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A PARABOLIC FREE BOUNDARY PROBLEM MODELING ELECTROSTATIC MEMS

JOACHIM ESCHER, PHILIPPE LAURENÇOT, AND CHRISTOPH WALKER

Abstract. The evolution problem for a membrane based model of an electrostatically actuated
microelectromechanical system (MEMS) is studied. The model describes the dynamics of the mem-
brane displacement and the electric potential. The latter is a harmonic function in an angular do-
main, the deformable membrane being a part of the boundary. The former solves a heat equation
with a right hand side that depends on the square of the trace of the gradient of the electric po-
tential on the membrane. The resulting free boundary problem is shown to be well-posed locally
in time. Furthermore, solutions corresponding to small voltage values exist globally in time while
global existence is shown not to hold for high voltage values. It is also proven that, for small voltage
values, there is an asymptotically stable steady-state solution. Finally, the small aspect ratio limit is
rigorously justified.

1. Introduction

An idealized electrostatically actuated microelectromechanical system (MEMS) consists of a
rigid ground plate above which a thin and deformable elastic membrane is suspended that is
held fixed along its boundary, see Figure 1. Applying a voltage difference between the two
components induces displacements of the membrane and thus transforms electrostatic energy
into mechanical energy, a feature that has applications in the design of transistors, switches, or
micro-pumps, for instance. There is, however, an upper limit for the applied voltage potential
beyond which the electrostatic force cannot be balanced by the elastic response of the membrane
which then touches down on the rigid plate. This phenomenon is usually referred to as “pull-
in” instability. Estimating this threshold value is an important issue in applications as it may
be a desirable feature of the device in some situations (e.g. switches, micropumps) or possibly
damage the device in others. Mathematical models have been set up for that purpose, and we
refer the reader e.g. to [26, 27, 28] and the references therein for a more detailed account of the
physical background and the modeling aspects of such devices.

Denoting the displacement of the membrane and the electrostatic potential in the device by u
and ψ, respectively, we consider here the idealized situation where the applied voltage and the
permittivity of the membrane are constant (normalized to one), and there is no variation in the
horizontal direction orthogonal to the x-direction of both ψ and u. Under appropriate scalings,
the rigid ground plate is at z = −1, and the undeflected membrane at z = 0 is fixed at the
boundary x = −1 and x = 1 of the interval I := (−1, 1), see Figure 1. Letting ε denote the aspect
ratio of the device before scaling, i.e. the ratio of the undeformed gap size to the device length,
the membrane displacement u = u(t, x) ∈ (−1, ∞) evolves according to

∂tu − ∂2
xu = −λ

(
ε2 |∂xψ(t, x, u)|2 + |∂zψ(t, x, u)|2

)
, x ∈ I , t > 0 , (1.1)
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Figure 1. Idealized electrostatic MEMS device.

with clamped boundary conditions

u(t,±1) = 0 , t > 0 , (1.2)

and initial condition
u(0, x) = u0(x) , x ∈ I . (1.3)

The dimensionless electrostatic potential ψ = ψ(t, x, z) satisfies Laplace’s equation

ε2∂2
xψ + ∂2

zψ = 0 , (x, z) ∈ Ω(u(t)) , t > 0 , (1.4)

in the region
Ω(u(t)) := {(x, z) ∈ I × (−1, ∞) : −1 < z < u(t, x)}

between the rigid ground plate at z = −1 and the deflected membrane. The boundary conditions
for ψ are then

ψ(t, x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)) , t > 0 . (1.5)

Equation (1.1) corresponds to the situation in which viscous forces dominate over inertial
forces in the system, e.g. see [6, 27]. Also, deformations due to bending are neglected in (1.1).
Of particular importance in the model is the parameter λ > 0 which characterizes the rela-
tive strengths of electrostatic and mechanical forces and is proportional to the applied voltage.
According to the above discussion, the pull-in instability is expected to take place for λ large
enough.

The analysis of (1.1)-(1.5) turns out to be rather complex since (1.4) is a free boundary prob-
lem: indeed, the domain between the rigid ground plate and the elastic membrane changes with
time. Due to this, equations (1.1) and (1.4) are strongly coupled. However, a common assump-
tion made in mathematical analysis hitherto is a vanishing aspect ratio ε that reduces the free
boundary problem to a heat equation with a right hand side involving a singularity when the
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membrane touches down on the ground plate. More precisely, setting ε = 0 allows one to solve
(1.4)-(1.5) explicitly for the potential ψ = ψ0, that is,

ψ0(t, x, z) =
1 + z

1 + u0(t, x)
, (t, x, z) ∈ [0, ∞)× I × (−1, 0) , (1.6)

where the displacement u = u0 now satisfies the so-called small aspect ratio model

∂tu0 − ∂2
xu0 = − λ

(1 + u0)2
, x ∈ I , t ∈ (0, ∞) ,

u0(t,±1) = 0 , t ∈ (0, ∞) ,
u0(0, x) = u0(x) , x ∈ I .

(1.7)

Several mathematical results have been obtained for (1.7), including a characterization of the
critical value of λ which corresponds to the value beyond which no steady-state exists as well as
a possible space dependence of the permittivity of the membrane, see, e.g., [5, 8, 22, 27] for the
stationary problem and [5, 7, 9, 16, 13, 14, 18, 27] for the evolution problem. Inertial effects are
taken into account in [15, 19].

To the best of our knowledge, the first analytical research without assumption of a small
aspect ratio and thus dedicated to the original free boundary problem (1.1)-(1.5) is [21], where
the existence of steady-states has been established for small voltage values λ and a non-existence
result for steady-states is obtained for large values of λ.

Here, we address the evolution problem. A rough summary of our results reads as follows:
We prove the local well-posedness of (1.1)-(1.5) for all voltage values and show that the solu-
tions exist globally in time provided the voltage value is sufficiently small. In contrast to the

stationary case [21] it turns out that a W2
∞(I)-setting is no longer suitable for the u-component

of (1.1)-(1.5). This is due to the fact that the heat semigroup does not enjoy suitable properties
in L∞(I). Instead, we are therefore lead to work in the framework of W2

q (I)-spaces for q < ∞,

which generates additional difficulties as now ∂2
xu may become unbounded. For small voltage

values we further prove that there is a locally asymptotically stable steady-state. For high voltage
values we prove that global existence of solutions does not hold. In addition, we analyze the
behavior of the solutions as the small aspect ratio ε → 0, showing convergence towards (1.7) as
expected from a formal analysis.

To state precisely our results we introduce for q ∈ [2, ∞) and κ ∈ (0, 1) the set

Sq(κ) :=

{
u ∈ W2

q,D(I) ; ‖u‖W2
q,D(I) < 1/κ and − 1 + κ < u(x) for x ∈ I

}
,

where W2α
q,D(I) := {u ∈ W2α

q (I) ; u(±1) = 0} for 2α ∈ (1/q, 2] and W2α
q,D(I) := W2α

q (I) for

0 ≤ 2α < 1/q. The local existence result now reads:

Theorem 1.1 (Local Well-Posedness). Let q ∈ (2, ∞), ε > 0, and consider an initial value u0 ∈
W2

q,D(I) such that u0(x) > −1 for x ∈ I. Then, the following are true:

(i) For each voltage value λ > 0, there is a unique maximal solution (u, ψ) to (1.1)-(1.5) on the
maximal interval of existence [0, Tε

m) in the sense that

u ∈ C1
(
[0, Tε

m), Lq(I)
)
∩ C

(
[0, Tε

m), W2
q,D(I)

)

satisfies (1.1)-(1.3) together with

u(t, x) > −1 , (t, x) ∈ [0, Tε
m)× I ,

and ψ(t) ∈ W2
q

(
Ω(u(t))

)
solves (1.4)-(1.5) on Ω(u(t)) for each t ∈ [0, Tε

m).
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(ii) If for each τ > 0 there is κ(τ) ∈ (0, 1) such that u(t) ∈ Sq(κ(τ)) for t ∈ [0, Tε
m) ∩ [0, τ], then

the solution exists globally, that is, Tε
m = ∞.

(iii) If u0(x) ≤ 0 for x ∈ I, then u(t, x) ≤ 0 for (t, x) ∈ [0, Tε
m)× I. If u0 = u0(x) is even with

respect to x ∈ I, then, for all t ∈ [0, Tε
m), u = u(t, x) and ψ = ψ(t, x, z) are even with respect to

x ∈ I as well.

The proof of Theorem 1.1 is performed as follows. We first transform the Laplace equation
(1.4) to a fixed rectangle which results in an elliptic boundary value problem with non-constant
coefficients depending on u and its derivatives up to order 2. Solving this elliptic equation
(for a given u) allows us to interpret the full free boundary problem as a nonlocal semilinear
heat equation for u (see (2.5)). We then employ a fixed point argument to solve this evolution
problem. Since the nonlinearity in the u-equation depends on the trace of the gradient of the
potential, two ingredients are essential: precise estimates based on the regularizing effects of the
heat semigroup and elaborated investigations of the properties of the solution to the transformed
elliptic problem. The proof is given in Section 2.

We now address global existence issues. From a physical viewpoint a “pull-in” instability
occurs for high voltage values. Accordingly, for large values of λ solutions cease to exist globally
while solutions corresponding to small λ values exist globally in time. More precisely, we have:

Theorem 1.2 (Global Existence). Let q ∈ (2, ∞), ε > 0, λ > 0, and let u0 ∈ W2
q,D(I) satisfy

−1 < u0(x) ≤ 0 for x ∈ I. Let (u, ψ) be the corresponding solution to (1.1)-(1.5) on the maximal
interval of existence [0, Tε

m).

