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Abstract Geologic storage of CO2 must respond to
demonstrations of safety, control and acceptability with

authorities and public. The wells are essential elements

of the storage system and constitute the only man-

made intrusive element in the geologic systems. The
role of containment of components of wells must then

be ensured for hundreds of years, despite degradation

mechanisms that affect their properties. Probabilistic

approaches are used to take into account the uncer-

tainties on the quantities of CO2 which migrate from
the reservoir of CO2 towards the surface and towards

the aquifer. Uncertainties are taken into account by us-

ing the generalized probabilistic approach which allows

both the system-parameter uncertainties and the model
uncertainties induced by modeling errors to be per-
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formed in the stochastic computational model. These
probabilistic tools, applied to industrial projects, allow

owners and operators to set up decisions and provide a

strong support to long term safety demonstration with

a high level of confidence, even in presence of uncer-
tainties in the computational models.

Keywords Geologic CO2 sequestration · Well

integrity · Uncertainty quantification · Parametric

probabilistic approach · Nonparametric probabilistic
approach · Modeling of uncertainties · Stochastic
computational model · Degradation mechanisms

1 Introduction

Nowadays, the predictions of greenhouse gases emis-

sions play a role becoming increasingly important. Au-

thorities and industrials think about solutions to re-

duce their emissions. The Carbon Capture and Storage
(CCS) technology constitutes one of the suitable tech-

nologies to reduce greenhouse gases emissions in the

atmosphere. Even though CCS technology still brings

intensive R&D in the worldwide, a significant accelera-

tion of in situ CCS experiments is observed to reach an
industrial level. Pilots already exist worldwide but a lot

of feasibility studies or ongoing projects have reached

enough technical maturity to start a pilot phase.

The storage is now a major problem in the CCS

chain, Capture - Transportation - Injection - Storage,

without which no project will be able to emerge. The ge-

ologic storage of CO2 must respond to demonstrations

of safety, control and acceptability with authorities and
public. In most cases the evaluation of uncertainties is

an essential component of these demonstrations. Un-

certainties must be systematically studied and be inte-
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grated in a prediction model of a storage system. Their

effects must be examined and taken into account for

analyzing the performance of the storage system with

a prediction model. It is necessary to take into account
uncertainties in the computational models used to pre-

dict a long term (several hundred of years) behavior of

storage systems elements.

Wells are made up of casings and cement sheaths
and constitute the only intrusive and man-made ele-

ment of the storage system in the geologic systems.

The well is a preferential path for gas migration from

the reservoir to the surface and/or potable aquifers. Be-

cause wells are part of the essential elements to consider
in a study of well integrity and risks of CO2 migration

during a geologic storage, it should be demonstrated

that the well constitutes a safe barrier for CO2 confine-

ment over long term. Indeed, it is of a paramount im-
portance for a large acceptance of CCS technologies and

their deployment. Moreover, due to the time scales in-

volved, the integrity assessment of wells implies a num-

ber of specificities to the properties of the stored fluid

and presents uncertainties related to the physical pa-
rameters and to the mechanisms involved.

This paper presents a robustness analysis of a com-

putational model that analyzes the performance and
the risks associated with well integrity on long term.

It is well known that well degradation depends on sev-

eral coupled physical phenomena [1,5,10,13]. Compu-

tational models have been developed in order to quan-

tify possible gas migrations through a well [5,10,13,25,
32]. The model presented in this paper is constructed

by using a flow model in porous media and models of

degradation in order to predict the behavior of consti-

tutive elements of wells over time. Degradation affects
the permeability of the system which has direct influ-

ence on the flow in the system. On the other hand,

the gas flow in the media induces additional degrada-

tion: CO2 corrosion for casing and CO2 carbonation

for cement. The complexity level of a complete 3-D
multiphysic computational model of such mechanical

system could be prohibitive for computational simula-

tions over a long time period. In this paper, we have

assumed the physical system is axisymmetric and each
geological formation along the vertical axis of the well

is modeled by a homogeneous medium. Moreover, due

to a lack of experimental measurements, there exist un-

certainties, not only on the initial conditions and on the

boundary conditions (profile of the initial water pres-
sure along the well, downhole storage pressure, flow con-

ditions between cement the sheaths and the geological

formations, etc.). There are also uncertainties in the

model of the hydraulic conductivity matrices for the

porous materials (coupling between the axial and ra-

dial intrinsic permeabilities). In this paper, as explained

in Section 4, the uncertainties are taken into account
in the computational model by using the parametric

probabilistic approach for system-parameter uncertain-

ties and the nonparametric probabilistic approach for

model uncertainties induced by modeling errors (gener-

alized probabilistic approach of uncertainties).

Section 2 is devoted to the presentation of the phys-

ical models used for constructing the mean computa-

tional model (nominal model) including the water and
CO2 flow models, the different mechanisms of degra-

dation and the damage model of intrinsic permeabili-

ties. In Section 3, a synthetic equation representing the

mean computational model is introduced and the differ-

ent sources of uncertainties related to this mean model
are listed. Section 4 deals with a short overview on the

main concepts and methodologies for uncertainty quan-

tification. This section has been introduced to help the

reader to understand the probabilistic modeling carried
out in Sections 5 and 6. In addition, some elements con-

cerning stochastic solvers are given. The probabilistic

modeling of uncertainties related to the mean compu-

tational model is presented in Section 5 while Section 6

deals with the effective construction of the probability
distributions and their random generators for random

variables and for random matrices involved in the prob-

abilistic modeling of uncertainties. Section 7 is devoted

to the application. Hereinafter, we present a sensitiv-
ity analysis for the model uncertainties. Finally, all the

numerical values of the parameters of the mean com-

putational model and of the stochastic computational

model are summarized in two tables given in an Ap-

pendix.

