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Modelling a vehicle-sharing station as a dual waitig
system:stochastic framework and stationary analysis
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Université Paris Est, Laboratoire Ville Mobilité dnsport, Ecole des Ponts ParisTech

Abstract

A waiting system with two kinds of resources, shg vehicles and the docks in a vehicle-
sharing service, is considered. Two arrival flowsa$tomers are assumed, access customers
who require a vehicle versus egress customerdthrag back their vehicle and require a dock
at the station. The total number of docks setsnat Icapacity for the service. A stochastic,
markovian, state-transition model is defined, wheohstitutes a bi-sided capacitated queuing
system. The balance equations are stated and sofedding a stationary distribution under
two conditions of compatibility. Indicators of sergi quality and system performance are
defined and formulated under steady state.
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1. Introduction

Recently, vehicle-sharing systems (VSS) of trartgpon have enjoyed rapid diffusion in
many cities throughout the world, at first for kskand then for cars. They can be classified in
several kinds, depending on not only the type dficte but also the operational protocol:
does it involve prior booking or not, are theretistes of vehicle depot and, if so, is there a
return constraint to bring the vehicle back to #tation of take-off? The location of the
stations in the urban area, the number of themtlagid respective docking capacities, as well
as the size of the vehicle fleet, constitute thennvariables of system design. Pioneering
implementations can be traced back to the 1960%difycles, in Amsterdam (the “White
Bike” program, 1965) or in La Rochelle, France (tiiellow bike” system, 1974), and even
to 1948 for cars (the Sefage program in ZurichR007, the Velib system of shared bikes in
Paris, though not the first one of its kind (Cf.I& in Lyons, 2005), has broken the path to
large systems involving several thousands of vebi@nd docks. In 2011, an analogous
system of shared cars, dubbed Autolib, has beerogmplin Paris also and with similar
dimensional parameters.

As such systems could be useful in a number odsjitsimulation models are important to
evaluate the performance of a service scheme adbtdecision-making in transportation
planning. Several streams of scientific literatheve developped rapidly, in pace with the
surging programs of VSS. The first and most ancsénrgam pertains to OR models of system
design and/or management: a VSS is modeled asveonkebf stations, possibly with an
underlying network of streets, with an objective diion involving at least the costs of
operations and maybe also the set-up costs andustemer costs, to be optimized with
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respect to a set of design variables by using &mcinnovative OR algorithms (e.g. Lin and
Yang, 2011, Contardet al, 2012, Martinezt al, 2012). Within this stream, some models are
focused on the real-time operations and the opéitma of, e.g., vehicle redistribution
between stations. The stream is focused on thdyssjge and deals with the demand side by
crude assumptions: the trip demand is representaddiist as an origin-destination matrix of
trip flows between pairs of stations, with no cusés behavior other than diverting to
alternative modes (not modelled explicitly) if nohide is available at the station at the
instant of the trip-maker’s arrival.

A second stream belongs to the traditional fieldra¥el demand analysis. Some works are
devoted to analyze VSS customer databases totyiglohatrices by period and other patterns
of usage such as the distribution of trip duratferg. Nairet al, 2013). Customer surveys
yield additional patterns of usage, by type of perand trip purpose (e.g. Kumar and
Bierlaire, 2012). Bordagarast al (2012) have surveyed a sample of bike-sharingsusgm@an
ad-hoc experiment of stated preferences in ordenddel the determinants of the quality of
service. However, there has been little attempintegrate VSS as a modal option in the
setting of multimodal travel demand models. In opinion, this integration is of primary
importance because, in real-world conditions, tf85\is a minor travel mode within its area
of coverage, where it competes with the major modelsiding walking, the private car and
transit modes. Conversely, the sharing service beaysed as a trip leg complementary to
other modal legs, notably transit legs. For botisoms, the issue of modal choice should be
addressed to yield a relevant origin-destinatiortrimaf trip flows for the vehicle-sharing
service. To that end, a model of route choice amudimodal network should be developped.
Dynamic microsimulation might be a solution — butastly one to deal with a large urban
area with millions of inhabitants, all of whom mum& simulated to deliver a relevant picture
of, e.g., station occupancy in real time. Cetral (2011) have modeled a VSS as an abstract
mode in the MatSim-T multi-agent model of mobiliySS legs can be included in trip tours
that are considered and possibly selected by th#eled trip-makers. The agent framework
could also enable one to model the system opeaatarspecific agent with its own objectives
and resources. But in this implementation the V3fslenis not modeled physically, meaning
that it is assumed to be available at any statitin mo capacity constraint and that the quality
of service is derived from the travel conditions pwrvate car. This raises the issue of
modeling the availability of trip resources (vekikland docks) with other components of
service quality that are essential to the trip-mskas candidate customers. Resource
availability depends on not only the system setimigrms of stations, vehicles and operating
processes, but also on the pattern of traffic, Wwhitvolves the various trips of the whole
population of trip-makers within the studied arezo, in the framework of dynamic
simulation, a realistic model of VSS quality of \gee requires to simulate all the eligible
trips in the area; it cannot be restricted to aarof trip-makers. Furthermore, for recurrent
travel purposes such as home to work, the trip-mak@luates quality of service on an
average basis out of a set of reiterated occursenthus, both the issue of resource
availability and that of average quality of servaadl for some macroscopic modeling of any
VSS within the multimodal transportation system. Téhevelopment of a macroscopic
multimodal model will involve three steps: firstlaal model of station occupancy, second, a
macroscopic model of traffic assignment to a mongahmetwork of vehicle sharing, third,
the multimodal network traffic assignment model.