(i) Given κ ∈ (0, 1) there exists λ∗ := λ∗(κ, ε) > 0 and κ0 := κ0(κ, ε) > 0 such that Tε
m = ∞ and

u(t) ∈ Sq(κ0) for t ≥ 0 provided that u0 ∈ Sq(κ) and λ ∈ (0, λ∗).
(ii) There is λ∗(ε) > 0 depending only on ε such that Tε

m < ∞ provided λ > λ∗(ε).

Note that part (i) of Theorem 1.2 provides uniform estimates on u in the W2
q (I)-norm and

ensures that u never touches down on -1, not even in infinite time. Its proof is contained in
Section 2 and it is a consequence of the above mentioned fixed point argument. The second
part of Theorem 1.2 is proven in Section 3 by constructing a suitable strict Lyapunov functional.
Let us mention that similar results as stated in Theorem 1.2 are known to hold for the small
aspect ratio model (1.7), see [7, 9]. However, the nonlocal features of (1.1)-(1.5) prevents one
from using similar techniques and we thus have to develop an alternative approach. Also, there
is a qualitative difference of the interpretation of the finiteness of Tε

m in Theorem 1.2(ii). Indeed,

according to Theorem 1.1, Tε
m < ∞ implies that the W2

q (I)-norm of u blows up or u touches

down on −1 in finite time. This is in clear contrast to the small aspect ratio model (1.7) for
which touchdown is the only mechanism for a finite time singularity. The difference stems
from the fact that in (1.7) the nonlinearity is of zero order while for the free boundary problem
(1.1)-(1.5) the nonlocal nonlinearity is rather of order “3/2” in the Lq-sense (see Proposition 2.1).
Nevertheless, we strongly believe that finite time touchdown occurs in the present model as well
when Tε

m is finite.

We next turn to stability of steady-states. This is a delicate issue since it is expected in analogy
to what is known for the small aspect ratio model [5, 27] that there are two steady states for small
λ values. In [21] it was shown that there is at least one steady-state to (1.1)-(1.5) for small values
of λ (and none for large λ). We shall refine this result here and prove that, provided λ is small,
this steady-state is unique with a first component in the set Sq(κ) and locally asymptotically
stable.

Theorem 1.3 (Asymptotic Stability). Let q ∈ (2, ∞), ε > 0, and κ ∈ (0, 1).
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(i) There are δ = δ(κ) > 0 and an analytic function [λ 7→ Uλ] : [0, δ) → W2
q,D(I) such that

(Uλ, Ψλ) is for each λ ∈ (0, δ) the unique steady-state to (1.1)-(1.5) with Uλ ∈ Sq(κ) and

Ψλ ∈ W2
2 (Ω(Uλ)). Moreover, Uλ is negative, convex, and even for λ ∈ (0, δ) and U0 = 0.

(ii) Let λ ∈ (0, δ). There are ω0, r, R > 0 such that for each initial value u0 ∈ W2
q,D(I) with

‖u0 − Uλ‖W2
q,D

< r, the solution (u, ψ) to (1.1)-(1.5) exists globally in time and

‖u(t)− Uλ‖W2
q,D(I) + ‖∂tu(t)‖Lq(I) ≤ Re−ω0t‖u0 − Uλ‖W2

q,D(I) , t ≥ 0 . (1.8)

The first part of Theorem 1.3 is a consequence of the Implicit Function Theorem while the sec-
ond part follows from the Principle of Linearized Stability, and the proofs are given in Section 4.
We shall point out that Theorem 1.3 provides uniqueness of steady-states with first components
in Sq(κ) for fixed λ small. A result in this spirit is also shown in [8, Thm.5.6]. But, as pointed out
before, for the small aspect ratio model (1.7) it is known that below the critical threshold there
are exactly two steady-states. If this would turn out to be true for the free boundary problem as
well, that is, if there would be another smooth branch of steady-states emanating from λ = 0,
say, Vλ 6= Uλ, then the fact that Sq(κ1) ⊂ Sq(κ2) for 0 < κ2 < κ1 < 1 would imply that δ(κ) ց 0
as κ ց 0 in Theorem 1.3. Obviously, Vλ /∈ Sq(κ) for λ < δ(κ) and thus, as λ ց 0, the minimum

of Vλ has to approach −1 or the W2
q -norm of Vλ has to blow up1.

We also note that ψ converges exponentially to Ψλ in the W2
2 -norm as t → ∞, see Corollary 4.1

for a precise statement. Finally, both components of the steady-state enjoy more regularity than
stated, see [21, Cor.10].

More insight in the connection between the free boundary model and its small aspect ratio
limit is offered in the next theorem. Indeed, we show that the solution (u, ψ) = (uε, ψε) to (1.1)-
(1.5) provided by Theorem 1.1 converges to the solution (u0, ψ0) of the small aspect ratio model
(1.6), (1.7) as ε → 0. This gives a rigorous justification of the formal derivation.

Theorem 1.4 (Small Aspect Ratio Limit). Let λ > 0, q ∈ (2, ∞), κ ∈ (0, 1), and let u0 ∈ Sq(κ)

with u0(x) ≤ 0 for x ∈ I. For ε > 0 let (uε, ψε) be the unique solution to (1.1)-(1.5) on the maximal
interval of existence [0, Tε

m). There are τ > 0, ε0 > 0, and κ0 ∈ (0, 1) depending only on q and κ such
that Tε

m ≥ τ and uε(t) ∈ Sq(κ0) for all (t, ε) ∈ [0, τ]× (0, ε0). Moreover, the small aspect ratio equation
(1.7) has a unique solution

u0 ∈ C1
(
[0, τ], Lq(I)

)
∩ C

(
[0, τ], W2

q,D(I)
)

satisfying u0(t) ∈ Sq(κ0) for all t ∈ [0, τ] and such that the convergences

uε −→ u0 in C1−θ
(
[0, τ], W2θ

q (I)
)

, 0 < θ < 1 ,

and

ψε(t)1Ω(uε(t)) −→ ψ0(t)1Ω(u0(t)) in L2

(
I × (−1, 0)

)
, t ∈ [0, τ] , (1.9)

hold as ε → 0, where ψ0 is the potential given in (1.6). Furthermore, there is Λ(κ) > 0 such that the
results above hold true for each τ > 0 provided that λ ∈ (0, Λ(κ)).

A similar result has been established for the stationary problem in [21, Theorem 2] and the
proof of Theorem 1.4 is performed along the same lines provided one ensures an ε-independent

lower bound τ > 0 on Tε
m. In addition, in [21] we took advantage of the fact that a W2

∞(I)-bound
is available for solutions to the stationary problem. We refine the arguments here by showing

that a W2
q (I)-bound is sufficient for q > 2.

1For the case of the small aspect ratio model, Vλ approaches the V-shaped function x 7→ |x| − 1 as λ ց 0.
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2. Local and Global Well-Posedness: Proof of Theorem 1.1 and Theorem 1.2(i)

The starting point for the proof of Theorem 1.1 is to transform the free boundary problem
(1.4)-(1.5) to the fixed rectangle Ω := I × (0, 1). More precisely, let q > 2 be fixed and consider

an arbitrary function v ∈ W2
q,D(I) taking values in (−1, ∞). We then define a diffeomorphism

Tv := Ω(v) → Ω by setting

Tv(x, z) :=

(
x,

1 + z

1 + v(x)

)
, (x, z) ∈ Ω(v) (2.1)

with Ω(v) = {(x, z) ∈ I × (−1, ∞) ; −1 < z < v(x)}. Clearly, its inverse is

T−1
v (x, η) =

(
x, (1+ v(x))η − 1

)
, (x, η) ∈ Ω , (2.2)

and the Laplace operator is transformed to the v-dependent differential operator

Lvw := ε2 ∂2
xw − 2ε2 η

∂xv(x)

1 + v(x)
∂x∂ηw +

1 + ε2η2(∂xv(x))2

(1 + v(x))2
∂2

ηw

+ ε2 η

[
2

(
∂xv(x)

1 + v(x)

)2

− ∂2
xv(x)

1 + v(x)

]
∂ηw .

The boundary value problem (1.4)-(1.5) is then obviously equivalent to
(
Lu(t)φ

)
(t, x, η) = 0 , (x, η) ∈ Ω , t > 0 , (2.3)

φ(t, x, η) = η , (x, η) ∈ ∂Ω , t > 0 , (2.4)

for φ = ψ ◦ T−1
u(t)

. With this notation, the evolution equation (1.1) for u becomes

∂tu − ∂2
xu = −λ

[
1 + ε2(∂xu)2

(1 + u)2

]
|∂ηφ(·, 1)|2 , x ∈ I , t > 0 , (2.5)

after noticing that we have ∂xφ(t, x, 1) = 0 for x ∈ I and t > 0 due to φ(t, x, 1) = 1 by (2.4). To
set the stage for the proof of Theorem 1.1 we first observe:

Proposition 2.1. Let κ ∈ (0, 1) and ε > 0. For each v ∈ Sq(κ) there is a unique solution φv ∈ W2
2 (Ω)

to
(
Lvφv

)
(x, η) = 0 , (x, η) ∈ Ω , (2.6)

φv(x, η) = η , (x, η) ∈ ∂Ω . (2.7)

In addition, defining ṽ by ṽ(x) := v(−x) for x ∈ I, we have φṽ(x, η) = φv(−x, η) for (x, η) ∈ Ω.
Moreover, for 2σ ∈ [0, 1/2), the mapping

gε : Sq(κ) −→ W2σ
2,D(I) , v 7−→ 1 + ε2(∂xv)2

(1 + v)2
|∂ηφv(·, 1)|2

is analytic, globally Lipschitz continuous, and bounded with gε(0) = 1.