2 Physical models used for constructing the

mean computational model

This section is devoted to the presentation of the phys-
ical models used for constructing the mean computa-

tional model (nominal model) including the water and

CO2 flow models in porous media, the different mech-

anisms of degradation and the damage model of in-
trinsic permeabilities. The objective of this mean com-

putational model is to quantify the migration of CO2

through a well. Figure 1 shows how the different phys-

ical models are coupled to constitute the mean com-

putational model. At each time step, the degradation
of materials is computed and then is linked with flow

computations in respecting the order of the sequences

indicated in Fig. 1. The degradations directly affect the
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Fig. 1 Resolution principle of the mean computational
model

permeability of the system and thus, alter the balance

of pressure loading, that is to say the flow of water and

CO2. The movement of CO2 in the system initiates the
CO2 degradation. The following subsections describe

the flow models in the porous media, the degradation

mechanisms and the damage model of intrinsic perme-

abilities which are integrated into the mean computa-
tional model.

2.1 Water and CO2 flow models

Fig. 2 represents a schematic view of the system consid-

ered for this study. It includes stainless steel tubulars

called casings (in black), cement sheaths that ensure the

confinement of the holes between geology and the cas-

ings (in grey) and geological formations in contact with
the well. Each well element (cement sheath, casing) and

each near environment element (geological layers) are

completely defined by their porosity, permeability and

parameters of the Mualem-van Genuchten model. The
well and the geologic layers (Fig. 2) occupy a domain

Ω = Ω1 ∪ . . . ∪ Ωn in which the α-th domain Ωα with

α = 1, . . . , n is made up of geological formations and

elements of the well (cement, casing, fluid). The generic

point in Ω is written as x. The mean physical model is
constructed using a homogeneous equivalent flow model

for each domain Ωα. The medium occupying the α-th

domain Ωα is then modeled with an equivalent porous

medium. An equivalent porous medium is also used for
domains that are lightly porous or not porous, such as

the interior of the well. In this case, the parameters

of the constitutive equations are adjusted such that the

flow is very small. In this paper, it is also assumed that,

at the scale of the well, the diffusion is small with re-
spect to convection for the gradients of pressure. The

solid phase is assumed to be in thermodynamic equilib-

rium with the solution inside the pores. This solution

is made up of a wetting phase (w) and of a non-wetting

phase (nw). Let vw
α (x, t) and vnw

α (x, t) be the vectors

of the average velocity fields of the wetting phase and

of the non-wetting phase in the α-th domain Ωα. Both
phases are assumed to be immiscible and they satisfy

the following mass conversation equations for the two

phases [7,8,12,15] in the α-th domain Ωα,

∂(ρwα ηα swα)

∂t
+ div (ρwα vw

α ) = 0 , (1)

∂(ρnwα ηα snwα )

∂t
+ div (ρnwα vnw

α ) = 0 . (2)

In the previous equations, ρwα (x, t) and ρnwα (x, t) are the
mass of water and the mass of gas, per volume unit, ηα
is the porosity, swα (x, t) and snwα (x, t) are the water and

gas saturations such that

swα(x, t) + snwα (x, t) = 1 . (3)

The pressure fields pwα(x, t) and pnwα (x, t) in the wetting

phase and in the non-wetting phase of the α-th domain

Ωα satisfy the following Darcy equations,

vw
α = −

kwr,α
µw
α

[Kα] (grad pwα − ρwα g) , (4)

vnw
α = −

knwr,α
µnw
α

[Kα] (grad pnwα + (ρwα − ρnwα ) g) . (5)

In these equations, kwr,α(x, t) and knwr,α(x, t) are the two

relative permeabilities, µw
α and µnw

α are the two vis-

cosities and g is the gravity acceleration vector. These

equations involve an intrinsic permeability matrix de-

noted by [Kα(t)] which is a positive-definite symmetric
(2× 2) real matrix. Consequently, the intrinsic and rel-

ative permeabilities are both taken into account.

Let swr,α be the irreducible water saturation, ρ be

the water mass density, pec,α be the capillary entry

pressure, R be the gas constant, M be the gas mo-
lar mass in the non-wetting phase and Tα be the local

temperature. It is assumed that the hydraulic proper-

ties are described using the pore size distribution model

of Mualem for the hydraulic conductivity,

pnwα (x, t)− pwα(x, t) = pec,α((θα(x, t))−Mα − 1)−Nα , (6)

pnwα (x, t) =
ρnwα (x, t) ρ

ρ ηα − ρwα (x, t)
RTα

M (7)

where Mα, Nα are two given parameters obtained from
experimental measurements and where

θα(x, t) = (swα(x, t)− swr,α)/(1− swr,α) , (8)
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The Muale model is used in combination with a wa-

ter retention model introduced by van Genuchten and

which is written as

kwr,α(x, t) = (θα(x, t))
1
2 (1− (1− (θα(x, t))

1
Mα )Mα)2 , (9)

knwr,α(x, t) = (1− θα(x, t))
1
2 (1 − (θα(x, t))

1
Mα )2Mα . (10)

Consequently, Eqs. (6) to (10) are used for the constitu-

tive equations of the materials [31]. It should be noted

that the use of an ideal gas law in Eq. (7) rather than
some EOS for CO2 density in critical conditions induces

modeling errors. More generally, as it will be explained

in Section 4, all the modeling errors induced by the

model simplifications with respect to a more advanced

model, will be taken into account in implementing a
probabilistic model of uncertainties (Sections 5 and 6).

Fig. 2 Well and geological formations

2.2 Degradation mechanisms

The aging models enable to estimate the evolution of

components properties over time due to environment

of the well. Two models are considered for describing
the degradation mechanisms of the carbon steel tubes

and of the cement-based materials. These two mod-

els are devoted to the cement leaching and the casing

corrosion [1,5,13]. Cement-based materials are reactive

porous media in which solid phases are in thermody-

namic equilibrium with the surrounding pore solution

chemistry. An acidic attack of the cement-based mate-
rials takes place when they are in contact with acidic

aqueous solutions.

The leaching process of hydrates is essentially due

to the chemical activity and to the difference of compo-
sition between the water in contact within the cement

and the pore solution inside the material. As a conse-

quence, ions move out from the cement and subsequent

dissolutions of cement minerals occur (mainly hydrates:
Portlandite, CSH). Such a cement leaching increases the

porosity and the permeability. Consequently, the com-

pressive strength decreases.

