data are represented not as accurately as in the original spike trains.
A part of the information is discarded (see Section 1.2). More precisely, the window
[a, b] is divided in small disjoint bins of length 9, denoted I3, . . ., I, such that they form
a partition [a, b] (and therefore § = (b — a)/k).

3The empirical mean of T"is 57 ZM T where T™W | ..., TM) are M realizations of T'.



Definition 1. The binned coincidences count Y on |a, b, is defined by:

k
Y = Z Ly )>1, No(1)>1)

i=1
where N;(I;) denotes the number of spikes of Nj on I; for j =1, 2.

If we consider this definition, a coincidence on a bin is just the fact that the two
neurons have both at least one spike in the same bin. As mentioned in the introduction,
the loss of information comes from the fact that no difference is made between two
spikes as long as they belong to the same bin. Their precise position is lost. Data are
also clipped by deleting any additional spike in the bin. The next result shows how
these transformations influence the shape of the expected coincidences count.

Proposition 1. Under the null hypothesis Hy and Assumptions 1 and 2,
mo :=E(Y) =k (1 —exp(—A19)) (1 — exp(—A20))
where \; is the constant intensity (firing rate) of N; for j = 1,2.

The original UE method is based on this binned coincidences count (Griin, 1996).
However the approximation of the behavior of the observed coincidences count under
H, done by the UE method may potentially fail at several levels.

e The first approximation is done on the expected count and consists in considering
that my is close to my g = kA1 X202, This is valid as long as the products J)\; are
not too large (typically less than 1), which happens for instance when \; < 50
Hz and 6 < 0.02 s. So this first source of error may be quite negligible in our
framework.

e The second approximation consists in assessing a law to the observed coinci-
dences count Mm, where m the average coincidences count on [a, b] is defined
by

1 M
n=—>9Y Y 1
m M; : (1)

where Y () is the binned coincidences count for the ith trial. The UE method pos-
tulates that Mm obeys a Poisson law with parameter 7 := Mmyg = MEkX\26?
under H, (Griin, 1996). However purely mathematically speaking, the random
variable Y is by definition a binomial variable and therefore M m is also a bino-
mial variable with parameters n = Mk andp = (1 — exp(—XA10)) (1 — exp(—A26))
(see the Appendix Section A.2). Once again it is true that binomial variables can
be approximated by Poisson variables when n > 100 and p < 0.1, (Hogg &
Tanis, 2009, see p 159) which is usually the case here.

e The last source of potential error comes from my g itself which is unknown and
can only be estimated. Since both \;’s are unknown and can only be estimated
by

1 M

Aj = Mo—a) > N([a, b)) 2)

i=1
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where N ]@ ([a, b]) is the number of spikes in [a, b] for neuron j during the ith trial,
this leads to an estimate of the expected coincidences count

mUE - k5\15\252.

In (Griin, 1996), my g and my g are considered to be the same quantity and in
particular 7 g is not considered as a random quantity. Therefore the UE rejection
is obtained by comparing M m to the quantile of a Poisson distribution where the
unknown parameter 7 is replaced by Mmyg.

This step is known in statistics as a plug-in step and is known to modify some-
times dramatically the law. One of the most famous example is the Gaussian law

which has to be replaced by a Student law when the variance is unknown and

estimated by an empirical mean over less than say 60 realizations 4,

One of the aims of this article is to sufficiently formalize the framework to avoid
this kind of misleading plug-in steps that can potentially make all the practical studies
worthless. The reader will find a proper Gaussian approximation of the binned coin-
cidences count which fixes the plug-in problem in the appendix. However since the
binning framework suffers from several drawbacks - loss of information, sensibility to
the localization of the bins - as mentioned in the introduction, we focus the rest of the
article on another notion of coincidences introduced in (Griin et al, 1999), where the
plug-in step is not the only source of potential errors.

The delayed coincidences count This notion of coincidences refers to the kind of
coincidences which can be detected by the Multiple Shifts method (Griin et al, 1999;
see formula (10.6); Grammont & Riehle, 2003).

Definition 2. The coincidences count with delay § on the window [a, b], denoted X, is
defined by:

X = 1‘x_y‘§5dN1(fL’)dN2(y), (3)

[a,b]2
where dNy (resp. dNs) is the point measure associated with Ny (resp. Ny )5

If we consider this definition, the coincidences count with delay ¢ is the total number
of couples (x, y) satisfying all the following properties:

e x corresponds to a spike in the spike train /Vy,

e y corresponds to a spike in the spike train No,

4'More precisely, if Xi,..., X,, are iid Gaussian variables with mean m and variance o2 then

Vn/o? 3 (X, —m) ~ N(0,1) whereas \/n/62> """ (X; — m) ~ T(n) where 62 is the unbi-

ased estimate of o2

5 This means for instance that for any function f,

/ f@)aNi(z) = 3 (o),

reN7

where x represents any spike registered on the first neuron.
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e 1 and y belong to [a, b]
e the delay |z — y| is less than 6.

Note that X is integrative and increases with . The next result gives the expectation
and variance of X under the following assumption.

Assumption 3. The delay ¢ is less than half the window size, i.e. § < (b — a)/2.

Theorem 1. Under Assumptions 1, 2, 3 and H,, the expectation of X and the variance®

of X are given by
mo :=E(X) = Mz [20(b— a) — 6]

and
1
Var(X) = A [26(b — a) — 6%] + [M A2 + A A3 [40°(b— a) — 3053

where \; is the constant intensity of N; for j = 1,2.

The proof is given in the appendix.
In the original article (Griin et al, 1999), following the approximation done in the
binning framework, X is thought to be a Poisson variable with mean

my = 2X\A20(b — a)

under H, whereas Assumptions 1, 2 are also made. Theorem 1 shows that those as-
sumptions are not compatible even if some approximations may make them valid in a
certain range of parameters as we detail below.

e First of all, the quantity m, differs from m, by a quadratic term in 6. This ad-
ditional term results from the consideration of the edge effects. Indeed, in the
integral which defines X, when x or y are near a or b, the length of the interval
|z — y| < on which we consider the coincidences is strictly less than 2§ since
x and y are both in the window [a, b]. Note that if § > (b — a)/2 then all the
couples (x,y) in [a, b] are affected by this edge effect and in this case, the above
formula for the expectation and variance are not valid anymore. Other definitions
of coincidences / which evacuate this edge effect in the computation of m, are
non symmetric in (N7, N») and are not considered in this article. Therefore my is
only correctly approximated by m, when § is small with respect to (b — a).

6The variance of a quantity 7' is given by
Var(T) = E ([T — E(T)]?).

The variance measures the fluctuation of a quantity around its expectation.
7such as Jiapy Jr Lia—yi<6dN1(2)dN2(y)
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e More importantly, X cannot be a Poisson variable. If we consider the ratio be-
tween the theoretical variance and the theoretical mean defined in Theorem 18
Var(X)
E(X)

=1+ 2(A\1 + A2)0(1 +0(1)). )

This ratio depends on \; + As. Note that for a Poisson variable, this ratio is
1 whereas here this ratio becomes much larger when \; + A, increases. Thus,
the gap between the true distribution of X and the Poisson model increases with
A1 + Ag. Large values of the firing rates as well as large values of ¢ tends to make
the approximation worse.

2.2 Test of independence on a window |[a, b]

From now on, we focus on the notion of delayed coincidences count and the single test
is based on this quantity. Once again, we compare two estimates of my: the observed
averaged coincidences count

1 M
7 o x (@)
= ; : (5)

where X is the coincidences count with delay ¢ for the ith trial, and an estimate of
the expected coincidences count under Hy:

o = MA2[20(b — a) — 67 (6)

where the 5\j’s are defined by (2). We want to reject H, when the difference between
m and my is too large. If the Central Limit Theorem together with Theorem 1 tells

us that under Hy, v M (m — my) can be well approximated” by A/ (0, Var(X)), this is
not true when we add the plug-in step and replace m by 1y, as explained in the next
mathematical result.