The proof of Proposition 2.1 shares some common steps with that of [21, Lem. 5 & 6], but
requires further developments, in particular establishing the Lipschitz continuity of gε which
was not needed in [21]. We first derive suitable properties of the operator Lv for v in the closure

Sq(κ) =

{
u ∈ W2

q,D(I) ; ‖u‖W2
q,D(I) ≤ 1/κ and − 1 + κ ≤ u(x) for x ∈ I

}

of Sq(κ), which we gather in the next lemma.
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Lemma 2.2. Let κ ∈ (0, 1) and ε > 0. For each v ∈ Sq(κ) and F ∈ L2(Ω), there is a unique solution

Φ ∈ W2
2,D(Ω) to the boundary value problem

−LvΦ = F in Ω , (2.8)

Φ = 0 on ∂Ω . (2.9)

Moreover, there is a constant c1(κ, ε) > 0 depending only on q, κ, and ε such that

‖Φ‖W2
2 (Ω) ≤ c1(κ, ε) ‖F‖L2(Ω) . (2.10)

Proof. First note that the definition of Sq(κ) and Sobolev’s embedding theorem guarantee the

existence of some constant c0 > 0 depending only on q such that, for v ∈ Sq(κ),

1 + v(x) ≥ κ , x ∈ I , and ‖v‖C1([−1,1]) ≤
c0

κ
. (2.11)

It follows from the proof of [21, Lem. 5] that, due to (2.11), the operator −Lv is elliptic with

ellipticity constant ν(κ, ε) > 0 being independent of v ∈ Sq(κ). Moreover, writing −Lv in
divergence form,

−Lvw =− ∂x
(
a11(v) ∂xw + a12(v) ∂ηw

)
− ∂η

(
a21(v) ∂xw + a22(v) ∂ηw

)

+ b1(v) ∂xw + b2(v) ∂ηw ,

with

a11(v) := ε2 , a22(v) :=
1 + ε2 η2 |∂xv(x)|2

(1 + v(x))2
,

a12(v) := −ε2 η
∂xv(x)

1 + v(x)
, a21(v) := a12(v) ,

b1(v) := ε2 ∂xv(x)

1 + v(x)
, b2(v) := −ε2 η

(
∂xv(x)

1 + v(x)

)2

,

we see from (2.11) and the definition of Sq(κ) that

2

∑
i,j=1

‖aij(v)‖W1
q (Ω) +

2

∑
i=1

‖bi(v)‖L∞(Ω) ≤ c2(κ, ε) (2.12)

for all v ∈ Sq(κ). Moreover, the embedding of W1
q (I) in C([−1, 1]) ensures that aij(v) belongs to

C(Ω) for 1 ≤ i, j ≤ 2 and v ∈ Sq(κ). It then follows from [10, Thm. 8.3] that, given v ∈ Sq(κ) and

F ∈ L2(Ω), the boundary value problem (2.8)–(2.9) has a unique weak solution Φ ∈ W1
2,D(Ω).

Furthermore, the regularity of Φ and (2.12) ensure that G := F − b1(v) ∂xΦ − b2(v) ∂ηΦ belongs
to L2(Ω), and we are in a position to apply [20, Chapt. 3, Thm. 9.1] to conclude that Φ is actually

the unique solution in W2
2,D(Ω) to the boundary value problem

−L0
vΦ = G in Ω , Φ = 0 on ∂Ω ,

where L0
v denotes the principal part of the operator Lv, that is,

−L0
vw := −∂x

(
a11(v) ∂xw + a12(v) ∂ηw

)
− ∂η

(
a21(v) ∂xw + a22(v) ∂ηw

)
.

In addition, it follows from [20, Chapt. 3, Thm. 10.1] that there is a constant c3(κ, ε) > 0 depend-
ing only on q, κ, and ε such that

‖Φ‖W2
2 (Ω) ≤ c3(κ, ε)

(
‖Φ‖L2(Ω) + ‖G‖L2(Ω)

)
.
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Combining the previous inequality with (2.12) and the inequality

‖∂xΦ‖2
L2(Ω) + ‖∂ηΦ‖2

L2(Ω) = −
∫

Ω
Φ
(

∂2
xΦ + ∂2

ηΦ
)

d(x, η) ≤ δ2 ‖Φ‖2
W2

2 (Ω)
+

1

4δ2
‖Φ‖2

L2(Ω)

which is valid for all δ > 0, we are led to

‖Φ‖W2
2 (Ω) ≤ c3(κ, ε)

[
‖Φ‖L2(Ω) + ‖F‖L2(Ω) + c2(κ, ε)

(
‖∂xΦ‖L2(Ω) + ‖∂ηΦ‖L2(Ω)

)]

≤ c3(κ, ε)

[
‖Φ‖L2(Ω) + ‖F‖L2(Ω) + 2c2(κ, ε)

(
δ ‖Φ‖W2

2 (Ω) +
1

2δ
‖Φ‖L2(Ω)

)]

whence, after choosing δ sufficiently small,

‖Φ‖W2
2 (Ω) ≤ c4(κ, ε)

(
‖Φ‖L2(Ω) + ‖F‖L2(Ω)

)
. (2.13)

We finally prove (2.10) and argue as in the proof of [10, Lemma 9.17]. Assume for contradiction

that (2.10) is not true. Then, for each n ≥ 1, there are vn ∈ Sq(κ), Φ̃n ∈ W2
2,D(Ω), Φ̃n 6≡ 0, and

F̃n ∈ L2(Ω) such that

−Lvn Φ̃n = F̃n in Ω and
∥∥∥Φ̃n

∥∥∥
W2

2 (Ω)
≥ n

∥∥∥F̃n

∥∥∥
L2(Ω)

. (2.14)

Setting Φn := Φ̃n/
∥∥∥Φ̃n

∥∥∥
L2(Ω)

and Fn := F̃n/
∥∥∥Φ̃n

∥∥∥
L2(Ω)

, we realize that (2.13) and (2.14) imply

−Lvn Φn = Fn in Ω , Φn ∈ W2
2,D(Ω) , (2.15)

‖Φn‖L2(Ω) = 1 , (2.16)

and

n‖Fn‖L2(Ω) ≤ ‖Φn‖W2
2 (Ω) ≤ c4(κ, ε)

(
‖Φn‖L2(Ω) + ‖Fn‖L2(Ω)

)
= c4(κ, ε)

(
1 + ‖Fn‖L2(Ω)

)
.

Consequently, we have for n ≥ 2c4(κ, ε),

n‖Fn‖L2(Ω) ≤ 2c4(κ, ε) and ‖Φn‖W2
2 (Ω) ≤

(
1 +

2

n

)
c4(κ, ε) . (2.17)

Since W2
2 (Ω) and W2

q (I) are compactly embedded in W1
2 (Ω) and C1([−1, 1]), respectively, we

infer from (2.17) and the boundedness of Sq(κ) in W2
q (I) that there are (Φ, v) ∈ W2

2,D(Ω) ×
W2

q,D(I) and a subsequence of (Φn, vn)n (not relabeled) such that

(Φn, vn) ⇀ (Φ, v) in W2
2,D(Ω)×W2

q,D(I) , (2.18)

(Φn, vn) −→ (Φ, v) in W1
2,D(Ω)× C1([−1, 1]) . (2.19)

It readily follows from (2.18) and (2.19) that v ∈ Sq(κ) and
(

aij(vn), bi(vn)
)
−→

(
aij(v), bi(v)

)
in C([−1, 1]) (2.20)

for all 1 ≤ i, j ≤ 2. Since Fn −→ 0 in L2(Ω) by (2.17), the convergences (2.18), (2.19), and (2.20)
allow us to pass to the limit as n → ∞ in the weak formulation of (2.15) and conclude that

Φ ∈ W2
2,D(Ω) is a weak solution to −LvΦ = 0 in Ω. Using again [10, Thm. 8.3], this implies

Φ ≡ 0 contradicting ‖Φ‖L2(Ω) = 1 as follows from (2.16) and (2.19). �

Proof of Proposition 2.1. For v ∈ Sq(κ) and (x, η) ∈ Ω, we set

fv(x, η) := Lvη = ε2 η

[
2

(
∂xv(x)

1 + v(x)

)2

− ∂2
xv(x)

1 + v(x)

]
.
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Since q > 2, the function fv belongs to L2(Ω) with

‖ fv‖L2(Ω) ≤ c5(κ, ε) , (2.21)

and Lemma 2.2 ensures that there is a unique solution Φv ∈ W2
2,D(Ω) to

−LvΦv = fv in Ω , (2.22)

Φv = 0 on ∂Ω , (2.23)

satisfying

‖Φv‖W2
2 (Ω) ≤ c1(κ, ε) ‖ fv‖L2(Ω) . (2.24)

Letting φv(x, η) = Φv(x, η) + η for (x, η) ∈ Ω, the function φv obviously solves (2.6)-(2.7), and
from (2.21) and (2.24) we obtain

‖φv‖W2
2 (Ω) ≤ c6(κ, ε) . (2.25)

In addition, if v ∈ Sq(κ) and ṽ denotes the function defined by ṽ(x) := v(−x) for x ∈ I, we
obviously have ṽ ∈ Sq(κ) and the properties of Lṽ ensure that (x, η) 7−→ φv(−x, η) solves (2.22)-
(2.23) with ṽ instead of v. The uniqueness of the solution to (2.22)-(2.23) then readily implies
that φṽ(x, η) = φv(−x, η) for (x, η) ∈ Ω and thus that

gε(ṽ)(x) = gε(v)(−x) , x ∈ I . (2.26)

Next, given v ∈ Sq(κ), we define a bounded linear operator A(v) ∈ L
(
W2

2,D(Ω), L2(Ω)
)

by

A(v)Φ := −LvΦ , Φ ∈ W2
2,D(Ω) .