Nevertheless, the casing corrosion is the main degra-
dation process which must be considered when the long

term integrity performance of the well is analyzed. It

occurs once the cement leaching is completed, mostly

as a generalized uniform corrosion at the casing sur-
face but also as a pitting corrosion due to the presence

of chlorides. It should be noted that corrosion by CO2

is more significant in presence of dissolved CO2 in the

water but it becomes insignificant for dry supercritical

flows.

Let ain,α and aout,α be the inner and outer leaching

(uniform or pitting) corrosion rates and let Fin,α and

Fout,α be the inner and outer degradation factors of
the in the α-th domain Ωα.

2.3 Damage model of intrinsic permeabilities

In this section, we present the deterministic model of

damage intrinsic permeability for the cement and steel

materials developed in [20,21,9,16,23]. In the α-th do-
main Ωα, the intrinsic radial and axial permeabilities

are denoted by kradial,α and kaxial,α.

2.3.1 Cement degradation

For each domain Ωα made up of cement material, the

diffusion of aggressive elements controls the degrada-
tion reaction of cement. Consequently a simple model

for the cement degradation consists in modeling the

advance of two leaching fronts (the internal advance

and the external advance) by two fonctions einα(t) =

ain,α
√
t and eout,α(t) = aout,α

√
t. Behind the leaching

fronts ein,α(t) and eout,α(t), the intrinsic permeability is

multiplied respectively by the internal degradation fac-

tor Fin,α and by the external degradation factor Fout,α
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(see Fig. 3). It should be noted that each degradation

Damage material
Health material

Casings or geological formations

rout,α
rin,α

ein,α(t)eout,α(t)

Fin,αFout,α

Fig. 3 Inner and outer degradation fronts

factor depends on domain Ωα and on the nature of the

aggressive element (formation fluid or injected CO2)
that causes the alteration.

2.3.2 Stainless steel tubulars degradation

For each domain Ωα made up of carbon steel material,

two degradation mechanisms are modeled: the corro-

sion of casings by both pitting corrosion and general

corrosion. These two mechanisms are modeled by the
advance of four degradation fronts : the pitting corro-

sion fronts and the uniform corrosion fronts, for which

ein,α(t) = ain,α t and eout,α(t) = aout,α t. Behind the

the pitting corrosion fronts and uniform corrosion fronts

ein,α(t) and eout,α(t), the intrinsic permeability is mul-
tiplied respectively by the internal degradation factor

Fin,α and by the external degradation factor Fout,α (see

Fig. 3).

2.3.3 Deterministic degradation model of the intrinsic

permeability

The model of damage intrinsic permeability of cement
and steel materials is used as deterministic model. Each

domain Ωα is defined (in cylindrical coordinates) as

[rin,α, rout,α]× [0, 2π]× [zmin,α, zmax,α]. For each do-

main ωα, kradial,α(t) and kaxial,α(t) are the equivalent

permeabilities of a system of three series permeabilities
in the radial direction (for kradial,α(t) ) and three par-

allel permeabilities in the axial direction and we have

kradial,α(t) = kradial,α(0) bradial,α(t) , (11)

kaxial,α(t) = kaxial,α(0) baxial,α(t) , (12)

where

bradial,α(t) =

[
ein,α(t)

Fin,α
ln

(
rin,α

rin,α + ein,α(t)

)

+ (rout,α − rin,α − ein,α(t)− eout,α(t))

× ln

(
rin,α + ein,α(t)

rout,α − eout,α(t)

)

+
eout,α(t)

Fout,α
ln

(
rout,α − eout,α(t)

rout,α

)]
−1

×
[
(rout,α − rin,α) ln

(
rin,α
rout,α

)]
, (13)

baxial,α(t) =
[
r2out,α − r2in,α

]
−1

× [Fin,α ein,α(t)(2 rin,α + ein,α(t))

+ Fout,α eout,α(t) (2 rout,α − eout,α(t))

+ (rout,α − eout,α(t))
2

− (rin,α + ein,α(t))
2
]
. (14)

From previous sections, for cement, we have eout,α(t) =

aout,α
√
t and ein,α(t) = ain,α

√
t while for casing, we

have eout,α(t) = aout,α t and ein,α(t) = ain,α t. Let’s in-

troduce vector y1
α

= (aout,α, ain,α, Fout,α, Fin,α) and

vector y2
α
= (kradial,α(0), kaxial,α(0)). The two functions

bradial,α(t) and baxial,α(t) are rewritten as bradial,α(t, y1
α
)

and baxial,α(t, y1
α
). Consequently, the mean intrinsic per-

meability matrix [Kα] is written, for the radial and ax-

ial directions of the cylindrical coordinates, taken into

account the degradation models, as

[Kα(t, y1
α
, y2

α
)] =

[Bα(t, y1
α
)]T [K0(y2

α
)] [Bα(t, y1

α
))] , (15)

in which, for any y1 = (y1
1
, y1

2
, y1

3
, y1

4
) and y2 = (y2

1
, y2

2
),

the matrices [Bα(t, y1)] and [K0(y2)] are diagonal (2×
2) real matrices written as

[Bα(t, y1)] =

⎛

⎝

√
bradial,α(t, y1) 0

0
√
baxial,α(t, y1)

⎞

⎠ ,

(16)

[K0(y2)] =

(
y2
1
0

0 y2
2

)
. (17)

3 Mean computational model and sources of

uncertainties

In this section, a synthetic equation representing the

computational model is introduced and then, the dif-

ferent sources of uncertainties are listed.
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3.1 Mean computational model

The spatial discretization of the nonlinear boundary
value problem described in Section 2 yields the mean

computational model which is synthetically written as

A(u(t); t, y1
1
, . . . , y1

n
, y2

1
, . . . , y2

n
, y3

1
, . . . , y3

n
) = 0 , (18)

where, for α = 1, . . . , n, vectors y1
α
and y2

α
have been

defined in the previous Section 2.3.3 and where vec-

tors y3
α

= (pec,α, s
w
r,α, ηα) (see Section 2.1) have been

introduced. In Eq. 18, u(t) is the deterministic state
vector of the coupled system at time t. Below, we con-

sider an observation vector w(t) for t > 0 deduced

from {u(t), t > 0}. At time t, the mean computational

model depends on the mean intrinsic permeability ma-

trix [Kα(t, y1
α
, y2

α
)] and on parameters y3

α.