Theorem 2. Under Assumptions 1, 2, 3 and H,, the following convergence holds
VM (im — 1ng) 5 N(0,07),
where

0% = M [20(b — @) — 82 + A da [\ + Ao E&”’ - a)154] .

Moreover o? can be estimated by
o e oo Te . 2
6% = Aho [20(b — a) — 62] + Arhs [)\1 n AQ} {553 (- a)_154]

and

VM m\;%ho 5 N(0,1).
(o

8In the following equation, o(1) denotes a quantity that tends to 0 when ¢ tends to 0.

9N (m, 0?) denotes a Gaussian law with mean m and variance o.
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The symbol £ means “convergence in law when M tends to infinity”. This means
for instance that the quantiles of /M (m — 1h) tend to those of A (0,0?), when M
becomes larger. Therefore the plug-in step which consists in substituting mg by my
modifies the shape of the variance: Var(X) is not o2 and this even for an infinite number
of trials! On the other hand the substitution > — 62 makes no difference from an
asymptotic point of view. Figure 1 illustrates the fact that even if this is an asymptotic
result, the approximation by the Gaussian law holds for a reasonable number of trials.

o

@ |
<

0.6
|

distribution function

04

0.2
|

0.0
I

Figure 1: Cumulative distribution function (i.e. ¢ — P(T < t)) under Hy of T =
v M % estimated over 1000 runs in red with M = 41, \; = Ay = 50 Hz and
d = 0.02 s. In black the cumulative distribution function of N'(0, 1).

Theorem 2 shows another interesting behavior which may explain to some extent
why the original Poisson approximation intuited by Griin et al. leads to reasonable
tests: the renormalization o is much closer to mg than Var(X), the corrective term
being now a cubic function of § and not a quadratic term anymore.

This Gaussian Approximation of the UE method - denoted GAUE in the following
- leads to three different single tests depending on what needs to be detected:

e the symmetric test A{y;p(a) of Hy: "Ny and N, are independent” versus H;:

”N; and N, are dependent”, which rejects Hy when m and m, are too different:

. [o?
M —1hg| > 21-ay2 . (7

e the unilateral test by upper value Af 4;;;;(c) which rejects Hy when m is too
large:
52
m > my+ 21—\ — 3)
n

e the unilateral test by lower value A, (o) which rejects Hy when m is too
small:

SEIY

9)

m S mO — Zl-a



where z; is the ¢t-quantile of A/(0,1), i.e. the real number z; such that P(AV(0,1) <
Zt) =1.

Note that the original Unitary Event Multiple Shift method can be formalized in the
same way by

o asymmetric test A}/ (o) which rejects Hy when Mm < g2 or Mm > q1_q/2

e the unilateral test by upper value A}, () which rejects Hy when Mm > ¢,
o the unilateral test by lower value Ay, ;(a) which rejects Hy when m < g,

where ¢, is the ¢-quantile of a Poisson variable whose parameter is M1, := 2M6(b —
a)j\l 5\2.

Theorem 2 tells that all the three Ag 4y g tests are of level o asymptotically, which
means that the type I error of those tests - that is the probability of wrong rejection of H
by one of those tests - is asymptotically less than «. If Figure 1 makes us confident in the
fact that the level is correctly estimated even for finite M, it is less clear that the original
UE method is valid. The plot in Figure 2 is purely heuristic and should help the reader
in understanding the difference between the two approaches: the interesting property
of Gaussian variables is that for every deterministic m and %, m + o * N/(0,1) is a
N (m, c?). Extrapolating this property - since the parameters are random - Theorem
2 tells us that Mm heuristically obeys N (Mg, M&?). Therefore its density can be
plotted on the same space as the distribution postulated in the UE method, which is a
Poisson with mean Mm, (Griin et al, 1999). This can obviously be done for just one
run of both procedures because at each run the quantities Mg, M6? and M1, will
be different, even if the fact that m, > 7y will lead to the same systematic shift on the
right for the UE approximation with respect to the GAUE one. Conversely and even
heuristically, it is not possible to transform the UE approximation into something that
can be plotted on Figure 1, because the parameter inside the Poisson law is random, and
cannot be put outside of the law.

density

0.000 0.005 0.010 0.015 0.020
| | | | |

value

Figure 2: Density curve of a Gaussian distribution with mean M1 and variance M52
in red and histogram curve of a Poisson distribution with parameter M, in green, for
one run of simulation. M = 41, Ay = Ay =50 Hz and § = 0.02 s.
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Therefore, in order to produce more rigorous results, we estimate the type I error of
both classes of tests by simulating 1000 times M/ independent and identically distributed
couples (V. fi), Néi)) of independent Poisson processes and by counting how many times
the tests have wrongly rejected H. The results are displayed on Figure 3.

A 1A hat 13,2} 115,15} 115, 500 150, 500 B 1A hat 12,3} 115,15} 115, 50¢ 150, 500
b-a delm GAUE  LE GAUE  UE GALUE  UE GAUE  LE ba delm GAUE  LE GAUE  UE GAUE UE GAUE  LE
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0.0l 0073 0149 001 00EL 0121
0.02 0079 0.02 0084
0.1 o000l 0.07 0108 0.074 0.0 01 o000l
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0.02 0.02

A UE UE

0116
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0005 D086 0.08 0054 0.087 0005  DOBE 0.083 . 0.086
001 0075 0103 0.084 0.109 0.0l 0077 0.058 . 0.142
0.02 0074 0142 002 007 015
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0.1 o000l 011 0.011 0086 0.079 01 o000l 0.078
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0.01 0.018 0.01 0.085 0.027
0.02 0114 0.02 0.016

o.oo1 0.086 0.075 015 0001 0124 D 015  0.074

0.005 0.03 0.005 0142

0.01 0121 0.016 0.01 0101 0.027

0.02 0.084 0.026 0022 002 0015 0071 D 012

Figure 3: Estimates of the Type I errors of the single tests over 1000 runs. A, C and
E are for M = 19 trials while B, D and F are for M = 41 trials. A and B are re-
lated to the A®*¥"™’s, C and D are related to the A~’s whereas E and F deal with the
A*’s. The window length b — a varies in {0.05, 0.1, 0.15} seconds, the delay 0 in
{0.001 , 0.005, 0.01, 0.02} seconds and the \; are either 3, 15 or 50 Hz. The pa-
rameter « is fixed to 0.05. A color code is given additionally to the exact values on the
right.

=
=
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Paradoxically having the smallest type I error is not the best case. Indeed, this indi-
cates in testing theory a conservative test that has much more difficulty to detect a de-
pendent case than a test of exact error «v. Let us develop this notion. Since thousand runs
are performed, it is possible “’just by chance” that some of those runs badly behaved”
and lead to a detection whereas there should be none. The main point is consequently
to control the error, that is the probability of wrong rejection. If this probability is zero,
then the test would never reject anything even if there is a dependence: a similar case
”just by chance” would have happened in our thousand runs. So we need to control the
type I error not with 0 but with something small - here 5%. This is what should happen
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for the Agapg tests because of Theorem 2, at least when M is large enough. It means
that we allow our test to wrongly detect in 5% of the cases, in order to allow it to detect
more when there will be a dependence. This is our aim: having a type I error as close
to 5% as possible. The rejection of a more conservative test (type I error strictly less
than 5%) can be trusted but it can potentially miss some adequate rejection when one
works under the alternative f1; that is when the spike trains are dependent. On the other
hand, when the type I error is large, such a test can obviously not be trusted because it
potentially detects something that does not exist (here dependence) with a probability
as large as this type I error.

