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Résumé The framework of this paper is the robust crash analysis of a mo-
tor vehicle. The crash analysis is carried out with an uncertain computational
model for which uncertainties are taken into account with the parametric pro-
babilistic approach and for which the stochastic solver is the Monte Carlo
method. During the design process, different configurations of the motor ve-
hicle are analyzed. Usual interpolation methods cannot be used to predict if
the current configuration is similar or not to one of the previous configurations
already analyzed and for which a complete stochastic computation has been
carried out. In this paper, we propose a new indicator that allows to decide if
the current configuration is similar to one of the previous analyzed configura-
tions while the Monte Carlo simulation is not finished and therefore, to stop
the Monte Carlo simulation before the end of computation.

Keywords crash · uncertainty · uncertainties · Monte Carlo · simulation

1 Introduction

The crashworthiness is one of the most important performance of a mo-
tor vehicle. The analysis of the crashworthiness is carried out through very
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advanced models which can be either analytical models [9,28] or nowadays,
principally, computational models [1,10,11,28,30,33,39]. Such models can also
be used to get an optimal design of a vehicle under crash impact loads [40,52,
53]. Nevertheless, such modeling is a challenge in regard to the complexities of
the computational model because the geometrical and material nonlinearities
must be taken into account. In such system, the solution of the computational
model is highly sensitive to the values of the system parameters, the initial
conditions, the boundary conditions of the crash computational model. Un-
certainties must be taken into account in order to perform a robust design of
the crashworthiness with the computational model [21,27,31,32,36,49]. There
exist several approaches in order to take into account the uncertainties on the
parameters of the computational model, among which the probability theory
is a powerful mathematical tool and has proven its efficiency in the past. In
this paper, the robust analysis of a crash model for a motor vehicle is carried
out with a parametric probabilistic approach which consists in modeling the
uncertain parameters of the computational model with random variables. The
prior probability distributions of those random variables can be constructed
by using the Maximum Entropy (MaxEnt) principle [8,22,25,46,47] under the
constraints defined by the available information. Such a construction allows
the probability density functions to be explicitly defined with respect to a
set of parameters that are, most of the time, some statistical moments. The
crash analysis of a current configuration is then performed with a stochastic
computational model for which the prior probabilistic model of the random
system-parameters are completely defined. A stochastic solver must then be
used to solve the random equations of the stochastic computational model.

Each configuration is defined by a stochastic computational model which
is a finite element model for which the uncertain parameters are modelled
by random variables. We then consider a family of stochastic computational
models. From a design configuration to another one, the stochastic computa-
tional model is modified (removing or adding some structural elements and/or
components, modifying the nominal geometry of structural elements and/or
components, modifying the materials, modifying junctions, modifying the pro-
babilistic models of uncertain parameters of the computational model). It is
assumed that a given configuration cannot be deduced from another configu-
ration by a continuous variation of a vector-valued design parameter.

Concerning the methods and formulations to solve the random equations,
the choice of a specific method depends on the desired accuracy on the mo-
del output, on the nature of the expected probabilistic information and on
the type of stochastic computational model. These last two decades, a gro-
wing interest has been devoted to spectral stochastic methods, pioneered by
Roger Ghanem in 1990-1991 [14,18], and which provide an explicit representa-
tion of the random model output as a function of the basic random parameters
modeling the input uncertainties [14,15,16,17,18,19,34,35,29]. Unfortunately,
these methods cannot yet to be used for solving the stochastic computational
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models for the crash analysis, in particular, in the context of the design opti-
mization. Indeed the stochastic computational models of crash are very large
(several tens of millions of degrees of freedom), are highly nonlinear with very
large displacements, very large deformations, large numbers of contacts bet-
ween the components, numerous plastic deformations, and many ruptures of
components and of joints. In addition, in the framework of the design optimi-
zation for crash, the configurations are changed in a ”not continuous” manner :
removal of components, addition of components, changes in the geometry of
components, etc. Another way for solving the random equations of the sto-
chastic computational model and which seems to be me more adapted to the
situation considered, corresponds to the methods based on a direct simulation
which are often called non-intrusive because the classical deterministic com-
putational codes can be used. In this class, the direct Monte Carlo numerical
simulation method (see for instance [12,43] is a very effective and efficient
method because this method (i) is non-intrusive, (ii) is adapted to massively
parallel computation without any software developments, (iii) is such that its
convergence can be controlled during the computation, and (iv) the speed of
convergence is independent of the dimension. The speed of convergence of the
Monte Carlo method can be improved using advanced Monte Carlo simulation
procedures [37,41,38,44], subset simulation technics [2], important sampling
for high dimension problems [3], local domain Monte Carlo Simulation [42].
Statistical convergence of the Monte Carlo method can also be accelerated by
means of a recent variance reduction technique introduced in [5]. This tech-
nique constructs a reduction of variance [20,23] and is also a first attempt
to combine the reduced basis of control variates of two kinds, stochastic and
deterministic ones [6].

