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A PARABOLIC FREE BOUNDARY PROBLEM MODELING ELECTROSTATIC M EMS

JOACHIM ESCHER, PHILIPPE LAURENCOT, AND CHRISTOPH WALKER

Abstract . The evolution problem for a membrane based model of an electrostatically actuated
microelectromechanical system (MEMS) is studied. The model describes the dynamics of the mem-
brane displacement and the electric potential. The latter i s a harmonic function in an angular do-

main, the deformable membrane being a part of the boundary. T he former solves a heat equation
with a right hand side that depends on the square of the trace o f the gradient of the electric po-
tential on the membrane. The resulting free boundary proble m is shown to be well-posed locally
in time. Furthermore, solutions corresponding to small vol tage values exist globally in time while

global existence is shown not to hold for high voltage values . It is also proven that, for small voltage
values, there is an asymptotically stable steady-state solution. Finally, the small aspect ratio limit is

rigorously justi ed.

1. Introduction

An idealized electrostatically actuated microelectromec hanical system (MEMS) consists of a
rigid ground plate above which a thin and deformable elastic membrane is suspended that is
held xed along its boundary, see Figure 1. Applying a voltag e difference between the two
components induces displacements of the membrane and thus transforms electrostatic energy
into mechanical energy, a feature that has applications in t he design of transistors, switches, or
micro-pumps, for instance. There is, however, an upper limi t for the applied voltage potential
beyond which the electrostatic force cannot be balanced by the elastic response of the membrane
which then touches down on the rigid plate. This phenomenon i s usually referred to as “pull-
in” instability. Estimating this threshold value is an impo rtant issue in applications as it may
be a desirable feature of the device in some situations (e.g. switches, micropumps) or possibly
damage the device in others. Mathematical models have been st up for that purpose, and we
refer the reader e.g. to [26, 27, 28] and the references theria for a more detailed account of the
physical background and the modeling aspects of such devices.

Denoting the displacement of the membrane and the electrostatic potential in the device by u
and y, respectively, we consider here the idealized situation wh ere the applied voltage and the
permittivity of the membrane are constant (normalized to on e), and there is no variation in the
horizontal direction orthogonal to the x-direction of both y and u. Under appropriate scalings,
the rigid ground plate is at z = 1, and the unde ected membrane at z = 0 is xed at the
boundary x= landx = 1loftheinterval | :=( 1,1), see Figure 1. Letting#denote the aspect
ratio of the device before scaling, i.e. the ratio of the unde formed gap size to the device length,
the membrane displacement u = u(t,x) 2 ( 1,¥) evolves according to

fiu PRu= | ALy (txuwi?+ iyt xuwiz ., x21, t>0, (1.1)

2010Mathematics Subject Classi catiorB5R35, 35M33, 35Q74, 35B25, 74M05.
Key words and phrasesMEMS, free boundary problem, well-posedness, asymptotic stability, nite time singularity,

small aspect ratio limit.
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Figure 1. Idealized electrostatic MEMS device.

with clamped boundary conditions

u(t, )=0, t>0, 1.2)
and initial condition
u(0,x) = u%(x), x21. (1.3)
The dimensionless electrostatic potential y = y(t, x, z) satis es Laplace's equation
#Ry + 2y =0, (x,2)2Wu(t)), t>0, (1.4)

in the region
W(u(t)) = f(x,2021 ( 1,¥) : 1< z<u(tx)g
between the rigid ground plate at z= 1 and the de ected membrane. The boundary conditions

for y are then

_ 1+z 5
y(t,x,2) = TF Uty (x,2) 2 "W(u(t)), t>0. (1.5)

Equation (1.1) corresponds to the situation in which viscou s forces dominate over inertial
forces in the system, e.g. see [6, 27]. Also, deformations die to bending are neglected in (1.1).
Of particular importance in the model is the parameter | > 0 which characterizes the rela-
tive strengths of electrostatic and mechanical forces and is proportional to the applied voltage.
According to the above discussion, the pull-in instability is expected to take place for | large
enough.

The analysis of (1.1)-(1.5) turns out to be rather complex since (1.4) is a free boundary prob-
lem: indeed, the domain between the rigid ground plate and th e elastic membrane changes with
time. Due to this, equations (1.1) and (1.4) are strongly coupled. However, a common assump-
tion made in mathematical analysis hitherto is a vanishing a spect ratio # that reduces the free
boundary problem to a heat equation with a right hand side inv olving a singularity when the
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membrane touches down on the ground plate. More precisely, s etting #= 0 allows one to solve
(1.4)-(1.5) explicitly for the potential y = yg, that is,

1+z
1+ ug(t,x) "’
where the displacement u = ug now satis es the so-called small aspect ratio model
I

yo(t,x,z) = (t,x,2)2[0,¥) | ( 1,0, (1.6)

fltuo ﬂ%UO = _— x21, t2(0,¥),
1+ ug)?
u(t, 1) = o,( o) 2 (0,%), (1.7)
ug(0,x) = u%(x), x2 1.

Several mathematical results have been obtained for (1.7),including a characterization of the
critical value of |1 which corresponds to the value beyond which no steady-state exists as well as
a possible space dependence of the permittivity of the membr ane, see, e.g., [5, 8, 22, 27] for the
stationary problem and [5, 7, 9, 16, 13, 14, 18, 27] for the evéution problem. Inertial effects are
taken into account in [15, 19].

To the best of our knowledge, the rst analytical research wi thout assumption of a small
aspect ratio and thus dedicated to the original free boundar y problem (1.1)-(1.5) is [21], where
the existence of steady-states has been established for smiavoltage values | and a non-existence
result for steady-states is obtained for large values of | .

Here, we address the evolution problem. A rough summary of ou r results reads as follows:
We prove the local well-posedness of (1.1)-(1.5) for all voltage values and show that the solu-
tions exist globally in time provided the voltage value is su fciently small. In contrast to the
stationary case [21] it turns out that a W (1)-setting is no longer suitable for the u-component
of (1.1)-(1.5). This is due to the fact that the heat semigroup does not enjoy suitable properties
in Ly (1). Instead, we are therefore lead to work in the framework of Wg(l)-spaces forg< ¥,

which generates additional dif culties as now f2u may become unbounded. For small voltage
values we further prove that there is a locally asymptotical ly stable steady-state. For high voltage
values we prove that global existence of solutions does not hold. In addition, we analyze the
behavior of the solutions as the small aspect ratio #! 0, showing convergence towards (1.7) as
expected from a formal analysis.