3.2 Sources of uncertainties in the mean

computational model

In such a computational model, the main sources of un-

certainties are the following. There are uncertain sys-

tem parameters which are y1
α
, y2

α
and y2

α
. In addition

there are model uncertainties induced by modeling er-

rors related to the choice of the evolution law of the
mean instrinsic permeability matrix [Kα(t, y1

α
, y2

α
)].

4 Methodology used for uncertainty

quantification

In this section, the main concepts concerning uncer-

tainty quantification are summarized and the method-

ology used in Sections 5 and 6 to construct the prob-
abilistic modeling of both the system-parameter un-

certainties and the model uncertainties induced by the

modeling errors, is presented.

Types of approach for stochastic modeling of un-

certainties. The parametric probabilistic approach of
system-parameter uncertainties consists in modeling the

uncertain parameters of the computational model by

random variables and then in constructing prior proba-

bility distributions of these random variables using the
available information. The nonparametric probabilistic

approach of model uncertainties induced by modeling

errors, which has been proposed in [33], is a method

which allows a prior probability model of model uncer-

tainties to be taken into account at the operators level
by introducing random operators and not at the model

output level by introducing an additive noise (which

could not been identified for a prior probability model

for which no experimental data are available). The non-

parametric probabilistic approach is based on the use

of the random matrix theory [24]. It consists in directly

constructing the stochastic modeling of the operators of
the mean computational model. In Sections 5 and 6, the

parametric probabilistic approach of system-parameter

uncertainties is coupled with the nonparametric prob-

abilistic approach of model uncertainties induced by

modeling errors [6,37,38].

Methodology for constructing the prior probability

model of uncertainties. The Maximum Entropy (Max-

Ent) principle (that is to say the maximization of the
level of uncertainties) which has been introduced by [17]

in the context of Information Theory [30], is a power-

ful tool which allows the prior probability distribution

of a random variable to be constructed under the con-

straints defined by the available information. Concern-
ing the methodology that we use in Sections 5 and 6 for

constructing (1) the probability distribution of a ran-

dom vector, we refer the reader, for instance, to [22] for

low-stochastic dimension and to [35] for high-stochastic
dimension, and (2) the probability distribution of ran-

dom matrices with values in the set of all the positive-

definite symmetric real matrices, we refer the reader to

[33,34,37]. Many developments and applications have

been performes withthis type of approaches [2,6,11,2,
3,36]

Propagation of uncertainties and stochastic solver.

Two classes of methodologies yielding two types of stoch-

astic solvers can be developed: the spectral stochastic
methods [14], the sampling techniques such as the di-

rect Monte Carlo numerical simulation method (see for

instance [4,19,26,29,27]). In the present paper, we will

construct generators of independent realizations for the
random vectors and the random matrices correspond-

ing to the prior probability distributions that we will

construct in Sections 5 and 6, and, in Section 7, we

will use the Monte Carlo simulation method and the

mathematical statistics to analyze the propagation of
uncertainties in the computational model.

Identification of the prior and posterior probabil-

ity models of uncertainties. The identification of the
parameters of the probability model of uncertainties

(parametric and nonparametric probabilistic approaches)

is a problem belonging to the class of the statistical

inverse problems (see for instance [18,41]). When ex-

perimental data are not available, then, only a fam-
ily of prior probability models of uncertainties can be

constructed as explained above and therefore, the un-

known parameters which are used in the prior probabil-
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ity distributions, must be used to carry out a sensitivity

analysis. Such an approach allows a robust analysis to

be performed with respect to the level of uncertainties.

This is the situation which is considered in the present
paper.

5 Probabilistic modeling of uncertainties

related to the mean computational model

In this section, the uncertainties are taken into account
by using the generalized probabilistic approach [37,38]

consisting in simultaneously using the parametric prob-

abilistic approach for the uncertain model parameters

and the nonparametric probabilistic approach for model
uncertainties induced by modeling errors [33,34].

For the sake of brevity, the subscript α are dropped

in vectors y1
α
, y2

α
and y3

α
, in components y1

α,1
, y1

α,2
and

in matrix [Kα]. Therefore, Eq. (15) is rewritten as

[K(t, y1, y2)] = [B(t, y1)]T [K0(y2)] [B(t, y1)] . (19)

5.1 Parametric probabilistic approach of

system-parameter uncertainties

All the random quantities are defined on a probability

space denoted by (Θ,T,P). The vector y1 is modeled
by a random vector Y1 = (Y 1

1 , Y
1
2 , Y

1
3 , Y

1
4 ). The vec-

tor y2 is modeled by a random vector Y2 = (Y 2
1 , Y

2
2 )

with values in R2 and the vector y3 is modeled by a

random vector Y3 = (Y 3
1 , Y

3
2 , Y

3
3 ) with values in R3.

For the construction of the probability distributions of

these random vectors, there is no available information

concerning the statistical dependencies between Y1, Y2

and Y3. Consequently, the use of the MaxEnt principle

[17,22] implies that all the random variables Y 1
1 , Y

1
2 ,

Y 1
3 , Y

1
4 , Y

2
1 , Y

2
2 , Y

3
1 , Y

3
2 , Y

3
3 are statistically indepen-

dent.

Concerning the uncertainties related to material pa-

rameters pec,α, s
w
r,α, ηα, the parametric probabilistic ap-

proach consists in replacing, in Eq. (18), the determin-
istic vectors y3

1
, . . . , y3

n
by random vectors Y3

1, . . . ,Y3
n.