In this paper, we use, as stochastic solver, the Monte Carlo simulation me-
thod [7,20,24,43] and the mathematical statistics [13,26,45,48]. Consequently,
all the acceleration procedures mentioned above can be used. Nevertheless, in
the framework of a crash analysis of an automotive vehicle, for instance, se-
veral configurations of the vehicle corresponding to several designs must be
analyzed. The objective of the paper is then to propose a strategy to decrease
the computational cost of such analysis in stopping the Monte Carlo simula-
tion before its convergence, if this configuration ”looks like” to a configuration
already analyzed.

The different configurations of the motor vehicle are obtained not only
by modifying the engineering design such as the removal or the addition of
components of the vehicle, the choice of materials, the geometrical design mo-
difications, but also by modifying the values of the parameters controlling the
probabilistic models of uncertainties. In this case, for a complete crash ana-
lysis performed with the stochastic computational model, usual interpolation
methods cannot be used to predict if the current configuration is similar or not
to one of the previous configurations already analyzed. More precisely, for the
crash design analysis, the response surface method [51] would correspond to
the construction of a mapping between the observations of the computational
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model and two types of parameters : the uncertain parameters which are in
high dimension for the crash computational models and the ”design parame-
ters” allowing the different design configurations to be generated. However, the
different design configurations cannot easily be described in terms of a small
number of ”design parameters”. For a given design configuration, the observa-
tions are random due to the uncertain parameters in the computational model.
Consequently, we should consider a random family of response surfaces indexed
by the set of the considered design configurations. In the context of the crash
analysis, for each fixed element in the set of design configurations, the probabi-
lity distribution of the random observation is deduced from a highly nonlinear
transformation of the probability distributions of a large number of uncertain
parameters. For this high dimension case, the Monte Carlo method is efficient
for solving the random nonlinear equations. Nevertheless, because one crash
analysis is very time consuming, for a given design configuration, it is interes-
ting to detect before reaching the convergence of the statistical estimators of
the observations, if this configuration is ”close” of a design configuration al-
ready analyzed. Since the set of the design configurations cannot be described
”continuously” with a small number of ”continuous” parameters, the distance
between to configurations cannot easily be defined and then quantified. The
problem is not to construct a distance between two design configurations, but
is to detect, during the Monte Carlo simulation of a given design configura-
tion, if the statistics of this configuration are converging towards the statistics
of a configuration already analyzed (and for which convergence has been rea-
ched). For this non classical problem, we then propose a new indicator based
on the introduction of a confidence interval of the random likelihood of the
observations. This new indicator allows to decide if the current configuration
is similar to one of the previous analyzed configurations while the Monte Carlo
simulation is not finished and therefore, to stop the Monte Carlo simulation
before the end of computation. With such an approach, a significant gain of
CPU time can be obtained. It should be noted that, if a similar configuration
is detected, then the Monte Carlo simulation is stopped, the current configu-
ration is rejected and the statistics of the observations are not constructed at
convergence.