To state precisely our results we introduce for g2 [2,¥ ) and k 2 (0, 1) the set
- 2 .
So(k) = u2Wgp(l); kUkwéDu) < 1/k and 1+ k< u(x)forx21
where Woz'f[‘)(l) = fu 2 W2(l);u( 1) = 0g for 2a 2 (1/¢q,2] and Woz'f[‘)(l) = WZ4(I) for
0 2a< 1/g. The local existence result now reads:

Theorem 1.1 (Local Well-Posedness). Let q2 (2,¥), #> 0, and consider an initial value 412
WéD(I) such that ?(x) > 1for x 2 I. Then, the following are true:

(i) For each voltage valde > 0, there is a unique maximal solutiofu,y) to (1.1)(1.5) on the
maximal interval of existend®, T#) in the sense that

u2 Ch[0,Th),Lq(1) \ C [0, TH), Wip(1)
satis es(1.1)(1.3)together with
ut,x)> 1, (t,x)2[0,T%) 1,
andy (t) 2 WZ W(u(t)) solveg(1.4}(1.5)onW(u(t)) for each 2 [0, Tf).
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(ii) If for eacht > Othere isk(t) 2 (0, 1) such that t) 2 Sy(k(t)) fort 2 [0,T#)\ [0,t], then
the solution exists globally, that is,A;T= ¥ .

(i) fu9(x) Oforx2 I, thenu(t,x) Ofor(t,x) 2 [0,T#) I Ifu®= u®(x) is even with
respect to X2 1, then, for all t2 [0, T#), u= u(t,x) andy = y(t,x,z) are even with respect to
x 2 | as well.

The proof of Theorem 1.1 is performed as follows. We rst tran sform the Laplace equation
(1.4) to a xed rectangle which results in an elliptic bounda ry value problem with non-constant
coef cients depending on u and its derivatives up to order 2. Solving this elliptic equa tion
(for a given u) allows us to interpret the full free boundary problem as a no nlocal semilinear
heat equation for u (see (2.5)). We then employ a xed point argument to solve thi s evolution
problem. Since the nonlinearity in the u-equation depends on the trace of the gradient of the
potential, two ingredients are essential: precise estimates based on the regularizing effects of the
heat semigroup and elaborated investigations of the proper ties of the solution to the transformed
elliptic problem. The proof is given in Section 2.

We now address global existence issues. From a physical viewpoint a “pull-in” instability
occurs for high voltage values. Accordingly, for large valu es of | solutions cease to exist globally
while solutions corresponding to small | values exist globally in time. More precisely, we have:

Theorem 1.2 (Global Existence). Let 2 (2,¥), #> 0,1 > 0, and let 2 Wi, (1) satisfy

1< u%x) Oforx2 I. Let(u,y) be the corresponding solution (&.1)(1.5) on the maximal
interval of existencg0, T%).

(i) Givenk 2 (0,1) there existd =1 (k,# > 0Oandkg := ko(k,# > Osuchthat T, = ¥ and
u(t) 2 Sq(ko) fort 0 provided that § 2 Sy(k) andl 2 (0,1 ).
(i) Thereisl (# > 0depending only or¢such that T, < ¥ providedl > | (#.

Note that part (i) of Theorem 1.2 provides uniform estimates on u in the Wg(l)-norm and
ensures that u never touches down on -1, not even in in nite time. Its proof i s contained in
Section 2 and it is a consequence of the above mentioned xed point argument. The second
part of Theorem 1.2 is proven in Section 3 by constructing a suitable strict Lyapunov functional.
Let us mention that similar results as stated in Theorem 1.2 are known to hold for the small
aspect ratio model (1.7), see [7, 9]. However, the nonlocal ®eatures of (1.1)-(1.5) prevents one
from using similar techniques and we thus have to develop an a lternative approach. Also, there
is a qualitative difference of the interpretation of the ni teness of T# in Theorem 1.2(ii). Indeed,
according to Theorem 1.1, T# < ¥ implies that the Wg(l)-norm of u blows up or u touches
down on 1 in nite time. This is in clear contrast to the small aspect r atio model (1.7) for
which touchdown is the only mechanism for a nite time singul arity. The difference stems
from the fact that in (1.7) the nonlinearity is of zero order w hile for the free boundary problem
(1.1)-(1.5) the nonlocal nonlinearity is rather of order “3 /2” in the Lg-sense (see Proposition 2.1).
Nevertheless, we strongly believe that nite time touchdow n occurs in the present model as well
when T# is nite.

We next turn to stability of steady-states. This is a delicat e issue since it is expected in analogy
to what is known for the small aspect ratio model [5, 27] thatt here are two steady states for small
| values. In [21] it was shown that there is at least one steady-state to (1.1)-(1.5) for small values
of I (and none for large | ). We shall re ne this result here and prove that, provided | is small,
this steady-state is unique with a rst component in the set Sy(k) and locally asymptotically
stable.

Theorem 1.3 (Asymptotic Stability). Letq2 (2,¥),#> 0,andk 2 (0, 1).
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(i) There ared = d(k) > 0 and an analytic function]l 7! U;] : [0,d) ! WéD(I) such that
(Uy;,Y) is for each 2 (0,d) the unique steady-state td.1)(1.5) with U; 2 Sy(k) and
Y| 2 W2(W(U,)). Moreover, § is negative, convex, and even fo2 (0,d) and Uy = 0.

(i) Letl 2 (0,d). There arewp,r,R > 0 such that for each initial value %2 WéD(I) with

ku® U szD < 1, the solution(u, y) to (1.1)(1.5) exists globally in time and
q
ku(t) U| kWéD(I) + kﬂtU(t)quU) Re Wotkuo U| kWéD(I) , t 0. (18)

The rst part of Theorem 1.3 is a consequence of the Implicit F unction Theorem while the sec-
ond part follows from the Principle of Linearized Stability , and the proofs are given in Section 4.
We shall point out that Theorem 1.3 provides uniqueness of st eady-states with rst components
in Sq(k) for xed | small. A resultin this spiritis also shown in [8, Thm.5.6]. B ut, as pointed out
before, for the small aspect ratio model (1.7) it is known tha t below the critical threshold there
are exactly two steady-states. If this would turn out to be tr ue for the free boundary problem as
well, that is, if there would be another smooth branch of stea dy-states emanating from | = 0,
say, V) 6 U, then the fact that Sq(k1)  Sg(kz) for 0 < kp < kg < 1 would imply that d(k) & 0
ask & 0in Theorem 1.3. Obviously, V| 2 Sy(k) for | < d(k) and thus, as| & 0, the minimum
of V| has to approach 1 orthe Wg—norm of V; has to blow up .

We also note thaty converges exponentially to Y, in the sz-norm ast! ¥ seeCorollary 4.1

for a precise statement. Finally, both components of the steady-state enjoy more regularity than
stated, see [21, Cor.10].

More insight in the connection between the free boundary mod el and its small aspect ratio
limit is offered in the next theorem. Indeed, we show that the solution (u,y) = (ugYy# to (1.1)-
(1.5) provided by Theorem 1.1 converges to the solution (ug,yg) of the small aspect ratio model
(1.6), (1.7) as#! 0. This gives a rigorous justi cation of the formal derivati on.