5.2 Nonparametric probabilistic approach of modeling

errors induced by the statistical dependencies

Since the random variables Y 2
1 and Y 2

2 are constructed
as statistically independent random variables (because

there is no available information on their statistical de-

pendencies), a modeling error is introduced and taken

into account by the nonparametric probabilistic approach

[33,34] which involves a randommatrix [G0] with values

in the set M
+
2 (R) of all the (2× 2) definite-positive real

matrices. Random matrix [G0] and random vectors Y1,
Y2 and Y3 are statistically independent. Under these

conditions, the nonparametric probabilistic approach

used in the framework of the generalized probabilis-

tic approach of uncertainties [37] consists in replacing

random matrix [K0] by the random matrix [K0] defined
as

[K0] = [L0(Y2)]T [G0] [L0(Y2)] . (20)

In this equation, [L0(Y2)] = [K0(Y2)]1/2 is a diag-

onal matrix. The probabilistic model of the intrinsic

permeability matrices, related to the uncertainties on

parameters y1 and y2 is constructed by replacing in

Eq. (19 ), deterministic vector y1 by random vector Y1

and, matrix [K0(y2)] by random matrix [K0], defined

by Eq. (20). The deterministic matrix [K(t, y1, y2)] are

then replaced by the random matrix [K(t)] defined by

[K(t)] =

[B(t,Y1)]T [L0(Y2)]T [G0] [L0(Y2)] [B(t,Y1)] . (21)

5.3 Nonparametric probabilistic approach of modeling

errors induced by the evolution law of the intrinsic

permeability matrices

The modeling errors on the evolution law of the in-
trinsic permeability matrix [K(t, y1, y2)] induces model

uncertainties that are also considered in the context of

the generalized probabilistic approach. We therefore in-

troduce the random matrix [G] with values in M
+
2 (R).

Consequently, the random matrix [K(t)] is replaced by
the random matrix [K(t)] defined by

[K(t)] = [L(t)]T [G] [L(t)] . (22)

In these equations, the matrix [L(t)] and [L(t)] are such
that

[L(t)] = [L0] [L0(Y2)] [B(t,Y1)] . (23)

in which the random matrix [L0] corresponds to the

Cholesky factorization [G0] = [L0]T [L0] of the random

matrix [G0]. Since there is no available information on

the statistical dependencies of the random variables in-
troduced above, the MaxEnt principle then implies that

Y1, Y2, Y3, [G0], [G0] and [G] are statistically indepen-

dent.
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5.4 Stochastic computational model

Finally, the mean computational model (without uncer-

tainties) defined by Eq. (18) is replaced by a stochastic

computational model (due to the probability modeling
of uncertainties) for which the random state vector U(t)

at time t depends (1) on random vector Y1 and Y3 re-

lated to the uncertain system parameters, (2) on ran-

dom initial condition vector Y2, (3) on the random ma-
trix [G] that describes model uncertainties associated

with the intrinsic permeability matrices at time t and

(4) on the random matrix [G0] which describes model

uncertainties associated with the initial conditions of

both phases.

6 Construction of the prior probability

distributions and their associated generators

for random variables and for random matrices

involved in the probabilistic modeling of

uncertainties

In this section, we briefly present the methodology fol-

lowed for constructing the prior probability distribu-

tions. Then, the effective construction is developed for
the random matrices and then for the random variables.

6.1 Methodology for constructing the prior probability

distributions

Given the probabilistic modeling introduced in the Sec-

tion 5 and taken into account the independence of the

introduced random variables, the prior probability dis-

tribution of each random variable Y 1
1 , Y

1
2 , Y

1
3 , Y

1
4 , Y

2
1 ,

Y 2
2 , Y

3
1 , Y

3
2 , Y

3
3 or each random matrix [G0] or [G] must

be constructed. It is assumed that each prior probabil-

ity distribution is represented by the probability density

function pY 1
1
, pY 1

2
, pY 1

3
, pY 1

4
, pY 2

1
, pY 2

2
, pY 3

1
, pY 3

2
, pY 3

3
,

p[G0] or p[G]. The construction of each prior probabil-
ity density function is carried out using the MaxEnt

principle under the constraints defined by the available

information. It is therefore necessary to define the avail-

able information for each random variable, which is the
same for each random matrix [G0] or [G], and for each

random variable Y 1
1 , Y

1
2 , Y

1
3 , Y

1
4 , Y

2
1 , Y

2
2 , Y

3
1 , Y

3
2 , Y

3
3 .

6.2 Effective construction of the prior probability

distributions and their associated generators for the
random matrices

Since the probabilistic model for the modeling uncer-

tainties is constructed with a nonparametric probabilis-

tic approach, and since these matrices are positive-def-

inite, then [G0] and [G] must belong to the ensemble

of the random matrices SG+ introduced in [34]. For

the sake of brevity, we introduce the generic random
matrix [G], defined on (Θ,T,P), with values in M

+
2 (R),

belonging to SG+, with the prior probability distribu-

tion P[G](d̃G) = p[G]([G]) d̃G, representing any one of

the random matrices [G0] or [G]. The volume element

on the space of all the symmetric (2 × 2) real matri-
ces is written as d̃G =

√
2 d[G]11 d[G]12 d[G]22 and the

prior probability density function with respect to d̃G

are such (see [33]) that,

p[G]([G]) = 1
M

+

2
(R)([G])×CG×

(
det[G]

)3(1−δ2G)(2δ2G)−1

× exp{−3(2δ2G)
−1 tr[G]} , (24)

where tr[G] and det[G] are the trace and the determi-
nant of the matrix [G]. The parameter δG is a dispersion

coefficient which allows the level of statistical fluctua-

tions (that is to say the level of uncertainties) of random

matrix [G] to be controlled. The dispersion parameter

must be such that 0 < δG < (3/7)1/2. The positive
constant CG is written as

CG =
(2π)−1/2

(
3

2δ2
G

)3(δ2
G
)−1

Γ
(

3
2δ2

G

)
Γ
(

3
2δ2

G

− 1
2

) , (25)

where Γ is the gamma function such that, for z > 0,

Γ (z) =
∫ +∞

0
tz−1 e−t dt. The generator of independent

realizations of random matrix [G], for which the prior

probability density function is defined by Eq. (24), can

easily be constructed using the following algebraic rep-
resentation of [G],

[G] = [LG]
T [LG] , (26)

where [LG] is a random upper triangular matrix with

values in M2(R) such that [LG]11 = σ
√
2V1, [LG]22 =

σ
√
2V2 , [LG]12 = σU12 in which σ = δG/

√
3 and where

{V1, V2, U12} are independent random variables such
that U12 is a normalized gaussian random variable and,

for j = 1, 2, Vj is a Gamma random variable for which

the probability density function is pVj (v) = 1R+(v)

Γ (zj)
−1 vzj−1e−v with zj = 3/(2δ2

G
) + (1− j)/2.