More precisely, let C = {c1, . . . , cn} be a set of such n configurations.
For each configuration ck ∈ C, the solution of the stochastic computational
model is denoted by Uck for which the statistics are calculated with the Monte
Carlo numerical method. In addition, the Monte Carlo method allows the
convergence level of the statistical estimators of statistical quantities of Uck

to be controlled during the computation. For each configuration ck ∈ C, with
k = 1, . . . , n, a given number nk of statistical independent realizations of
Uck are constructed so that the statistical estimators are converged. In the
context of a robust design analysis with n configurations, the total number N
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of realizations of the solutions Uc1 , . . . ,Ucn is then

N =

n∑

k=1

nk . (1)

As we have explained above, the objective of the paper is to propose a me-
thodology which allows the current configuration ck to be rejected, while only
νk ≪ nk statistical independent realizations of Uck have been computed, if
configuration ck is ”equivalent” to a configuration ck′ for k′ < k previously
analyzed for which the statistical estimators were converged. Hence, the com-
putation of nk−νk realizations of U can be avoided and consequently, the total
numerical cost of the analysis decreases. The total number N0 of statistical
independent realizations of U over all the n configurations is such that

N0 < N . (2)

It should be noted that if there were a one-to-one correspondence between C
and a given metric space, R, (for instance R

s) and if each configuration ck ∈ C
was represented by a current point rk belonging to R, then the stochastic so-
lution Uk would be defined as the value U(rk) of a mapping r �→ U(r) on R
at point rk. In addition, the notion of derivative of r �→ U(r) with respect to
r would make sense and consequently, the notion of the neighborhood in the
set of all the possible configurations could be introduced. In such a case, an
interpolation method, such as the surface response method, could be carried
out (as in [40,51,53]) and it would be required that all the points r1, . . . , rn be
inside an opened ball of R with a ”small enough” radius. Nevertheless, such a
method cannot easily be used as soon as the one-to-one correspondence does
not exist. This is the case if the design process involves removal or addition of
components of the vehicle, consists in changing the materials and in introdu-
cing geometrical modifications, between two successive configurations ck and
ck1.

In this context of the use of a stochastic computational model, it is neces-
sary to construct a new methodology which allows the distance between two
stochastic configurations to be quantified, in a non usual sense. The method
presented in the next sections is based on the construction of an indicator
which allows us to to decide if the current configuration ck must be rejected
while the statistical estimators for ck are not yet converged, that is to say,
which allows us to stop the Monte Carlo simulation of the current configura-
tion ck before the end of computation.

The first part of the paper is devoted to the methodology and the second
part deals with the validation of the method carried out with a real application
related to a crash analysis of an automotive vehicle.
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2 Methodology

We introduce the R
m-valued random variable Xck which is an observation

of the random solution Uck . The random vector Xck is assumed to be defi-
ned on a probability space (Θ,F ,P) and its probability distribution (which is
unknown and which must be estimated with the stochastic solver) is defined
by a probability density function x �→ p(x; ck) on R

m. In the framework of
the crash analysis, the observation vector is a nonlinear observation operator
applied to the time dependent random solution of the computational model.
For instance, the components of the observation vector can be the maximal
value on time history of diverse quantities such as the structural acceleration,
velocity and displacement, the structural and residual deformation.

The methodology is constituted of the following steps.

(1) The first step consists in constructing a likelihood level for a given confi-
guration ck associated with µ independent realizations of Xck . The likelihood
level will be defined as the confidence interval, [Lµ−

k ;Lµ+
k ], associated with a

probability level Pc, of a random log-likelihood function Lµ(ck) relative to µ

independent copies of random vectorXck . For that, we need to introduce a ran-
dom selection of µ realizations Xck(θJ1

), . . .Xck(θJµ
) among nk independent

realizations Xck(θ1), . . .X
ck(θnk

) of Xck , for θ1, . . . , θnk
in Θ. This random

selection is processed using a uniform random permutation {J1, . . . , Jnk
} of

the integers {1, . . . , nk} and then, in selecting the first µ integers {J1, . . . , Jµ}.

(2) The second step deals with the computation of the likelihood level for a
given configuration ck. For that (a) the probability density function p(x; ck) at
a given x which are is estimated using the usual nonparametric statistics and
the independent realizations Xck(θ1), . . .X

ck(θnk
) computed with the Monte

Carlo method, (b) the independent realizations of Lµ(ck) are then computed
and (c) the confidence interval [Lµ−

k ;Lµ+
k ] of the random likelihood function

Lµ(ck) is estimated with the method of quantiles.

