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A PARABOLIC FREE BOUNDARY PROBLEM MODELING ELECTROSTATIC M EMS

JOACHIM ESCHER, PHILIPPE LAURENÇOT, AND CHRISTOPH WALKER

Abstract . The evolution problem for a membrane based model of an elect rostatically actuated
microelectromechanical system (MEMS) is studied. The model describes the dynamics of the mem-
brane displacement and the electric potential. The latter i s a harmonic function in an angular do-
main, the deformable membrane being a part of the boundary. T he former solves a heat equation
with a right hand side that depends on the square of the trace o f the gradient of the electric po-
tential on the membrane. The resulting free boundary proble m is shown to be well-posed locally
in time. Furthermore, solutions corresponding to small vol tage values exist globally in time while
global existence is shown not to hold for high voltage values . It is also proven that, for small voltage
values, there is an asymptotically stable steady-state solution. Finally, the small aspect ratio limit is
rigorously justi�ed.

1. Introduction

An idealized electrostatically actuated microelectromec hanical system (MEMS) consists of a
rigid ground plate above which a thin and deformable elastic membrane is suspended that is
held �xed along its boundary, see Figure 1. Applying a voltag e difference between the two
components induces displacements of the membrane and thus transforms electrostatic energy
into mechanical energy, a feature that has applications in t he design of transistors, switches, or
micro-pumps, for instance. There is, however, an upper limi t for the applied voltage potential
beyond which the electrostatic force cannot be balanced by the elastic response of the membrane
which then touches down on the rigid plate. This phenomenon i s usually referred to as “pull-
in” instability. Estimating this threshold value is an impo rtant issue in applications as it may
be a desirable feature of the device in some situations (e.g. switches, micropumps) or possibly
damage the device in others. Mathematical models have been set up for that purpose, and we
refer the reader e.g. to [26, 27, 28] and the references therein for a more detailed account of the
physical background and the modeling aspects of such devices.

Denoting the displacement of the membrane and the electrostatic potential in the device by u
and y , respectively, we consider here the idealized situation wh ere the applied voltage and the
permittivity of the membrane are constant (normalized to on e), and there is no variation in the
horizontal direction orthogonal to the x-direction of both y and u. Under appropriate scalings,
the rigid ground plate is at z = � 1, and the unde�ected membrane at z = 0 is �xed at the
boundary x = � 1 and x = 1 of the interval I := ( � 1, 1), see Figure 1. Letting #denote the aspect
ratio of the device before scaling, i.e. the ratio of the unde formed gap size to the device length,
the membrane displacement u = u( t, x) 2 (� 1,¥ ) evolves according to

¶t u � ¶2
xu = � l

�
#2 j¶xy ( t, x, u)j2 + j¶zy ( t, x, u)j2

�
, x 2 I , t > 0 , (1.1)

2010Mathematics Subject Classi�cation.35R35, 35M33, 35Q74, 35B25, 74M05.
Key words and phrases.MEMS, free boundary problem, well-posedness, asymptotic s tability, �nite time singularity,

small aspect ratio limit.
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Figure 1. Idealized electrostatic MEMS device.

with clamped boundary conditions

u( t, � 1) = 0 , t > 0 , (1.2)

and initial condition
u(0,x) = u0(x) , x 2 I . (1.3)

The dimensionless electrostatic potential y = y ( t, x, z) satis�es Laplace's equation

#2¶2
xy + ¶2

zy = 0 , (x, z) 2 W(u( t)) , t > 0 , (1.4)

in the region
W(u( t)) := f (x, z) 2 I � ( � 1,¥ ) : � 1 < z < u( t, x)g

between the rigid ground plate at z = � 1 and the de�ected membrane. The boundary conditions
for y are then

y ( t, x, z) =
1 + z

1 + u( t, x)
, (x, z) 2 ¶W(u( t)) , t > 0 . (1.5)

Equation (1.1) corresponds to the situation in which viscou s forces dominate over inertial
forces in the system, e.g. see [6, 27]. Also, deformations due to bending are neglected in (1.1).
Of particular importance in the model is the parameter l > 0 which characterizes the rela-
tive strengths of electrostatic and mechanical forces and is proportional to the applied voltage.
According to the above discussion, the pull-in instability is expected to take place for l large
enough.

The analysis of (1.1)-(1.5) turns out to be rather complex since (1.4) is a free boundary prob-
lem: indeed, the domain between the rigid ground plate and th e elastic membrane changes with
time. Due to this, equations (1.1) and (1.4) are strongly coupled. However, a common assump-
tion made in mathematical analysis hitherto is a vanishing a spect ratio # that reduces the free
boundary problem to a heat equation with a right hand side inv olving a singularity when the
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membrane touches down on the ground plate. More precisely, s etting # = 0 allows one to solve
(1.4)-(1.5) explicitly for the potential y = y 0, that is,

y 0( t, x, z) =
1 + z

1 + u0( t, x)
, ( t, x, z) 2 [0,¥ ) � I � ( � 1, 0) , (1.6)

where the displacement u = u0 now satis�es the so-called small aspect ratio model

¶tu0 � ¶2
xu0 = �

l
(1 + u0)2 , x 2 I , t 2 (0,¥ ) ,

u0( t, � 1) = 0 , t 2 (0,¥ ) ,
u0(0,x) = u0(x) , x 2 I .

(1.7)

Several mathematical results have been obtained for (1.7), including a characterization of the
critical value of l which corresponds to the value beyond which no steady-state exists as well as
a possible space dependence of the permittivity of the membr ane, see, e.g., [5, 8, 22, 27] for the
stationary problem and [5, 7, 9, 16, 13, 14, 18, 27] for the evolution problem. Inertial effects are
taken into account in [15, 19].

To the best of our knowledge, the �rst analytical research wi thout assumption of a small
aspect ratio and thus dedicated to the original free boundar y problem (1.1)-(1.5) is [21], where
the existence of steady-states has been established for small voltage values l and a non-existence
result for steady-states is obtained for large values of l .

Here, we address the evolution problem. A rough summary of ou r results reads as follows:
We prove the local well-posedness of (1.1)-(1.5) for all voltage values and show that the solu-
tions exist globally in time provided the voltage value is su f�ciently small. In contrast to the
stationary case [21] it turns out that a W2

¥ ( I )-setting is no longer suitable for the u-component
of (1.1)-(1.5). This is due to the fact that the heat semigroup does not enjoy suitable properties
in L¥ ( I ). Instead, we are therefore lead to work in the framework of W2

q ( I )-spaces for q < ¥ ,

which generates additional dif�culties as now ¶2
xu may become unbounded. For small voltage

values we further prove that there is a locally asymptotical ly stable steady-state. For high voltage
values we prove that global existence of solutions does not hold. In addition, we analyze the
behavior of the solutions as the small aspect ratio # ! 0, showing convergence towards (1.7) as
expected from a formal analysis.

To state precisely our results we introduce for q 2 [2,¥ ) and k 2 (0, 1) the set

Sq(k) :=
�

u 2 W2
q,D ( I ) ; kukW2

q,D ( I ) < 1/ k and � 1 + k < u(x) for x 2 I
�

,

where W2a
q,D ( I ) := f u 2 W2a

q ( I ) ; u(� 1) = 0g for 2a 2 (1/ q, 2] and W2a
q,D ( I ) := W2a

q ( I ) for
0 � 2a < 1/ q. The local existence result now reads:

Theorem 1.1 (Local Well-Posedness). Let q 2 (2,¥ ), # > 0, and consider an initial value u0 2
W2

q,D ( I ) such that u0(x) > � 1 for x 2 I. Then, the following are true:

(i) For each voltage valuel > 0, there is a unique maximal solution(u, y ) to (1.1)-(1.5) on the
maximal interval of existence[0,T#

m) in the sense that

u 2 C1�
[0,T#

m), Lq( I )
�

\ C
�
[0,T#

m),W2
q,D ( I )

�

satis�es(1.1)-(1.3) together with

u( t, x) > � 1 , ( t, x) 2 [0,T#
m) � I ,

andy ( t) 2 W2
q
�
W(u( t))

�
solves(1.4)-(1.5)on W(u( t)) for each t2 [0,T#

m).
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(ii) If for eacht > 0 there isk( t ) 2 (0, 1) such that u( t) 2 Sq(k( t )) for t 2 [0,T#
m) \ [0,t ], then

the solution exists globally, that is, T#m = ¥ .
(iii) If u0(x) � 0 for x 2 I, then u( t, x) � 0 for ( t, x) 2 [0,T#

m) � I. If u0 = u0(x) is even with
respect to x2 I, then, for all t2 [0,T#

m), u = u( t, x) andy = y ( t, x, z) are even with respect to
x 2 I as well.