Lemma 2.2 guarantees that A(v) is invertible with inverse A(v)−1 ∈ L
(
L2(Ω), W2

2,D(Ω)) satis-

fying ∥∥∥A(v)−1
∥∥∥
L
(

L2(Ω),W2
2,D(Ω))

≤ c1(κ, ε) . (2.27)

We then note that

‖A(v1)−A(v2)‖L(W2
2,D(Ω),L2(Ω)) ≤ c7(κ, ε) ‖v1 − v2‖W2

q (I) , v1, v2 ∈ Sq(κ) , (2.28)

which follows from the definition of Lv and the continuity of pointwise multiplication

W1
q (I) · W1

q (I) →֒ W1
q (I) →֒ L∞(I)

except for the terms involving ∂2
xvi, i = 1, 2, where continuity of pointwise multiplication

Lq(Ω) · W1
2 (Ω) →֒ L2(Ω)

is used. Now, for v1, v2 ∈ Sq(κ), we infer from (2.27) and (2.28) that

‖A(v1)
−1 −A(v2)

−1‖L(L2(Ω),W2
2,D(Ω))

≤
∥∥∥A(v1)

−1
∥∥∥
L(L2(Ω),W2

2,D(Ω))
‖A(v2)−A(v1)‖L(W2

2,D(Ω),L2(Ω))

∥∥∥A(v2)
−1
∥∥∥
L(L2(Ω),W2

2,D(Ω))

≤c1(κ, ε)2 c7(κ, ε) ‖v1 − v2‖W2
q (I) ,

which, combined with (2.21), the observation that 0 ∈ Sq(κ) and

‖ fv1 − fv2‖L2(Ω) ≤ c8(κ, ε) ‖v1 − v2‖W2
q (I) , v1, v2 ∈ Sq(κ) ,



10 JOACHIM ESCHER, PHILIPPE LAURENÇOT, AND CHRISTOPH WALKER

ensures that

‖φv1 − φv2‖W2
2 (Ω) = ‖Φv1 − Φv2‖W2

2 (Ω) = ‖A(v1)
−1 fv1 −A(v2)

−1 fv2‖W2
2,D(Ω)

≤ c1(κ, ε)2 c7(κ, ε) ‖v1 − v2‖W2
q (I) ‖ fv1‖L2(Ω)

+ c8(κ, ε) ‖v1 − v2‖W2
q (I) ‖A(v2)

−1‖L(L2(Ω),W2
2,D(Ω))

≤ c9(κ, ε) ‖v1 − v2‖W2
q (I) (2.29)

for v1, v2 ∈ Sq(κ). We may then invoke [24, Chapt. 2, Thm. 5.4] and the continuity of pointwise
multiplication

W1/2
2 (I) · W1/2

2 (I) →֒ W
2σ1
2 (I)

for 2σ1 < 1/2 according to [1, Thm. 4.1] to conclude that the mapping

Sq(κ) → W
2σ1
2 (I) , v 7→

∣∣∂ηφv(·, 1)
∣∣2 (2.30)

is globally Lipschitz continuous. Thanks to the continuity of the embedding of W2
q (I) in W1

∞(I),
the mapping

Sq(κ) → W1
q (I) , v 7→ 1 + ε2(∂xv)2

(1 + v)2
(2.31)

is globally Lipschitz continuous with a Lipschitz constant depending only on κ and ε, and
the Lipschitz continuity of gε stated in Proposition 2.1 follows at once from (2.30), (2.31), and
continuity of pointwise multiplication

W1
q (I) · W

2σ1
2 (I) →֒ W2σ

2 (I) = W2σ
2,D(I) ,

where 2σ < 2σ1 < 1/2, see again [1, Thm. 4.1]. Finally, to prove that gε is analytic, we note

that Sq(κ) is open in W2
q,D(I) and that the mappings A : Sq(κ) → L(W2

2,D(Ω), L2(Ω)) and

[v 7→ fv] : Sq(κ) → L2(Ω) are analytic. The analyticity of the inversion map ℓ 7→ ℓ−1 for

bounded operators implies that also the mapping [v 7→ φv] : Sq(κ) → W2
2 (Ω) is analytic, and the

assertion follows as above from the results on pointwise multiplication . �

Let p ∈ (1, ∞). We define Ap ∈ L(W2
p,D(I), Lp(I)) by Apv := −∂2

xv for v ∈ W2
p,D(I). Since

Ar ⊂ Ap for r ≥ p, we suppress the subscript in the following and write A := Ap. Note then
that (2.5) subject to the boundary condition (1.2) and the initial condition (1.3) may be recast as
an abstract parameter-dependent Cauchy problem

u̇ + Au = −λgε(u) , t > 0 , u(0) = u0 , (2.32)

where we recall that the function gε was defined in Proposition 2.1. To prove Theorem 1.1 it

then suffices to focus on (2.32). For that purpose, let {e−tA ; t ≥ 0} denote the heat semigroup
on Lp(I) corresponding to −A. In order to state suitable regularizing properties we recall that

we have set W
2β
p,D(I) = W

2β
p (I) for 2β ∈ (0, 1/p) and W

2β
p,D(I) = {u ∈ W

2β
p (I) ; u(±1) = 0} for

2β ∈ (1/p, 2]. Then we have:

Lemma 2.3. Let 1 < p ≤ r < ∞. There exists ω > 0 such that the following hold.

(i) If 0 ≤ α ≤ β ≤ 1 with 2α, 2β 6= 1/p, then

‖e−tA‖L(W2α
p,D(I),W

2β
p,D(I))

≤ Me−ωttα−β , t > 0 ,

for some number M ≥ 1 depending on p, α, and β.
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(ii) If 0 ≤ α ≤ β ≤ 1 with 2α 6= 1/p and 2β 6= 1/r, then

‖e−tA‖L(W2α
p,D(I),W

2β
r,D(I))

≤ Me−ωtt
α−β− 1

2 (
1
p− 1

r ) , t > 0 ,

for some number M ≥ 1 depending on p, r, α, and β.

Proof. (i) Since −A ∈ L(W2
p,D(I), Lp(I)) is the generator of the analytic semigroup {e−tA ; t ≥ 0}

on Lp(I) with a negative spectral bound, it follows from [3, Chapt. V, Thm.2.1.3] that there are
ω > 0 and M ≥ 1 such that

‖e−tA‖L(Eα,Eβ)
≤ Me−ωttα−β , t > 0 ,

where, for θ ∈ [0, 1], Eθ := (Lp(I), W2
p,D(I))θ with (·, ·)θ chosen as real interpolation functor

(·, ·)θ,p if 2θ 6= 1 and as complex interpolation functor [·, ·]1/2 if 2θ = 1. Since Eθ = W2θ
p,D(I) with

equivalent norms for 2θ ∈ [0, 2] \ {1/p} by [11, 29], assertion (i) follows.

(ii) From Sobolev’s embedding we have W2
p,D(I) →֒ W2θ

r,D(I) for 2θ = 2 − (1/p − 1/r) 6= 1/r,

whence

‖e−tA‖L(W2α
p,D(I),W

2β
r,D(I))

≤ c ‖e−
t
2 A‖L(W2θ

r,D(I),W
2β
r,D(I))

‖e−
t
2 A‖L(W2α

p,D(I),W2
p,D(I)) , t > 0 ,

and so assertion (ii) follows from (i). �

We are now in a position to prove Theorem 1.1 and Theorem 1.2(i).