This leads to the following interpretation of Figure 3. The GAUE tests behave most
of the time as expected, with an error close to 5%. If it is not the case, they have a
tendency to be too conservative, mainly because there are not enough points for the
Gaussian approximation to work and this can be due to various causes: small number
of trials (M), small firing rates (A;) or too short period of time (b— a). Note in particular
that for very small firing rates (here 3 Hz) which are much lower than the boundary 7
Hz usually used in the UE analysis (Roy et al., 2000), the first kind error of the GAUE
tests is close to 5% for A, and A 45 and too conservative (the error is null) for
AL g In any case since the default is a conservative default, this means that one can
trust the detections of the GAUE tests.

On the other side, the original UE tests behave very badly particularly for the sym-
metric and lower cases where the error can reach levels higher than 50%. This is partic-
ularly true for high firing rate A and large 0 and this fact deteriorates when the number
of trials increases! This is because as said before (see (4)) the Poisson approximation
is worse when A\ and ¢ increase and increasing the number of trials does not make this
approximation better.

Note however that the A, is on the contrary too conservative for not too small
firing rates (larger than 15 Hz): this fact partly explains why the UE method works in
practice when the detections are due to a statistically too large observed coincidences
count. Note also that this confirms the intuition given by the heuristic Figure 2 where
the UE approximation is shifted on the right. On the contrary, the A}, reaches first type
errors potentially as large as 80% for very small firing rates (3 Hz) and consequently
the UE analysis is not suitable in practice in this range of firing rates as already noted
by (Roy et al., 2000).

By definition and for both classes of tests (UE or GAUE), the symmetric test A"V™ ()
rejects Hy if and only if either AT («/2) or A~ («/2) rejects Hy. That is why for the
remaining part of the paper, we focus the GAUE method on the symmetric test, which
contains both A* and A~ tests at a smaller level.

3 Detection of local dependence on |0, 7]

All the previous computations are done under Assumptions 1, 2 and 3. But the trials
recorded on [0, 7] are not stationary in time. That is why those tests must be performed
on smaller time period than [0, 7', when the stationary assumption is (almost) true. Let
W be any collection of windows, W, of [0, T'] (in particular they can potentially over-
lap) and let K denotes the cardinality of V. Then we can perform on each window W
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any of the previous Ag 4y g tests, now denoted Ay to underline the dependence on the
window on which the test has been applied.

If all those tests are performed at level «, the potential detections (i.e. the windows W
where Ay, rejects) are actually not controlled at all. Assume for instance that all the
Ay ’s are independent then if Hj is satisfied on the whole interval [0, T'], the probability
to have no detection at all (which we would like to be large, since all of the intervals are
under H) is

P(VIV € W, Ay accepts) — 100 (1 — a)® — k00 0.

This means that when K grows, this procedure is doomed to reject at least 1 and in
average K « tests. Note that the UE procedure follows this approach and is consequently
not controlled in term of false detections (Griin et al, 1999).

3.1 Multiple tests: a Benjamini and Hochberg’s approach

One way to control such a problem is to control the so called Family Wise Error
Rate (FWER) (Hochberg & Tamhame, 1987), which consists in controlling F'WER =
P(3W € W, Ay wrongly rejects). This can be easily done by Bonferroni bounds:

P(3W € W, Ay, wrongly rejects) < Z P(Ay wrongly rejects) —n/ o0 Kav.
wew

So Bonferroni’s method (Holm, 1979) consists in applying the Ay tests at level a/ K
instead of « to guarantee a FWER less than «, the detections (also named discoveries)
being given by the rejected tests. However and as said before, the smaller the type I
error is, the more difficult it is to make a rejection. So when K is large, it potentially
leads to no discovery/detection at all even in cases where dependent structures exist.

Another notion, popularized by (Benjamini & Hochberg, 1995) has consequently been
introduced in the multiple testing areas leading to a large amount of publications in
statistics, genomics, medicine etc in the past ten years (Goeman & Solari, 2011, and the
references therein). This is the False Discovery Rate (FDR). Actually a false discovery
(also named false detection or false positive) is not that bad if the ratio of the number
of false discoveries divided by the total number of discoveries is small.

More formally, let us use the notations given in Table 1.

Then the False Discovery Rate is defined by
v
FDR=E <ElR>O) )

Note that when both spike trains are independent for all windows, K7 = 0, which leads
to S = 0and V = R. Hence the FDR in the full independent case is also a control of
P(3W € W, Ay, wrongly rejects), i.e. the FWER. In all other cases, FDR < FW ER.
This means that when there are some W for which the independence assumption does
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Number of W such that Ay accepts Ay rejects Total

Independence on W U =" true negative” | V = "false positive” | Ky = "number of H,”

Dependence on W T = "false negative” | S = "true positive” | Ky = ’number of H,”

Total K—R R="discoveries” K

Table 1: Repartition of the answers in a set of K tests.

not hold, controlling the FDR is less stringent, whereas the relative confidence that we
can have in the discoveries is still good: if we make 100 discoveries with a FDR of 5%,
this means that in average only 5 of those discoveries are potentially wrong.

The question now is: how to guarantee a small FDR? To do so, Benjamini and
Hochberg (Benjamini & Hochberg, 1995) proposed the following procedure. For each
test Ay, the corresponding p—Value10 Py is computed. They are next ordered such
that:

<..<p™ < p&

1)
B w(m) < Pk

W (1)
Let ¢ € [0, 1] be a fixed upper bound that we desire on the FDR and define:
k = max{m such that PV(IT(Zn) < mgq/K}.
Then the discoveries of this BH-method are given by the intervals W (1), ..., W (k) cor-
responding to the k£ smallest p-values.
The theoretical result of (Benjamini & Hochberg, 1995) can be translated in our frame-

work as follows: if the p-values are uniformly and independently distributed under the
null hypothesis, then the procedure guarantees a FDR less than g.

3.2 MTGAUE: Multiple Testing based on a Gaussian Approxima-
tion of the Unitary Events
MTGAUE consists in combining Benjamini-Hochberg approach with the GAUE tests

of independence. Note that in our case, the assumptions required in the approach of
Benjamini-Hochberg are not satisfied. Indeed, the tests Ay are only asymptotically of

10A p-value is the random value of « for which the test A(«) passes from “accept” to “reject”. Note
that usually when o = 0, the test always accepts, whereas it always rejects when o« = 1: therefore there
is a limit value which depends on the observations for which one passes from one decision to another
one. If the test is of type I error exactly « for all «, then one can prove that the corresponding p-value is
uniformly distributed on [0, 1] under Hy.
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type I error «, which is equivalent to the fact that asymptotically and not for fixed M,
the p-values are uniformly distributed. Therefore, there is a gap between theory and
what we have in practice. However, as we illustrate later on simulations, this difference
does not seem to significantly impact the FDR.

Moreover, to have independent p-values we should consider disjoint windows [a, b] (see
the comments after Assumptions 1). However, in order to detect very local phenomena,
it is preferable to consider sliding windows [a, b] that overlap. In theory, few results
exist in this context - see for instance (Benjamini & Yekutieli , 2001). In practice, we
will see in the next section that this lack of independence does not impact the FDR as
well.

4 Simulation study

Some simulations have been performed to understand the behavior of MTGAUE in
practice with respect to the original UE method.