The proof of Theorem 1.1 is performed as follows. We �rst tran sform the Laplace equation
(1.4) to a �xed rectangle which results in an elliptic bounda ry value problem with non-constant
coef�cients depending on u and its derivatives up to order 2. Solving this elliptic equa tion
(for a given u) allows us to interpret the full free boundary problem as a no nlocal semilinear
heat equation for u (see (2.5)). We then employ a �xed point argument to solve thi s evolution
problem. Since the nonlinearity in the u-equation depends on the trace of the gradient of the
potential, two ingredients are essential: precise estimates based on the regularizing effects of the
heat semigroup and elaborated investigations of the proper ties of the solution to the transformed
elliptic problem. The proof is given in Section 2.

We now address global existence issues. From a physical viewpoint a “pull-in” instability
occurs for high voltage values. Accordingly, for large valu es of l solutions cease to exist globally
while solutions corresponding to small l values exist globally in time. More precisely, we have:

Theorem 1.2 (Global Existence). Let q 2 (2,¥ ), # > 0, l > 0, and let u0 2 W2
q,D ( I ) satisfy

� 1 < u0(x) � 0 for x 2 I. Let (u, y ) be the corresponding solution to(1.1)-(1.5) on the maximal
interval of existence[0,T#

m).

(i) Givenk 2 (0, 1) there existsl � := l � (k, #) > 0 andk0 := k0(k, #) > 0 such that T#
m = ¥ and

u( t) 2 Sq(k0) for t � 0 provided that u0 2 Sq(k) and l 2 (0, l � ).
(ii) There isl � (#) > 0 depending only on#such that T#

m < ¥ providedl > l � (#).

Note that part (i) of Theorem 1.2 provides uniform estimates on u in the W2
q ( I )-norm and

ensures that u never touches down on -1, not even in in�nite time. Its proof i s contained in
Section 2 and it is a consequence of the above mentioned �xed point argument. The second
part of Theorem 1.2 is proven in Section 3 by constructing a suitable strict Lyapunov functional.
Let us mention that similar results as stated in Theorem 1.2 are known to hold for the small
aspect ratio model (1.7), see [7, 9]. However, the nonlocal features of (1.1)-(1.5) prevents one
from using similar techniques and we thus have to develop an a lternative approach. Also, there
is a qualitative difference of the interpretation of the �ni teness ofT#

m in Theorem 1.2(ii). Indeed,
according to Theorem 1.1, T#

m < ¥ implies that the W2
q ( I )-norm of u blows up or u touches

down on � 1 in �nite time. This is in clear contrast to the small aspect r atio model (1.7) for
which touchdown is the only mechanism for a �nite time singul arity. The difference stems
from the fact that in (1.7) the nonlinearity is of zero order w hile for the free boundary problem
(1.1)-(1.5) the nonlocal nonlinearity is rather of order “3 /2” in the Lq-sense (see Proposition 2.1).
Nevertheless, we strongly believe that �nite time touchdow n occurs in the present model as well
when T#

m is �nite.

We next turn to stability of steady-states. This is a delicat e issue since it is expected in analogy
to what is known for the small aspect ratio model [5, 27] that t here are two steady states for small
l values. In [21] it was shown that there is at least one steady-state to (1.1)-(1.5) for small values
of l (and none for large l ). We shall re�ne this result here and prove that, provided l is small,
this steady-state is unique with a �rst component in the set Sq(k) and locally asymptotically
stable.

Theorem 1.3 (Asymptotic Stability). Let q2 (2,¥ ), #> 0, andk 2 (0, 1).
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(i) There ared = d(k) > 0 and an analytic function[l 7! U l ] : [0,d) ! W2
q,D ( I ) such that

(U l , Y l ) is for eachl 2 (0,d) the unique steady-state to(1.1)-(1.5) with U l 2 Sq(k) and
Y l 2 W2

2 (W(U l )) . Moreover, Ul is negative, convex, and even forl 2 (0,d) and U0 = 0.
(ii) Let l 2 (0,d). There arew0, r, R > 0 such that for each initial value u0 2 W2

q,D ( I ) with

ku0 � U l kW2
q,D

< r, the solution(u, y ) to (1.1)-(1.5)exists globally in time and

ku( t) � U l kW2
q,D ( I ) + k¶t u( t)kLq( I ) � Re� w0tku0 � U l kW2

q,D ( I ) , t � 0 . (1.8)

The �rst part of Theorem 1.3 is a consequence of the Implicit F unction Theorem while the sec-
ond part follows from the Principle of Linearized Stability , and the proofs are given in Section 4.
We shall point out that Theorem 1.3 provides uniqueness of st eady-states with �rst components
in Sq(k) for �xed l small. A result in this spirit is also shown in [8, Thm.5.6]. B ut, as pointed out
before, for the small aspect ratio model (1.7) it is known tha t below the critical threshold there
are exactly two steady-states. If this would turn out to be tr ue for the free boundary problem as
well, that is, if there would be another smooth branch of stea dy-states emanating from l = 0,
say, Vl 6= U l , then the fact that Sq(k1) � Sq(k2) for 0 < k2 < k1 < 1 would imply that d(k) & 0
as k & 0 in Theorem 1.3. Obviously, Vl /2 Sq(k) for l < d(k) and thus, as l & 0, the minimum
of Vl has to approach � 1 or the W2

q-norm of Vl has to blow up 1.

We also note that y converges exponentially to Y l in the W2
2 -norm as t ! ¥ , see Corollary 4.1

for a precise statement. Finally, both components of the steady-state enjoy more regularity than
stated, see [21, Cor.10].

More insight in the connection between the free boundary mod el and its small aspect ratio
limit is offered in the next theorem. Indeed, we show that the solution (u, y ) = ( u#, y #) to (1.1)-
(1.5) provided by Theorem 1.1 converges to the solution (u0, y 0) of the small aspect ratio model
(1.6), (1.7) as# ! 0. This gives a rigorous justi�cation of the formal derivati on.

Theorem 1.4 (Small Aspect Ratio Limit). Let l > 0, q 2 (2,¥ ), k 2 (0, 1), and let u0 2 Sq(k)
with u0(x) � 0 for x 2 I. For # > 0 let (u#, y #) be the unique solution to(1.1)-(1.5) on the maximal
interval of existence[0,T#

m). There aret > 0, #0 > 0, andk0 2 (0, 1) depending only on q andk such
that T#

m � t and u#( t) 2 Sq(k0) for all ( t, #) 2 [0,t ] � (0,#0). Moreover, the small aspect ratio equation
(1.7)has a unique solution

u0 2 C1�
[0,t ], Lq( I )

�
\ C

�
[0,t ],W2

q,D ( I )
�

satisfying u0( t) 2 Sq(k0) for all t 2 [0,t ] and such that the convergences

u# �! u0 in C1� q�
[0,t ],W2q

q ( I )
�

, 0 < q < 1 ,

and
y #( t)1W(u#( t)) �! y 0( t)1W(u0( t)) in L2

�
I � ( � 1, 0)

�
, t 2 [0,t ] , (1.9)

hold as# ! 0, wherey 0 is the potential given in(1.6). Furthermore, there isL (k) > 0 such that the
results above hold true for eacht > 0 provided thatl 2 (0,L (k)) .

A similar result has been established for the stationary pro blem in [21, Theorem 2] and the
proof of Theorem 1.4 is performed along the same lines provid ed one ensures an#-independent
lower bound t > 0 on T#

m. In addition, in [21] we took advantage of the fact that a W2
¥ ( I )-bound

is available for solutions to the stationary problem. We re� ne the arguments here by showing
that a W2

q ( I )-bound is suf�cient for q > 2.