Theorem 1.4 (Small Aspect Ratio Limit). Letl > 0,q2 (2,¥),k 2 (0,1), and let ? 2 Sq(K)
with u®(x) 0for x 2 I. For#> 0 let (ugy#) be the unique solution t¢1.1)(1.5) on the maximal
interval of existenc§0, T7). There ard > 0, # > 0, andkg 2 (0, 1) depending only on g anki such
that T# t and uqt) 2 Sy(ko) forall (t,# 2 [0,t] (O,#). Moreover, the small aspect ratio equation
(1.7)has a unique solution

Up2 C [0,t],Lg(1) \ C [0,t, WG (1)
satisfying w(t) 2 Sy(ko) for all t 2 [0,t ] and such that the convergences
ug! up in CH A0t WZ(l) , 0<g<1,
and

Yt Iwuar) | Yo(Dlweey N L2l (1,0 , t2[0t], (1.9)

hold as#! 0, whereyg is the potential given in1.6). Furthermore, there i& (k) > 0 such that the
results above hold true for each> 0 provided that 2 (O,L (k)).

A similar result has been established for the stationary pro blem in [21, Theorem 2] and the
proof of Theorem 1.4 is performed along the same lines provid ed one ensures an#independent
lower bound t > 0 on T#. In addition, in [21] we took advantage of the factthata W (1)-bound
is available for solutions to the stationary problem. We re ne the arguments here by showing
that a Wg(l)-bound is suf cient for q> 2.

Iror the case of the small aspect ratio model,V, approaches theV-shaped function x 7! jxj lasl & 0.
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2. Local and Global Well -Posedness: Proof of Theorem 1.1and Theorem 1.2(i)

The starting point for the proof of Theorem 1.1 is to transfor m the free boundary problem
(1.4)-(1.5) to the xed rectangle W:= | (0,1). More precisely, let g > 2 be xed and consider
an arbitrary function v 2 WéD(I) taking values in ( 1,¥). We then de ne a diffeomorphism

Ty := W(v) ! W by setting

1+ 2z

Tv(x,2) = X, o) (x,2) 2 W(v) (2.1)
with W(v) = f(x,2) 21 ( 1,¥); 1< z< v(x)g. Clearly, its inverse is
T, Y(x,h)= x,(1+v(x))h 1, (x,h)2W, (2.2)

and the Laplace operator is transformed to the v-dependent differential operator

— 2 q2 flxv(x) 1+ #h?(Tkv(x)? .,
Lyw = # 2w " 2# h T+ V() TThw + Ji+ V)2 Rw
fhv(x) 2 TBv(x)
RN 2 RN Tawpg MY
The boundary value problem (1.4)-(1.5) is then obviously eq uivalent to
Lywf (t,x,h) =0, (x,h)2W, t>0, (2.3)
f(t,x,h) = h, (x,h)2IW, t>0, (2.4)
forf =y Tu(tl). With this notation, the evolution equation (1.1) for u becomes
1+ #(Txu)? . .
2 = X 2
Tu  Tu= | 1+ w2 jWf(,Dj=, x21, t>0, (2.5)

after noticing that we have Txf (t,x,1) = Ofor x 2 l andt > O dueto f (t,x,1) = 1 by (2.4). To
set the stage for the proof of Theorem 1.1 we rst observe:

Proposition 2.1. Letk 2 (0,1) and#> 0. For each \2 Sy(k) there is a unique solutioh, 2 WZ(W)
to
Lvfyv (x,h) =0, (x,h)2 W, (2.6)
fv(x,h) = h, (x,h) 2 IW. (2.7)
In addition, de ning V by V(x) := v( x) for x 2 |, we havef g(x,h) = fy( x,h) for (x,h) 2 W.
Moreover, for2s 2 [0, 1/2), the mapping
1+ #(xv)?
(1+v)2
is analytic, globally Lipschitz continuous, and boundedhags(0) = 1.

0i: Se(k) ! WEL(1), v 7! ihfv(,1)j?

The proof of Proposition 2.1 shares some common steps with that of [21, Lem. 5 & 6], but
requires further developments, in particular establishin g the Lipschitz continuity of gg which
was not needed in [21]. We rst derive suitable properties of the operator L for v in the closure

IS - 2 .
So(k) = u2 Wgp(l); kUkwgDu) 1/k and 1+ k u(x)forx2l

of Sy(k), which we gather in the next lemma.
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Lemma 2.2. Letk 2 (0,1) and#> 0. For each \2 Q(k) and F2 L,(W), there is a unique solution
F 2 W22,D(VV) to the boundary value problem

LWV =F inw, (2.8)
F =0 onfw. (2.9)

Moreover, there is a constani(k,#) > 0 depending only on d, and#such that
kF szz(w) ca(k, #) KFK,(w) - (2.10)

Proof. First note that the de nition of §i1(k) and Sobolev's embedding theorem guarantee the
existence of some constantcy > 0 depending only on g such that, for v 2 Q(k),
Co

T (2.11)
It follows from the proof of [21, Lem. 5] that, due to (2.11), t he operator L  is elliptic with
ellipticity constant n(k,# > 0 being independent of v 2 Sy(k). Moreover, writing L y in
divergence form,

1+v(x) k, x21, and kacl([ 1,1)

Lww= Tx aa(v) Tew+ ago(v) Taw  Th apa(v) Txw + aga(v) Taw

+ by(v) Txw + bp(v) Thw ,

with
(V) = #, ) = 2 I OOT
a) = A0 ) = an(y),
N
we see from (2.11) and the de nition of Sq(k) that
iélkaij(v)kwé(v\,) ¥ ézlkbi(v)kL¥ w ok H (2.12)

for all v 2 Sy(k). Moreover, the embedding of W&(I) in C([ 1,1]) ensures that g;(v) belongs to
C(W)forl i,j 2andv 2 Sy(k). Itthen follows from [10, Thm. 8.3] that, given v 2 Sy(k) and
F 2 Ly(W), the boundary value problem (2.8)—(2.9) has a unique weak solution F 2 Wzl,D(W)-

Furthermore, the regularity of F and (2.12) ensure thatG := F  by(v) IxF  by(v) nF belongs
to Lo(W), and we are in a position to apply [20, Chapt. 3, Thm. 9.1] to conclude that F is actually
the unique solution in WZZVD(VV) to the boundary value problem

L% =Ginw, F=0on1w,
where L9 denotes the principal part of the operator L, that is,
L ow = T ag(v) Tew+ ap(v) Taw T aoa(v) Tw + app(v) Taw

In addition, it follows from [20, Chapt. 3, Thm. 10.1] that th ere is a constantcz(k,# > 0 depend-
ing only on g, k, and #such that

kF kWZZ(V\I) C3(|(, #»9 kF kLz(VV) + kaLz(VV)
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Combining the previous inequality with (2.12) and the inequ ality
4