This brings us to the third and last stream ingbientific literature on VSS models: that of
stochastic models. In OR models there may be stawerfof stochasticity: demand variation
is identified and discussed, but most of the modsdsfocused on average flows (e.g. hu

al, 2010). Improvements have been provided by Lin sadg (2011) who integrate the
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variance of vehicule inventory in the cost functiointhe system, and by Na@t al (2013)
who deal with each demand flow by a quantile otsrhypothesized distribution function, in
order to address the risk of local resource shertdpre advanced, markovian models of a
closed queuing network have been developped tsfonudemand stochasticity across space
and timpe in system operations. One trend is pteddo establish structural properties in a
coverage area assumedly homogeneous, with stakliahare assumed identical in capacity as
well as in spatial context even if they are spreaer the area; furthermore, flows from one
station to the other stations are assumed to lebdited according to a single pattern or at
most two patterns, so that in essence the modéd dath one or two typical stations only.
This results in a traffic pattern that is uniforretiveen stations if they are homogenous
(Pricker and Gast, 2012). In another trend, statieterogeneity in size, location and trade of
customers is modeled explicitly in order to studgidy management policies (Waserhole and
Jost, 2012). Whatever the trend, the physical sgpration is limited with no capacity
constraint (George and Xia, 2010) or only one tgfewaiting: excess pedestrians are
dismissed to avoid vehicle shortage so that waisngstricted to excess vehicles,, or excess
vehicles are immediately diverted to neighborirgishs (Fricker and Gast, 2012). So, to the
physical limitation are added a number of grossabighal restrictions. Furthermore, the trip
duration between stations is modelled as an exp@hermriable, which would fit to return
trips better than to one-way trips.

Here the objective is to provide a stochastic made station, as the basic modeling brick
that could be integrated in a wider, network mobtidcroscopic properties are derived from
probabilistic assumptions about the arrival flowdhe access and egress customers. As the
customers on egress bring the vehicles to theostaihiey may be considered as suppliers to
those on access. Conversely, if all the docks ecamed, then a customer on access will take
a vehicle and also vacate a dock, thus providingsaurce and being a supplier to the
customers on egress. In other words, the stati@andigal system of service and waiting. It is
modeled here as a pair of waiting systems, an acwes for the vehicles and an egress one
for the docks, which are so strongly coupled that hoth of them make a bi-sided queuing
system. In a markovian setting, the state variablaterest is the number of present vehicles,
extended artificially to negative values so asdooant for waiting customers on the access
side. A state-transition model is formulated. Th&abee equations are provided and solved
for stochastic equilibrium. The stationary distribnt enables us to derive quality or
performance indicators on the basis of simple,ede®rm formulae.

The rest of the paper is in four parts. Sectiomi@gs about the model assumptions and state-
transition framework. Then, Section 3 provides b@ance equations and the stationary
distribution of probability. Next, Section 4 dealsth indicators of service quality, on the
customer side, and of system performance, on teeatqr side. Lastly, Section 5 is devoted
to sensivity analysis and illustration.

Table of notation

K docking capacity

A time intensity of arrival flow of customers on &% access

H time intensity of arrival flow of customers on 8 egress

r probability of acceptance to wait for access custem

s probability of acceptance to wait for egress congs

o~ stationary probability of vehicle shortage
a* stationary probability of dock saturation

Enpc working document 3/19 November 2012



Fabien Leurent Dual waiting system

2. Model framework

2.1 Station assumptions

Let us define a station as a limited space withixaerg number, sayk, of docks to
accommodate idle vehicles. Two distinct flows o$tamers arrive for service at the station,
either for service access or egress. On the ast@sscustomers without vehicle — who are
pedestrians at that stage — arrive at vatéo get a vehicle. On the egress side, customers
holding a vehicle arrive at raje to get a dock so as to leave their vehicle.

The main state variable is the number of idle MekicsayN with current value denoted by
n. When N >0 there is some idle vehicle available for a custoateaccess. Wheil < k
there is some dock available to egress customers.