1For the case of the small aspect ratio model,Vl approaches theV-shaped function x 7! j xj � 1 as l & 0.
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2. Local and Global Well -Posedness: Proof of Theorem 1.1 and Theorem 1.2(i)

The starting point for the proof of Theorem 1.1 is to transfor m the free boundary problem
(1.4)-(1.5) to the �xed rectangle W := I � (0, 1). More precisely, let q > 2 be �xed and consider
an arbitrary function v 2 W2

q,D ( I ) taking values in (� 1,¥ ). We then de�ne a diffeomorphism

Tv := W(v) ! W by setting

Tv(x, z) :=
�

x,
1 + z

1 + v(x)

�
, (x, z) 2 W(v) (2.1)

with W(v) = f (x, z) 2 I � ( � 1,¥ ) ; � 1 < z < v(x)g. Clearly, its inverse is

T� 1
v (x, h) =

�
x, (1+ v(x)) h � 1

�
, (x, h) 2 W , (2.2)

and the Laplace operator is transformed to the v-dependent differential operator

L vw := #2 ¶2
xw � 2#2 h

¶xv(x)
1 + v(x)

¶x¶hw +
1 + #2h2(¶xv(x)) 2

(1 + v(x)) 2 ¶2
hw

+ #2 h

"

2
�

¶xv(x)
1 + v(x)

� 2

�
¶2

xv(x)
1 + v(x)

#

¶hw .

The boundary value problem (1.4)-(1.5) is then obviously eq uivalent to
�
L u( t) f

�
( t, x, h) = 0 , (x, h) 2 W , t > 0 , (2.3)

f ( t, x, h) = h , (x, h) 2 ¶W , t > 0 , (2.4)

for f = y � T� 1
u( t). With this notation, the evolution equation (1.1) for u becomes

¶tu � ¶2
xu = � l

�
1 + #2(¶xu)2

(1 + u)2

�
j¶hf (�, 1)j2 , x 2 I , t > 0 , (2.5)

after noticing that we have ¶x f ( t, x, 1) = 0 for x 2 I and t > 0 due to f ( t, x, 1) = 1 by (2.4). To
set the stage for the proof of Theorem 1.1 we �rst observe:

Proposition 2.1. Let k 2 (0, 1) and # > 0. For each v2 Sq(k) there is a unique solutionf v 2 W2
2 (W)

to
�
L vf v

�
(x, h) = 0 , (x, h) 2 W , (2.6)

f v(x, h) = h , (x, h) 2 ¶W . (2.7)

In addition, de�ning ṽ by ṽ(x) := v(� x) for x 2 I, we havef ṽ(x, h) = f v(� x, h) for (x, h) 2 W.
Moreover, for2s 2 [0, 1/2 ), the mapping

g# : Sq(k) �! W2s
2,D ( I ) , v 7�!

1 + #2(¶xv)2

(1 + v)2 j¶hf v(�, 1)j2

is analytic, globally Lipschitz continuous, and bounded with g#(0) = 1.

The proof of Proposition 2.1 shares some common steps with that of [21, Lem. 5 & 6], but
requires further developments, in particular establishin g the Lipschitz continuity of g# which
was not needed in [21]. We �rst derive suitable properties of the operator L v for v in the closure

Sq(k) =
�

u 2 W2
q,D ( I ) ; kukW2

q,D ( I ) � 1/ k and � 1 + k � u(x) for x 2 I
�

of Sq(k), which we gather in the next lemma.



A PARABOLIC FREE BOUNDARY PROBLEM FOR MEMS 7

Lemma 2.2. Let k 2 (0, 1) and # > 0. For each v2 Sq(k) and F 2 L2(W), there is a unique solution
F 2 W2

2,D (W) to the boundary value problem

�L vF = F in W , (2.8)

F = 0 on ¶W . (2.9)

Moreover, there is a constant c1(k, #) > 0 depending only on q,k, and#such that

kF kW2
2 (W) � c1(k, #) kFkL2(W) . (2.10)

Proof. First note that the de�nition of Sq(k) and Sobolev's embedding theorem guarantee the
existence of some constantc0 > 0 depending only on q such that, for v 2 Sq(k),

1 + v(x) � k , x 2 I , and kvkC1([� 1,1]) �
c0

k
. (2.11)

It follows from the proof of [21, Lem. 5] that, due to (2.11), t he operator �L v is elliptic with
ellipticity constant n(k, #) > 0 being independent of v 2 Sq(k). Moreover, writing �L v in
divergence form,

�L vw = � ¶x
�
a11(v) ¶xw + a12(v) ¶hw

�
� ¶h

�
a21(v) ¶xw + a22(v) ¶hw

�

+ b1(v) ¶xw + b2(v) ¶hw ,

with

a11(v) := #2 , a22(v) :=
1 + #2 h2 j¶xv(x)j2

(1 + v(x)) 2 ,

a12(v) := � #2 h
¶xv(x)

1 + v(x)
, a21(v) := a12(v) ,

b1(v) := #2 ¶xv(x)
1 + v(x)

, b2(v) := � #2 h
�

¶xv(x)
1 + v(x)

� 2

,

we see from (2.11) and the de�nition of Sq(k) that

2

å
i ,j= 1

kai j (v)kW1
q(W) +

2

å
i= 1

kbi (v)kL¥ (W) � c2(k, #) (2.12)

for all v 2 Sq(k). Moreover, the embedding of W1
q ( I ) in C([� 1, 1]) ensures that ai j (v) belongs to

C(W) for 1 � i , j � 2 and v 2 Sq(k). It then follows from [10, Thm. 8.3] that, given v 2 Sq(k) and
F 2 L2(W), the boundary value problem (2.8)–(2.9) has a unique weak solution F 2 W1

2,D (W).
Furthermore, the regularity of F and (2.12) ensure thatG := F � b1(v) ¶xF � b2(v) ¶hF belongs
to L2(W), and we are in a position to apply [20, Chapt. 3, Thm. 9.1] to co nclude that F is actually
the unique solution in W2

2,D (W) to the boundary value problem

�L 0
vF = G in W , F = 0 on ¶W ,

where L 0
v denotes the principal part of the operator L v, that is,

�L 0
vw := � ¶x

�
a11(v) ¶xw + a12(v) ¶hw

�
� ¶h

�
a21(v) ¶xw + a22(v) ¶hw

�
.

In addition, it follows from [20, Chapt. 3, Thm. 10.1] that th ere is a constantc3(k, #) > 0 depend-
ing only on q, k, and #such that

kF kW2
2 (W) � c3(k, #)

�
kF kL2(W) + kGkL2(W)

�
.
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Combining the previous inequality with (2.12) and the inequ ality

k¶xF k2
L2(W) + k¶hF k2

L2(W) = �
Z

W
F

�
¶2

xF + ¶2
hF

�
d(x, h) � d2 kF k2

W2
2 (W) +

1
4d2 kF k2

L2(W)

which is valid for all d > 0, we are led to

kF kW2
2 (W) � c3(k, #)

h
kF kL2(W) + kFkL2(W) + c2(k, #)

�
k¶xF kL2(W) + k¶hF kL2(W)

�i

� c3(k, #)
�
kF kL2(W) + kFkL2(W) + 2c2(k, #)

�
d kF kW2

2 (W) +
1
2d

kF kL2(W)

��

whence, after choosing d suf�ciently small,

kF kW2
2 (W) � c4(k, #)

�
kF kL2(W) + kFkL2(W)

�
. (2.13)

We �nally prove (2.10) and argue as in the proof of [10, Lemma 9 .17]. Assume for contradiction
that (2.10) is not true. Then, for each n � 1, there are vn 2 Sq(k), eF n 2 W2

2,D (W), eF n 6� 0, and
eFn 2 L2(W) such that

�L vn
eF n = eFn in W and



 eF n





W2
2(W)

� n


 eFn





L2(W)
. (2.14)

Setting F n := eF n/


 eF n





L2(W)
and Fn := eFn/



 eF n





L2(W)
, we realize that (2.13) and (2.14) imply

�L vnF n = Fn in W , F n 2 W2
2,D (W) , (2.15)

kF nkL2(W) = 1 , (2.16)

and

nkFnkL2(W) � k F nkW2
2 (W) � c4(k, #)

�
kF nkL2(W) + kFnkL2(W)

�
= c4(k, #)

�
1 + kFnkL2(W)

�
.