F 12F + 12F d(x,h) ? kFk2 L kri2
W

2
kfixF k W3 (W) * AcR L2(W)

La(W) 2(W) =
which is valid for all d> ?1 we are led to

KFkpzuy (ki) KFKw + KK + c2(k ) KIxF ki, + kThF ki)

+ kTnF k?
i

1
Cg(k,#e kF kLz(V\/) + kaLz(V\,) + 202('(,#9 d kF kWZZ(\N) + Zj kF kLz(VV)

whence, after choosing d suf ciently small,
W22(V\/) C4(k, #»9 kF kLz(\N) + kaLg(VV) . (213)

We nally prove (2.10) and argue as in the proof of [10, Lemma 9 .17]. Assume for contradiction
that (2.10) is not true. Then, for eachn 1, there arevy, 2 §t1(k), Fn2 W22’D(V\/), F,6 0,and

Fn 2 Lp(W) such that
L v,;Bhn=F in W and En

kF k

n & . 2.14
W3(W) La(W) ( )

Setting Fp = B/ By LW and /R, .= R/ Fy w’ we realize that (2.13) and (2.14) imply

2 Lo

L v,Fn Faoin W, Fn2WZp(W) , (2.15)
KFnk,m = 1, (2.16)
and
nankLz(\N) k FnkWZZ(VV) C4(k,#9 kF nkLz(V\/) + ankLz(\N) = C4(k,#9 1+ ankLz(V\/)

Consequently, we have for n = 2c4(k, 8,

nankLZ(W) 2c4(k,# and anszz(\N)

1+ % ca(k, #) . (2.17)
Since W22(V\/) and Wg(l) are compactly embedded in W3(W) and C}([ 1,1]), respectively, we
infer from (2.17) and the boundedness of Sy(k) in Wg(l) that there are (F,v) 2 W22'D(V\/)

WéD(I) and a subsequence of(F n, vn)n (not relabeled) such that

(Fnova) * (F,v) in WEp (W) Wip(l), (2.18)

(Fnova) ! (F,v) in Wip(W) CY[ 1,1)). (2.19)
It readily follows from (2.18) and (2.19) that v 2 Sq(k) and

gj(vn),bi(va) ' aj(v),bi(v) in C( 1,1) (2.20)

foralll i,j 2. SinceR, ! 0in Ly(W) by (2.17), the convergences (2.18), (2.19), and (2.20)
allow us to pass to the limit as n! ¥ in the weak formulation of (2.15) and conclude that

F 2 W22,D (W) is a weak solutionto L yF = 0in W. Using again [10, Thm. 8.3], this implies

F O contradicting kF k) = 1 as follows from (2.16) and (2.19).

Proof of Proposition 2.1. For v 2 $(k) and (x,h) 2 W, we set

Tv(x) 2 TBv(x)
1+ v(x) 1+ v(x)

#
fu(x,h) = Lyvh=#h 2
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Sinceq > 2, the function f, belongs to Lo(W) with
kakLz(VV) C5(k, #»9 s (221)

and Lemma 2.2 ensures that there is a unique solution F 2 W22’D (W) to

L yFy = fy inW, (2.22)
Fv =0 onfw, (2.23)
satisfying

Letting fy(x,h) = Fy(x,h)+ hfor (x,h) 2 W, the function f obviously solves (2.6)-(2.7), and
from (2.21) and (2.24) we obtain

K kg ok, #) - (2.25)

In addition, if v 2 Sy(k) and V denotes the function de ned by V(x) := v( x) for x 2 |, we
obviously have V 2 Sy(k) and the properties of Ly ensure that (x,h) 7! fy( x,h) solves (2.22)-
(2.23) with V instead of v. The uniqueness of the solution to (2.22)-(2.23) then readly implies

that f g(x,h) = fy( x,h) for (x,h) 2 Wand thus that

g(V)(X) = gu(v)( x), x21. (2.26)
Next, given v 2 Sy(k), we de ne a bounded linear operator A(v) 2 L W22’D(V\/), Lo(W) by
A(WF:= L F, F2WZy(W).

Lemma 2.2 guarantees thatA (v) is invertible with inverse A(v) 12 L L2(V\/),W22'D(V\/)) satis-
fying

1
A(v) L LW W2y (w) c(k,® . (2.27)

We then note that
which follows from the de nition of L and the continuity of pointwise multiplication
Wa(1) Wi(l) L wa(h) ! Ly (1)
except for the terms involving 2v;, i = 1,2, where continuity of pointwise multiplication
Lg(W) W3(W) | La(W)
is used. Now, for vi,va 2 Sy(k), we infer from (2.27) and (2.28) that

kA (vq) LA (v2) 1kL(L2(\N),W22D(W))

1 1
A(vi) L (Lo(W) W2, (W) KA(v2) A (v1) kL(WZZ,D(\N)’LZ(\N)) A(v2)

ca(k, #? cr(k, #) kvy vaKiz(iy »
which, combined with (2.21), the observation that 0 2 Sy(k) and
kfvl fVZkLz(VV) C8(ki#’9 kvl Vzkwgu) ’ V1,V2 2 Sq(k) ’

L (La(W) W25, (W)



10 JOACHIM ESCHER, PHILIPPE LAURENCOT, AND CHRISTOPH WALK ER

ensures that
kfv,  fukwzm = Py Fukizay = KA (V1) Y, A (v2) 1fV2kW22D(W)
ci(k, %2 cr(k, # kvq V2kw§(|) Kfv, Kiow)
+ ca(k, A kv Vakyziy KA(V2) KL (Lym w2, (w)
co(k,# kvq V2kwg(|) (2.29)

for vi1,vo 2 Sq(k). We may then invoke [24, Chapt. 2, Thm. 5.4] and the continuit y of pointwise
multiplication

W22y wiz @y 1 w2()
for 2s, < 1/2 according to [1, Thm. 4.1] to conclude that the mapping

Sq(k) ! W), vT (1) 2 (2.30)

is globally Lipschitz continuous. Thanks to the continuity of the embedding of Wg(l) in Wg (1),
the mapping
1+ #(xv)?
I 1 ) - T AIXE
Sy(k) ! We(l), v 7! 1+ v)2

is globally Lipschitz continuous with a Lipschitz constant depending only on k and # and
the Lipschitz continuity of gy stated in Proposition 2.1 follows at once from (2.30), (2.31), and
continuity of pointwise multiplication

Wa (1) W3(1) | was(1) = Wik (1)
where 2s < 2s; < 1/2, see again [1, Thm. 4.1]. Finally, to prove that gy is analytic, we note
that Sq(k) is open in WéD(I) and that the mappings A : Sq(k) ! L (WZ5(W),L2(W)) and
[v 7! fy] : Sy(k) ! La(W) are analytic. The analyticity of the inversion map * 7! * 1 for

bounded operators implies that also the mapping [v 7! f\]:Sq(k) ! W2(W) is analytic, and the
assertion follows as above from the results on pointwise mul tiplication .