Let us adapt the state variable by extending vhri&b to values less than zero, on the access
side: a valuen< (Omeans thah]| customers are waiting to get a vehicle. On thesgside, a
value n>k means thain—k customers holding a vehicle are waiting for a waaock to
leave their venhicle.

The number of available dockB,, is equal to|K— N| when N O[O, K], or zero whenN >k,

or K when N < Q So in general

D =min{k,(k—N) *}. (1)

2.2 Customer behavior

Access customers arrive at the station as a stochasarkovian process with rate. If

N >0 then no such customer is waiting for a vehicletls® next access customer gets a
vehicle with no delay save for the transaction tiieN <O then |N| such customers are

already waiting for a vehicle at the instant of\alr of the next one. Let us assume that there
is a given acceptance rate, denotedo join the stock and wait for a vehicle.

On the egress side, exiting customers arrive asti#gon as a stochastic, markovian process
with rate . If N <k then no such customer is waiting for a dock sonisd egress customer

leaves his vehicle with no delay save for the @atien time. If N >k then |N— K| egress

customers are already waiting for an available datcthe instant of arrival of the next one.
Let us assume that there is a given acceptancedeteteds, to join this stock and wait for a
dock at the station.

2.3 State-transition model

The station has been defined as a stochastic systdpect to two random processes of
pedestrian arrivals and vehicle arrivals, respettiwvith a state variabl® that summarizes
the issues of vehicle availability, dock availatiliwaiting pedestrians and waiting couples of
egress customer with his vehicle.

From a given state value, system transitions of state occur to the neighigovaluesn— 1
or n+1 according to the following rules:

- from n to n+1, due to the flow of egress customers and theiaeh, the transition
rate isp if n<k or us if n=2k.
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- from n to n—1, due to the flow of access customers and theiawieh the transition
rate isA if n>0 or Ar if n<0.

- Any transition betweem andn+i for i {-11} has null rate.

Figure 1 gives the state-transition diagram fot 8tachastic system, which may be called a
bi-sided waiting system where each side has a fspsgjnificance and two different stocks
are involved in a way which seems complementarpun setting, but which is mutually
exclusive at any instant of system performanceddnmbtential customer arrival.

GQH G@ G@S
@ (cs) @S
Ar Ar A A

Fig. 1. State-transition diagram.

3. Stationary state

3.1 Balance equations

Stochastic equilibrium is achieved when the sysstate evolves according to a stationary
distribution of probability. Let us denof@=[p,:nl1Z] such a distribution in the form of a
line vector.

Denoting byQ the matrix of transition rates, witty,, defined above froom to m#n and
Onn =~z Onm, the stationary distribution satisfies the conagon equationpQ = 0
Precisely, the local balance equations fall inte kinds as follows:

Pn(A+H) = pn-t U+ pn+1A if N0, KT, (2a)
Pn(A +US) = pn-1US+ pr+1A if N>K, (2b)
Pn(A+US) = pra P+ praaA if N=K, (2c)
Pn(Ar +1) = pp—1 U+ pr+1Ar if N<0, (2d)
Pn(Ar +H) = pn-1 L+ PasaA if N=0. (2e)

Let us derive necessary conditions on the statjodestribution from the balance equations,
by focusing on each subdomain in turn: first on te& hand side of excess waiting

pedestrians (i.e. vehicle shortage), then on tja hand side of excess waiting vehicles (i.e.
dock saturation) and last on the intermediate smiado where both vehicles and docks are
available to the customers, meaning unrestrainadadility.

3.2 Vehicle shortage subdomain

This subdomain pertains to system statés for any positive integek . The related balance
equation, (2d), yields that

H(P-k — P-k-1) = Ar(p—+1— P-k) , Or
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O0_k =pPd_+1 Whereind_i = p_x — p—k-1 andp=Ar/p. 3)
By recursion, it comes out that

d_x =pXdo. (4)

Furthermore,p-x = po —Zikz'ltS_i so that

1- k
P-k = Po —do P (5)
1-p

As the total probability of the statesk must be less than one, condition (5) requires that
Po =00 /(L—p) =0, so &y = L—p) po . By substitution into (5), it comes out that

p-x =p¥po, Ok = 0. (6)
Furthermore, D ks0 Pk = Po/A-p ) (7)

Another requirement of total probability is thak , Which is a condition of compatibility
between the macroscopic parameters: with respebetbasic parameters, it is expressed as

Ar <y (8).