4.1 Description of the simulated data

Our data consist in M realizations of a succession of dependent and independent couple
of processes (/V1, Vs) through time. To do so, dependence on particular time periods
J C [0, 7] must be simulated. In the original UE method (Griin, 1996), the injection
model is used. It can be described as follows: 3 independent Poisson processes A, B, C
with respective intensity A4, A, A¢ are simulated and the point processes (N1, N») are
given by

N1 :AUC’andN2 =BUC.

The main drawback of this model is that it does not allow any random delay, since by
construction, the additional coincidences are exact (with null delay). There is also no
random fluctuation in the number of additional coincidences.

A simple version of Hawkes processes is consequently used here instead of the injection
model to allow both randomness in the delay 0 and in the number of additional coin-
cidences (Hawkes, 1971; Daley & Vere-Jones, 2003). In this model, the first process
Ny is a Poisson process with intensity A;. Independently a second Poisson process B
with intensity v is simulated. To add coincidences, conditionally to /Ny, each point = of
N gives birth to children on Ny according to a Poisson process N* of intensity € on
[z + u, x + k], for kK — p small. The process N, is then given by

N, = BU U NZ.

rENy

Note that a child y of a parent x forms with its parent a coincidence with random
uniform delay (y — x) € [u, x]. In this article, such coincidence is called imposed co-
incidence. Moreover the number of children for a fixed parent = is random: it obeys a
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Poisson law and can therefore be null eventually but also larger than 2. Consequently
the number of imposed coincidences even for a fixed parent is random.

Here the main point is that the mean number of children per point is given by 6(x — ),
which is classically taken strictly smaller than 1 (Daley & Vere-Jones, 2003). There-
fore a significant proportion of the points x have no children (with probability 1 —
exp(—0(k — u))) and some of the points have children as in the injection model. One
can also rewrite this as follows: the intensity of s, given /Vy, is given by

¢
Ao =v+ / h(t — u)dNy(u), (10)
t—A

where h = 01, .

More generally, multivariate Hawkes process can model cross and even self depen-
dence. It has recently been used to model spike trains (Krumin et al., 2010; Pernice
etal., 2011, 2012).

4.2 Validation of the MTGAUE method and comparison to the orig-
inal UE method

Dependence in the different parameters The MTGAUE has been implemented with
the symmetric tests as described in Section 3 with parameter ¢q. The original UE method
does not correct the detections for the multiplicity of the tests. So for comparison, all
the tests A7’ have been consequently performed with parameter & = ¢ and the dis-
coveries of the UE method are given by the rejections of the single tests at level a. The
simulations have been performed in various situations all of them having two periods
of dependence. The results are displayed on 6 simulations with different parameters in
Figure 4. This leads to the following comments:

e Influence of the delay o: Figure 4.A shows that MTGAUE is able to accurately
recover the dependence periods. There are some extra detections but as expected
the ratio false positive / detections is very small and this for all the values of . On
the contrary the original UE method detects a lot of false positive, in particular
when 0 > 0.02 s. This is compatible with the fact that nobody looked at a further
range in the literature (Riehle et al., 2000; Grammont & Riehle, 2003).

e Influence of the level 6 of interaction: On Figure 4.B, the interaction is very small.
Indeed when in 4.A, 8 points over 10 in /V; have a child on /N, roughly speaking,
only 1 point over 10 has a child in 4.B. Moreover on a window of length 0.1 s
there is at most 2 points in average on /Ny, which may potentially have a child.
Therefore the number of imposed coincidences is much smaller in 4.B than in
4.A. So it is likely that nothing is detected at all in 4.B and this is what happens
for MTGAUE whereas the UE method still detects a lot of non relevant windows.

¢ Influence of the number of trials M: On Figure 4.C, the number of trials is much
smaller than on 4.A. MTGAUE is still very accurate in its detections whereas the
UE method suffers from the same drawbacks as in Figure 4.A.
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Figure 4: Detections made by the MTGAUE method (in red) and the original Multiple
Shift UE method (in green). 1900 single tests were performed on 1900 overlapping
(sliding) windows of length 0.1 s shifted by 0.001 s. The corresponding detection is
marked by a color cross at the center of the window. Each line corresponds to a different
delay: 40 different delays 0 from 0.001 s to 0.04 s are considered. Two periods of
dependence are considered [0.5,0.7] s and [1.6,1.7] s. The black vertical lines delimit
the regions where the tests should detect a dependence, that is each time the window
intersects a dependence period. The firing rates are given by : \; = 20 Hz and Ay = 50
Hz, in the non-dependent periods. The dependent periods are modelled by (10) with
A = 20Hz and v = 50 Hz . A: M = 41 trials and h = 801y .01, Symmetric
detections with ¢ = o = 0.05. B: same as A but with & = 1019 g,01). C: same as A but
with M = 19. D: same as A but with ¢ = o = 0.01. E: same as A but only the intervals
where the observed coincidences count is significantly too large are displayed. F: same
as A but with o = 8019.005,0.01]-
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e Influence of the desired FDR level ¢ = a: On 4.D, the level ¢ increases with re-
spect to 4.A. If MTGAUE is very stable - it detects almost the same regions as in
4.A - the UE method detects on the contrary almost all the possible windows as
soon as 0 > 0.02 s and detects a lot of non relevant periods even for § < 0.02 s.
Note that as said previously, taking &« = ¢ = 0.1 amounts to the detection with
Al p(a/2 =0.05) and Ay (/2 = 0.05), i.e. the level classically used in those
analysis.

¢ Influence of the upper/lower values: 4.E suggests an explanation of the previous
phenomenon. Indeed we plot on this figure only the detections of the symmetric
tests for which m > 1y, so they corresponds for the UE test to the discoveries
done when the observed coincidences count is too large with respect to the es-
timate of the expected count. We see that MTGAUE is still very good and that
almost all its detections were by upper values. More importantly we see that the
UE method is very accurate too: in fact two errors come into play, on one side, the
UE tests by upper values are too conservative (see Section 2.2) but on the other
side, they are not adjusted for multiplicity and hence have a tendency to create
too many false positive. At the end, except for high values of 9, the detections
by upper values of the UE method are as good as MTGAUE. In particular for
0 < 0.02 s they are almost identical.

e Integrative aspects: Note that the coincidences count is integrative in ¢ and there-
fore it increases with o. Quite logically, once a certain delay is detected it should
remain detected. But another phenomenon may appear: if the coincidences have
a maximal delay of say 0.01 s, then the proportion of imposed coincidences may
become much smaller when 6 >> 0.01 s with respect to the coincidences appear-
ing just by chance. So Figure 4.E also shows that there is enough coincidences
for MTGAUE to detect dependence up to 0 = 0.04 s. This is not the case for
the UE method because the Poisson approximation is too inadequate for large 0
(6 > 0.03 s).

e Strictly positive lower bound for the delay: On 4.F, the delay of interaction lies in
[0.005,0.01] s, therefore there should not be any detection when § < 0.005 s.
Actually one has to wait until § = 0.008 s to be able to detect both dependence
periods, that is when there is enough imposed coincidences to make a difference.
So it is possible to detect a delay of interaction which is lower bounded by a
strictly positive quantity and this phenomenon can be seen on the plots by areas
of detections that are dense but not present for the smallest ’s. The detections
of MTGAUE become scarce in the smallest dependence period when § > 0.03 s
and this is due to the fact that as described before the imposed coincidences are
diluted: with respect to 4.A, only roughly 4 points over 10 have a child in 4.F.