Consequently, we have for n � 2c4(k, #),

nkFnkL2(W) � 2c4(k, #) and kF nkW2
2 (W) �

�
1 +

2
n

�
c4(k, #) . (2.17)

Since W2
2 (W) and W2

q ( I ) are compactly embedded in W1
2 (W) and C1([� 1, 1]), respectively, we

infer from (2.17) and the boundedness of Sq(k) in W2
q ( I ) that there are (F , v) 2 W2

2,D (W) �
W2

q,D ( I ) and a subsequence of(F n, vn)n (not relabeled) such that

(F n, vn) * (F , v) in W2
2,D (W) � W2

q,D ( I ) , (2.18)

(F n, vn) �! (F , v) in W1
2,D (W) � C1([� 1, 1]) . (2.19)

It readily follows from (2.18) and (2.19) that v 2 Sq(k) and
�
ai j (vn), bi (vn)

�
�!

�
ai j (v), bi(v)

�
in C([� 1, 1]) (2.20)

for all 1 � i , j � 2. SinceFn �! 0 in L2(W) by (2.17), the convergences (2.18), (2.19), and (2.20)
allow us to pass to the limit as n ! ¥ in the weak formulation of (2.15) and conclude that
F 2 W2

2,D (W) is a weak solution to �L vF = 0 in W. Using again [10, Thm. 8.3], this implies
F � 0 contradicting kF kL2(W) = 1 as follows from (2.16) and (2.19). �

Proof of Proposition 2.1. For v 2 Sq(k) and (x, h) 2 W, we set

fv(x, h) := L vh = #2 h

"

2
�

¶xv(x)
1 + v(x)

� 2

�
¶2

xv(x)
1 + v(x)

#

.
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Sinceq > 2, the function fv belongs to L2(W) with

k fvkL2(W) � c5(k, #) , (2.21)

and Lemma 2.2 ensures that there is a unique solution F v 2 W2
2,D (W) to

�L vF v = fv in W , (2.22)

F v = 0 on ¶W , (2.23)

satisfying

kF vkW2
2 (W) � c1(k, #) k fvkL2(W) . (2.24)

Letting f v(x, h) = F v(x, h) + h for (x, h) 2 W, the function f v obviously solves (2.6)-(2.7), and
from (2.21) and (2.24) we obtain

kf vkW2
2 (W) � c6(k, #) . (2.25)

In addition, if v 2 Sq(k) and ṽ denotes the function de�ned by ṽ(x) := v(� x) for x 2 I , we
obviously have ṽ 2 Sq(k) and the properties of L ṽ ensure that (x, h) 7�! f v(� x, h) solves (2.22)-
(2.23) with ṽ instead of v. The uniqueness of the solution to (2.22)-(2.23) then readily implies
that f ṽ(x, h) = f v(� x, h) for (x, h) 2 W and thus that

g#( ṽ)( x) = g#(v)( � x) , x 2 I . (2.26)

Next, given v 2 Sq(k), we de�ne a bounded linear operator A (v) 2 L
�
W2

2,D (W), L2(W)
�

by

A (v)F := �L vF , F 2 W2
2,D (W) .

Lemma 2.2 guarantees thatA (v) is invertible with inverse A (v) � 1 2 L
�
L2(W),W2

2,D(W)) satis-
fying



 A (v) � 1





L
�

L2(W),W2
2,D(W))

� c1(k, #) . (2.27)

We then note that

kA (v1) � A (v2)kL (W2
2,D (W),L2(W)) � c7(k, #) kv1 � v2kW2

q( I ) , v1, v2 2 Sq(k) , (2.28)

which follows from the de�nition of L v and the continuity of pointwise multiplication

W1
q ( I ) � W1

q ( I ) ,! W1
q ( I ) ,! L¥ ( I )

except for the terms involving ¶2
xvi , i = 1, 2, where continuity of pointwise multiplication

Lq(W) � W1
2 (W) ,! L2(W)

is used. Now, for v1, v2 2 Sq(k), we infer from (2.27) and (2.28) that

kA (v1) � 1 � A (v2) � 1kL (L2(W),W2
2,D(W))

�


 A (v1) � 1





L (L2(W),W2
2,D(W))

kA (v2) � A (v1)kL (W2
2,D(W),L2(W))



 A (v2) � 1





L (L2(W),W2
2,D(W))

� c1(k, #)2 c7(k, #) kv1 � v2kW2
q( I ) ,

which, combined with (2.21), the observation that 0 2 Sq(k) and

k fv1 � fv2kL2(W) � c8(k, #) kv1 � v2kW2
q ( I ) , v1, v2 2 Sq(k) ,
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ensures that

kf v1 � f v2kW2
2 (W) = kF v1 � F v2kW2

2 (W) = kA (v1) � 1 fv1 � A (v2) � 1 fv2kW2
2,D (W)

� c1(k, #)2 c7(k, #) kv1 � v2kW2
q( I ) k fv1kL2(W)

+ c8(k, #) kv1 � v2kW2
q( I ) kA (v2) � 1kL (L2(W),W2

2,D(W))

� c9(k, #) kv1 � v2kW2
q( I ) (2.29)

for v1, v2 2 Sq(k). We may then invoke [24, Chapt. 2, Thm. 5.4] and the continuit y of pointwise
multiplication

W1/2
2 ( I ) � W1/2

2 ( I ) ,! W2s1
2 ( I )

for 2s1 < 1/2 according to [1, Thm. 4.1] to conclude that the mapping

Sq(k) ! W2s1
2 ( I ) , v 7!

�
�¶hf v(�, 1)

�
�2 (2.30)

is globally Lipschitz continuous. Thanks to the continuity of the embedding of W2
q ( I ) in W1

¥ ( I ),
the mapping

Sq(k) ! W1
q ( I ) , v 7!

1 + #2(¶xv)2

(1 + v)2 (2.31)

is globally Lipschitz continuous with a Lipschitz constant depending only on k and #, and
the Lipschitz continuity of g# stated in Proposition 2.1 follows at once from (2.30), (2.31), and
continuity of pointwise multiplication

W1
q ( I ) � W2s1

2 ( I ) ,! W2s
2 ( I ) = W2s

2,D ( I ) ,

where 2s < 2s1 < 1/2, see again [1, Thm. 4.1]. Finally, to prove that g# is analytic, we note
that Sq(k) is open in W2

q,D ( I ) and that the mappings A : Sq(k) ! L (W2
2,D (W), L2(W)) and

[v 7! fv] : Sq(k) ! L2(W) are analytic. The analyticity of the inversion map ` 7! ` � 1 for
bounded operators implies that also the mapping [v 7! f v] : Sq(k) ! W2

2 (W) is analytic, and the
assertion follows as above from the results on pointwise mul tiplication . �

Let p 2 (1,¥ ). We de�ne Ap 2 L (W2
p,D ( I ), Lp( I )) by Apv := � ¶2

xv for v 2 W2
p,D ( I ). Since

Ar � Ap for r � p, we suppress the subscript in the following and write A := Ap. Note then
that (2.5) subject to the boundary condition (1.2) and the in itial condition (1.3) may be recast as
an abstract parameter-dependent Cauchy problem

�u + Au = � l g#(u) , t > 0 , u(0) = u0 , (2.32)

where we recall that the function g# was de�ned in Proposition 2.1. To prove Theorem 1.1 it
then suf�ces to focus on (2.32). For that purpose, let f e� tA ; t � 0g denote the heat semigroup
on Lp( I ) corresponding to � A. In order to state suitable regularizing properties we reca ll that

we have set W2b
p,D ( I ) = W2b

p ( I ) for 2b 2 (0, 1/ p) and W2b
p,D ( I ) = f u 2 W2b

p ( I ) ; u(� 1) = 0g for
2b 2 (1/ p, 2]. Then we have:

Lemma 2.3. Let 1 < p � r < ¥ . There existsw > 0 such that the following hold.

(i) If 0 � a � b � 1 with 2a, 2b 6= 1/ p, then

ke� tA k
L (W2a

p,D( I ),W2b
p,D( I ))

� Me� wt ta� b , t > 0 ,

for some number M� 1 depending on p,a, andb.
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(ii) If 0 � a � b � 1 with 2a 6= 1/ p and2b 6= 1/ r, then

ke� tA k
L (W2a

p,D( I ),W2b
r,D( I ))

� Me� wt ta� b� 1
2 ( 1

p � 1
r ) , t > 0 ,

for some number M� 1 depending on p, r,a, andb.