3.3 Dock shortage subdomain

This subdomain pertains to statkssk+i with i>0: no dock is available to an arriving
customer willing to leave his vehicle. The relabadance equation, (2b), yields that

MS( Pk — Pk-1) = A(pPk+1— Pk) SO that, lettingdx = px — pk-1 as previously anad = su/A ,

Ok+1 = 00k . (9)
By recursion from stat& +1, we get that
6K+1+i :Oi6K+1, i = 0. (10)

Furthermore,pg+1+i = Pk +Zin:06.<+1+n so that

1_0-i+l

(11)

Pr+1+i = Pk +O0k+1
As the total probability of the statas+1+i must be less than one, condition (11) requires
that px +0k+1/(1—0) =0, s0dx+1 =(0—1) px hencepg+ =0pxk .
Combining with (11), we get that
Pk+m =0Mpx, Om= 0. (12)

As the total probability must be less than onemitst hold thato < 1which is another
condition of compatibility between the macroscoparameters: with respect to the basic
parameters, its basic expression is

SU<A. (13).
Furthermore, 2 mz0 Px+m = Pk /(1=0). (14)
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3.4 Availability subdomain

This subdomain pertains to statesI[Lk — atjwhichk > Ovehicles are available if as well
ask —k > 0docks, ifk >1. At kK =1 there is no subdomain of unrestrained availability

The related balance equation, (2a), yields (@, — pn-1) = A(Pn+1 — Pn) SO
Si+1 = OO Whereindy = px — pk_1 as previously an =p/A . (15)

Then, 841 = $X31, so that, asok = po +Zﬁ;%,6n+1 it comes out that

_ 1- ¢k
Pk = po +O1 if ¢#1, (16a)
1-¢
Pk = po + k& if ¢ =1. (16b)
From this stems the total probability of the subdom

- o ¢ o~
SR P = (K=1)(po+—) - if ¢#1, (17a)

- -0 "V a-ey
Sk Pk = (K=D)po - Sk(k =D& if ¢ =1. (17b)

The balance equation at= , (2e), yields thatpA = Ar pg +udg. As &g = 1—p)po due to
(6), we get thatyA = poit hencepr =¢ pp andd; =(¢—1) po. Thus, (16) is reduced to

Pk = po$X OkO[0,k —1] and whateveh > 0O (18)
Then the subdomain probability amounts to
— hK
S = ot i g1, (19)
P ¢
Ska P = (k-1 po if ¢ =1, (19b)

3.5 Overall stationary distribution
At the frontier statek =k between availability and dock shortage, the baasguation (2c)

combined to (18) ak =k - &nd to (12) atm=Yields that px (A +s) = ud*Lpg + pxOA,
so thatpx =$¥ po which extends the domain of validity of (18) teeew k I [0,k ].
By joining the three subdomains, the total probgbdmounts to

iz Px = (Zkzo p‘k)+ (ZE;% pk) (Zk>1 pK+k) p Y ¢1 q;) ?_O—q)g :

From this and the law of total probability stems thivot probability pp (under the
convention that% =k-1if ¢ =1):

1, 0-0%, ¢~
1-p 1-¢ 1-0

po =1/[ 1. (20)

This ends up the derivation of necessary conditmmshe stationary distribution. When the
parameters do not satisfy the compatibility requeats (8) and (14), then no stationary
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distribution can exist. Conversely, if the paramgteheck the compatibility requirements,
then let us consider the system of quantities ddfis follows from (20), (18), (12) and (6):

Pk = po 9% OkO[0,k], (21b)
Pk+m =0Mpx, OM=0, (21c)
p-k =pXpo, Tk =0. (21d)

By construction, this is a probability distributi@rhich solves the balance equations, so under
the compatibility conditions a stationary statesexifor the dual waiting system and it is
unique.

It is easy to evaluate the mean and variance ofsth variable in steady regime: letting
a”=po/A-p), O =po(d—9%)/A-9¢) and a* = ppdp* /(L1-c ) be the probabilities of the
subdomains, then

— K _ K-1 4
E[N] = —a- Pk DO K0T+
1-p d-¢)
The variance can be established similarly by comtipos However, such quantities are
meaningless since variabld is an artificial construct, with negative valuess@aciated to

excess pedestrians and values larger thato excess vehicles. The major outcomes of the
model pertain to the distributions of the physigatieaningful variables, respectively those of

waiting pedestriangd—-N)*, of busy docksﬁzmin{(N)+,K }and of undocked vehicles,
(N-K)*.

For instance, undocked vehicles have been neglentesthme previous models in which
immediate diversion to other stations was assumechse of dock saturation (Fricker and

Gast, 2012). Then, lettingpy = (1-$)/(1-$**1 ,)the probability of dock saturation,
Pr{5= K}, would be evaluated appd® instead ofa™. Similarly, neglecting the waiting

- 0)
+a (K+t——).
(K+—5)

pedestrians would lead to evalu&tg D= &3 po instead ofa ™.

0,12

PDF
0,10 A

0,08 fjne
0,06 -

0,04

0,02 HH
0,00 —— — r‘m”‘”‘”ﬂﬂ‘ HININENIN IR INERINIRA RN AN ‘H‘ﬂ‘n‘”‘”‘”‘ P Sra}tg value

-20 -10 0 10 20 30

Fig. 2. PDF of stationary statek(=10, A =1, u=.9, r =.6, £ =.7).
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4. Indicators of quality and performance

Let us state the system characteristics of intei@gshe customer and/or the operator, by
defining indicators of quality or performance arrdypding formulae to evaluate them under
stochastic equilibrium. In practice, the systemrapme will be eager to manage it in an active
way by contributing to station refill in vehicles discharge: this will determine the stationary
state but will not alter the significance of thefpemance indicators.