It should be noted that parameter δG allows the level

of model uncertainties induced by modeling errors to

be controlled for the prior probability model. If no ex-

perimental data are available, then a family of prior

probability models is spanned when δG runs through
its admissible set. This family then allows a sensitivity

analysis to be carried out with respect to the level of un-

certainties which is unknown and consequently, allows
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a robust analysis with respect to model uncertainties

to be performed. If experimental data are available for

given output observation of the system, then an opti-

mal value of parameter δG can be estimated using the
maximum likelihood method [28,39] and experimental

data as explained and validated in [34,37,38].

6.3 Effective construction of the prior probability

distributions and their associated generators for the

random variables

Let Q be the real-valued random variable defined on

(Θ,T,P) with probability distribution PQ(dq) = pQ(q)

dq. Random variable Q represents any one of the ran-

dom variables Y 1
1 , Y

1
2 , Y

1
3 , Y

1
4 , Y

2
1 , Y

2
2 , Y

3
1 , Y

3
2 or Y 3

3 .
We then define the available information for Q and the

prior probability density function pQ is constructed us-

ing the MaxEnt principle. For random variable Q, the

available information are the following. The support of

pQ is the set [qmin , qmax]. The function q �→ pQ(q) must
go to zero when q −→ qmin and q −→ qmax. Since

there is no additional information concerning the be-

havior of pQ in the neighborhood qmin and qmax, we

will then assume that E{log(Q − qmin)} < +∞ and
E{log(qmax−Q)} < +∞, in which E denotes the math-

ematical expectation. The MaxEnt principle then yields

pQ(q) = c0 1[qmin ,qmax](q) (q − qmin)
λ (qmax − q)µ , (27)

in which λ and µ are two deterministic positive con-

stants and where c0 is the constant of normalization.

Since parameters λ and µ have no physical meaning,

these parameters are replaced by the mean value mQ =
E{Q} and by the standard deviation σQ of random vari-

able Q. It can easily be shown that random variable Q

can be written as

Q = (qmax − qmin)Z + qmin , (28)

in which Z is a Beta random variable with values in

[0, 1] for which the probability density function is writ-
ten as pZ(z) = 1[0,1](z)B(a, b)−1 za−1 (1 − z)b−1 with

B(a, b) = Γ (a)Γ (b)/Γ (a+ b). The parameters a and b

are defined by

a =
m2

Z

σ2
Z

(1−mZ)−mZ , (29)

b = (1 −mZ)

{
mZ(1−mZ)

σ2
Z

− 1

}
, (30)

in which the mean valuemZ and the variance σ2
Z of ran-

dom variable Z are written asmZ = (mQ−qmin)/(qmax−
qmin) and σZ = σQ/(qmax − qmin).

Fig. 4 Well and its elements (not at scale)

7 Application

The model and the methodology presented in the pre-

vious sections are used to analyzed the complex system
shown in Fig. 4. This analysis consists in studying the

well integrity assessment of a hypothetical abandoned

well located in a geological storage site of CO2. This

problem explores the CO2 flow within well from CO2

geological storage. The geological formations in contact

with the well are (see Fig. 4) :

– Limestone layers (F1, F2, F4) with average perme-

ability;

– A clay formation (F5) with very low permeability

(caprock);
– A connected aquifer (F3) with high permeability;

– The reservoir (F6) in which CO2 is stored (very per-

meable layer)
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The cement sheaths are initially considered water-saturated.

Moreover the presence of a connected aquifer ensures

a water supply within the cement sheaths. Consider-

ing the pressure differential gradient between the CO2

reservoir and the upper well elements, and the cement

sheaths permeability, CO2 gas can flow through the

well. The initial and limit conditions assessed for the

simulations are the following

– Reservoir water saturation is at the residual water
saturation;

– All other elements are considered water-saturated;

– The aquifer is at hydrostatic pressure;

– The reservoir pressures (water and CO2 fluid) are

time dependent.

The geological formation F7 is a deep saline aquifer
which constitutes the geological reservoir of CO2. It is

assumed that the period of injection is 30 years and

that one million tons of CO2 is injected into the sub-

surface (formation F7) by year. The nonlinear computa-
tional model is constructed using the integrated finite-

difference method. The discretized equations are then

solved using the Newton-Raphson method

7.1 Parameters and data of the model

The well and its near geologic environment are described

in Section 2 by their geometric and material character-
istics. The initial conditions, the boundary conditions,

the fluid characteristics and the physical parameters are

given in Table 1 of the Appendix. For this application, a

preliminary study (not presented in this paper) has al-
lowed the highest uncertain parameters to be identified

which are the cement quality (for sheaths and plugs)

and the physical parameters of the geologic environ-

ment near the well. These parameters are then modeled

by random variables, as explained in Sections 5 and 6,
when probabilistic model is considered (Section 7.2.2).

The values of the parameters of the probability distri-

butions of the uncertain parameters of the mechanical

system are summarized in Table 2 of the Appendix.