(3) The third step is devoted to the construction of an indicator for the
rejection test of the current configuration ck+1 given k non-rejected configu-
rations.

(4) Finally, a principal component analysis is introduced to reduce the
computational cost of the nonparametric statistical estimation of p(x; ck) per-
formed in Step 2-(a).
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2.1 Step 1. Construction of a likelihood level for a given configuration ck
associated with µ independent realizations

Let k be fixed. Let µ and nk be two non zero integers such that µ ≤ nk.
Let J = (J1, . . . , Jµ) be the random vector, defined on a probability space
(H,F ′,P ′), with values in {1, . . . , nk}

µ = {1, . . . , nk} × . . . × {1, . . . , nk}.
The probability distribution of J is such that the set of random variables
{J1, . . . , Jµ} corresponds to the first µ random variables of the set of random
variables {J1, . . . , Jnk

} for which {J1, . . . , Jnk
} is a uniform random permuta-

tion of integers {1, . . . , nk}.

Let Y1, . . . ,Ynk be nk independent copies of random vector Xck . Conse-
quently, the random vectors Y1, . . . ,Ynk are statistically independent and
their probability density functions p1(y

1; ck), . . . , pnk
(ynk ; ck) are such that

p1(x; ck) = . . . = pnk
(x; ck) = p(x; ck) . (3)

The random log-likelihood function of the µ independent random variables
YJ1 , . . . ,YJµ is defined as the real-valued random variable Lµ(ck) such that

Lµ(ck) =

µ∑

ℓ=1

log{pℓ(Y
Jℓ ; ck)} . (4)

Using Eq. (3), Eq. (4) can be rewritten as

Lµ(ck) =

µ∑

ℓ=1

log{p(YJℓ ; ck)} . (5)

For configuration ck and for a given probability level Pc, the likelihood level of
the µ independent random variables YJ1 , . . . ,YJµ is defined as the confidence
interval [Lµ−

k ;Lµ+
k ] such that

Proba{Lµ−
k ≤ Lµ(ck) ≤ L

µ+
k } = Pc . (6)

2.2 Step 2. Computation of the likelihood level of a given configuration ck

As explained in Section 1, the stochastic solver is assumed to be based on
the Monte Carlo numerical method for which the convergence is reached with
nk independent realizations Xck(θ1), . . . ,X

ck(θnk
) of random vector Xck in

which θ1, . . . , θnk
are in Θ. Let θ be the vector such that θ = (θ1, . . . , θnk

).
These realizations must be constructed only if configuration ck is not rejected.
Let µ < nk and let J(η) = (J1(η), . . . , Jµ(η)) be one realization of random

vector J = (J1, . . . , Jµ) with η in H . A realization YJ1(η)(θ), . . . ,YJµ(η)(θ) of

random vectors YJ1 , . . . ,YJµ is such that

YJ1(η)(θ) = Xck(θJ1(η)) , . . . , Y
Jµ(η)(θ) = Xck(θJµ(η)) . (7)
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Then, the realization Lµ(ck)(θ, η) of L
µ(ck) is defined as

Lµ(ck)(θ, η) =

µ∑

ℓ=1

log{p(Xck(θJℓ(η)); ck)} . (8)

In Eq. (8), the usual multivariate Gaussian kernel density estimation method
(see for instance [4,50]) (eventually after a principal component reduction,
see Section 2.4) of p(Xck(θJℓ(η)); ck) is used with the independent realizations
Xck(θ1), . . . ,X

ck(θnk
). The value of nk is assumed to be sufficiently large for

that the convergence of the estimator be reached. The confidence interval
[Lµ−

k ;Lµ+
k ] of µ < nk realizations is numerically computed by the method of

quantiles with mk realizations J(η1), . . . ,J(ηmk
) of random vector J.