4.1 Demand side

On the demand side, access customers are intergstéte immediate availability of a
vehicle. The relevant indicator is the probabilifyimmediate vehicle availability (PIVA) at

any instant. Denoting bya~ the probability of vehicle shortagRIVA =1-a~. In the
stationary regime,

a~ =3, 50P-k = po/@-p). (22)

When no vehicle is available, the access customerdnterested in the wait time to get a
vehicle. Assuming a priority queue, a customerarg at state value-k (for k> 0) has to
wait for thek + Eth vehicle to arrive, so his wait time is a randeaniable as follows:

WE = Yo Widh, (23)

Wherein W\(,igh denotes the random time for a vehicle arrival. &ndhe markovian

assumptionWen = Exp(1) so that
Elwik]=(k+D)/p, (24a)
V[wk] =(k+1)/u? due to the independency of markovian arrivals. by24

This wait time variable is conditional on one state< 0.

Conditional on all statessk< @e. on vehicle shortage, the wait time is a phalsic
mixture of the elemental wait times, which yieltsmean and variance as follows:

- k
E[WNSO] - Zkzo P-k E[Wk] — po(ZkZO(k"'l)p )/U — 1 — 1 , (25&)
220 P-k Po/(L-p) u@-p) u-Ar
VIwns<o] = (Zkzgf—(l:gﬁwlz]j +(2k2° Pk (E[kwjg)f[wﬁsopzj bythelawof totalvariance
i ) (25D)

= 1 P = - -2 ’
2a-p) 2a-p2 M)

In the appendix, it is shown that the wait time ditional on vehicle shortage has an
exponential distribution of parametgr-Ar .

Egress customers are interested in the immedia#ahility of a dock: the probability of

immediate dock availability (PIDA), satisfie®IDA =1-a* wherein a* denotes the
probability of dock saturation. In the stationaggime,

a* =Y. Pk = Pod* /(L-0). (26)

Enpc working document 9/19 November 2012



Fabien Leurent Dual waiting system

When no dock is available, the egress customermemeested in the wait time to get a dock.
Assuming a priority queue, a customer arrivingtatesvaluek +k (k= 0) has to wait for the
k +1-th pedestrian to arrive, so his wait time is ad@n variable as follows:

W =X Wodd, (27)
Wherein vvggd denotes the random time for a pedestrian arri@der the markovian
assumptionwped = EXp(A )so that, as in the previous case,
Ewg]=(k+D/A, andV[wg] = (K +1) /2. (28a, b)

This wait time variable is conditional on one state k . Conditional on all stateg +k for
k>0 i.e. on dock shortage, the wait time is a probstiml mixture of the elemental wait
times. As previously, it has an exponential distribn but with parametel —us, yielding
that

E[Ws, ] =(A-ps)™t and V[wWys, ] = (A —ps) 2, (29a, b)

4.2 Supply side

On the supply side, the operator is interesteiemiumbers of serviced and lost customers, of
waiting customers, of idle docks and idle vehickdsof which are random variables so that
both the expected value and the standard deviatienmportant. Furthermore, in a yield
management setting, the above mentioned custondérators characterize the quality of
service so they interest the service operator imdinect way. A synthetic indicator of quality

is the probability of unrestrained availability, mded @ =1-a~—a*. In the stationary
regime,

a= : ¢‘£’_K¢K o (30)
a-ont 48

By time period of lengthH, the average numbers of accessing customers are of
AMH(a7r +1-a7)serviced customers and okHa~(1-r Jost ones: these do depend
explicitly on the quality of service at the local/él of the station, and they would do so even
more at the level of the network as the users wobtibse their stations. As the arrival flow is
Markovian, making the next arrival independent fritva current system state, both flows are
Poisson-distributed stochastic processes, whiddsytleir respective variance that is equal to
their respective average. So their covariance e, z&s the halved difference between the
variance of the sum and the sum of the respectviances.

Similarly, egressing customers either serviced ast lare Poisson random variables with

respective parametgH 1-a*+a*s anduHa* (1-s).