7.2 Results and discussions

We are interested in the quantity of migrating CO2 for

several elements of the physical system (e.g. aquifer and

surface) and at a given time. The outputs of interest

are deterministic variables if the input parameters are

fixed to their nominal values (the most likely values) .
In such a case, only one simulation is performed with

the mean computational model (Eq. 18). When the in-

put parameters (the system parameters) are considered

as uncertain parameters, they are modeled by random

variables and several simulations are performed in the

context of the use of the Monte Carlo simulation as the

stochastic solver of the stochastic computational model.

7.2.1 Mean computational model

Fig. 5 Cumulative migration mass of CO2 for the mean (or
nominal) computational model

The mean (or nominal) model is assumed to be the

mean computational model and it is used to assess the
cumulative mass of CO2 migration along the well from

the CO2 reservoir. The results are presented in Fig. 5

and they are expressed as a percentage of the total

amount injected. The temporal evolution of leakage of

CO2 can be divided in three intervals. The first inter-
val, between 0 and 60 years, shows the penetration of

CO2 through the first plug of the well and the cement

sheaths in the lower inner section of the well. The sec-

ond interval, between 60 and 100 years, corresponds to
the beginning of a simultaneous CO2 migration into the

aquifer and to the surface. In the third interval, between

100 and 140 years, CO2 migration is more important in

surface than into the aquifer where quantities remain

stable.

Figure 6 displays five snapshots which show the ce-

ment water saturation at different times: 0, 30, 50, 60

and 80 years. This allows the paths of CO2 migration
along the well to be identified. These paths can be ex-

plained as follows. At t = 30 years, CO2 has risen about

80% of the height of the first horizontal cement barrier

(plug 1) in the lower inner section of the well. The cor-

rosive action of the fluid in the aquifer (formation F3)
has begun to affect the permeability of the steel casing.

At t = 50 years, the CO2 is constituted of gas bub-

bles that rise quickly in the interior of the water which
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Fig. 6 Snapshot of the cement water saturation at time 0,
30, 50, 60 and 80 years

fills the well. These gas bubbles begin to degrade the

second horizontal cement barrier (plug 2). At t = 60

years, CO2 has mainly crossed at the endpoints of the
second horizontal cement barrier, has begun to rise in

the interior of the well, and degrades the underpart of

the third horizontal cement barrier (plug 3). At t = 80

years, the steel casing in the aquifer is highly degraded
and allows the flow of CO2 and its ascent into the space

limited by the two out steel casings. An amount of CO2

has already migrated into the aquifer and in surface.

In order to take into account the most of possibili-

ties of migration of CO2 from the reservoir linked to the
well integrity, we present an analysis in which, both the

system-parameter uncertainties and the modeling er-

rors are taken into account in the mean computational

model by using the generalized probabilistic approach

introduced in Sections 5 and 6.

7.2.2 Probabilistic model of uncertainties

The stochastic computational model presented in Sec-

tions 5 and 6 is used for which the input probabilistic
parameters are defined in Table 2 in Appendix The pre-

diction of the cumulative mass of CO2 migration from

the reservoir along the well is assessed. The CO2 mi-

grations in surface and into the aquifer are presented

in Figs. 7 and 8 for both approaches: the paramet-
ric probabilistic approach for the uncertain system pa-

rameters (PPAU) and generalized (or nonparametric)

probabilistic approach for the model uncertainties in-

duced by modeling errors (GPAU). For matrices [G0]

and [G], an unique value of parameter δG is used and

equal to 0.10. The results obtained with the mean com-

putational model are also presented in the same figures
(so called the nominal model results). Figure 7 shows

Fig. 7 Confidence region with a probability level 90% of the
cumulative CO2 migration in surface

that the values calculated at the surface with the mean

computational model are included in the confidence in-
terval of PPAU, particularly on the lower quantile (5%).

Concerning the calculated values with the mean com-

putational model in the aquifer, Fig. 8 shows that they

are included in the confidence interval of PPAU, near

the upper quantile (95%). Starting from t = 100 years,
the amount of CO2 mass released into the aquifer re-

mains stable because the leak of CO2 occurs mainly in

surface. The confidence regions calculated with GPAU,

in surface and into the aquifer, are higher than those
obtained with PPAU. It should be noted that with

the probabilistic approach, it can be seen that CO2

leakage from the reservoir in the surface and into the

aquifer is a random event that has a non zero probabil-

ity of occurrence at a time earlier than what the mean
computational model predicts: in the surface starting

from t = 60 years (starting from t = 70 years for the

mean computational model) and into the aquifer start-

ing from t = 50 years (starting from t = 60 for the
mean computational model). For t = 140 years, Fig. 9

shows the convergence of the mean value and of the

quantile values (5% and 95%) of the cumulative mass of

CO2 migration in surface predicted with the two prob-

abilistic approaches, as a function of the number N of
simulations. The convergence of the mean value for the

two probabilistic approaches is reached for N > 400

simulations, while the convergence of quantile values is
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Fig. 8 Confidence region with a probability level 90% of cu-
mulative CO2 migration in aquifer

reached for N > 2000.

The probability Pf of exceeding a critical threshold

wc = 0.03% of the total injected quantity during a pe-

riod of 30 years with 1 million tons injected by year,
is shown in Fig. 10 as a function of time, for the two

probabilistic approaches. Figure 10 shows that GPAU is

able to detect a low probability of exceeding the critical

level at initial phase of CO2 migration at the surface.
This is because the confidence regions predicted with

the GPAU is more important than with the PPAU.

Starting from t = 80 years, we can also observe the

probability of exceeding the threshold reaching a cer-

tain range, i.e. where Pf = 1, for the two probabilistic
approaches. In summary, the fact to take into account

model uncertainties will increase the width of the con-

fidence regions. It should be noted that the confidence

regions given by the PPAU are included in the con-
fidence regions given by the GPAU. In addition, it is

convenient to perform a sensitivity analysis of the sta-

tistical dispersion parameter δG (same values for matri-

ces [G0] and [G]) to assess the degree of robustness of

the stochastic computational model, i.e. the sensitivity
of model output values with respect to δG.