2.3 Step 3. Construction of an indicator for the rejection test of the
configuration ck+1 given k non-rejected configurations

In this step, an indicator is constructed in order to decide if a configuration
ck+1 must be rejected given k non-rejected configurations. Let us assume that
c1, . . . , ck are the k previous non-rejected configurations for which a complete
computation has been performed. Consequently, for k′ in {1, . . . , k}, let nk′

be the number of independent realizations of random vector Xck′ which have
been computed by the Monte Carlo method. A difficult question arises once µ
statistically independent realizationsXck+1(θ1), . . . ,X

ck+1(θµ) have been com-
puted for the configuration ck+1 : the configuration ck+1 must it be rejected
or nk+1 − µ additional realizations must be computed ? We propose to take
the decision in accordance to the likelihood of the independent realizations
Xck+1(θ1), . . . ,X

ck+1(θµ) with respect to the likelihood of the previous confi-
gurations c1, . . . , ck. Hence, for given µ, configuration ck+1 is rejected if there
exists k′ in {1, . . . , k} such that

L
µ−
k′ ≤ T

µ
k′(k + 1) ≤ L

µ+
k′ , (9)

in which

T
µ
k′(k + 1) =

µ∑

ℓ=1

log{p(Xck+1(θℓ); ck′)} . (10)

2.4 Step 4. Principal component analysis for the reduction of computational
cost

In Eqs. (8) and (10), for given k or k′, the probability density function x �→
p(x; ck) has to be estimated with the realizations computed by the Monte Carlo
method. The components Xck

1 , . . . , Xck
m of random vector Xck are random

variables statistically dependent. Consequently, the joint probability density
function (x1, . . . , xm) �→ p(x1, . . . , xm; ck) of random variables Xck

1 , . . . , Xck
m

has to be estimated with the multivariate Gaussian kernel density estimation
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method. If m is large, this induces an important numerical cost which can be
reduced by using a principal component analysis. The principal component
analysis of random vector Xck allows us to write

Xck = mck + [Φck ] [λck ]1/2 Qck , (11)

in which mck = E{Xck} is the mean value of random vector Xck and where
[λck ] and [Φck ] are the diagonal matrix of the positive eigenvalues and the
matrix of the orthonormal eigenvectors of the covariance matrix [Cck ] of Xck ,
such that

[Cck ] [Φck ] = [Φck ] [λck ] . (12)

Consequently, the random vector Qck is centered (E{Qck} = 0) and such that

E{Qck QckT } = [I] , (13)

in which [I] is the identity matrix of dimension m. The components of random
vector Qck are statistically dependent but are not correlated. In Eqs. (8) and
(10), an approximation consists in substituting p(x; ck) and p(x; ck′) by the
probability density functions pQck (q) and pQc

k′ (q) of random vectorsQck and
Qck′ ,

Lµ(ck)(θ, η) =

µ∑

ℓ=1

log{pQck (Q
ck(θJℓ(η)))} , (14)

T
µ
k′(k + 1) =

µ∑

ℓ=1

log{pQc
k′ (Qck+1(θJℓ(η)))} , (15)

in which

Qcj = [λcj ]−1/2[Φcj ]T (Xcj −mcj ) , j ∈ {k, k′, k + 1} . (16)

For j = k and k′, we then introduce an approximation consisting in replacing
the joint probability density function p

Q
cj
1

,...,Q
cj
m
(q1, . . . , qm) of statistically

dependent and non correlated random variables Q
cj
1 , . . . , Q

cj
m by the product

of the marginal probability density functions, p
Q

cj
1

(q1)× . . .× p
Q

cj
m
(qm).

3 Validation with a real application

3.1 Computational model and crash impact

In this section, an application is presented for the crash impact of an au-
tomotive vehicle. The mean computational model has been constructed using
the finite element method. The uncertain parameters of the mean computa-
tional model are (1) the velocity and the three-dimensional position of the
automotive vehicle at the impact and, (2) thicknesses of structural elements
and limit forces, and (3) the three-dimensional position of the multibody mo-
del of an occupant. All these uncertain parameters are modeled by random
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variables for which the prior probability distributions have been constructed
using the MaxEnt principle (see [54]). Since the MaxEnt principle consists in
maximizing the uncertainties under the constraints defined by the available
information, an important step is the definition of the available information.
For each random variable, the available information used are related to the
support of the probability distribution, to the first-order and/or to the second-
order statistical moments and possibly, to constraints related to the existence
of a second-order moment of the inverse of the random variable. Figures 1
and 2 display the mesh of a stochastic computational model for a given de-
sign before the crash impact and the mesh of a realization of the stochastic
computational model after the crash impact.