Waiting customers on access are present only ivehéele shortage domain. Their number,
CnN<o, IS a geometric random variable with paramgtemhus the average and the variance
are the following:

E[CN<o] =p/(1-p) and V[CR<o] =p/(1-p)>. (31a, b)

Similarly, waiting customers on egress are presefy in the case of dock saturation. Thus
their numberC{., =(N-K)*, is a geometric random variable with parameteryielding
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E[C{sc] =0/(l-0) andV[C},,] =0/1-0)2. (32a, b)

About dock utilization or idling, the number of luslocks is 55min{(N)+,K}, with
average value of

E[D] = o~ .0+ .E[Nop ]+ 0K, (33)
Wherein the average number of busy docks conditmmavailability is (Cf. appendix)
¢ (K-Do* —kp*t+1
E[N = : 34
[Nop k(] -0 D= 0¥ (34)
The number of idle docks i® = maXk— n(") Q}ith average value of
E[D] =a~.k+0.(K—E[Nm«]) - (35)

Vehicle utilization depends primarily on their ipetween stations. In the station setting, the
number of idle vehicles i6N)*, with average value as follows:

EL(N)*] = TE[Nop o]+ 0" (K+ E[C, ) (36)
However it may be relevant to distinguish betweecked idle vehicles, in number of

min{(n)*,k}, and undocked vehicles still utilized by a waitingstomer, in number of

(n—-k)*, since the former type can be refilled in the caean electric vehicle with a

charging infrastructure at the dock, whereas thierlanay give rise to additional revenue
depending on the tariff policy.

Variances can be derived easily from the definibbthe random variables.

5. Sensitivity analysis and illustration

Let us now investigate the sensitivity of the maiodel outcomes to the model parameters by
qualitative assessment on the basis of the analyfarmulae as well as by numerical
application. The parameters of interest include dioeking capacity which indicates the
station size, the arrival intensities @nd ) and the acceptance ratesgnd s).

5.1 Influences of the docking capacity

It is shown in Appendix that, given all of the athgarameters hence givem, ¢ and o,

factor K has a decreasing effect on the probability of elehshortagen ™, as well as on the

probability of dock saturationy™. So the availability probabilityed =1-a~-a™, increases
with k. This is illustrated in Figure 3 for two sets oluples ¢ s)
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Dual waiting system
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Fig. 3. Probability vs. capacity, with (@ =p=1,r=s=8,(b)A=8, u=1,r=s=6.

The customer flows, either for access or egressyadalepend on factok . Neither do the
conditional average wait times for either a vehmlea dock. The unconditional average wait
times, however, do depend oa through the subdomain probabilities: the wait tifoe a

vehicle, a~ E[wN<o ], decreases witlk and so does the wait time for a dook, E[wy ] .

The same applies to the average stocks of waitirgjomers,a™ E[CN<o Jon access and

a® E[C{>«] on egress, both of which decrease withowing only to its influence on the
subdomain probabilities.

The influences on idle or busy resources are &awel(cf. Appendix):

factor K increases the average number of busy docks conditon the availability
domain, and also that conditional on dock satunatrbich isk itself. Its effect on the
overall average is increasing at leasp . 1

The conditional average numbers of idle vehiclesddional either on availability or
dock saturation, increase witk. The overall average increases with at least if

b <1.

Factor Kk decreases the average numbers of idle docks, thathconditional on
availability and the unconditional one.

Figure 4 depicts the effect on the average nunifdsasy docks and idle vehicles.
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. 4. Busy docks and idle vehicles w.r.t. capaaitith A/ = 10/11 (a) or 5/4 (b).

12/19 November 2012



Fabien Leurent Dual waiting system

5.2 Influences of the customer flow intensities

About the intensities of the customer flows, and pu, two kinds of influences should be

distinguished: first there is a size effect becaam®e conditional outcomes are proportional
to these factors; second, the ratio betwe@enand p, hence their relative magnitude,

determines the derived parametprs¢ and o, hence the stationary probabilities.

The size effect is proportional on each customaw feither serviced or lost, and inversely
proportional onto the conditional average wait gnfi@r vehicles or docks (i.&/(u—Ar gnd

1/(A —pus) , respectively). It is neutral on conditional awggaaumbers of waiting customers as
well as on subdomain probabilities.

Relative magnitude exerts more profound effectgstFifactor A/p must satisfy the
compatibility conditions of vehicle shortage bouddess (i.ejt—Ar > OhenceA/pu<1/r)
and of dock saturation boundedness (ile-ps> hénce A/u>s). This yields a
compatibility interval of ]1f ,s [which is non-empty if bothr and s are strictly less than
one (so ensuring that the unit value belongs torttezval).

Second, relative magnitude influences the subdonpagbabilities through the derived
parametersp = /A, p=rA/p and s=su/A. In Appendix it is shown thati™ increases
with o but decreases with and ¢, so the relative magnitude has two increasingierftes

and a decreasing one @ . As regardsa*, it decreases witlw and increases witp and

p. The availability probabilityd increases withp, ¢ and o; however this yields a
controversial overall effect ok/u, too. Figure 5 suggests that the overall infleeatA /p

on o~ is increasing, whereas those an and a* are varying: but due to the symmetry
between the two sides, in fact even the formeuenrite is likely to vary.