(2.31)

Let p2 (1,¥). Wedene Ap 2 L (W3,(1),Lp(1)) by Apv := fgv for v2 W2, (). Since
Ay Apforr p, we suppress the subscript in the following and write A := Ap. Note then
that (2.5) subject to the boundary condition (1.2) and the initial condition (1.3) may be recast as
an abstract parameter-dependent Cauchy problem

u+ Au= 1Iggu), t>0, u(0) = u°, (2.32)

where we recall that the function gy was de ned in Proposition 2.1. To prove Theorem 1.1 it
then suf ces to focus on (2.32). For that purpose, let fe " ;t  0g denote the heat semigroup
on Lp(l) corresponding to  A. In order to state suitable regularizing properties we reca Il that

we have setW’f‘%(I) = ng(l) for 2b 2 (0,1/p) and WFZ)’bD(I) = fu?z2 ng(l) ;u( 1) = 0g for
2b 2 (1/ p,2]. Then we have:
Lemma2.3. Letl< p r < ¥ . There existsv > 0 such that the following hold.

@) fo a b 1lwith2a,2b6 1/ p,then

ke Mk Me Vi@ b >0,

L (W2 (1).W20(1))

for some number M 1 depending on pa, andb.
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(i) f0O a b 1with2a6 1/ pand2b & 1/r,then

ol

1
Dotso0,

tA wtia b 3(
ke kL(WS?D(I)’ng(I)) Me "'t

for some number M 1 depending on p, ra, andb.

Proof. (i)Since A 2L (ngD(l), Lp(1)) is the generator of the analytic semigroup fe " ;t 0g

on Lp(l) with a negative spectral bound, it follows from [3, Chapt. V, Thm.2.1.3] that there are
w> 0and M 1 such that

ke tAkL(Ea,Eb) Me tha b, t> 0,
where, for q 2 [0,1], Eq = (L,)(I),WFZ)‘D(I))q with (', )q chosen as real interpolation functor

(+ )qpif2986 1and as complex interpolation functor [, ]i» if2q= 1. SinceEy = ng})(l) with
equivalent norms for 2 q2 [0,2] nf1/ pg by [11, 29], assertion (i) follows.

(ii) From Sobolev's embedding we have WS’D(I) ! w2y(1) for2q=2 (1/p 1/r)6 1/r,
whence

tA A ta
ke kL(wgéDu),wfgu)) cke 2 kL(wﬁ%(l),wfg(n) ke 2%k waaywzoay » 1> 0,

and so assertion (ii) follows from (i).

We are now in a position to prove Theorem 1.1 and Theorem 1.2(i).

Proof of Theorem 1.1 and Theorem 1.2(i). Let| > 0,q 2 (2,¥), #> 0, and consider u® 2
WZp (1) with u®(x) > 1 for x 2 I. Clearly, there is k 2 (0,1/2) such that
u® 2 Sq(2K) . (2.33)

We now x 3 %]< 2s < 3 with 2s 6 1/ gand put ko := k/ M, where M 1 s such that

+144(1 1
ke kp gz, *t 7 2(z ke PkLwzywz,oy  Me MLt 0 (2.34)

with w > 0 according to Lemma 2.3. By Proposition 2.1 there is ci9(k,# > 0 such that

kgivi)  gu(vVadkwzg 1y  Cro(k.#) kv vokye (). V1.v22 Sq(ko) - (2.35)

Since 02 Sy(ko) and g«0) = 1, we deduce from (2.35) that

cio(k, —
kg(V)Kyzs ) 1+ 1°(k0 A cra(k,#) . v 2 Sq(ko) - (2.36)
Now, for t > 0, de ne V; := C([0,t], Sy(ko)) and
Zy
FOV)(t) = e % 1 e (0 94, y(s) ds
0

for0 t t andv2V;. Considervy,vo2 Vi andt 2 [0,t]. Then, introducing
Zy Zy
I(t):= ewss 3G dgs | (¥):= ewss 130G dgs, (2.37)
0 0
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which is nite thanks to the positivity of ~w and the choice of s, it readily follows from (2.33),
(2.34), and (2.36) that
VA

0 w9 s 133 %)
KF(vD)(Dkwz ) M kukyz )+ 1 M e (t 97 = 22 9 kgu(va(s) kyz () ds

0
% +1 Mep(k® 1 (1), (2.38)
and from (2.34) and (2.35) that

Moreover, since WéD(I) embeds in Ly (1) with embedding constant 2 and u® 2k 1, we
deduce from the positivity of the heat semigroup, (2.34), an d (2.36) that

Zy
Fvo(® 1+ 2 20 e 9gdn) |, o
q,D
Z w(t s) s 133 %)
1+2k 21 M . e (t s 222 g kg#(vl(s))kwgsD(l)ds
1+ 2k 21 Mcu(k,® I (). (2.40)

We nally note that F(v4)(t) O0ifu® O0sinceg«vi) 0. Consequently, due to (2.38)-(2.40)
and the factthat | (t)! Oast ! 0, thereistg:= to(l ,k,#q,s) > 0 suf ciently small such that
F de nes a contraction from Vi, into itself. This shows that there is a unique maximal soluti on

u2 Ct[0,T4),Lg(1) \ C [0,TH),W25(1) \ C (0,TH), W25 (1)
to (2.32) for some T# 2 (tq, ¥ ], satisfying
ut,x) > 1, (t,x)2[0,TH 1,
and, in addition,
ut,x) 0, (tx)2[0,TH 1 if uw(x) 0, x21.

Moreover, if for each t > 0 there isk(t) 2 (0, 1) such that u(t) 2 Sq(k(t)) for t 2 [0, T#)\ [0,t],
then necessarily T/ = ¥ . This proves the statements (i) and (ii) of Theorem 1.1 after observing
that y (t) == f i) Ty belongs to Wg W(u(t)) and solves (1.4)-(1.5) for eacht 2 [0, T#), where
the transformation T, was introduced in (2.1).

As for the statement (i) of Theorem 1.2, we choosel = 1| (k,#q,s) > 0 such that (recall
(2.37))
1 1
[ M maxfc(k,#,cri(k, gl (¥) =< —
2 2ko

and
21 MCll(k,fJ-'b I (¥) ko.

Letting | | , it readily follows that, for each t > 0, the mapping F de nes a contraction from
C([0,t], Sy(Ko)) into itself. This implies that T# = ¥ in this case and that u(t) 2 Sq(ko) for t 0.

To prove statement (iv) of Theorem 1.1 suppose that u® is even on | and let u be the corre-
sponding maximal solution to (2.32) with maximal existence time T/ 2 (0,¥ ]. Introducing the
function G de ned by G(t,x) = u(t, x) for (t,x) 2 [0,T#) I, we deduce from Proposition 2.1
and the evenness ofu® that G also solves (2.32), so thatl actually coincides with u. Thus u(t,.)
is even on | for all t 2 [0, T/) and the proof of Theorem 1.1 is complete.