Figure 1 Mesh of the mean computational model before the crash impact.

3.2 Database provided by Peugeot-Citroën Automobiles SA

In order to validate the methodology which is proposed, Peugeot-Citroën
Automobiles SA has constructed a database made up of a ”complete” Monte
Carlo simulation for three configurations c1, c2 and c3 of the automotive vehicle
and for which there are 5 observations Xck

1 , . . . , Xck
5 . Concerning the observa-

tions which are analyzed, 6 cases are considered and are denoted by Case 0 to
Case 5. Case 0 uses the total vector Xck of the 5 observations (m = 5). The
5 other cases, Case 1 to Case 5 correspond to the observation of each one of
the 5 components Xck

1 , Xck
2 , Xck

3 , Xck
4 and Xck

5 , Case i being related to Xck
i .

The number of independent realizations for the 3 configurations are n1 = 82,
n2 = 95 and n3 = 90.

In order that the reader be able to appreciate the statistical contents of
the database, the probability density functions of the 5 scalar observations are
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Figure 2 Mesh of a realization of the stochastic computational model after the impact

estimated and plotted for the 3 configurations. It should be noted that these
estimations are constructed using the total number of realizations existing in
the database and corresponding to the complete Monte Carlo simulation for
each configuration. In practice, the use of the methodology which is proposed
implies the rejection of certain configurations before the end of Monte Carlo
simulation and consequently, such estimations could not be performed. The-
refore, for i = 1, . . . , 5, Figures 3 to 7 show the probability density function
pXck

i
, normalized with respect to the mean value, of random observation Xck

i

estimated by the Gaussian kernel density method using the nk independent
realizations.

3.3 Objectives and parameters of the proposed methodology

Giving the complete Monte Carlo simulation for configuration c1, the ob-
jective is to analyze the possible rejection of configuration c2 and then, of
configuration c3, before the end of the Monte Carlo simulation. Below, such
an analysis is carried out for the 6 cases as a function of the probability level
Pc introduced in Section 2 and chosen in the interval [0.001, 0.99]. For all k
in {1, . . . , 5}, in order to estimate the bounds L

µ−
k et L

µ+
k of the confidence

region associated with Pc, µ is chosen in [µmin, nk] with two cases defined by
µmin = 5 and µmin = 10, and the number mk of independent realizations for
random vector J is 200.
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3.4 Results obtained for the 6 cases

In this section, we present the results computed for the 6 cases which
have been analyzed with the methodology presented in Section 2. In Tables
1 to 7, the following notations are used : ”A” means ”Accepted”, ”R” means
”Rejected” and ”Rz” means ”Realizations”.



Computational strategy for the crash design analysis 13

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
Configuration c

1

Configuration c
2

Configuration c
3

Figure 5 Probability density function of observation 3 for configurations c1, c2 et c3.
Dimensionless graph of x �→ p

X
ck
3

(x).

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

 

 
Configuration c

1

Configuration c
2

Configuration c
3

Figure 6 Probability density function of observation 4 for configurations c1, c2 et c3.
Dimensionless graph of x �→ p

X
ck
4

(x).