Proof of Theorem 1.1 and Theorem 1.2(i). Let λ > 0, q ∈ (2, ∞), ε > 0, and consider u0 ∈
W2

q,D(I) with u0(x) > −1 for x ∈ I. Clearly, there is κ ∈ (0, 1/2) such that

u0 ∈ Sq(2κ) . (2.33)

We now fix 1
2 − 1

q < 2σ <
1
2 with 2σ 6= 1/q and put κ0 := κ/M, where M ≥ 1 is such that

‖e−tA‖L(W2
q,D(I)) + t

−σ+1+ 1
2 (

1
2− 1

q )‖e−tA‖L(W2σ
2,D(I),W2

q,D(I)) ≤ Me−ωt , t ≥ 0 (2.34)

with ω > 0 according to Lemma 2.3. By Proposition 2.1 there is c10(κ, ε) > 0 such that

‖gε(v1)− gε(v2)‖W2σ
2,D(I) ≤ c10(κ, ε) ‖v1 − v2‖W2

q,D(I) , v1, v2 ∈ Sq(κ0) . (2.35)

Since 0 ∈ Sq(κ0) and gε(0) = 1, we deduce from (2.35) that

‖gε(v)‖W2σ
2,D(I) ≤ 1 +

c10(κ, ε)

κ0
= c11(κ, ε) , v ∈ Sq(κ0) . (2.36)

Now, for τ > 0, define Vτ := C([0, τ], Sq(κ0)) and

F(v)(t) := e−tAu0 − λ
∫ t

0
e−(t−s)Agε

(
v(s)

)
ds

for 0 ≤ t ≤ τ and v ∈ Vτ. Consider v1, v2 ∈ Vτ and t ∈ [0, τ]. Then, introducing

I(τ) :=
∫ τ

0
e−ωs s

σ−1− 1
2 (

1
2− 1

q ) ds ≤ I(∞) :=
∫ ∞

0
e−ωs s

σ−1− 1
2 (

1
2− 1

q ) ds , (2.37)
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which is finite thanks to the positivity of ω and the choice of σ, it readily follows from (2.33),
(2.34), and (2.36) that

‖F(v1)(t)‖W2
q,D(I) ≤ M ‖u0‖W2

q,D(I) + λ M
∫ t

0
e−ω(t−s) (t − s)

σ−1− 1
2 (

1
2− 1

q ) ‖gε(v1(s))‖W2σ
2,D(I) ds

≤ M

2κ
+ λ M c11(κ, ε) I(τ) , (2.38)

and from (2.34) and (2.35) that

‖F(v1)(t)− F(v2)(t)‖W2
q,D(I) ≤ λ M c10(κ, ε) I(τ) ‖v1 − v2‖C([0,τ],W2

q,D(I)) . (2.39)

Moreover, since W2
q,D(I) embeds in L∞(I) with embedding constant 2 and u0 ≥ 2κ − 1, we

deduce from the positivity of the heat semigroup, (2.34), and (2.36) that

F(v1)(t) ≥− 1 + 2κ − 2 λ
∫ t

0

∥∥∥e−(t−s)A gε(v1(s))
∥∥∥

W2
q,D(I)

ds

≥− 1 + 2κ − 2 λ M
∫ t

0
e−ω(t−s) (t − s)

σ−1− 1
2 (

1
2− 1

q ) ‖gε(v1(s))‖W2σ
2,D(I) ds

≥− 1 + 2κ − 2 λ M c11(κ, ε) I(τ) . (2.40)

We finally note that F(v1)(t) ≤ 0 if u0 ≤ 0 since gε(v1) ≥ 0. Consequently, due to (2.38)-(2.40)
and the fact that I(τ) → 0 as τ → 0, there is τ0 := τ0(λ, κ, ε, q, σ) > 0 sufficiently small such that
F defines a contraction from Vτ0 into itself. This shows that there is a unique maximal solution

u ∈ C1
(
[0, Tε

m), Lq(I)
)
∩ C

(
[0, Tε

m), W2
q,D(I)

)
∩ C

(
(0, Tε

m), W2+2σ
2,D (I)

)

to (2.32) for some Tε
m ∈ (τ0, ∞], satisfying

u(t, x) > −1 , (t, x) ∈ [0, Tε
m)× I ,

and, in addition,

u(t, x) ≤ 0 , (t, x) ∈ [0, Tε
m)× I if u0(x) ≤ 0 , x ∈ I .

Moreover, if for each τ > 0 there is κ(τ) ∈ (0, 1) such that u(t) ∈ Sq(κ(τ)) for t ∈ [0, Tε
m) ∩ [0, τ],

then necessarily Tε
m = ∞. This proves the statements (i) and (ii) of Theorem 1.1 after observing

that ψ(t) := φu(t) ◦ Tu(t) belongs to W2
q

(
Ω(u(t))

)
and solves (1.4)-(1.5) for each t ∈ [0, Tε

m), where

the transformation Tu was introduced in (2.1).
As for the statement (i) of Theorem 1.2, we choose λ∗ := λ∗(κ, ε, q, σ) > 0 such that (recall

(2.37))

λ∗ M max {c10(κ, ε), c11(κ, ε)} I(∞) ≤ 1

2
<

1

2κ0

and

2 λ∗ M c11(κ, ε) I(∞) ≤ κ0 .

Letting λ ≤ λ∗, it readily follows that, for each τ > 0, the mapping F defines a contraction from

C([0, τ], Sq(κ0)) into itself. This implies that Tε
m = ∞ in this case and that u(t) ∈ Sq(κ0) for t ≥ 0.

To prove statement (iv) of Theorem 1.1 suppose that u0 is even on I and let u be the corre-
sponding maximal solution to (2.32) with maximal existence time Tε

m ∈ (0, ∞]. Introducing the
function ũ defined by ũ(t, x) = u(t,−x) for (t, x) ∈ [0, Tε

m)× I, we deduce from Proposition 2.1

and the evenness of u0 that ũ also solves (2.32), so that ũ actually coincides with u. Thus u(t, .)
is even on I for all t ∈ [0, Tε

m) and the proof of Theorem 1.1 is complete. �

We end this section with some useful properties of the component ψ of solutions to (1.1)-(1.5).
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Proposition 2.4. Let q ∈ (2, ∞), ε > 0, λ > 0, and consider an initial value u0 ∈ W2
q,D(I) such that

u0(x) > −1 for x ∈ I. Denoting the corresponding maximal solution to (1.1)-(1.5) by (u, ψ), we have
for all t ∈ [0, Tε

m)

1 + z − max
(
u0
)
+
≤ψ(t, x, z) ≤ 1 , (x, z) ∈ Ω(u(t)) , (2.41)

∂zψ(t, x, u(t, x)) ≥ 0 , x ∈ I , (2.42)

∂xψ(t, x, u(t, x)) =− ∂xu(t, x) ∂zψ(t, x, u(t, x)) , x ∈ I . (2.43)

Proof. It readily follows from the positivity of λ that the constant max (u0)+ is a supersolution

to (1.1)-(1.3), so that u ≤ max (u0)+ in [0, Tε
m) × [−1, 1]. This property entails that (x, z) 7−→

1 + z − max
(
u0
)
+

is a subsolution to (1.4)-(1.5) and the comparison principle gives the lower

bound in (2.41). The upper bound in (2.41) also follows from the comparison principle as the
constant 1 is clearly a supersolution to (1.4)-(1.5). This implies in particular that ψ(t) reaches its
maximum value on the graph of u(t) and thus that (2.42) holds true. Finally, (2.43) is an obvious
consequence of (1.5). �

3. On Nonexistence of Global Solutions: Proof of Theorem 1.2(ii)

We now prove that there are no global solutions for large λ values as stated in Theorem 1.2(ii)
(note that part (i) of this theorem was shown in the previous section). For this we first need some

preparations. Let q ∈ (2, ∞), ε > 0, λ > 0, and consider an initial value u0 ∈ W2
q,D(I) such that

−1 < u0(x) ≤ 0 for x ∈ I. By Theorem 1.1, there is a unique solution (u, ψ) to (1.1)-(1.5) defined
on the maximal interval of existence [0, Tε

m) for some Tε
m ∈ (0, ∞] and satysfying

u ∈ C1
(
[0, Tε

m), Lq(I)
)
∩ C

(
[0, Tε

m), W2
q,D(I)

)

together with

−1 < u(t, x) ≤ 0 , (t, x) ∈ [0, Tε
m)× I , (3.1)

and ψ(t) ∈ W2
q

(
Ω(u(t))

)
solves (1.4)-(1.5) on Ω(u(t)) for each t ∈ [0, Tε

m). Our aim is to show

that, if λ is sufficiently large, the maximal existence time Tε
m is finite. To this end, define ζ1(x) :=

π cos (πx/2)/4 for x ∈ [−1, 1] and µ1 := π2/4. Then, µ1 is the principal eigenvalue of the

L2(I)-realization of −∂2
x and

−∂2
xζ1 = µ1 ζ1 in I , ζ1(±1) = 0 , ‖ζ1‖L1(I) = 1 . (3.2)

A classical technique to show that solutions only exist on a finite time interval is to study the
evolution of

E0(t) :=
∫ 1

−1
ζ1(x) u(t, x) dx , t ∈ [0, Tε

m) ,

and show that E0 reaches −1 in finite time, a feature contradicting (3.1). Such an approach has
been used successfully for the small aspect ratio model (1.7) [7, 17] and the stationary version
of (1.1)-(1.5) [21], the proof of the latter relying also heavily on the convexity of u. But, such a
convexity property is not known for the evolution problem (1.1)-(1.5) (neither it is for (1.7)) and
studying the time evolution of E0 does not seem to work. However, as we shall see below, the
study of the time evolution of

Eα(t) :=
∫ 1

−1
ζ1(x)

(
u +

α

2
u2
)
(t, x) dx , t ∈ [0, Tε

m) , (3.3)

for a suitable choice of α ∈ (0, 1) leads us to the expected result. Performing that study requires
to connect the behavior of ψ to that of u and we devote the next two results to this issue. We first
start with an easy consequence of the boundary conditions (1.5).
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Lemma 3.1. For t ∈ [0, Tε
m) and p ∈ [1, ∞), we have

4p

(p + 1)2

∫ 1

−1

ζ1(x)

1 + u(t, x)
dx ≤ p

∫

Ω(u(t))
ζ1(x) ψ(t, x, z)p−1 |∂zψ(t, x, z)|2 d(x, z) . (3.4)

Proof. For (t, x) ∈ [0, Tε
m) × I and p ∈ [1, ∞), it follows from (1.5) and the Cauchy-Schwarz

inequality that

1 =ψ(t, x, u(t, x))(p+1)/2 − ψ(t, x,−1)(p+1)/2

=
p + 1

2

∫ u(t,x)

−1
ψ(t, x, z)(p−1)/2 ∂zψ(t, x, z) dz

≤ p + 1

2

(∫ u(t,x)

−1
ψ(t, x, z)p−1 |∂zψ(t, x, z)|2 dz

)1/2 √
1 + u(t, x) ,

hence

4

(p + 1)2

1

1 + u(t, x)
≤
∫ u(t,x)

−1
ψ(t, x, z)p−1 |∂zψ(t, x, z)|2 dz .