The graphs of Figure 4 are obtained on just one run of simulation. Figure 5 shows
the estimated FDR over thousand runs for ¢ = o = 0.05. MTGAUE clearly respect
the prescribed FDR of 0.05. Moreover, the UE method by upper value (at least when
the interaction is high enough) respects it too. This confirms the results on one run of
Figure 4.E: the conservative aspects of the UE single tests decrease the potential high
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Figure 5: Estimated FDR over thousand runs in the conditions of Figure 4.A but with
h = 01(0,0.01) for & = 10, 30, 50, 80 represented on the abscissa. The white diamond cor-
responds to MTGAUE (symmetric) whereas the grey diamond corresponds to the sym-
metric UE. The up triangle corresponds to the UE detections by upper values whereas
the down triangle corresponds to the UE detections by lower values.

number of false detections due to the fact that the UE procedure was not corrected for
the multiplicity of the tests. On the other hand, the FDR of the UE method by lower
value is so high (more than 80%) that one cannot trust any of its discoveries, the FDR
of the symmetric UE being less high but still not trustworthy.

Robustness As said previously, the UE method by lower values is not trustworthy
since it detects a lot of false positive. But it is not clear whether MTGAUE is able to
detect anything. To produce simulated data with a negative interaction, the model given
by (10) is transformed to allow h to take negative values. To do so, we use the positive
part of the function as the new intensity of the process /Ny, that is

Ao = (y + /:A h(t — u)dzvl(u))+ 11

If this formula cannot have any interpretation in terms of parents/children and imposed
coincidences with respect to Section 4.1, the following interpretation is still true: a
negative interaction forces a low number of coincidences.

In Figure 6, h = —501[9,0.01)- This is a very strong negative interaction which can be
interpreted as follows: just after a spike on /Ny, the firing rate of N, becomes null for a
very short period of time of 0.01 s. Since the absolute value of h is smaller than the one
used in Figure 4.A, the detections become more difficult. Figure 6 shows that even in
this case, most of MTGAUE detections are at relevant positions of interaction. On the
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Figure 6: Same representation (and same parameters) as in Figure 4.A but with h =
—5010,0.01) in Equation (11).

contrary, the symmetric UE method detects almost the whole interval of observation
for & > 0.02 s and even for smaller §, the UE methods detects a lot of non relevant
interactions at random positions.

Another potential problem that may be encountered in practice is whether the trials
are truly iid or not. Indeed, it is possible (as we will see on the real data analysis)
that different experimental conditions are regrouped in order to have a sufficiently high
number of trials and therefore the identical distribution between trials would not be valid
anymore. Other phenomenons that cannot be controlled by the experimental conditions
may also appear and therefore it is not always possible to properly sort the truly iid
trials.

Figure 7 shows that even if a small proportion of the trials (just one fourth) have
indeed an interaction, MTGAUE is able to recover them. Moreover the number of
discoveries increase with the ratio of trials having indeed an interaction.

As a conclusion of this simulation part, MTGAUE produces detections of depen-
dence with a controlled False Discovery Rate on a large range of parameters. MTGAUE
can correctly detect dependence even if the interaction is negative (too low number of
coincidences) or if the trials do not all show the same pattern of interaction. On the
contrary, following the present study, the UE analysis is valid only for the detection due
to a significantly too large coincidences count for § < 0.02 s.
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with A\; = 20 Hz and A5 = 50 Hz; in B, same situation with a ratio of 20 over 41 trials
simulated according to Figure 4.A.

S Real data study

MTGAUE being validated on simulated data, the method is applied on real data and
some practical tools are provided to evaluate the quality of the detection.

5.1 Description of the data

Behavioral procedure The data used in this theoretical article to test the validity
of the MTGAUE method were already partially published in previous experimental
studies (Riehle et al., 2000; Grammont & Riehle, 2003; Riehle et al., 2006). These
data were collected on a 5-year-old male Rhesus monkey who was trained to perform
a delayed multidirectional pointing task. The animal sat in a primate chair in front of
a vertical panel on which seven touch-sensitive light-emitting diodes were mounted,
one in the center and six placed equidistantly (60 degrees apart) on a circle around
it. The monkey had to initiate a trial by touching and then holding with the left hand
the central target. After a delay of 500 ms, the preparatory signal (PS) was presented
by illuminating one of the six peripheral targets in green. After a delay of either 600
or 1200 ms, selected at random with various probability, it turned red, serving as the
response signal and pointing target. During the first part of the delay, the probability for
the response signal to occur at 500+600 ms =1.1 s was either 0.3, 0.5 or 0.7, depending
on the experimental condition. Once this moment passed without signal occurrence, the
conditional probability for the signal to occur at 500+600+600 ms =1.7 s changed to 1.
The monkey was rewarded by a drop of juice after each correct trial. Reaction time
(RT) was defined as the release of the central target. Movement time (MT) was defined
as the touching of the correct peripheral one.
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Recording technique Signals recorded from up to seven microelectrodes (quartz in-
sulated platinumtungsten electrodes, impedance: 25MO at 1000 Hz) were amplified
and band-pass filtered from 300Hz to 10 kHz. Using a window discriminator, spikes
from only one single neuron per electrode were then isolated. Neuronal data along with
behavioral events (occurrences of signals and performance of the animal) were stored
on a PC for off-line analysis with a time resolution of 1 kHz.

In the following study, only trials where the response signal occurs at 1.7 s are consid-
ered.

5.2 Quality of detection

Evaluation of the significance of detected windows is not as simple on real data as it is
on simulated data. Indeed, the periods in which relevant dependence really lies are not
a priori known.

For one single test, a criterion that assesses the quality of the detection is the well
known p-value: the smaller the p-value is, the better the detection is. Performing the
test at level o = 0.05 consists in comparing the p-value to the threshold 0.05, rejecting
Hy when the p-value is smaller than the threshold.

However, when multiple testing procedures are applied, the single p-values are not
sufficient anymore as explained in Section 3. More precisely their rank in the set of
p-values is also actually a valuable information. Benjamini and Hochberg’s procedure
combines rank and values in order to provide a procedure with prescribed FDR less
than ¢ (Benjamini & Hochberg, 1995). Therefore, to provide the analogue of the single
p-value for single tests, we consider the multiplicity adjusted p-value (Romano & Wollf,
2005; Goeman & Solari, 2011), defined for each tested interval by the smaller value
of ¢ that allows detection in the MTGAUE method. The underlying idea is that if the
multiplicity adjusted p-value associated with an interval is weaker, it is more likely
that the hypothesis Hj is really at fault on this interval. Thus, the detections made
by MTGAUE with ¢ = 0.05 correspond to the detections for which the multiplicity
adjusted p-value is less than 0.05.

Figure 8 displays the results when the MTGAUE and UE methods are applied on the
activity of two pairs of neurons, recorded during the experiment described in Section
5.1.

The most trusted detections are the ones corresponding to a multiplicity adjusted
p-value less than 0.01. Those intervals correspond to the detections of MTGAUE with
q = 0.01 and consequently at the most 1% of those detections are false positive in
average. The classical detections with ¢ = 0.05 correspond to the intervals with a
multiplicity adjusted p-value < 0.05. For larger multiplicity adjusted p-values, the
set of detected intervals contains too many false positives and it is therefore difficult
to assert local dependence between neurons on those intervals. Thus, the multiplicity
adjusted p-value is a practical tool to make a decision like the notion of p-value for
single tests.