Proof. (i) Since � A 2 L (W2
p,D ( I ), Lp( I )) is the generator of the analytic semigroup f e� tA ; t � 0g

on Lp( I ) with a negative spectral bound, it follows from [3, Chapt. V, Thm.2.1.3] that there are
w > 0 and M � 1 such that

ke� tA kL (Ea,Eb) � Me� wt ta� b , t > 0 ,

where, for q 2 [0, 1], Eq := ( Lp( I ),W2
p,D ( I )) q with (�, �)q chosen as real interpolation functor

(�, �)q,p if 2q 6= 1 and as complex interpolation functor [�, �]1/2 if 2q = 1. SinceEq = W2q
p,D ( I ) with

equivalent norms for 2 q 2 [0, 2] n f 1/ pg by [11, 29], assertion (i) follows.

(ii) From Sobolev's embedding we have W2
p,D ( I ) ,! W2q

r,D ( I ) for 2q = 2 � (1/ p � 1/ r) 6= 1/ r,
whence

ke� tA k
L (W2a

p,D( I ),W2b
r,D( I ))

� cke� t
2 Ak

L (W2q
r,D ( I ),W2b

r,D( I ))
ke� t

2 AkL (W2a
p,D( I ),W2

p,D( I )) , t > 0 ,

and so assertion (ii) follows from (i). �

We are now in a position to prove Theorem 1.1 and Theorem 1.2(i ).

Proof of Theorem 1.1 and Theorem 1.2(i). Let l > 0, q 2 (2,¥ ), # > 0, and consider u0 2
W2

q,D ( I ) with u0(x) > � 1 for x 2 I . Clearly, there is k 2 (0, 1/2 ) such that

u0 2 Sq(2k) . (2.33)

We now �x 1
2 � 1

q < 2s < 1
2 with 2 s 6= 1/ q and put k0 := k/ M, where M � 1 is such that

ke� tA kL (W2
q,D( I )) + t � s+ 1+ 1

2 ( 1
2 � 1

q )ke� tA kL (W2s
2,D ( I ),W2

q,D( I )) � Me� wt , t � 0 (2.34)

with w > 0 according to Lemma 2.3. By Proposition 2.1 there is c10(k, #) > 0 such that

kg#(v1) � g#(v2)kW2s
2,D ( I ) � c10(k, #) kv1 � v2kW2

q,D ( I ) , v1, v2 2 Sq(k0) . (2.35)

Since 02 Sq(k0) and g#(0) = 1, we deduce from (2.35) that

kg#(v)kW2s
2,D ( I ) � 1 +

c10(k, #)
k0

= c11(k, #) , v 2 Sq(k0) . (2.36)

Now, for t > 0, de�ne Vt := C([0,t ], Sq(k0)) and

F(v)( t) := e� tA u0 � l
Z t

0
e� ( t � s) Ag#

�
v(s)

�
ds

for 0 � t � t and v 2 V t . Consider v1, v2 2 V t and t 2 [0,t ]. Then, introducing

I ( t ) :=
Z t

0
e� ws ss � 1� 1

2 ( 1
2 � 1

q ) ds � I (¥ ) :=
Z ¥

0
e� ws ss � 1� 1

2 ( 1
2 � 1

q ) ds , (2.37)
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which is �nite thanks to the positivity of w and the choice of s, it readily follows from (2.33),
(2.34), and (2.36) that

kF(v1)( t)kW2
q,D( I ) � M ku0kW2

q,D ( I ) + l M
Z t

0
e� w( t � s) ( t � s)s � 1� 1

2 ( 1
2 � 1

q ) kg#(v1(s)) kW2s
2,D ( I ) ds

�
M
2k

+ l M c11(k, #) I ( t ) , (2.38)

and from (2.34) and (2.35) that

kF(v1)( t) � F(v2)( t)kW2
q,D( I ) � l M c10(k, #) I ( t ) kv1 � v2kC([0,t ],W2

q,D( I )) . (2.39)

Moreover, since W2
q,D ( I ) embeds in L¥ ( I ) with embedding constant 2 and u0 � 2k � 1, we

deduce from the positivity of the heat semigroup, (2.34), an d (2.36) that

F(v1)( t) � � 1 + 2k � 2 l
Z t

0



 e� ( t � s) A g#(v1(s))





W2
q,D ( I )

ds

� � 1 + 2k � 2 l M
Z t

0
e� w( t � s) ( t � s)s � 1� 1

2 ( 1
2 � 1

q ) kg#(v1(s)) kW2s
2,D ( I ) ds

� � 1 + 2k � 2 l M c11(k, #) I ( t ) . (2.40)

We �nally note that F(v1)( t) � 0 if u0 � 0 since g#(v1) � 0. Consequently, due to (2.38)-(2.40)
and the fact that I ( t ) ! 0 ast ! 0, there is t 0 := t 0( l , k, #, q, s) > 0 suf�ciently small such that
F de�nes a contraction from Vt 0 into itself. This shows that there is a unique maximal soluti on

u 2 C1�
[0,T#

m), Lq( I )
�

\ C
�
[0,T#

m),W2
q,D ( I )

�
\ C

�
(0,T#

m),W2+ 2s
2,D ( I )

�

to (2.32) for some T#
m 2 ( t 0, ¥ ], satisfying

u( t, x) > � 1 , ( t, x) 2 [0,T#
m) � I ,

and, in addition,

u( t, x) � 0 , ( t, x) 2 [0,T#
m) � I if u0(x) � 0 , x 2 I .

Moreover, if for each t > 0 there is k( t ) 2 (0, 1) such that u( t) 2 Sq(k( t )) for t 2 [0,T#
m) \ [0,t ],

then necessarily T#
m = ¥ . This proves the statements (i) and (ii) of Theorem 1.1 after observing

that y ( t) := f u( t) � Tu( t) belongs to W2
q
�
W(u( t))

�
and solves (1.4)-(1.5) for eacht 2 [0,T#

m), where
the transformation Tu was introduced in (2.1).

As for the statement (i) of Theorem 1.2, we choose l � := l � (k, #, q, s) > 0 such that (recall
(2.37))

l � M max f c10(k, #), c11(k, #)g I (¥ ) �
1
2

<
1

2k0

and
2 l � M c11(k, #) I (¥ ) � k0 .

Letting l � l � , it readily follows that, for each t > 0, the mapping F de�nes a contraction from
C([0,t ], Sq(k0)) into itself. This implies that T#

m = ¥ in this case and that u( t) 2 Sq(k0) for t � 0.
To prove statement (iv) of Theorem 1.1 suppose that u0 is even on I and let u be the corre-

sponding maximal solution to (2.32) with maximal existence time T#
m 2 (0,¥ ]. Introducing the

function ũ de�ned by ũ( t, x) = u( t, � x) for ( t, x) 2 [0,T#
m) � I , we deduce from Proposition 2.1

and the evenness ofu0 that ũ also solves (2.32), so thatũ actually coincides with u. Thus u( t, .)
is even on I for all t 2 [0,T#

m) and the proof of Theorem 1.1 is complete. �

We end this section with some useful properties of the compon ent y of solutions to (1.1)-(1.5).
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Proposition 2.4. Let q 2 (2,¥ ), # > 0, l > 0, and consider an initial value u0 2 W2
q,D ( I ) such that

u0(x) > � 1 for x 2 I. Denoting the corresponding maximal solution to(1.1)-(1.5) by (u, y ), we have
for all t 2 [0,T#

m)

1 + z � max
�
u0�

+ � y ( t, x, z) � 1 , (x, z) 2 W(u( t)) , (2.41)

¶zy ( t, x, u( t, x)) � 0 , x 2 I , (2.42)

¶xy ( t, x, u( t, x)) = � ¶xu( t, x) ¶zy ( t, x, u( t, x)) , x 2 I . (2.43)

Proof. It readily follows from the positivity of l that the constant max (u0)+ is a supersolution
to (1.1)-(1.3), so thatu � max (u0)+ in [0,T#

m) � [� 1, 1]. This property entails that (x, z) 7�!
1 + z � max

�
u0

�
+ is a subsolution to (1.4)-(1.5) and the comparison principl e gives the lower

bound in (2.41). The upper bound in (2.41) also follows from t he comparison principle as the
constant 1 is clearly a supersolution to (1.4)-(1.5). This implies in particular that y ( t) reaches its
maximum value on the graph of u( t) and thus that (2.42) holds true. Finally, (2.43) is an obvious
consequence of (1.5). �

3. On Nonexistence of Global Solutions : Proof of Theorem 1.2(ii)

We now prove that there are no global solutions for large l values as stated in Theorem 1.2(ii)
(note that part (i) of this theorem was shown in the previous s ection). For this we �rst need some
preparations. Let q 2 (2,¥ ), # > 0, l > 0, and consider an initial value u0 2 W2

q,D ( I ) such that

� 1 < u0(x) � 0 for x 2 I . By Theorem 1.1, there is a unique solution (u, y ) to (1.1)-(1.5) de�ned
on the maximal interval of existence [0,T#

m) for some T#
m 2 (0,¥ ] and satysfying

u 2 C1�
[0,T#

m), Lq( I )
�

\ C
�
[0,T#

m),W2
q,D ( I )

�

together with
� 1 < u( t, x) � 0 , ( t, x) 2 [0,T#

m) � I , (3.1)

and y ( t) 2 W2
q
�
W(u( t))

�
solves (1.4)-(1.5) onW(u( t)) for each t 2 [0,T#

m). Our aim is to show
that, if l is suf�ciently large, the maximal existence time T#

m is �nite. To this end, de�ne z1(x) :=
p cos(p x/2 )/4 for x 2 [� 1, 1] and m1 := p 2/4. Then, m1 is the principal eigenvalue of the
L2( I )-realization of � ¶2

x and

� ¶2
xz1 = m1 z1 in I , z1(� 1) = 0 , kz1kL1( I ) = 1 . (3.2)

A classical technique to show that solutions only exist on a � nite time interval is to study the
evolution of

E0( t) :=
Z 1

� 1
z1(x) u( t, x) dx , t 2 [0,T#

m) ,

and show that E0 reaches� 1 in �nite time, a feature contradicting (3.1). Such an appro ach has
been used successfully for the small aspect ratio model (1.7) [7, 17] and the stationary version
of (1.1)-(1.5) [21], the proof of the latter relying also heavily on the convexity of u. But, such a
convexity property is not known for the evolution problem (1 .1)-(1.5) (neither it is for (1.7)) and
studying the time evolution of E0 does not seem to work. However, as we shall see below, the
study of the time evolution of

Ea( t) :=
Z 1

� 1
z1(x)

�
u +

a
2

u2
�

( t, x) dx , t 2 [0,T#
m) , (3.3)

for a suitable choice of a 2 (0, 1) leads us to the expected result. Performing that study requi res
to connect the behavior of y to that of u and we devote the next two results to this issue. We �rst
start with an easy consequence of the boundary conditions (1.5).
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Lemma 3.1. For t 2 [0,T#
m) and p2 [1,¥ ), we have

4p
( p + 1)2

Z 1

� 1

z1(x)
1 + u( t, x)

dx � p
Z

W(u( t))
z1(x) y ( t, x, z)p� 1 j¶zy ( t, x, z)j2 d(x, z) . (3.4)

Proof. For ( t, x) 2 [0,T#
m) � I and p 2 [1,¥ ), it follows from (1.5) and the Cauchy-Schwarz

inequality that

1 = y ( t, x, u( t, x)) ( p+ 1)/2 � y ( t, x, � 1) ( p+ 1) /2

=
p + 1

2

Z u( t,x)

� 1
y ( t, x, z) ( p� 1) /2 ¶zy ( t, x, z) dz

�
p + 1

2

� Z u( t,x)

� 1
y ( t, x, z)p� 1 j¶zy ( t, x, z)j2 dz

� 1/2 q
1 + u( t, x) ,

hence

4
( p + 1)2

1
1 + u( t, x)

�
Z u( t,x)

� 1
y ( t, x, z)p� 1 j¶zy ( t, x, z)j2 dz .

Owing to the nonnegativity of z1, the estimate (3.4) follows from the above inequality after
multiplying both sides by pz1(x) and integrating over I with respect to x. �

The next lemma is a consequence of (1.4)-(1.5).

Lemma 3.2. For t 2 [0,T#
m) and p2 [1,¥ ), we have

Z 1

� 1
z1(x)

�
1 + #2 j¶xu( t, x)j2

�
¶zy ( t, x, u( t, x)) dx

=
Z

W(u( t))
z1(x)

�
p#2 y p� 1 j¶xy j2 + p y p� 1 j¶zy j2 +

m1#2

p + 1
y p+ 1

�
( t, x, z) d(x, z)

�
m1#2

( p + 1)( p + 2)
�

m1 #2

p + 1

Z 1

� 1
z1(x) u( t, x) dx . (3.5)

Proof. We multiply (1.4) by z1 y p and integrate over W(u). Integrating by parts and using the
boundary conditions for y and z1 and (2.43), we obtain

0 = �
Z

W(u)

�
p#2 z1 y p� 1 j¶xy j2 + #2 ¶xz1 y p ¶xy + p z1 y p� 1 j¶zy j2

�
d(x, z)

+
Z 1

� 1
z1(x)

h
� #2 ¶xu(x) ¶xy (x, u(x)) + ¶zy (x, u(x))

i
dx

=
Z 1

� 1
z1(x)

�
1 + #2 j¶xu(x)j2

�
¶zy (x, u(x)) dx

� p
Z

W(u)
z1 y p� 1

h
#2 j¶xy j2 + j¶zy j2

i
d(x, z) �

#2

p + 1

Z

W(u)
¶xz1 ¶x

�
y p+ 1

�
d(x, z) .
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Since

�
Z

W(u)
¶xz1 ¶x

�
y p+ 1

�
d(x, z) =

Z

W(u)
¶2

xz1 y p+ 1 d(x, z)

+ (¶xz1(� 1) � ¶xz1(1))
Z 0

� 1
(1 + z)p+ 1 dz

+
Z 1

� 1
¶xz1(x) ¶xu(x) dx

= � m1

Z

W(u)
z1 y p+ 1 d(x, z) +

m1

p + 2
�

Z 1

� 1
¶2

xz1(x) u(x) dx

= � m1

Z

W(u)
z1 y p+ 1 d(x, z) +

m1

p + 2
+ m1

Z 1

� 1
z1(x) u(x) dx

by (1.5) and (3.2), we end up with (3.5). �

Proof of Theorem 1.2 (ii). Let a 2 (0, 1) to be determined later. We �rst note that (3.1) implies
that the function Ea, de�ned in (3.3), satis�es

� 1 �
a � 2

2
� Ea( t) � 0 , t 2 [0,T#

m) . (3.6)

We next multiply (1.1) by z1 (1 + a u), integrate over I and use (3.2) and (2.43) to obtain

dEa

dt
+ m1 Ea + a

Z 1

� 1
z1 j¶xuj2 dx =

Z 1

� 1
z1 (1 + a u)

�
¶tu � ¶2

xu
�

dx

= � l
Z 1

� 1
z1(x) (1 + a u(x))

�
1 + #2 j¶xu(x)j2

�
j¶zy (x, u(x)) j2 dx .

Sincez1(x) � 0 and 1+ a u(x) � 1 � a by (3.1), we further obtain

dEa

dt
+ m1 Ea + a

Z 1

� 1
z1 j¶xuj2 dx � � l (1 � a) R (3.7)

with

R ( t) :=
Z 1

� 1
z1(x)

�
1 + #2 j¶xu( t, x)j2

�
j¶zy ( t, x, u( t, x)) j2 dx , t 2 [0,T#

m) .