We end this section with some useful properties of the compon ent y of solutions to (1.1)-(1.5).
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Proposition 2.4. Let q2 (2,¥),#> 0,1 > 0, and consider an initial value li2 WéD(I) such that

u(x) > 1for x 2 I. Denoting the corresponding maximal solution (b.1)-(1.5) by (u,y), we have
forallt 2 [0, T#)

1+z max u° . y(txz 1, (x,2) 2 W(u(t)) , (2.41)

T2y (t,x,u(t,x)) O, x21, (2.42)

MTxy (6, x,u(t,x)) = Txu(t,x) T2y (t, x,u(t,x)) , x21. (2.43)

Proof. It readily follows from the positivity of | that the constant max (ug), is a supersolution

to (1.1)-(1.3), so thatu ~ max(ug), in [0,T#) [ 1,1]. This property entails that (x,z) 7!

1+z max u° , Is a subsolution to (1.4)-(1.5) and the comparison principl e gives the lower
bound in (2.41). The upper bound in (2.41) also follows from t he comparison principle as the
constant 1 is clearly a supersolution to (1.4)-(1.5). This implies in particular that y(t) reaches its
maximum value on the graph of u(t) and thus that (2.42) holds true. Finally, (2.43) is an obvious

consequence of (1.5).

3. On Nonexistence of Global Solutions : Proof of Theorem 1.2(ii)

We now prove that there are no global solutions for large | values as stated in Theorem 1.2(ii)
(note that part (i) of this theorem was shown in the previous s ection). For this we rst need some
preparations. Let q2 (2,¥),#> 0,1 > 0, and consider an initial value u® 2 WéD(I) such that

1< u%x) Oforx2 I. By Theorem 1.1, there is a unique solution (u,y) to (1.1)-(1.5) de ned
on the maximal interval of existence [0, T/) for some T# 2 (0,¥ ] and satysfying

u2 C[0,TH),Lq(1) \ C [0,TH), Wip(1)

together with

1<u(t,x) 0, (t,x)2[0,T#) 1, (3.1)
and y(t) 2 Wé W(u(t)) solves (1.4)-(1.5) onW(u(t)) for eacht 2 [0,T%). Our aim is to show
that, if | is suf ciently large, the maximal existence time T/ is nite. To this end, de ne  z;(x) :=
pcos(px/2)/4 for x 2 [ 1,1 and m := p2/4. Then, m is the principal eigenvalue of the
Lo(1)-realization of 2 and

TBzz=mzy in |, z( 1)=0, kzk, y=1. (3.2)

A classical technique to show that solutions only exist on a nite time interval is to study the
evolution of 7

Eo(t) := 1lzl(x) u(t,x) dx, t2[0,TH),

and show that Eg reaches 1 in nite time, a feature contradicting (3.1). Such an appro ach has
been used successfully for the small aspect ratio model (1.7) [7, 17] and the stationary version
of (1.1)-(1.5) [21], the proof of the latter relying also heavily on the convexity of u. But, such a
convexity property is not known for the evolution problem (1 .1)-(1.5) (neither it is for (1.7)) and
studying the time evolution of Ey does not seem to work. However, as we shall see below, the
study of the time evolution of
Z,
Ea) = 2100 u+ g W (t,x)dx, t2[0,TH), (3.3)

for a suitable choice of a 2 (0, 1) leads us to the expected result. Performing that study requi res
to connect the behavior of y to that of u and we devote the next two results to this issue. We rst
start with an easy consequence of the boundary conditions (1.5).
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Lemma 3.1. Fort2 [0,T#) and p2 [1,¥ ), we have

4

VA
4 1 . .
(|0+I01)2 11+Zlu((xt)x) P ) 20 y(tx2? Hly (b aifdxg . @4

Proof. For (t,x) 2 [0,T#) 1 and p 2 [1,¥), it follows from (1.5) and the Cauchy-Schwarz
inequality that

1=y (txu(t,x) P2y (tx, 1)PrD2

z u(t,x)
= p-; 1 y(t,x,2)(P D2 q,y(t,x,2) dz
Z y(tx) 172 q
p; ! y(t,x,2)P 1y (t,x,2)j? dz 1+ u(t,x),
hence
4 1 z u(t,x)

(p+ 1)2 1+ u(t,x) y(tx2)? 2 ifly (6 x2)i% dz.

Owing to the nonnegativity of z;, the estimate (3.4) follows from the above inequality after
multiplying both sides by pz;(x) and integrating over | with respect to x.

The next lemma is a consequence of (1.4)-(1.5).

Lemma 3.2. Fort2 [0,T#) and p2 [1,¥ ), we have

Z3q
209 1+ #ju(t, x)j? T2y (t,%,u(t, x)) dx
Z

i Y
= 220 pRyP Linyi2+ pyP Lifyit+ Y yPL (tx.2) d(x.2)
W(u(t)) o+ 1
# 2 %1
(p+ Ir1T;‘(p+ 2) ;)ni 1At utx)dx. (3.5)

Proof. We multiply (1.4) by z; yP and integrate over W(u). Integrating by parts and using the
boundary conditions for y and z; and (2.43), we obtain
z
0= p# 21y P LifkyP+ # Tz yP Ty + pzay® tiTyi? d(x,2)
u
h .

|
£ 200 29U By (U + Ty (6u00) ox

= a) 1+ # ju(x)j® T2y (%, u(x)) dx
. _

h [
P 1 2iqyil+ iTyi? d(x
P Y IMyI=+ M2y)™ dx2) - o

Z
Mxz1 YIx yp” d(X,Z).
W(u)
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Since
Z Z
Txz1 T yP*h d(x,2) = Tz yP 1 d(x,2)
W(u)
Zy
F(ha( ) ha(D) 1+ 2P hdz
Zq
+ l‘ﬂle(x) fxu(x) dx
z m 1
= p+1 2
m W) zZpyP o d(x,2) + 0+ 2 1'ﬂx21(X) u(x) dx
= m_z 2 yP ld(x,2)+ —2 4 m 1z(x)u(x)dx
W) 1 ’ p+ 2 1 1

by (1.5) and (3.2), we end up with (3.5).

Proof of Theorem 1.2 (ii). Leta 2 (0,1) to be determined later. We rst note that (3.1) implies
that the function Eg, de ned in (3.3), satis es

1 2 - 2 B 0, t2[0TH. (3.6)
We next multiply (1.1) by z; (1+ au), integrate over | and use (3.2) and (2.43) to obtain
Z z
E 1 . . 1
% + mEy+a 1 jTxuj? dx = z; (1+au) fu Tu dx
1 1

Z
- 1lzl(x)(1+au(x)) 1+ 2 Ui iy (x, u(x))j? dx .