In this respect, on 8.A and 8.B several periods are detected which correlate with the
occurrence of specific events of the behavorial protocol. Interestingly there is no real
gain by looking at the detections for ¢ = 0.05. Most of them are already detected
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Multiplicity adjusted p-values for all the possible intervals
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Figure 8: Representation of the detections according to MTGAUE and UE methods
over sliding windows of length 0.1 s shifted by 0.001 s. Each detected window is
associated to its multiplicity adjusted p-value thanks to the MTGAUE method: if the
multiplicity adjusted p-value belongs to [0, 0.01], a black circle is plot at the center of the
corresponding window. For [0.01, 0.05] the color is magenta. For [0.05, 0.8] the color
is cyan and yellow for [0.8, 1. Each line corresponds to a different value of ¢ from O to
0.04 s. The first black vertical bar corresponds to the preparatory signal (PS), the blue
vertical bar to the expected signal (ES), the second black vertical bar to the response
signal (RS). The first hatched box correspond to the interval [mean reaction time (RT)
minus its standard deviation, mean reaction time (RT) plus its standard deviation], the
second hatched box corresponds to the same thing but for the movement time (MT). A
and C correspond to the pair of neurons 13 in the experiment. B and D correspond to the
pair of neurons 40 in our experiment. Graphs A and B show the MTGAUE multiplicity
adjusted p-values of all the windows. Graphs C and D show the MTGAUE multiplicity
adjusted p-values of the windows detected thanks to the symmetric UE procedure with
a = 0.05.
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Figure 9: Representation of the detections according to UE and MTGAUE methods for
which m — my > 0, with the same convention as in Figure 8. A correspond to the
couple of neurons 13 in the experiment. B correspond to the couple of neurons 40 in
our experiment. Bars and boxes on the time axis as in Figure 8.

for ¢ = 0.01 for larger 0. Since for these detections the FDR is less than 1% as we
have seen in the simulation study, these detections are really significant. In particular,
those appearing for 6 > 0.02 s on 8.B could not have been seen / trusted using the UE
method. Indeed the detections using the UE method by upper values (see Figure 4.E)
disappear for large values of § and the detections using the UE method by lower values
(see Figure 5) have a too large FDR. On the contrary, the simulation study makes us
confident in the fact that such a large number of detections for ¢ = 0.01 cannot be due
to chance for MTGAUE. On 8.C and 8.D, we see that the symmetric UE method with
a = (.05 detects a lot of intervals corresponding in reality to large multiplicity adjusted
p-values (i.e. detected by MTGAUE only for ¢ > 0.8). This corroborates the fact that
the symmetric detections using the UE method may include a large number of false
positive as we have seen in the simulation study.

5.3 Is the count significantly too low or too large ?

As a matter of fact (as already noted in Section 2.2), for single tests the detection of
AS™ at level o = 0.05 is just the detection of both tests AT and A~ at level o = 0.025
and this for both UE and GAUE method. When dealing with a collection of tests, this
result is still valid for the UE method which does not correct for multiplicity. However
it is not valid anymore for MTGAUE since this method is based on the rank of all the p-
values of all the symmetric tests, somehow intertwining detections by lower and upper
values. Since the interest lies in both distinct detections (upper and lower values) on
the experimental data, it is meaningless to independently perform tests by upper values
and then tests by lower values. The correct way to use the method is consequently to
perform MTGAUE with the symmetric tests. Once a multiplicity adjusted p-value has
been assigned to the different windows, criterion measuring the quality of the detections
of dependence, one can then ask the question whether this detection was due to a low
count or large count by looking at the sign of m — my.

Figure 9 shows those detections when m > 1 corresponding to a number of co-
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Figure 10: Localisation of the detected coincidences on the spike trains. Graphs A and
B are respectively the raster plot of couple 13 and couple 40 with in red the significantly
too large coincidences count and in blue the significantly too low coincidences count,
the detection being made by the symmetric MTGAUE with ¢ = 0.05 and 6 = 0.02 s.
Bars and boxes on the time axis as in Figure 8.

incidences significantly too large. As already noticed in 4.E and 4.F, the UE detections
due to large observed coincidences count are much more precise than the symmetric
UE detections (the multiplicity adjusted p-values are low). The detections in 8.C and
8.D that are not found in 9.A and in 9.B corresponds to detection where the observed
coincidences count is significantly too low. Those UE detections where the count is
too low have sometimes a very large multiplicity adjusted p-value and are therefore
not trustworthy. On the other hand, MTGAUE (with ¢ = 0.05) only detects by defi-
nition periods with small multiplicity adjusted p-values. Those detections concern by
definition both situations: significantly too large and too low coincidences count. In
particular, on 8.D, those detections are due to a low coincidences count and correspond
to & > 0.02 s, range that was not regarded by the previous UE method, indicating a
negative interaction with lower bounded delay between both neurons. In order to view
the results directly on the data, the rasters associated to the data sets used in Figure 8
for o = 0.02 s are represented in Figure 10.

5.4 Aggregation of the results obtained from several recording ses-
sions

We run the symmetric MTGAUE method over three different data sets, corresponding to
the various probabilities of occurrence of the response signal at 1.1 s. Once again, only
trials where the response signal occurs at 1.7 s are treated by the method. The main point
is to see the influence of these probabilities on the synchronized activity. In particular
because of the very small number of usable trials (in particular in Data70) in a given
movement direction, we decided to pool all directions together, as already in previous
studies but in different ways (Grammont & Riehle, 2003). The trials are consequently
not iid but Section 4.2 shows that the MTGAUE detections can be trusted anyway. In
the same spirit, we did not discard pairs of neurons whose firing rate is smaller than 7 Hz
(Roy et al., 2000; Riehle et al., 2000; Grammont & Riehle, 2003) because even in this
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Figure 11: Proportion of pairs of neurons that have been detected by the MTGAUE
method (sliding windows of length 0.1s shifted by 0.001 s, ¢ = 0.05) through time.
Each line represents a different parameter 6 € [0,0.04] s. A, C and E corresponds to
the proportion of pairs of neurons that have been detected by MTGAUE and for which
the coincidences count is significantly too large whereas B, D and F corresponds to the
proportion of pairs of neurons that have been detected by MTGAUE and for which the
coincidences count is significantly too low. (PS) was presented at 0.5 s (first vertical
black line), (RS) at 1.7 s (third vertical black line). Even if those trials are not used
in the present average, a response signal at 1.1 s ((ES)=second vertical black line) was
also presented in 30% of the cases for A and B (Data30 - 43 pairs of neurons), in 50%
of the cases for C and E (Data50 - 34 pai%g of neurons) and in 70% of the cases in E
and F (Data70 - 27 pairs of neurons).



case the MTGAUE detections can be trusted since MTGAUE is just too conservative
(see Figure 3). Hence MTGAUE was performed on each pair of neurons, leading to the
detection of windows where this pair is significantly synchronized. Then an aggregation
of the detections over all pairs of each data set was performed. The proportion of these
significantly synchronized pairs are displayed in Figure 11. As expected the maximal
proportions of significantly synchronized pairs of neurons occur in correlation with the
occurrence of the different behavioral events of the task (preparatory, expected and
response signals). There is a huge proportion of detections (up to 40% of the pairs) that
are due to a coincidences count significantly too low, whereas at the most 10% of the
pairs have a coincidences count significantly too large.

e Significantly too large coincidences count.

Comparing Figures 11 A, C and E, it appears that the proportion of pairs that have
a significantly too large coincidences count is much more important on Data30,
showing two maxima, just after the expected signal and just after the response sig-
nal. When the probability of the expected signal increases (Data50 and Data70),
those maxima still appear but in a lower proportion. In particular, when the re-
sponse signal at 1.1 s is much more likely than the response signal at 1.7 s (in
Data70), those maxima are shifted on the right as if the animal continue to ex-
pect the signal a longer time because it was more likely. Note finally that most of
these maxima appear for large 6 > 0.02 s and could not have been seen using the
classical UE method.

e Significantly too low coincidences count.