3.4.1 Case 0. Analysis with the total vector of observations

The results are presented in Table. 1 for µmin = 5. It is shown that the
algorithm first compares configurations c3 with c1 and then, c3 with c2. For
Pc = 0.2, configuration c3 is rejected because of its similitude with c2. For Pc =
0.5, configuration is rejected because of its similitude with c1. If configuration
c1 and c2 were switched such that the algorithm would first compare c3 with
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c2, then configuration c3 would be rejected by c2. Consequently, c3 is rejected
by both c1 and c2. It should also be noted that the minimum number of
realizations µmin is 5 but this parameter can be adjusted to another value,
for instance µmin = 10. In this case, algorithm yields different results (see
Table 2) because the total available information considered in order to decide
if c3 should be rejected is different. Actually, it only underlines the role played
by the additional information. Nevertheless, the results are still similar and
consequently, the algorithm is stable. For µmin = 10, the results are presented
in Table. 2. It is shown that the algorithm first compares configurations c3
with c1 and then, c3 with c2. For Pc = 0.9, configuration c3 is rejected by c1.
For 0.1 < Pc < 0.9, configuration c3 is rejected by c1 or by c2. Consequently,
Tables 1 and 2 yield the same conclusion which is the following. Configuration
c3 appears to be similar to configuration c1 or c2 when when the calculations
are carried out in the sequence order c1, c2 and then c3. In addition, if only
small values of Pc are considered with a partial information obtained by few
realizations of configuration c3, it is deduced that configuration c3 is especially
similar to configuration c2.

3.4.2 Case 1. Analysis with observation 1

The results concerning observation 1 (maximal value of a structural ac-
celeration) are presented in Table 3 with µmin = 10 and for different values
of probability level Pc. Note that configuration c2 appears to be similar to
configuration c1 when the calculations are carried out in the sequence order
c1, c2 and then c3, and by considering only the results of the algorithm with
small values of Pc.
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Table 1 Results for µmin = 5

Pc c1 c2 c3

0.001 A A R by c2 after 16 Rz
0.01 A A R by c2 after 16 Rz
0.05 A A R by c2 after 16 Rz
0.1 A A R by c2 after 5 Rz
0.2 A A R by c2 after 5 Rz
0.5 A A R by c1 after 5 Rz
0.9 A A R by c1 after 5 Rz
0.95 A A R by c1 after 5 Rz
0.98 A R by c1 R by c1 after 5 Rz
0.99 A R by c1 R by c1 after 5 Rz

Table 2 Results for µmin = 10

Pc c1 c2 c3

0.001 A A R by c2 after 16 Rz
0.01 A A R by c2 after 16 Rz
0.05 A A R by c2 after 16 Rz
0.1 A A R by c2 after 16 Rz
0.2 A A R by c1 after 13 Rz
0.5 A A R by c2 after 11 Rz
0.9 A A R by c1 after 10 Rz
0.95 A A R by c1 after 10 Rz
0.98 A A R by c1 after 10 Rz
0.99 A A R by c1 after 10 Rz

Table 3 Results for random observation 1 with µmin = 10

Pc c1 c2 c3

0.001 A R by c1 after 10 Rz A
0.01 A R by c1 after 10 Rz A
0.05 A R by c1 after 10 Rz A
0.1 A R by c1 after 10 Rz A
0.2 A R by c1 after 10 Rz R by c1 after 11 Rz
0.5 A R by c1 after 10 Rz R by c1 after 10 Rz
0.9 A R by c1 after 10 Rz R by c1 after 10 Rz
0.95 A R by c1 after 10 Rz R by c1 after 10 Rz
0.98 A R by c1 after 10 Rz R by c1 after 10 Rz
0.99 A R by c1 after 10 Rz R by c1 after 10 Rz

3.4.3 Case 2. Analysis with observation 2

The results concerning observation 2 (maximal value of a structural ve-
locity) are presented in Table 4 with µmin = 10 and for different values of
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probability level Pc. Note that configuration c3 appears to be similar to confi-
guration c2 when the calculations are carried out in the sequence order c1, c2
and then c3, and by considering only the results of the algorithm with small
values of Pc, except for the smallest value of Pc.

Table 4 Results for random observation 2 with µmin = 10

Pc c1 c2 c3

0.001 A A A
0.01 A A R by c2 after 15 Rz
0.05 A A R by c2 after 15 Rz
0.1 A A R by c2 after 14 Rz
0.2 A A R by c2 after 14 Rz
0.5 A A R by c2 after 10 Rz
0.9 A R by c1 after 10 Rz R by c1 after 10 Rz
0.95 A R by c1 after 10 Rz R by c1 after 10 Rz
0.98 A R by c1 after 10 Rz R by c1 after 10 Rz
0.99 A R by c1 after 10 Rz R by c1 after 10 Rz

3.4.4 Case 3. Analysis with observation 3

The results concerning observation 3 (maximal value of a structural dis-
placement) are presented in Table 5 with µmin = 10 and for different values
of probability level Pc. Configuration c3 appears to be similar to configuration
c1 when the calculations are carried out in the sequence order c1, c2 and then
c3, and by considering only the results of the algorithm with small values of
Pc, except for the two smallest value of Pc.