Sincezy(x) Oandl1l+ au(x) 1 aby(3.1), we further obtain

dE 21
d—ta +mEata  z;jxuj?dx (1 a)R (3.7)
1
with
z 1
R(t) := z1(x) 1+ #j%u(t,x)j® Ty (txu(t,x)j?dx, t2][0,T#).
1

We now look for a lower bound for R. To this end we observe that R reminds of the left-hand
side of (3.5) while (3.4) provides a lower bound of the right- hand side of (3.5). More precisely,
letb> O0and p 1 be two positive real numbers to be determined later. It foll ows from Young's
inequality that

z 1
121(X) 1+ # jhu(x)ji? T2y (x,u(x)) dx
1 %1
bR+ —  zi(x) 1+ #jhu(x)j® dx,
4b 1
that is,
1741
R 5 121(X) 1+ # JTu(x)j? T2y (%, u(x)) dx
1 Z1
02 1+ 121()() JTxu(x)jedx
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We now infer from Lemma 3.2, Lemma 3.1, (3.2), and the non-positivity of zju that
1 m# m# 1

R % z1yP 1 ifyi®d(xz z; u dx
R L N R CE T S
1 Z1 ,
2 rF 7Tt
z z
b — 1+
b (p+ D2 11+u"X (prD(pr2 a2 © # L2 1Tupmdx
z z
171 741 m# 1 A
bp 11+ u+au?2 dx bp2  4b2  4b? (Al dx .
Finally, since y 7! (1+y) *is convex and kzik;,(j) = 1, we use Jensen's inequality as in [7] and

get )
1 1 m# 1 # T
bp 1+ Ea Dbp2 4b2 42 22T dx .
Inserting this estimate in (3.7) and using (3.6) give

Z,
9 mra 7z dx
dt 1
z
I (1 a) 1 m# p p#°r_
bp 1+Ea p 4b 4b 1Z“ﬂxuj dx
whence
z
dEa | (1 a)# T (1 a m# p 1
i RS S A i 7 A7 4 =
dt b2 Jalhumdae mr = 0 2 1+E,

At this point, the role of the additional parameter a becomes clear as it allows us to control the
| -dependent term involving {xu. We thus choose

2
i 2(0,1), sothat a= 3 _a# a)#

T a2+ 2 apz
and obtain the following differential inequality for  Eg:
dE 4lb # 1
2 F (E)=m A (3.8)

+ _—
dt (4b2+ 1#2)p p 4b 1+ E,
SinceF is anincreasing function on ( 1,¥ ), it readily follows from the non-positivity of Eg and
(3.8) that, if F(0) < O, then Ea(t) Ea(0) 0and dEa(t)/[dt F (0) < Oforall t 2 [0,TH).
Integrating this differential inequality and using (3.6), we conclude that 1 F (0)t for all
t 2 [0, T#) and thus that T 1/ F (0) < ¥ as claimed.
We are then left with showing that we can nd parameters b > 0 and p 1 such that
F (0) < 0O for | large enough. To this end we chooseb="1/2 > 0Oand p= 1+ 2m# 1so
that a = #/ (1+ #) and

p— p_—
21 1 1+2m# I 1+ 2m#
+ Z+ 5 + B—
FO) m 1+# 2 2] Lo m+ "1
Therefore, if P I > 4m (1+ #), we have
p_
I
— <
FO- m s <0

and the proof of Theorem 1.2(ii) is complete.
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4. Asymptotic Stability : Proof of Theorem 1.3

Letq2 (2,¥),#> 0,andk 2 (0,1) be xed. We rst prove Theorem 1.3(i). Recall that, choos-
ings?2(1/2 1/q,1/2) so thathzs(I) 1 Lg(1), Proposition 2.1 states thatgs : Sq(k) ! Lq(1) is
analytic. Therefore, since the generator of the heat semigoup A = Agq2L (W§’D(I), Lq(1))
is invertible, we obtain that the mapping

FIR Sy(k)! Wip(D), (1,v)7'v 1A ggv)
is analytic with F(0,0) = 0 and DyF(0,0) = ideiD' Now, the Implicit Function Theorem ensures
the existence ofd > 0 and an analytic function
70 Ul:[0,d) ! Wip(1)

such that F(I ,U;) = O0for | 2 [0,d). Denoting the solution to (1.4)-(1.5) with U, instead of u
by Y| 2 WZ(W(U,)), the pair (U;,Y,) is for each| 2 (0,d) the unique steady-state to (1.1)-
(1.5) with U; in S4(k) and Ug = 0. SinceU; is convex and satis es the Dirichlet conditions

U ( 1)= Oweclearly have U, Oforl 2 (0,d). That U; is even follows from uniqueness and
[21, Thm.1]. This proves Theorem 1.3 (i).

To prove part (i) of Theorem 1.3, we use the Principle of Line arized Stability. For this, we x
I 2 (0,d) and introduce the linearization of gy,

Bl = 1 Dygg(U1) 2 L (WGp (1), Lg(1)) -
Since kB, kL(WéD(l),Lq(l)) I Oasl ! O, itfollows from [3, I.Cor.1.4.3] that A B, is the

generator of an analytic semigroup on Lq(1) and there is wy > 0 such that the complex half
plane [Rez w1] belongs to the resolvent set of A B, provided that | is suf ciently small.
Now write v= u U, and consider the linearization of (2.32),

v+H(A+B)v=G(v), t>0, v(0)= V0, (4.1)
where G| 2 C?(Oy,Lqg(1)) is de ned on some open zero neighborhood Oy in WéD(I) such that
U + O  Sy(k) and given by

G (v):= | gV +v) g«U;) DvgU))v .

Since (A + By) is the generator of an analytic semigroup on Lq(l) with a negative spectral
bound as observed above, we may apply [23, Thm.9.1.1] and corclude statement (ii) of Theo-
rem 1.3 by making d > 0 smaller, if necessary.
A straightforward consequence of (1.8) and (2.29) is:
Corollary 4.1. Under the assumptions of Theorem 1.3(ii) there §S>R0 such that
0
kf u(t) fU| kW22(V\I) Rie Wot U kwgD(l) , t 0,

wheref , is de ned in Proposition 2.1.