Comparing Figures 11 B, D and F, it appears that all the three data sets have
roughly the same maximal proportion of pairs that have a significantly too low
coincidences count. The main difference comes from the localization and the
fuzziness of the proportion of pairs. The maxima are large and strong in Data30
in particular around the preparatory and expected signals. In Data70, the only
localizations reaching such high scores are just before and after the expected sig-
nal. In Data50, the signal is fuzzier: in this case, the animal has one chance over
two to receive a true signal at the expected signal and seems to prepare himself
to both situations by having most of the time a certain fraction of the pairs of
neurons with a significantly low coincidences count.

6 Discussion

The UE method (Griin, 1996; Griin et al, 1999, 2010) is a popular method that has
shown its ability to detect relevant synchronizations from a neurophysiological point
of view (Grammont & Riehle, 1999; Riehle et al., 2000; Grammont & Riehle, 2003;
Maldonado et al., 2008). However, several points were not clearly explained and/or
controlled at the mathematical level.

e The first main problem is to suppose at the same time that the spike trains and
the coincidences counts are Poisson distributed when both spike trains are sta-
tionary and independent. If it is just a fairly good approximation in the binning
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framework, this distribution is drastically different when the delayed coincidences
count is involved (see Section 2.1). In particular, high firing rates or large delays
0 tend to make the approximation by a Poisson law worse, fact which was ignored
in the neuroscientific literature up to our knowledge.

e The second main source of error is a confusion between the expected coinci-
dences count m( under H, and its estimate 719. Indeed the plug-in step which
consists in using the estimate instead of the true parameter may also change dras-
tically the law. Here this phenomenon appears on the variance of the test statistic
(see Section 2.2).

e Some edge effects when the delay ¢ is large are also neglected in the original
method, leading to a test statistic that systematically over-estimates the number
of coincidences under H for sufficiently large firing rates (larger than 7 Hz) (Roy
et al., 2000; Grammont & Riehle, 2003). Summing up all those defects, the UE
single test is a very conservative procedure when the rejection is due to a large
coincidences count and a very wrongly calibrated procedure when the rejection
is due to a low coincidences count (see Section 2.2).

e On the other hand, the Unitary Events method is applied simultaneously over
different sliding windows and all the tests with p-value smaller than 0.05 are
declared detected. But it is well known in multiple testing theory that this method
does not guarantee any control in terms of False Discovery Rate (see Section
3). The UE method by upper value - which combines a very conservative single
procedure with this very non conservative way to treat several tests - fortunately
leads to quite accurate detections in practice (at least when the window length is
0.1 s, when the number of trials is larger than 19, when the delay ¢ is smaller
than 0.02 s and when the firing rates are larger than 7 Hz). On the contrary, the
UE method by lower values can never be trusted because of its very high False
Discovery Rate.

The main purpose of this article has been to propose some solutions to these prob-
lems in the context of the delayed coincidences count. The binning case is also fully
treated in the appendix.

e When both spike trains are independent and stationary Poisson processes, we
precisely compute the expected coincidences count and its variance showing that
there are indeed edge effects in the formula (see Section 2.1). These effects in-
crease with ¢ and we show that the distance with respect to a Poisson law in-
creases as a function of both the firing rate and the delay o.

e We propose a very precise Gaussian approximation of the test statistic when the
expected coincidences count is replaced by its estimates leading to statistical tests
that are proved to be asymptotically of prescribed level « (see Section 2.2).

e We show by a simulation study that this Gaussian Approximation of the Unitary
Events (GAUE) is relevant even for ¢ in [0.02, 0.4] s when the window length is
0.1 s and even for firing rates as low as 3 Hz and this both for upper and lower
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values (see Section 2.2). The test by upper values becomes too conservative for
firing rates as small as 3 Hz, but its detections can nevertheless be trusted.

e We combine those tests with a Benjamini and Hochberg procedure leading to the
Multiple Testing based on a Gaussian Approximation of the Unitary Events (MT-
GAUE) on sliding windows. A simulation study shows that the False Discovery
Rate is well controlled by the parameter ¢ of the MTGAUE procedure (see Sec-
tion 4). We show that MTGAUE is able to detect dependence as well as the UE
method by upper values in the range of parameters where the UE method is valid,
but that the MTGAUE method is also able to detect relevant periods, either when
the firing rates are much lower or the delay much larger than the classical range
or when the observed coincidences count is significantly too low. Moreover this
method seems robust to non iid trials.

e All this factors make MTGAUE able to treat larger data sets where the firing
rates, the number of trials and/or the non iid character prevented the use of the
UE method (see Section 5). It is also able to look at larger delays ¢ that were
ignored before and at detections due to a significantly too low coincidences count
that can not be trusted in the case of the UE method. The patterns of synchronized
activity detected by the MTGAUE method are not distributed in a random manner
along the behavorial protocol. On the contrary, their localization is relevant with
the different events occurring along the time of the behavorial protocol.

In this article, we show that the MTGAUE method is a reliable method for the anal-
ysis of the synchronized activity of pairs of neurons. However, one should be able to
extend its use to the analysis of more than two neurons at a time. Actually, multielec-
trode recording techniques are more and more efficient and allow the recording of tens
or even hundreds of neurons at the same time. Such techniques provide the possibility
to study more directly neuronal assembly (i.e. without requiring the aggregation of data
recorded at different moments). Mathematical tools must evolve in the same direction.

On one hand, it is possible to generalize the notion of delayed coincidences to more
than 2 neurons as it has already been done for the binned coincidences (Griin et al,
2010). One possibility would be to provide a Gaussian approximation for this case,
the multiple testing part remaining unchanged. On the other hand, we think that pure
testing procedures do not give fully satisfying answers and that it would be legitimate to
provide an estimation of the dependence notably, through the Hawkes model (Krumin
et al., 2010). It is already known than this model can easily deal with more than two
neurons (Daley & Vere-Jones, 2003; Pernice et al., 2011, 2012). However it is only in
a recent work that we have proposed theoretical statistical methods to deal with large
numbers of neurons and large potential delays of interaction through Lasso methods
(Hansen et al, 2012). In a future work we will adapt this method to deal with non
stationary data.
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A Binning framework

A.1 Notations:

e Forle{1,2},ie{l,....k}andj e {1,..., M}, let N (I,) be the number of
points of N; on I; for the trial j.
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e Foric {1,...,k},let Z; = 1{n,(1,)>1, No(1;)>1} e the binned coincidences count
on I; for the couple (N7, Ny).

e Forie {1,...,k}andj € {1,...,M},letZi(j) =1 be the

Y )z, Ny (1)>1)
binned coincidences count on /; for the couple ( N1(]), Nz(])), that is, ZZ_(1)’ L Zz‘( M)

are M realizations of Z;.

e Forjc{l,... M}, letYV) = Zle Zi(j ) be the binned coincidences count on
[a, ] for the couple (N, N{), that is, YO, ... YM) are M realizations of
Y ,where Y is defined in Definition 1.

o LetZ = >0, YW = o1 ij\; Sk Z9) be the average coincidences count
on a bin. In particular, we have Z = km, where m is defined by Equation (1).

A.2  Proof of Proposition 1

Proof. Since N; is a Poisson process, we have:
o V{i,s}, N;(I5) ~ P(\0)
e Vi, the random variables { N;(I)}, are independent.

Thus {Z;}; are independent and identically distributed random variables whose distri-
bution is a Bernoulli distribution with parameter p = P(Z; = 1).

Thus the distribution of Y, the binned coincidences count on |[a, b], is a binomial distri-
bution with parameters & and p.

Let us compute the expression of p.