Third, given u, the influence ofA/p on conditional average wait time is increasing fo
vehicles (asp—Ar =pu(@-rA 4 ) but decreasing for docks. As concerns the carditi

average numbers of waiting customers, the effedeizeasing on the waiting pedestrians
(since p/(L-p ) increases withp) but increasing on the customers waiting for egréf.

figures 6 and 7. Fourth, about the influence onaherage number of busy docks (ANBD)
conditional on availability: a largey makes larger state values more likely and an asaén

¢ is even more favorable to them, so the conditiégdBD increases withp and decreases
with A/

100% 100%
2 2
Z 80% Z 80%
5 g :
° 60% B Dock saturation S 0% @ Dock saturation
2 O Unrestrained QC' O Unrestrained
g 40% @ Vehicle shortage g 40% A @ Vehicle shortage
o 9]
2 20% 2 20% -
= S
N @)
0% T T T T 0% T T T T
-0,2 -0,1 0,0 0,0 0,1 -0,5 -0,3 -0,1 0,1 0,3
In(Lambda/Mu) In(Lambda/Mu)

Fig. 5. Probability vsA/p, with (a)r =s=.8, (b) r =s= 6.
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Fig. 6. Wait Time vsA/p, with (&)r =s=.8, (b) r =s= 6.
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Fig. 7. Waiting Customers va./u, with (a)r =s=.8, (b) r =s= 6.
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Fig. 8. Resource numbers vs/ 1, with k =10 and (a)r =s=.8, (b) r =s= 6.

5.3 Influences of the acceptance rates

The acceptance ratesand s shape the compatibility domain of the |f ,pair. Within that
domain, access acceptancdresp. egress acceptancgexerts a decreasing effect pr-Ar
(resp. onA —us), hence an increasing influence on the conditi@avarage wait time for a
vehicle,1/(u—Ar ) (resp. wait time for a docl/(A —ps ))

Furthermore, througlp that is proportional to it, factor has an increasing effect on the

conditional average number of customers waitingdocess and a neutral one on that of
customers waiting for egress. There is no effeatesource stocks conditional on availability.
The effects on the subdomain probabilities are deddrom those op, namely increasing

ontoa* andd but decreasing onta™.
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All of these arguments can be transposed tarough o, yielding an increasing influence on
the conditional average number of customers waitingegress, increasing influences onto

a~ andd but decreasing onta™*.

6. Conclusion

A waiting system with two kinds of resources, védscversus docks at a station of vehicle-
sharing, and two kinds of customers, each kindrdmuting to supply the other one with the

required resource, has been modelled in a mark®attiing. The state variable is the number
of waiting vehicles, extended to negative valueadocount for waiting customers that require
a vehicle.

The state-transition model has been specifiedhalance equations formulated and solved for
the stationary probability distribution, in otheomds for stochastic equilibrium. Three sub-
domains are meaningful for the value of the statgable: non-positive values are associated
to vehicle shortage, values greater than dockipgaty stand for dock saturation, whereas
the sub-domain of unrestrained availability lieswsen the two constrained sub-domains.
The stationary distribution has a simple, geomdtim in each sub-domain, thus yielding

simple formulae for the conditional outcomes of tens of waiting customers, numbers of
idle resources and average waiting time.

These macroscopic properties may enable one tahesstation model as a sub-model in a
network model of the system that would address dhgin-destination flows between
stations. Further research may also be targetedhdorefinement of two underlying,
simplifying assumptions. First, on the customeresithe acceptance of waiting has been
modelled by neglecting the influence of the waitstgck, although it is likely to determine
the length of waiting; furthermore, a first in +sti out service discipline has been assumed,
which is realistic enough for systems with bookmg less so for a system where waiting
customers are mingling rather than queuing. Secondthe operator side the effects of
operational policy, including notably station balery, could be integrated in the state-
transition model.
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8. Appendix on model outcomes

8.1 Decomposition of total variance

The variance of the conditional wait timeN<o iS composed of two parts respectively
intraclass and interclass. The intraclass part ansdo

_ >0 P-k V[ W _
Vinmalwhiso] = 2k PV — g _gy5 | ok(c+ -2
2k=0 P-k

=(-pu2/A-p)2=p2/1-p)
Now, about the interclass part,
Y0 P-k (E[Wk ] = E[Wi<o])
2 k=0 P-k
= (0= P)(TieaoP (k +1)2172)~ E[wii<o]?
=12 (1-0) P 2oP* K + DK + Tz (K +1) - E[wii<o]?

=2 <1—p)( ot (1_1p)2j - E[Wio]?