Owing to the nonnegativity of ζ1, the estimate (3.4) follows from the above inequality after
multiplying both sides by pζ1(x) and integrating over I with respect to x. �

The next lemma is a consequence of (1.4)-(1.5).

Lemma 3.2. For t ∈ [0, Tε
m) and p ∈ [1, ∞), we have

∫ 1

−1
ζ1(x)

(
1 + ε2 |∂xu(t, x)|2

)
∂zψ(t, x, u(t, x)) dx

=
∫

Ω(u(t))
ζ1(x)

[
pε2 ψp−1 |∂xψ|2 + p ψp−1 |∂zψ|2 + µ1ε2

p + 1
ψp+1

]
(t, x, z) d(x, z)

− µ1ε2

(p + 1)(p + 2)
− µ1 ε2

p + 1

∫ 1

−1
ζ1(x) u(t, x) dx . (3.5)

Proof. We multiply (1.4) by ζ1 ψp and integrate over Ω(u). Integrating by parts and using the
boundary conditions for ψ and ζ1 and (2.43), we obtain

0 =−
∫

Ω(u)

(
pε2 ζ1 ψp−1 |∂xψ|2 + ε2 ∂xζ1 ψp ∂xψ + p ζ1 ψp−1 |∂zψ|2

)
d(x, z)

+
∫ 1

−1
ζ1(x)

[
−ε2 ∂xu(x) ∂xψ(x, u(x)) + ∂zψ(x, u(x))

]
dx

=
∫ 1

−1
ζ1(x)

(
1 + ε2 |∂xu(x)|2

)
∂zψ(x, u(x)) dx

− p
∫

Ω(u)
ζ1 ψp−1

[
ε2 |∂xψ|2 + |∂zψ|2

]
d(x, z)− ε2

p + 1

∫

Ω(u)
∂xζ1 ∂x

(
ψp+1

)
d(x, z) .
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Since

−
∫

Ω(u)
∂xζ1 ∂x

(
ψp+1

)
d(x, z) =

∫

Ω(u)
∂2

xζ1 ψp+1 d(x, z)

+ (∂xζ1(−1)− ∂xζ1(1))
∫ 0

−1
(1 + z)p+1 dz

+
∫ 1

−1
∂xζ1(x) ∂xu(x) dx

=− µ1

∫

Ω(u)
ζ1 ψp+1 d(x, z) +

µ1

p + 2
−
∫ 1

−1
∂2

xζ1(x) u(x) dx

=− µ1

∫

Ω(u)
ζ1 ψp+1 d(x, z) +

µ1

p + 2
+ µ1

∫ 1

−1
ζ1(x) u(x) dx

by (1.5) and (3.2), we end up with (3.5). �

Proof of Theorem 1.2 (ii). Let α ∈ (0, 1) to be determined later. We first note that (3.1) implies
that the function Eα, defined in (3.3), satisfies

−1 ≤ α − 2

2
≤ Eα(t) ≤ 0 , t ∈ [0, Tε

m) . (3.6)

We next multiply (1.1) by ζ1 (1 + α u), integrate over I and use (3.2) and (2.43) to obtain

dEα

dt
+ µ1 Eα + α

∫ 1

−1
ζ1 |∂xu|2 dx =

∫ 1

−1
ζ1 (1 + α u)

(
∂tu − ∂2

xu
)

dx

= −λ
∫ 1

−1
ζ1(x) (1 + α u(x))

(
1 + ε2 |∂xu(x)|2

)
|∂zψ(x, u(x))|2 dx .

Since ζ1(x) ≥ 0 and 1 + α u(x) ≥ 1 − α by (3.1), we further obtain

dEα

dt
+ µ1 Eα + α

∫ 1

−1
ζ1 |∂xu|2 dx ≤ −λ(1 − α) R (3.7)

with

R(t) :=
∫ 1

−1
ζ1(x)

(
1 + ε2 |∂xu(t, x)|2

)
|∂zψ(t, x, u(t, x))|2 dx , t ∈ [0, Tε

m) .

We now look for a lower bound for R. To this end we observe that R reminds of the left-hand
side of (3.5) while (3.4) provides a lower bound of the right-hand side of (3.5). More precisely,
let β > 0 and p ≥ 1 be two positive real numbers to be determined later. It follows from Young’s
inequality that

∫ 1

−1
ζ1(x)

(
1 + ε2 |∂xu(x)|2

)
∂zψ(x, u(x)) dx

≤β R+
1

4β

∫ 1

−1
ζ1(x)

(
1 + ε2 |∂xu(x)|2

)
dx ,

that is,

R ≥ 1

β

∫ 1

−1
ζ1(x)

(
1 + ε2 |∂xu(x)|2

)
∂zψ(x, u(x)) dx

− 1

4β2

(
1 + ε2

∫ 1

−1
ζ1(x) |∂xu(x)|2dx

)
.
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We now infer from Lemma 3.2, Lemma 3.1, (3.2), and the non-positivity of ζ1u that

R ≥ 1

β

[
p
∫

Ω(u)
ζ1 ψp−1 |∂zψ|2 d(x, z)− µ1ε2

(p + 1)(p + 2)
− µ1ε2

p + 1

∫ 1

−1
ζ1 u dx

]

− 1

4β2

(
1 + ε2

∫ 1

−1
ζ1 |∂xu|2dx

)

≥ 1

β

[
4p

(p + 1)2

∫ 1

−1

ζ1

1 + u
dx − µ1ε2

(p + 1)(p + 2)

]
− 1

4β2

(
1 + ε2

∫ 1

−1
ζ1 |∂xu|2dx

)

≥ 1

βp

∫ 1

−1

ζ1

1 + u + α u2/2
dx − µ1ε2

βp2
− 1

4β2
− ε2

4β2

∫ 1

−1
ζ1 |∂xu|2dx .

Finally, since y 7→ (1 + y)−1 is convex and ‖ζ1‖L1(I) = 1, we use Jensen’s inequality as in [7] and
get

R ≥ 1

βp

1

1 + Eα
− µ1ε2

βp2
− 1

4β2
− ε2

4β2

∫ 1

−1
ζ1 |∂xu|2dx .

Inserting this estimate in (3.7) and using (3.6) give

dEα

dt
− µ1 + α

∫ 1

−1
ζ1 |∂xu|2 dx

≤ −λ(1 − α)

βp

[
1

1 + Eα
− µ1ε2

p
− p

4β
− pε2

4β

∫ 1

−1
ζ1 |∂xu|2dx

]
,

whence

dEα

dt
+

(
α − λ(1 − α)ε2

4β2

) ∫ 1

−1
ζ1 |∂xu|2 dx ≤ µ1 +

λ(1 − α)

βp

[
µ1ε2

p
+

p

4β
− 1

1 + Eα

]
.

At this point, the role of the additional parameter α becomes clear as it allows us to control the
λ-dependent term involving ∂xu. We thus choose

α =
λε2

4β2 + λε2
∈ (0, 1) , so that α =

λ(1 − α)ε2

4β2
,

and obtain the following differential inequality for Eα:

dEα

dt
≤ F (Eα) := µ1 +

4λβ

(4β2 + λε2)p

[
µ1ε2

p
+

p

4β
− 1

1 + Eα

]
. (3.8)

Since F is an increasing function on (−1, ∞), it readily follows from the non-positivity of Eα and
(3.8) that, if F (0) < 0, then Eα(t) ≤ Eα(0) ≤ 0 and dEα(t)/dt ≤ F (0) < 0 for all t ∈ [0, Tε

m).
Integrating this differential inequality and using (3.6), we conclude that −1 ≤ F (0)t for all
t ∈ [0, Tε

m) and thus that Tε
m ≤ −1/F (0) < ∞ as claimed.

We are then left with showing that we can find parameters β > 0 and p ≥ 1 such that

F (0) < 0 for λ large enough. To this end we choose β =
√

λ/2 > 0 and p = 1 + 2µ1ε2 ≥ 1 so

that α = ε2/(1 + ε2) and

F (0) ≤ µ1 +
2
√

λ

1 + ε2

[
1

2
+

1 + 2µ1ε2

2
√

λ
− 1

]
≤ µ1 +

√
λ

1 + ε2

[
1 + 2µ1ε2

√
λ

− 1

]
.