Under H,, we have:

5

; ;) >1)

JP(Na(L;) = 1)

) =0)) (1= P(N:(I;) =0))
— exp(—Aq0)

I
=

— exp(—=A19))(

—_

Thus my = E(Y) = kp.
U

A.3 Detail on the correction
Theorem 3. Under Assumptions 1, 2 and Hy, the following convergence holds:
VME (Z - p) 5 N(0,07),

where R R
p=(1—exp(=A16))(1 — exp(—A26)),
o’ = p(1—p)—A1d exp(—2A10) [1 — exp(—)\gé)]z—)\chexp(—2)\25) 11— exp(—)\lé)]z,
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and where the A\ and \s are defined by Equation (2). Moreover o can be estimated by

6% = p(1—p) — A8 exp(—A10)2 (1 —exp(—A20))? — Aad exp(—Aad)*(1 — exp(—A16))?

and o
Vit 222 £ w1
ver N0

Proof. First we apply the Vectorial Central Limit Theorem (see (Bickel & Doksum ,
2000)) ‘

M ZZ(J) P

SRSSTNO @) | - s || S Ns(0,T),

i=1 j=1 NQ(j)(Ii) A0

where I is the corresponding covariance matrix, i.e.
p(1—p) A0 exp(—=A16)(1 —exp(—XA20)) A0 exp(—A20)(1 — exp(—A19))
I'= | Mdexp(—A10)(1 — exp(—A20)) A0 0
Aad exp(—A20)(1 — exp(—A10)) 0 20

Indeed, we have:

cov(Z9 NO(I)) =

&=

(27 NU(T)) - E(@“’)E(N“(I))

(10 (13189 (1 N (1) = (Z“))E(N(”(L))

(130 (111 n(,) 1N<”<I>> E(Z)E(NY (L))

( ) — E(ZPEWN (1)
)

[
ﬁﬁ

= EE1yp 15, N (1)IN2)
= P(NJ(I;) > > <N“’<I>>—E<Z<”> (N(1)
— (1= P(NI(L) = 0))\i6 — pAid

By assumption on N, we have N3/ (I;) ~ P(\8), thus:

cou(Z7 NP(I;)) = (1= exp(—sd)
(1 — exp(—A20)

= (1 —exp(—X29)

= Mdexp(—A19))

YA 5 PA10

M8 — (1 — exp(~Mi8)(1 - exp(~Aad))Ard
))\15(1 — 1+ exp(—A10))

(1 — exp(=A20))

Next, we can rewrite

\/M—IC(Z—p) = \/M—k 9 (mzz z(J)ka, ZZNl(J)<[z)7—kZZN2(])<[Z>>
i=1 j=1 i=1 j=1 i=1 j=1

with g(z,u,v) = x — (1 — exp(—u))(1 — exp(—v)). Therefore the Delta method (see
(Bickel & Doksum , 2000)) gives that

VMk (Z - p) 5 N(0,D'TD),
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where D is the gradient of g in (E(Z7), \1(b — a), A2(b — a)). That is

1
D = | —exp(—=A10)(1 — exp(—X20))
—exp(—A20)(1 — exp(—A19))
We recognise that 0> = D'T'D and the last result is just a classical application of

Slustky’s lemma (see (Bickel & Doksum , 2000)). [

B The delayed coincidences count

B.1 Proof of Theorem 1

Proof. Since N; et N, are now independent homogeneous Poisson processes with
intensity A; and \s, one has that

:E(/C;b/ab1|m—y|§6dN1(x)dN2(y))

One can prove (see (Daley & Vere-Jones, 2003)), that

b b
X) = )\1)\2/ / 1‘x,y‘§5dﬂfd’y.

borb b
/ / Ljpey|<sdrdy = / (min(b, z 4+ §) — max(a,z — J)]dz
n ks b5 b
= / [x+5—a]dx+/ 25dx+/ b+ 0 — z]dx
a b—o

a+d
= W+5(5—a)+25[(b—a)—25]+5(b+5)—

= 20(b—a)—4°

b — (b—6)?
2

since a + ¢ < b — ¢. Similarly, we can compute E(X?). If Diag = {(z,y) | x =y €
[a,b]} and [a, b]® = [a, b]*\ Diag, one can decompose

E(X?) = (/ i Ljg—y|<sjt—uj<s N1 (2 )dN1(f)dN2(y)dN2(u)>
E( . 1xyg51tu|g5dN1($)dN1(t)dN2(y)dN2(u)>
( [a oy iz s AN ()N (t)ng(y)ng(u)> +
< /D oy Mz AN N (t)dNQ(y)ng(u)>

+E (/D . Ljz—y|<s1jt—uj<sdN1(2)d Ny (t)sz(y)sz(u)>
iag
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This leads by classical properties of the moment measure of Poisson processes (see
(Daley & Vere-Jones, 2003)) to

E(X?) = E(X)2+>\§)\2/

a,b

Liz—y|<s 1|t_y‘§5d$dydt +
3

b b
+)\1)\§/ l‘x,y‘ggl‘x,u‘ggdl‘dydu+ )\1)\2/ / l‘x,y‘ggdl‘dy
[a,b]3 a a

Hence

2

b s b
Var(X) = MA2[20(b — a) — 62 + [A\] A2 + A AS] / (/ 1|my|§5dy) dx.

It remains to compute as before

b b 2 b
/ (/ 1xy§5dx) dy = [min(b, z + &) — max(a, x — §)]*dx

b—é b

26)2dz + / b+ 6 — a2de
b—4o

[x+5—a]2dx+/
a+d

/aa 5
/
(a

_ @ a5 — a5 — a) + 005 — a)?

3
+[268)%[(b — a) — 26] +
+# LB — (b= 85+ 5) + 5(b+ 5

= 46*(b—a) — 13—053

4

B.2 Proof of Theorem 2

Proof. Let X' = f[a 2 1‘x_y‘§5dN1(i)(x)dN2(i)(y) the coincidences count with delay ¢
on [a, b] for the couple (N\?, N ).

First we apply the Vectorial Central Limit Theorem

M (')X ‘ MA2[20(b — a) — §?] ;
MY NP ([a0) ) - M (b—a) = N3(0,T),
=1 L\ ([a, b)) Ao(b—a)

where I is the corresponding covariance matrix, i.e.

)\1)\2 [25(6 - (1,) - 52] -+ [)\%)\2 -+ )\1)\%][452(17 - a) - 1—:?53] )\1)\2 [25(b - (1,) - 52] )\1)\2[25(b - (1,) - 52]
I'= )\1)\2[25(1) - a) - 52] )\1(6 - (1,) 0
AAa[26(b — a) — 7] 0 Ao(b — a)
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This matrix is obtained by the previous computations, the fact that /V; is independent of
N5 and the following fact,

BOON ([0 ) = B([ |t yssd M @aN(0a(0)
- B(f 1o y<sdNy()dN () dNo(y)
[a,b}@)x[a,b}
T / ooysdNy (2)dN () AN ()
Diagx[a,b]

= )\%)\2/ 1x_y§5dl’dtdy+)\1)\2/
[a,0]? [a,]

= E(X)E(Ni([a,b])) + A A2[25(b — a) — 6%

1\x—y\§5dxdy
2

Next we can rewrite
VM (7 —1ng) = VM [g @ Zix@‘% % Z N{ ([, 1)), % ;mﬁ“qa, b]))
—g(B(XM), Ai(b—a), Aa(b— a))] ,

where m and 7i are respectively defined by Equations (5) and (6), and with g(z, u, v) =
x — uv[26(b — a) — 6%](b — a) 2. Therefore the Delta method gives that

VM (m — o) S N(0, D'TD),
where D is the gradient of g in (E(X™), \;(b — a), \2(b — a)). That is
1
D= | —-X[20(b—a)—6%(b—a)!
—M[26(b —a) — 6%](b—a)™?

We recognise that 0> = D'T'D and the last result is just a classical application of
Slustky’s lemma. [J
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