5. Small Aspect Ratio Limit : Proof of Theorem 1.4

We shall now prove Theorem 1.4. Fix | > 0,42 (2,¥),k 2 (0,1), and let u® 2 Sy(k) with
u%(x) Ofor x 2 I. For#> 0 we denote the unique solution to (1.1)-(1.5) by (usy#) which
is de ned on the maximal interval of existence [0,T#). In the following, (K;); 1 and K denote
positive constants depending only on g and k, but not on #> 0 suf ciently small.
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Setkg := k/ (2M) < k, where M 1 is the constant de ned in (2.34). Owing to the continuity
properties of ug we have

t#:= sup t2[0,T%) : u«s) 2 Sy(ko) forall s2[0,t] >0. (5.1)

Thanks to the continuity of the embedding of W§|(I) in Wy (1), there is a positive constant Ky
such that, for all #> 0,

1+ ko ugt,x) O, (t,x)2[0,t" [ 1,1, (5.2)

ku#(t)kwg(l) + ku#(t)kwgu) Ki, t2[0,t%. (5.3)

As a consequence of (5.3) there is#y > 0 depending only g and k such that

# kTugk?, () (tL#H2[0t7 (0#]. (5.4)

1
21
For #2 (0,#), we set

ft) = f oy = Vi) Tu#(lt) ., t2[0,t7,

with Tu#(lt) given by (2.2) and

Fut,x,h) := f4t,x,h) h, (t,x,h)2[0,t7] W.

The cornerstone of the proof of Theorem 1.4 is to derive appro priate estimates on F g showing
that it converges to zero as #! 0. To this end, we further develop and improve the analysis
performed in [21, Section 3] and establish the following bou nds:

Lemma 5.1. There exists a positive constans Kuch that, fort2 (0,#) and t2 [0,t 7],

1

KIxF Ok, + 5 KFaDkpm + ThFt) [y Ko (5.5)

1 1 o
% Mx M F #(t) L2(V\/)+ 7z ThF #(t) L) Ko, (5.6)

1
p ThF«t, , 1) w22 (1) Ks. (5.7)
Proof. Fix #2 (0,#)) and t 2 [0,t#]. It rst follows from (2.41) that

kKFstk, wy 1. (5.8)

while (5.2) and (5.3) entail that the function
" #

2 2
Tk Uz Tl ix),  (txh)2[011 W,

fit,x,h) = f(x,h)= #h 2

1+ uy 1+ ug
satis es
#
Kfs(t)k 2 2 Kus0k o KUk 0+ —  f2ust)
Lg(W) k(z) X Ly (1) Klix L) ™ Gy ™ La(1)
!
2K? Ky
Ao, #.
0

Therefore, by Holder's inequality,

ki oy 29 PPKREL)k oy Ks# (5.9)
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for p 2 [1,q]. From now on, the time t plays no particular role anymore and is thus omitted in
the notation. We multiply (2.22) by Fy integrate over W, and proceed as in [21, Lemma 11] to
obtain

Z z 2

u
fu 1 TWFu Fad(x,h)=# “Fs h Theis TF#  d(x,h)
W W 1+ ug
Z

JThF 4°
w(1+ ug)?
To estimate the right-hand side of the above identity from be low, we use the elementary inequal-
ity (r 9?2 (r?/2) &% (5.2), and (5.4) to obtain

z 2 X 5 Z
LT TFe FadOoh) 5 KIkF k) # kTxuski, ()

2 jfnF 42
w (1+ ug)?

d(x,h)

‘IThF#2

W7(1+ )2 d(x,h)

d(x, h)

17 jTnF 42

# 2

2
#
2
Next, thanks to (5.8), (5.9), and Hdolder's inequality, we c an estimate the left-hand side of the
above inequality and obtain
#KIF kG + TFe Loy 2 KiKmy 1 ToFa |y KF ki

2Ka# 1+ TFy |

d(x,h)

1 2
K ko + 5 TF s L -

1 2 2
2Kzt + 5 TFs Lt 2K3H#

whence 5
# kﬂxF#ksz(W) + ThF# Lo (W) K4#2. (5.10)

Since F#(x,1) = 0 for x 2 I, we have KF 4k 2, 2 fhFs Lo(W) and (5.5) readily follows
from this inequality and (5.10).

We next establish (5.6). For that purpose, we setzy := T2F 4 wy := TxThF 4 and multiply
(2.3) by zy After integrating over W, we proceed as in [21, Lemma 11] with the help of [12,
Lem. 4.3.1.2 & 4.3.1.3] to deduce that

Z Z #
% # h XU i d(x,h
= + .
Wf# 1 9YnF# zgd(x,h) w i+ U#)z Wy 1+ U#Z# (x,h)

Using once more the inequality (r s)2 (r?/2) s?and (5.4) to estimate the right-hand side
of the above inequality from below, we ng

#
Z Z 2 . -2
Z5 # 2 JTxug”™ 5
_r 4+ P AL
Wf# 1 fhFs zgd(x,h) w @rupet 2 W #h T+ 2 & d(x, h)
Z 1 2 2

e A
w 2 {1+ u)? 5 Wi d(x, h)

1 2 2
3 Kk # kwaki
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q
Introducing Qu:=  kzakf ) + # kwik{ . we infer from Holder's inequality, (5.9), and the
previous inequality that (recall that q> 2)

2
Q# 2 kf#qu(V\/) 1 ﬂhF# qu/ @ 2)(VV) kZ#kLz(VV)

K#2 1+ ThFs# Lo (q 2)(\/\/) Q#,

that is,
Qs K# 1+ TWFs Loy a (W) (5.11)
At this point, we infer from the Gagliardo-Nirenberg inequa lity [25] and (5.10),that

K ToFs gy ThFs O

ThF 4 Loy (g 2)(W) W(W) L2(W)

1/q
Ko TP fmy + kwi oy + Kz~ #9 2/0

5 5 1/q
Kika 70 4+ 42 kwik? oy + # Kz

K#a Dla 4y g2/a
K #+ #a 9agZd
Inserting this estimate in (5.11) leads us to

Qs K# 1+ #+ #9 9aQ2ld k24 gy HlagZd
K+ 2 Qut KH3 D1 (@ D)
q

whence

Qx K# 1+# @2 ki

and the proof of (5.6) is complete.
As a consequence of (5.5) and (5.6), we have fnF # Wi(w) K#and the properties of the trace
2

operator readily give (5.7), see [12, Thm. 1.5.1.3].

A rst consequence of Lemma 5.1 is that t# (and thus also T#) does not collapse to zero as
#! 0, so that the solutions (U#,Y#)#z(o,#o) to (1.1)-(1.5) have a common interval of existence.

Lemma 5.2. (i) Thereist > 0depending only on d,, andk such thatt # t for all#2 (0,#).
(i) ThereisL := L (k) > Osuch thatt#= T# = ¥ forall#2 (0,#) provided 2 (0,L).

Proof. Owing to (5.2), (5.3) and (5.7), we may argue as at the end of the proof of Proposition 2.1
to conclude that, xing2 s 2 (1/2 1/ q,1/2), there is Ks > 0 such that

kgudt)) kyzs ) Ks . t2[0,t%. (5.12)

As in the proof of (2.38) and (2.40), we infer from (2.34), (5.12), the fact that u® 2 Sy(k), and the

Variation-of-Constant formula that, for t 2 [0,t ],
Zt
0 s 1 3(3 9)
kuOkwz, )y M kukyz )+ 1M e SR S M A kgi(ui(9)) kyzs (1) ds

Tt MKs1 (), (5.13)