We now look for a lower bound for R . To this end we observe that R reminds of the left-hand
side of (3.5) while (3.4) provides a lower bound of the right- hand side of (3.5). More precisely,
let b > 0 and p � 1 be two positive real numbers to be determined later. It foll ows from Young's
inequality that

Z 1

� 1
z1(x)

�
1 + #2 j¶xu(x)j2

�
¶zy (x, u(x)) dx

� b R +
1

4b

Z 1

� 1
z1(x)

�
1 + #2 j¶xu(x)j2

�
dx ,

that is,

R �
1
b

Z 1

� 1
z1(x)

�
1 + #2 j¶xu(x)j2

�
¶zy (x, u(x)) dx

�
1

4b2

�
1 + #2

Z 1

� 1
z1(x) j¶xu(x)j2dx

�
.
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We now infer from Lemma 3.2, Lemma 3.1, (3.2), and the non-positivity of z1u that

R �
1
b

�
p

Z

W(u)
z1 y p� 1 j¶zy j2 d(x, z) �

m1#2

( p + 1)( p + 2)
�

m1#2

p + 1

Z 1

� 1
z1 u dx

�

�
1

4b2

�
1 + #2

Z 1

� 1
z1 j¶xuj2dx

�

�
1
b

�
4p

( p + 1)2

Z 1

� 1

z1

1 + u
dx �

m1#2

( p + 1)( p + 2)

�
�

1
4b2

�
1 + #2

Z 1

� 1
z1 j¶xuj2dx

�

�
1

bp

Z 1

� 1

z1

1 + u + a u2/2
dx �

m1#2

bp2 �
1

4b2 �
#2

4b2

Z 1

� 1
z1 j¶xuj2dx .

Finally, since y 7! (1 + y) � 1 is convex and kz1kL1( I ) = 1, we use Jensen's inequality as in [7] and
get

R �
1

bp
1

1 + Ea
�

m1#2

bp2 �
1

4b2 �
#2

4b2

Z 1

� 1
z1 j¶xuj2dx .

Inserting this estimate in (3.7) and using (3.6) give

dEa

dt
� m1 + a

Z 1

� 1
z1 j¶xuj2 dx

� �
l (1 � a)

bp

�
1

1 + Ea
�

m1#2

p
�

p
4b

�
p#2

4b

Z 1

� 1
z1 j¶xuj2dx

�
,

whence

dEa

dt
+

�
a �

l (1 � a)#2

4b2

� Z 1

� 1
z1 j¶xuj2 dx � m1 +

l (1 � a)
bp

�
m1#2

p
+

p
4b

�
1

1 + Ea

�
.

At this point, the role of the additional parameter a becomes clear as it allows us to control the
l -dependent term involving ¶xu. We thus choose

a =
l# 2

4b2 + l# 2 2 (0, 1) , so that a =
l (1 � a)#2

4b2 ,

and obtain the following differential inequality for Ea:

dEa

dt
� F (Ea) := m1 +

4lb
(4b2 + l# 2) p

�
m1#2

p
+

p
4b

�
1

1 + Ea

�
. (3.8)

SinceF is an increasing function on (� 1,¥ ), it readily follows from the non-positivity of Ea and
(3.8) that, if F (0) < 0, then Ea( t) � Ea(0) � 0 and dEa( t) /d t � F (0) < 0 for all t 2 [0,T#

m).
Integrating this differential inequality and using (3.6), we conclude that � 1 � F (0) t for all
t 2 [0,T#

m) and thus that T#
m � � 1/ F (0) < ¥ as claimed.

We are then left with showing that we can �nd parameters b > 0 and p � 1 such that
F (0) < 0 for l large enough. To this end we choose b =

p
l /2 > 0 and p = 1 + 2m1#2 � 1 so

that a = #2/ (1 + #2) and

F (0) � m1 +
2
p

l
1 + #2

�
1
2

+
1 + 2m1#2

2
p

l
� 1

�
� m1 +

p
l

1 + #2

�
1 + 2m1#2

p
l

� 1
�

.

Therefore, if
p

l > 4m1 (1 + #2), we have

F (0) � m1 �

p
l

2(1+ #2)
< 0 ,

and the proof of Theorem 1.2(ii) is complete. �
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4. Asymptotic Stability : Proof of Theorem 1.3

Let q 2 (2,¥ ), #> 0, and k 2 (0, 1) be �xed. We �rst prove Theorem 1.3(i). Recall that, choos-
ing s 2 (1/2 � 1/ q, 1/2 ) so that W2s

2 ( I ) ,! Lq( I ), Proposition 2.1 states that g# : Sq(k) ! Lq( I ) is
analytic. Therefore, since the generator of the heat semigroup � A := � Aq 2 L (W2

q,D ( I ), Lq( I ))
is invertible, we obtain that the mapping

F : R � Sq(k) ! W2
q,D ( I ) , ( l , v) 7! v � l A � 1g#(v)

is analytic with F(0, 0) = 0 and DvF(0, 0) = id W2
q,D

. Now, the Implicit Function Theorem ensures

the existence of d > 0 and an analytic function

[l 7! U l ] : [0,d) ! W2
q,D ( I )

such that F( l , U l ) = 0 for l 2 [0,d). Denoting the solution to (1.4)-(1.5) with U l instead of u
by Y l 2 W2

2 (W(U l )) , the pair (U l , Y l ) is for each l 2 (0,d) the unique steady-state to (1.1)-
(1.5) with U l in Sq(k) and U0 = 0. SinceU l is convex and satis�es the Dirichlet conditions
U l (� 1) = 0 we clearly have U l � 0 for l 2 (0,d). That U l is even follows from uniqueness and
[21, Thm.1]. This proves Theorem 1.3 (i).

To prove part (ii) of Theorem 1.3, we use the Principle of Line arized Stability. For this, we �x
l 2 (0,d) and introduce the linearization of g#,

Bl := l Dvg#(U l ) 2 L (W2
q,D ( I ), Lq( I )) .

Since kBl kL (W2
q,D( I ),Lq( I )) ! 0 as l ! 0, it follows from [3, I.Cor.1.4.3] that � A � Bl is the

generator of an analytic semigroup on Lq( I ) and there is w1 > 0 such that the complex half
plane [Rez � � w1] belongs to the resolvent set of � A � Bl provided that l is suf�ciently small.
Now write v = u � U l and consider the linearization of (2.32),

�v + ( A + Bl )v = Gl (v) , t > 0 , v(0) = v0 , (4.1)

where Gl 2 C2(Ol , Lq( I )) is de�ned on some open zero neighborhood Ol in W2
q,D ( I ) such that

U l + Ol � Sq(k) and given by

Gl (v) := � l
�
g#(U l + v) � g#(U l ) � Dvg#(U l )v

�
.

Since � (A + Bl ) is the generator of an analytic semigroup on Lq( I ) with a negative spectral
bound as observed above, we may apply [23, Thm.9.1.1] and conclude statement (ii) of Theo-
rem 1.3 by making d > 0 smaller, if necessary.

A straightforward consequence of (1.8) and (2.29) is:

Corollary 4.1. Under the assumptions of Theorem 1.3(ii) there is R1 > 0 such that

kf u( t) � f U l
kW2

2 (W) � R1e� w0tku0 � U l kW2
q,D ( I ) , t � 0 ,

wheref v is de�ned in Proposition 2.1.

5. Small Aspect Ratio Limit : Proof of Theorem 1.4

We shall now prove Theorem 1.4. Fix l > 0, q 2 (2,¥ ), k 2 (0, 1), and let u0 2 Sq(k) with
u0(x) � 0 for x 2 I . For # > 0 we denote the unique solution to (1.1)-(1.5) by (u#, y #) which
is de�ned on the maximal interval of existence [0,T#

m). In the following, (Ki ) i � 1 and K denote
positive constants depending only on q and k, but not on #> 0 suf�ciently small.



18 JOACHIM ESCHER, PHILIPPE LAURENÇOT, AND CHRISTOPH WALK ER

Setk0 := k/ (2M ) < k, where M � 1 is the constant de�ned in (2.34). Owing to the continuity
properties of u#, we have

t # := sup
�

t 2 [0,T#
m) : u#(s) 2 Sq(k0) for all s 2 [0,t]

	
> 0 . (5.1)

Thanks to the continuity of the embedding of W2
q ( I ) in W1

¥ ( I ), there is a positive constant K1

such that, for all #> 0,

� 1 + k0 � u#( t, x) � 0 , ( t, x) 2 [0,t #] � [� 1, 1] , (5.2)

ku#( t)kW2
q( I ) + ku#( t)kW1

¥ ( I ) � K1 , t 2 [0,t #] . (5.3)

As a consequence of (5.3) there is#0 > 0 depending only q and k such that

#2
0 k¶xu#( t)k2

L¥ ( I ) �
1
2

, ( t, #) 2 [0,t #] � (0,#0] . (5.4)

For #2 (0,#0), we set

f #( t) := f u#( t) = y #( t) � T� 1
u#( t) , t 2 [0,t #] ,

with T� 1
u#( t) given by (2.2) and

F #( t, x, h) := f #( t, x, h) � h , ( t, x, h) 2 [0,t #] � W.