Therefore, if
√

λ > 4µ1 (1 + ε2), we have

F (0) ≤ µ1 −
√

λ

2(1+ ε2)
< 0 ,

and the proof of Theorem 1.2(ii) is complete. �
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4. Asymptotic Stability: Proof of Theorem 1.3

Let q ∈ (2, ∞), ε > 0, and κ ∈ (0, 1) be fixed. We first prove Theorem 1.3(i). Recall that, choos-

ing σ ∈ (1/2− 1/q, 1/2) so that W2σ
2 (I) →֒ Lq(I), Proposition 2.1 states that gε : Sq(κ) → Lq(I) is

analytic. Therefore, since the generator of the heat semigroup −A := −Aq ∈ L(W2
q,D(I), Lq(I))

is invertible, we obtain that the mapping

F : R × Sq(κ) → W2
q,D(I) , (λ, v) 7→ v − λA−1gε(v)

is analytic with F(0, 0) = 0 and DvF(0, 0) = idW2
q,D

. Now, the Implicit Function Theorem ensures

the existence of δ > 0 and an analytic function

[λ 7→ Uλ] : [0, δ) → W2
q,D(I)

such that F(λ, Uλ) = 0 for λ ∈ [0, δ). Denoting the solution to (1.4)-(1.5) with Uλ instead of u

by Ψλ ∈ W2
2 (Ω(Uλ)), the pair (Uλ, Ψλ) is for each λ ∈ (0, δ) the unique steady-state to (1.1)-

(1.5) with Uλ in Sq(κ) and U0 = 0. Since Uλ is convex and satisfies the Dirichlet conditions
Uλ(±1) = 0 we clearly have Uλ ≤ 0 for λ ∈ (0, δ). That Uλ is even follows from uniqueness and
[21, Thm.1]. This proves Theorem 1.3 (i).

To prove part (ii) of Theorem 1.3, we use the Principle of Linearized Stability. For this, we fix
λ ∈ (0, δ) and introduce the linearization of gε,

Bλ := λDvgε(Uλ) ∈ L(W2
q,D(I), Lq(I)) .

Since ‖Bλ‖L(W2
q,D(I),Lq(I)) → 0 as λ → 0, it follows from [3, I.Cor.1.4.3] that −A − Bλ is the

generator of an analytic semigroup on Lq(I) and there is ω1 > 0 such that the complex half
plane [Re z ≥ −ω1] belongs to the resolvent set of −A − Bλ provided that λ is sufficiently small.
Now write v = u − Uλ and consider the linearization of (2.32),

v̇ + (A + Bλ)v = Gλ(v) , t > 0 , v(0) = v0 , (4.1)

where Gλ ∈ C2(Oλ, Lq(I)) is defined on some open zero neighborhood Oλ in W2
q,D(I) such that

Uλ + Oλ ⊂ Sq(κ) and given by

Gλ(v) := −λ
(

gε(Uλ + v)− gε(Uλ)− Dvgε(Uλ)v
)

.

Since −(A + Bλ) is the generator of an analytic semigroup on Lq(I) with a negative spectral
bound as observed above, we may apply [23, Thm.9.1.1] and conclude statement (ii) of Theo-
rem 1.3 by making δ > 0 smaller, if necessary.

A straightforward consequence of (1.8) and (2.29) is:

Corollary 4.1. Under the assumptions of Theorem 1.3(ii) there is R1 > 0 such that

‖φu(t) − φUλ
‖W2

2 (Ω) ≤ R1e−ω0t‖u0 − Uλ‖W2
q,D(I) , t ≥ 0 ,

where φv is defined in Proposition 2.1.

5. Small Aspect Ratio Limit: Proof of Theorem 1.4

We shall now prove Theorem 1.4. Fix λ > 0, q ∈ (2, ∞), κ ∈ (0, 1), and let u0 ∈ Sq(κ) with

u0(x) ≤ 0 for x ∈ I. For ε > 0 we denote the unique solution to (1.1)-(1.5) by (uε, ψε) which
is defined on the maximal interval of existence [0, Tε

m). In the following, (Ki)i≥1 and K denote
positive constants depending only on q and κ, but not on ε > 0 sufficiently small.
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Set κ0 := κ/(2M) < κ, where M ≥ 1 is the constant defined in (2.34). Owing to the continuity
properties of uε, we have

τε := sup
{

t ∈ [0, Tε
m) : uε(s) ∈ Sq(κ0) for all s ∈ [0, t]

}
> 0 . (5.1)

Thanks to the continuity of the embedding of W2
q (I) in W1

∞(I), there is a positive constant K1

such that, for all ε > 0,

−1 + κ0 ≤ uε(t, x) ≤ 0 , (t, x) ∈ [0, τε]× [−1, 1] , (5.2)

‖uε(t)‖W2
q (I) + ‖uε(t)‖W1

∞(I) ≤ K1 , t ∈ [0, τε] . (5.3)

As a consequence of (5.3) there is ε0 > 0 depending only q and κ such that

ε2
0 ‖∂xuε(t)‖2

L∞(I) ≤
1

2
, (t, ε) ∈ [0, τε]× (0, ε0] . (5.4)

For ε ∈ (0, ε0), we set

φε(t) := φuε(t) = ψε(t) ◦ T−1
uε(t)

, t ∈ [0, τε] ,

with T−1
uε(t)

given by (2.2) and

Φε(t, x, η) := φε(t, x, η)− η , (t, x, η) ∈ [0, τε]× Ω .

The cornerstone of the proof of Theorem 1.4 is to derive appropriate estimates on Φε, showing
that it converges to zero as ε → 0. To this end, we further develop and improve the analysis
performed in [21, Section 3] and establish the following bounds:

Lemma 5.1. There exists a positive constant K2 such that, for ε ∈ (0, ε0) and t ∈ [0, τε],

‖∂xΦε(t)‖L2(Ω) +
1

ε

(
‖Φε(t)‖L2(Ω) +

∥∥∂ηΦε(t)
∥∥

L2(Ω)

)
≤ K2 , (5.5)

1

ε

∥∥∂x∂ηΦε(t)
∥∥

L2(Ω)
+

1

ε2

∥∥∥∂2
ηΦε(t)

∥∥∥
L2(Ω)

≤ K2 , (5.6)

1

ε

∥∥∂ηΦε(t, ·, 1)
∥∥

W1/2
2 (I)

≤ K2 . (5.7)

Proof. Fix ε ∈ (0, ε0) and t ∈ [0, τε]. It first follows from (2.41) that

‖Φε(t)‖L∞(Ω) ≤ 1 , (5.8)

while (5.2) and (5.3) entail that the function

fε(t, x, η) := fuε(t)(x, η) = ε2 η

[
2

(
∂xuε

1 + uε

)2

− ∂2
xuε

1 + uε

]
(t, x) , (t, x, η) ∈ [0, τε]× Ω ,

satisfies

‖ fε(t)‖Lq(Ω) ≤ ε2

[
2

κ2
0

‖∂xuε(t)‖L∞(I) ‖∂xuε(t)‖Lq(I) +
1

κ0

∥∥∥∂2
xuε(t)

∥∥∥
Lq(I)

]

≤
(

2K2
1

κ2
0

+
K1

κ0

)
ε2 .

Therefore, by Hölder’s inequality,

‖ fε(t)‖Lp(Ω) ≤ 2(q−p)/qp ‖ fε(t)‖Lq(Ω) ≤ K3 ε2 (5.9)
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for p ∈ [1, q]. From now on, the time t plays no particular role anymore and is thus omitted in
the notation. We multiply (2.22) by Φε, integrate over Ω, and proceed as in [21, Lemma 11] to
obtain

∫

Ω
fε
(
1 − ∂ηΦε

)
Φε d(x, η) = ε2

∫

Ω

(
∂xΦε − η

∂xuε

1 + uε
∂ηΦε

)2

d(x, η)

+
∫

Ω

|∂ηΦε|2
(1 + uε)2

d(x, η)

To estimate the right-hand side of the above identity from below, we use the elementary inequal-

ity (r − s)2 ≥ (r2/2)− s2, (5.2), and (5.4) to obtain

∫

Ω
fε
(
1 − ∂ηΦε

)
Φε d(x, η) ≥ ε2

2
‖∂xΦε‖2

L2(Ω) − ε2 ‖∂xuε‖2
L∞(I)

∫

Ω

∣∣∂ηΦε

∣∣2

(1 + uε)2
d(x, η)

+
∫

Ω

|∂ηΦε|2
(1 + uε)2

d(x, η)

≥ ε2

2
‖∂xΦε‖2

L2(Ω) +
1

2

∫

Ω

|∂ηΦε|2
(1 + uε)2

d(x, η)

≥ ε2

2
‖∂xΦε‖2

L2(Ω) +
1

2

∥∥∂ηΦε

∥∥2
L2(Ω)

.

Next, thanks to (5.8), (5.9), and Hölder’s inequality, we can estimate the left-hand side of the
above inequality and obtain

ε2 ‖∂xΦε‖2
L2(Ω) +

∥∥∂ηΦε

∥∥2
L2(Ω)

≤ 2 ‖ fε‖L2(Ω)

∥∥1 − ∂ηΦε

∥∥
L2(Ω) ‖Φε‖L∞(Ω)

≤ 2K3ε2
(

1 +
∥∥∂ηΦε

∥∥
L2(Ω)

)

≤ 2K3ε2 +
1

2

∥∥∂ηΦε

∥∥2
L2(Ω)

+ 2K2
3ε4 ,

whence

ε2 ‖∂xΦε‖2
L2(Ω) +

∥∥∂ηΦε

∥∥2
L2(Ω)

≤ K4 ε2 . (5.10)

Since Φε(x, 1) = 0 for x ∈ I, we have ‖Φε‖L2(Ω) ≤
√

2
∥∥∂ηΦε

∥∥
L2(Ω)

and (5.5) readily follows

from this inequality and (5.10).