Table 5 Results for random observation 3 with µmin = 10

Pc c1 c2 c3

0.001 A A A
0.01 A A A
0.05 A A R by c1 after 29 Rz
0.1 A A R by c1 after 22 Rz
0.2 A A R by c1 after 22 Rz
0.5 A A R by c1 after 22 Rz
0.9 A A R by c1 after 16 Rz
0.95 A A R by c2 after 10 Rz
0.98 A A R by c1 after 10 Rz
0.99 A A R by c1 after 10 Rz
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3.4.5 Case 4. Analysis with observation 4

The results concerning observation 4 (maximal value of the residual de-
formation for the firewall) are presented in Table 6 with µmin = 10 and for
different values of probability level Pc. It should be noted that configuration c3
appears to be similar to configuration c1 when the calculations are carried out
in the sequence order c1, c2 and then c3 and by considering only the results of
the algorithm with small values of Pc, except the smallest value of Pc.

Table 6 Results for random observation 4 with µmin = 10

Pc c1 c2 c3

0.001 A A A
0.01 A A R by c1 after 12 Rz
0.05 A A R by c1 after 12 Rz
0.1 A A R by c1 after 12 Rz
0.2 A A R by c1 after 11 Rz
0.5 A A R by c1 after 10 Rz
0.9 A A R by c1 after 10 Rz
0.95 A A R by c1 after 10 Rz
0.98 A A R by c1 after 10 Rz
0.99 A A R by c1 after 10 Rz

3.4.6 Case 5. Analysis with observation 5

The results concerning observation 5 (maximal value of a structural defor-
mation) are presented in Table 7 with µmin = 10 and for different values of
probability level Pc. Configuration c3 appears to be similar to configuration
c2 when the calculations are carried out in the sequence order c1, c2 and then
c3, and by considering only the results of the algorithm with small values of
Pc, except for the two smallest values of Pc.

Table 7 Results for random observation 5 with µmin = 10

Pc c1 c2 c3

0.001 A A A
0.01 A A A
0.05 A A R by c2 after 10 Rz
0.1 A A R by c2 after 10 Rz
0.2 A R by c1 after 34 Rz R by c1 after 24 Rz
0.5 A R by c1 after 20 Rz R by c1 after 19 Rz
0.9 A R by c1 after 10 Rz R by c1 after 10 Rz
0.95 A R by c1 after 10 Rz R by c1 after 10 Rz
0.98 A R by c1 after 10 Rz R by c1 after 10 Rz
0.99 A R by c1 after 10 Rz R by c1 after 10 Rz
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3.5 Validation

The calculations presented in Section 3.4 have been performed without any
knowledge on the similarities concerning the design configurations which have
been tested (blind test). Among the design configurations analyzed, Peugeot-
Citroën Automobiles SA has introduced similar configurations with respect to
the crash analysis from an engineering point of view. The use of the proposed
methodology to detect similar design configurations has allowed the differences
between configurations c1, c2 and c3 to be detected.

4 Conclusion

We have presented an efficient methodology, developed in the framework
of the crash analysis of automotive vehicles, which allows us to decide if the
current configuration is similar to one of the previous analyzed configurations
while the Monte Carlo simulation is not finished and therefore, to stop the
Monte Carlo simulation before the end of computation. The methodology has
been applied to a database without knowing the similarities between the confi-
gurations. The similarities which were known by the automotive manufacturer
but not communicated by it. The results obtained have thus been validated.
This provides a first validation of the proposed method for analyzing a com-
plex mechanical system performed with a stochastic computational model for
which the Monte Carlo method is used as stochastic solver.
The methodology proposed is general and can certainly be used for other fields
of applications and appears as a tool which allows the Monte Carlo simulation
of large stochastic computational models to be accelerated in stopping the
calculations of a useless realization.
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