The cornerstone of the proof of Theorem 1.4 is to derive appro priate estimates on F #, showing
that it converges to zero as # ! 0. To this end, we further develop and improve the analysis
performed in [21, Section 3] and establish the following bou nds:

Lemma 5.1. There exists a positive constant K2 such that, for#2 (0,#0) and t 2 [0,t #],

k¶xF #( t)kL2(W) +
1
#

�
kF #( t)kL2(W) +


 ¶hF #( t)




L2(W)

�
� K2 , (5.5)

1
#


 ¶x¶hF #( t)




L2(W) +
1
#2



 ¶2

hF #( t)




L2(W)
� K2 , (5.6)

1
#


 ¶hF #( t, �, 1)




W1/2
2 ( I ) � K2 . (5.7)

Proof. Fix #2 (0,#0) and t 2 [0,t #]. It �rst follows from (2.41) that

kF #( t)kL¥ (W) � 1 , (5.8)

while (5.2) and (5.3) entail that the function

f#( t, x, h) := fu#( t)(x, h) = #2 h

"

2
�

¶xu#

1 + u#

� 2

�
¶2

xu#

1 + u#

#

( t, x) , ( t, x, h) 2 [0,t #] � W,

satis�es

k f#( t)kLq(W) � #2

"
2
k2

0
k¶xu#( t)kL¥ ( I ) k¶xu#( t)kLq( I ) +

1
k0



 ¶2

xu#( t)




Lq( I )

#

�

 
2K2

1

k2
0

+
K1

k0

!

#2 .

Therefore, by Hölder's inequality,

k f#( t)kLp(W) � 2(q� p) / qp k f#( t)kLq(W) � K3 #2 (5.9)
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for p 2 [1,q]. From now on, the time t plays no particular role anymore and is thus omitted in
the notation. We multiply (2.22) by F #, integrate over W, and proceed as in [21, Lemma 11] to
obtain

Z

W
f#

�
1 � ¶hF #

�
F # d(x, h) = #2

Z

W

�
¶xF # � h

¶xu#

1 + u#
¶hF #

� 2

d(x, h)

+
Z

W

j¶hF #j2

(1 + u#)2 d(x, h)

To estimate the right-hand side of the above identity from be low, we use the elementary inequal-
ity (r � s)2 � (r2/2 ) � s2, (5.2), and (5.4) to obtain

Z

W
f#

�
1 � ¶hF #

�
F # d(x, h) �

#2

2
k¶xF #k

2
L2(W) � #2 k¶xu#k

2
L¥ ( I )

Z

W

�
�¶hF #

�
�2

(1 + u#)2 d(x, h)

+
Z

W

j¶hF #j2

(1 + u#)2 d(x, h)

�
#2

2
k¶xF #k

2
L2(W) +

1
2

Z

W

j¶hF #j2

(1 + u#)2 d(x, h)

�
#2

2
k¶xF #k

2
L2(W) +

1
2


 ¶hF #


 2

L2(W) .

Next, thanks to (5.8), (5.9), and Hölder's inequality, we c an estimate the left-hand side of the
above inequality and obtain

#2 k¶xF #k
2
L2(W) +


 ¶hF #


 2

L2(W) � 2 k f#kL2(W)


 1 � ¶hF #




L2(W) kF #kL¥ (W)

� 2K3#2
�

1 +

 ¶hF #




L2(W)

�

� 2K3#2 +
1
2


 ¶hF #


 2

L2(W) + 2K2
3#4 ,

whence
#2 k¶xF #k

2
L2(W) +


 ¶hF #


 2

L2(W) � K4 #2 . (5.10)

Since F #(x, 1) = 0 for x 2 I , we have kF #kL2(W) �
p

2

 ¶hF #




L2(W) and (5.5) readily follows
from this inequality and (5.10).

We next establish (5.6). For that purpose, we set z# := ¶2
hF #, w# := ¶x¶hF #, and multiply

(2.3) by z#. After integrating over W, we proceed as in [21, Lemma 11] with the help of [12,
Lem. 4.3.1.2 & 4.3.1.3] to deduce that

Z

W
f#

�
1 � ¶hF #

�
z# d(x, h) =

Z

W

"
z2

#

(1 + u#)2 + #2
�

w# � h
¶xu#

1 + u#
z#

� 2
#

d(x, h) .

Using once more the inequality (r � s)2 � (r2/2 ) � s2 and (5.4) to estimate the right-hand side
of the above inequality from below, we �nd

Z

W
f#

�
1 � ¶hF #

�
z# d(x, h) �

Z

W

"
z2

#

(1 + u#)2 +
#2

2
w2

# � #2h2 j¶xu#j
2

(1 + u#)2 z2
#

#

d(x, h)

�
Z

W

�
1
2

z2
#

(1 + u#)2 +
#2

2
w2

#

�
d(x, h)

�
1
2

�
kz#k

2
L2(W) + #2 kw#k

2
L2(W)

�
.
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Introducing Q# :=
q

kz#k
2
L2(W) + #2 kw#k

2
L2(W) , we infer from Hölder's inequality, (5.9), and the

previous inequality that (recall that q > 2)

Q2
# � 2 k f#kLq(W)


 1 � ¶hF #




L2q/ (q� 2)(W) kz#kL2(W)

� K#2
�

1 +

 ¶hF #




L2q/ (q� 2)(W)

�
Q#,

that is,

Q# � K#2
�

1 +

 ¶hF #




L2q/ (q� 2)(W)

�
. (5.11)

At this point, we infer from the Gagliardo-Nirenberg inequa lity [25] and (5.10),that

 ¶hF #




L2q/ (q� 2)(W) � K

 ¶hF #


 2/ q

W1
2 (W)


 ¶hF #


 (q� 2) / q

L2(W)

� K
� 

 ¶hF #

 2

L2(W) + kw#k
2
L2(W) + kz#k

2
L2(W)

� 1/ q
#(q� 2) / q

� K#(q� 4) / q
�

#4 + #2 kw#k
2
L2(W) + #2 kz#k

2
L2(W)

� 1/ q

� K#(q� 4) / q
�

#4/ q + Q2/ q
#

�

� K
�

#+ #(q� 4) / q Q2/ q
#

�
.

Inserting this estimate in (5.11) leads us to

Q# � K#2
�

1 + #+ #(q� 4) / q Q2/ q
#

�
� K#2 + K#(3q� 4) / q Q2/ q

#

� K#2 +
2
q

Q#+ K#(3q� 4) / (q� 2) ,

whence
Q# � K#2

�
1 + #q/ (q� 2)

�
� K#2 ,

and the proof of (5.6) is complete.
As a consequence of (5.5) and (5.6), we have


 ¶hF #




W1
2 (W) � K#and the properties of the trace

operator readily give (5.7), see [12, Thm. 1.5.1.3]. �

A �rst consequence of Lemma 5.1 is that t # (and thus also T#
m) does not collapse to zero as

# ! 0, so that the solutions (u#, y #)#2 (0,#0) to (1.1)-(1.5) have a common interval of existence.

Lemma 5.2. (i) There ist > 0 depending only on q,l , andk such thatt # � t for all #2 (0,#0).
(ii) There isL := L (k) > 0 such thatt # = T#

m = ¥ for all #2 (0,#0) providedl 2 (0,L ).

Proof. Owing to (5.2), (5.3) and (5.7), we may argue as at the end of the proof of Proposition 2.1
to conclude that, �xing 2 s 2 (1/2 � 1/ q, 1/2 ), there is K5 > 0 such that

kg#(u#( t)) kW2s
2 ( I ) � K5 , t 2 [0,t #] . (5.12)

As in the proof of (2.38) and (2.40), we infer from (2.34), (5.12), the fact that u0 2 Sq(k), and the
Variation-of-Constant formula that, for t 2 [0,t #],

ku#( t)kW2
q,D( I ) � M ku0kW2

q,D ( I ) + l M
Z t

0
e� w( t � s) ( t � s)s � 1� 1

2 ( 1
2 � 1

q ) kg#(u#(s)) kW2s
2,D ( I ) ds

�
M
k

+ l M K5 I ( t) , (5.13)