We next establish (5.6). For that purpose, we set ζε := ∂2
ηΦε, ωε := ∂x∂ηΦε, and multiply

(2.3) by ζε. After integrating over Ω, we proceed as in [21, Lemma 11] with the help of [12,
Lem. 4.3.1.2 & 4.3.1.3] to deduce that

∫

Ω
fε
(
1 − ∂ηΦε

)
ζε d(x, η) =

∫

Ω

[
ζ2

ε

(1 + uε)2
+ ε2

(
ωε − η

∂xuε

1 + uε
ζε

)2
]

d(x, η) .

Using once more the inequality (r − s)2 ≥ (r2/2)− s2 and (5.4) to estimate the right-hand side
of the above inequality from below, we find

∫

Ω
fε
(
1 − ∂ηΦε

)
ζε d(x, η) ≥

∫

Ω

[
ζ2

ε

(1 + uε)2
+

ε2

2
ω2

ε − ε2η2 |∂xuε|2
(1 + uε)2

ζ2
ε

]
d(x, η)

≥
∫

Ω

[
1

2

ζ2
ε

(1 + uε)2
+

ε2

2
ω2

ε

]
d(x, η)

≥1

2

(
‖ζε‖2

L2(Ω) + ε2 ‖ωε‖2
L2(Ω)

)
.
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Introducing Qε :=
√
‖ζε‖2

L2(Ω) + ε2 ‖ωε‖2
L2(Ω), we infer from Hölder’s inequality, (5.9), and the

previous inequality that (recall that q > 2)

Q2
ε ≤ 2 ‖ fε‖Lq(Ω)

∥∥1 − ∂ηΦε

∥∥
L2q/(q−2)(Ω)

‖ζε‖L2(Ω)

≤ Kε2

(
1 +

∥∥∂ηΦε

∥∥
L2q/(q−2)(Ω)

)
Qε ,

that is,

Qε ≤ Kε2

(
1 +

∥∥∂ηΦε

∥∥
L2q/(q−2)(Ω)

)
. (5.11)

At this point, we infer from the Gagliardo-Nirenberg inequality [25] and (5.10),that
∥∥∂ηΦε

∥∥
L2q/(q−2)(Ω)

≤ K
∥∥∂ηΦε

∥∥2/q

W1
2 (Ω)

∥∥∂ηΦε

∥∥(q−2)/q

L2(Ω)

≤ K
(∥∥∂ηΦε

∥∥2
L2(Ω)

+ ‖ωε‖2
L2(Ω) + ‖ζε‖2

L2(Ω)

)1/q
ε(q−2)/q

≤ Kε(q−4)/q
(

ε4 + ε2 ‖ωε‖2
L2(Ω) + ε2 ‖ζε‖2

L2(Ω)

)1/q

≤ Kε(q−4)/q
(

ε4/q + Q
2/q
ε

)

≤ K
(

ε + ε(q−4)/q Q
2/q
ε

)
.

Inserting this estimate in (5.11) leads us to

Qε ≤ Kε2
(

1 + ε + ε(q−4)/q Q
2/q
ε

)
≤ Kε2 + Kε(3q−4)/q Q

2/q
ε

≤ Kε2 +
2

q
Qε + Kε(3q−4)/(q−2) ,

whence

Qε ≤ Kε2
(

1 + εq/(q−2)
)
≤ Kε2 ,

and the proof of (5.6) is complete.
As a consequence of (5.5) and (5.6), we have

∥∥∂ηΦε

∥∥
W1

2 (Ω)
≤ Kε and the properties of the trace

operator readily give (5.7), see [12, Thm. 1.5.1.3]. �

A first consequence of Lemma 5.1 is that τε (and thus also Tε
m) does not collapse to zero as

ε → 0, so that the solutions (uε, ψε)ε∈(0,ε0)
to (1.1)-(1.5) have a common interval of existence.

Lemma 5.2. (i) There is τ > 0 depending only on q, λ, and κ such that τε ≥ τ for all ε ∈ (0, ε0).
(ii) There is Λ := Λ(κ) > 0 such that τε = Tε

m = ∞ for all ε ∈ (0, ε0) provided λ ∈ (0, Λ).

Proof. Owing to (5.2), (5.3) and (5.7), we may argue as at the end of the proof of Proposition 2.1
to conclude that, fixing 2σ ∈ (1/2 − 1/q, 1/2), there is K5 > 0 such that

‖gε(uε(t))‖W2σ
2 (I) ≤ K5 , t ∈ [0, τε] . (5.12)

As in the proof of (2.38) and (2.40), we infer from (2.34), (5.12), the fact that u0 ∈ Sq(κ), and the
Variation-of-Constant formula that, for t ∈ [0, τε],

‖uε(t)‖W2
q,D(I) ≤ M ‖u0‖W2

q,D(I) + λ M
∫ t

0
e−ω(t−s) (t − s)

σ−1− 1
2 (

1
2− 1

q ) ‖gε(uε(s))‖W2σ
2,D(I) ds

≤ M

κ
+ λ M K5 I(t) , (5.13)
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and, using in addition the embedding of W2
q,D(I) in L∞(I) with constant 2,

‖uε(t)‖L∞(I) ≤1 − κ + 2 λ
∫ t

0

∥∥∥e−(t−s)A gε(uε(s))
∥∥∥

W2
q,D(I)

ds

≤1 − κ + 2 λ M
∫ t

0
e−ω(t−s) (t − s)

σ−1− 1
2 (

1
2− 1

q ) ‖gε(uε(s))‖W2σ
2,D(I) ds

≤1 − κ + 2 λ M K5 I(t) , (5.14)

where I(t) is defined in (2.37). Since I(t) → 0 as t → 0, there exists τ > 0 which depends only
on q and κ such that

I(t) < 1

λκK5
and I(t) < (2M − 1)κ

4λM2K5
for all t ∈ [0, τ] . (5.15)

Thanks to this choice, we readily deduce from (5.13) and (5.14) that ‖uε(t)‖W2
q,D(I) ≤ 1/κ0 and

uε(t) ≤ 1 − κ0 for all t ∈ [0, τ] ∩ [0, τε]. In other words, uε(t) ∈ Sq(κ0) for all t ∈ [0, τ] ∩ [0, τε]
and the definition of τε implies that τε ≥ τ. Finally, setting

Λ(κ) := min

{
1

κK5I(∞)
,

(2M − 1)κ

4M2K5I(∞)

}
,

and taking λ ∈ (0, Λ(κ)), it follows that (5.15) holds for any τ > 0 which entails that τε ≥ τ for
any τ > 0. �

Proof of Theorem 1.4. A straightforward consequence of (5.7) and the continuous embedding

of W1/2
2 (I) in L2q(I) is that

lim
ε→0

sup
t∈[0,τ]

∥∥∥
∣∣∂ηφε(t, ·, 1)

∣∣2 − 1
∥∥∥

Lq(I)
= 0 . (5.16)

Since

∂tuε − ∂2
xuε = −λ gε(uε(t)) , x ∈ I , t ∈ [0, τ] , (5.17)

with gε defined in Proposition 2.1 and τ in Lemma 5.2, it readily follows from (5.2), (5.3),

Lemma 5.1, and the continuous embedding of W1/2
2 (I) in L2q(I) that, for t ∈ [0, τ],

‖∂tuε(t)‖Lq(I) ≤
∥∥∥∂2

xuε(t)
∥∥∥

Lq(I)
+ λ

∥∥∥∥∥
1 + ε2 |∂xuε(t)|2
(1 + uε(t))2

∥∥∥∥∥
L∞(I)

∥∥∂ηφε(t, ·, 1)
∥∥2

L2q(I)

≤ K1 +
9λK

8κ2
0

∥∥1 + ∂ηΦε(t, ·, 1)
∥∥2

W1/2
2 (I)

≤ K (1 + λ) .

Consequently, the family (uε)ε∈(0,ε0)
is bounded in C1([0, τ], Lq(I)) ∩ C([0, τ], W2

q (I)) and thus,

given θ ∈ ((q + 1)/2q, 1), we may extract a sequence (εk)k≥1 of positive real numbers, εk → 0,
such that

uεk
−→ u0 in C1−θ([0, τ], W2θ

q (I)) (5.18)

for some function u0 ∈ C1−θ([0, τ], W2θ
q (I)). Since θ > (q + 1)/2q, we deduce from (5.18) and

the continuous embedding of W2θ
q (I) in W1

∞(I) that

uεk
−→ u0 in C([0, τ], W1

∞(I)) . (5.19)
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A first consequence of (5.2) and (5.19) is that −1+ κ0 ≤ u0(t, x) ≤ 0 for all (t, x) ∈ [0, τ]× [−1, 1].
Next, combining (5.16) and (5.19) ensures that

gεk
(uεk

(t)) =
1 + ε2

k

(
∂xuεk

(t)
)2

(
1 + uεk

(t)
)2

∣∣∂ηφεk
(t, ., 1)

∣∣2 −→ 1

(1 + u0(t))2
in C([0, τ], Lq(I)) .

Recalling (5.17), classical stability properties of the linear heat equation entails that u0 is a solu-
tion to the small aspect ratio equation (1.7) and it is clearly the unique solution to (1.7) which

belongs to Sq(κ0) for all t ∈ [0, τ]. This implies in particular that not only a subsequence but

the whole family (uε)ε∈(0,ε0)
converges towards u0 in C1−θ([0, τ], W2θ

q (I)), θ ∈ (0, 1), as ε → 0.

Finally, the remaining assertion (1.9) follows easily from Lemma 5.1 as shown in the proof of [21,
Thm. 2]. This completes the proof of Theorem 1.4. �
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