= u-Z[ (13‘;)2 +ﬁj - (@-p)2

Vinter[WN<0] =

Enpc working document 16/19 November 2012



Fabien Leurent Dual waiting system

So the total variance is

: = : _ ._.p 1 2p 1 -
Vintra|WN<0] + Vinter WN<0] = H (1 0) U ((1 p)z 1- pj (o))
=u"2(1-p)72[20-p) +2p 1]
=[u@-p)2

8.2 Exponential distribution of conditional wait time

Knowing that N < Q the conditional probability of statek (for k = 0) is T = (L—p)pX.
Knowing k, the wait time is the sum ¢k + HBxponential variables that are independent and
identically distributed with parametgr. So the Laplace transform of is

W@ = @ 2y

The wait time conditional onN < ,0wN<o, iS the probabilistic mixture of the state-
conditional wait time: so its Laplace transform is

WR0(€) = 20 TRV (E)— Zk>op @k

_1-p 1 — [+ §
T 1+E/p1-p(+E/p) Had-p)

By identification, the last expression shows th@i<o is an exponential random variable of
parameterp(l—p ) This comes as no surprise, since the geometwcidaa memoryless
discrete distribution whereas the exponential isn@moryless continuous distribution: a
memoryless mixture of memoryless continuous compisngields a memoryless continuous
distribution, thus an exponential one.

]—1

8.3 Resource number within availability domain

A system statek 0 Jk [has stationary probabilitypodk. The subdomain probability is
-0
1-¢
The average number of available vehicles or, edgiNty in that domain, of busy docks is
E[Nop«] =0 25 podhk = pod 930Kk
d 1-¢*
d 1-¢
_1-¢ ¢(K Do* -k t+1
-9 - )2
_ 0 (k=DM -k T+l
1-¢ ¢ -0~
From this stems the number of idle dockE$Dr «] = N —E[Nok - ]

a_

= Po
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When ¢ < 1, the limit value for largex is E[Nop«[] = 1/(1-¢) + o().

When ¢ > 1, a series development for largeis E[Nop«] =K —¢/(¢ -1 + o().

9. Appendix on sensitivity analysis

9.1 Subdomain probabilities

Let us define A=1/1-p ) B=(¢-¢¥)/1-¢) and C=¢¥/(l-0), so that the main
stationary probabilities are constituted in thédwing way:

po =1/(A+B+C),

a- =A/(A+B+C),

a=B/(A+B+C),

a*=C/(A+B+C).

Factor p influences A in a decreasing way and is neutral Bhand C. So A+B+C

decreases witlp but relatively less tharA alone (the three terms being positive). &0
decreases witlp whereasot anda™ increase withp.

Similarly, factor ¢ influences onlyC so thata™ decreases wittp whereasa™ and @
increase with it.

Factor ¢ exerts a twofold effect througB and C. Term B amounts toZE;%q)k Sso it
increases withp , as well as withk . Also C increases withp . So doesA+B+C. The total

effect ona™ is decreasing. Those am and a* are less obvious because they involve the
relative values oB andC.

9.2 Dock saturation versus dock capacity

Let us studyo™ by restating that

1 =F+E$™, whereF =11 andE=—P N :

l-o)a* 1-0 1-¢ 1-p 1-¢

At ¢ >1, F >0 and E < QOas it is the quotient ogb(L1—-¢) +1-p =1-r, which is positive, by
(L-¢)@-p) which is negative. A% decreases withk , F + E¢~¥ increases withk and is

positive, makinga™ a decreasing function of at ¢ > 1

At ¢<1, F<O as it is the quotient ofl—-¢)-(1-0) =(c-D¢, which is negative, by
1-¢)@L-0) which is positive. ConverselyE > @nd ¢ ¥ increases withk, making

F +E$ K increase withk at ¢ <1, as well as ap > 1Soa™ is a decreasing function af
overall.

In the previous subsection, a decreasing influesfce onto B has been pointed out ; the
influence ontoC is decreasing also ip < but increasing if¢ > 1Thus, if$< 1 a”

increases witlk andd =1-a~ - a™ decreases witlk .
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9.3 Busy docks versus dock capacity

Within the availability domain, the conditional asge number of busy docks (hence of idle
vehicles) is formulated as

E[Nmui] = (CEokK) / (CEoi0%).

It is a weighted average of the state values betvleand K —1. An increment ink will
assign some probability to the rightwing extrem&eawhich is larger than the other state
values involved previously, yielding a larger aygraalue.

Let us turn to the overall number of busy vehicl@$)* , with average formulated as
E[(N)*] = aE[Nop ]+ o™ (K+E[C{54]) -

It is comprised of two parts. The part related vailability increases withk since botha
and the conditional average number of busy docksease withk . About the other part, as

ot decreases witlk the behaviour must be studied in detail. Let

1 . E+Ec1>‘K , WhereinF Ei—i andE = L+i as previously.
Ka*(l-0) K K 1-0 1-¢ 1-p 1-¢
The partial derivative with respect to is

0 1 -—1(1_0)—E¢"“1.

6_KKO+(1—0) K kat

At ¢ <1, E > 0 so the derivative is negative, which implies tkat" increases with .
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