7.2.3 Sensitivity analysis of model output values with

respect to δG

As explained at the end of Section 6.2, since no exper-

imental data are available for output observations of

the system, an optimal value of the dispersion parame-

ter δG (same and unique value for [G0] and [G]) which
controls the level of model uncertainties cannot be es-

timated. Consequently, only a robust analysis can be

performed with respect to this parameter, that is to say,

Fig. 9 Convergence analysis of probabilistic solver

Fig. 10 Probability of exceeding a critical threshold of cu-
mulative CO2 migration in surface

with respect to the level of model uncertainties. There-

fore, a sensitivity of the model output values regarding

the parameter δG is presented in this section for three

values 0.10, 0.20 and 0.40. We then analyze the sensi-

tivity of Pf with respect to δG, corresponding to a range
of values defined for the critical threshold wc. Figure 11

displays the evolution of the confidence regions (quan-

tiles 5% and 95%) as a function of parameters δG for

CO2 migration from the reservoir towards the surface
for the two probabilistic approaches. The results of the

mean computational model, obtained in Section 7.2.1,

are also presented in the same figure (nominal model).

We observe that the width of the confidence region in-

creases with δG. For example, for δG = 0.40 and at
t = 140 years, the confidence interval is [0.04%; 1.53%]

calculated by the GPAU which is 10 times larger than

the confidence interval [0.57%; 0.71%] calculated by the
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Fig. 11 Confidence region with a probability level Pc = 90%
of the cumulative CO2 migration in surface for different level
of uncertainties

PPAU. The mean computational model detects CO2

migration in surface starting from t = 70 years, while

the probabilistic approach detects CO2 migration start-

ing from t = 50 years for δG = 0.40 or 0.20. In order

Fig. 12 Probability of exceeding a critical threshold range
in surface at t = 70, 100 and 140 years for both probabilis-
tic approaches (δG = 0.10, 0.20 and 0.40 for GPAU). Zero
values in y-axis are not represented for some points of both
approaches, PPAU curve at t = 70 and 100 years and GPAU
curve at t = 70 years, when δG = 0.10 and 0.20.

to observe more precisely the degree of sensitivity of

Pf with respect to δG, Fig. 12 displays the correspon-

dence between a range of values of a critical threshold

and Pf at three times, t = 70, 100 and 140 years. For a

given time, the range of values of the critical threshold

has arbitrarily been defined on the basis of the maxi-
mum and the minimum values for the two probabilistic

approaches. Figure 12 also shows two interesting as-

pects for the range of values corresponding to the crit-

ical threshold, at t = 70 and 100 years: (a) concerning

the PPAU, as its confidence region is smaller compared
to the GPAU, it is less conservative than the GPAU

as soon as critical threshold increases, that is to say,

the PPAU evaluates early Pf values as zero than the

GPAU; (b) generally, the GPAU allows us to evaluate
more important values for Pf (for the range of values of

the critical threshold) than the PPAU because its con-

fidence region is larger than the PPAU. The calculated

values of Pf increase with δG, but it seems that Pf val-

ues are closer to each other for δG = 0.20 and 0.40.

At t = 140 years, according to an increment of the

critical threshold, the value of Pf calculated by the

GPAU may be lower than that obtained by the PPAU.
However, the critical threshold is important because, as

it can be observed in Fig. 12, we can see the opposite

for the rightmost values, i.e., the value of Pf obtained

with the PPAU may be lower than that obtained by

the GPAU. It should be noted that the computed Pf

for the three values of δG are closer to each other for

the rightmost values of critical threshold.

In summary, for values of δG ≥ 0.20, it could be ob-
served at early years, when CO2 migration is detected

(starting from t = 70 years), the calculated values of

Pf are closer to each other. On the other hand, as a

function of the increments of time and of the critical

threshold values, δG does not seem to have a strong
influence on the calculated values of Pf . However, it

should be noted that it is important to well define the

critical threshold. The value of δG cannot directly be de-

termined because experimental data are not available.
Based on available data, in the context of a real case,

it could be considered a value of δG = 0.20 in order to

model the uncertainties introduced by modeling errors.

8 Conclusions

In geologic reservoirs, the long-term safety and effective

storage of CO2 is of paramount importance for the ac-

ceptance of this technological solution with authorities

and public. However, the predictions of the long-term
safety of the potential storage sites involve a significant

number of uncertainties due to their inherent variabil-

ity and randomness. It is therefore essential to intro-
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duce robust predictive approaches with respect to un-

certainties. In this paper, a robustness analysis has been

presented for a computational model which predicts the

performance and the risks associated with well integrity
on long term . A simplified model is introduced for

which each geological formation along the vertical axis

of the well is modeled by a homogeneous medium. The

mean computational model then combines porous me-

dia flow modeling and degradation models. The results
obtained with the mean computational model are deter-

ministic and are compared to the results obtained with

the probabilistic model of both the system-parameter

uncertainties and the model uncertainties induced by
modeling errors.

It has been shown that the uncertainties have a

strong influence on the migration prediction of the amount

of CO2 along the well from the reservoir of CO2. The

width of confidence regions of the predictions are in-
creasing with the level of model uncertainties. This proved

that the sensitivity of the predictions must be analyzed

with respect to the level δG of model uncertainties and

that the degree of robustness of the stochastic compu-
tational model can be assessed. Such a sensitivity anal-

ysis has been performed and, based on available data,

in the context of a real case, one can consider that a

value of δG =0.20 is appropriate in order to model the

uncertainties introduced by modeling errors.
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Table 1 Initial and boundary conditions, fluid characteristics and physical parameters of the abandoned well

Initial conditions at t = 0 Values

Cement sheaths and plugs saturation 1
System pressure Hydrostatic pressure

Boundary conditions Values

CO2 reservoir pressure 385 bar
Surface pressure 1 bar
Surface temperature 20◦C
Thermal gradient 2.5◦C/100 m

Fluid characteristics Values

Water density 1000 kg/m3

Water viscosity 650 × 10−6 Pa.s
Water leaching velocity 0 mm/(year)0.5

Water generalized corrosion 0 mm/year
Water pitting corrosion 0.1 mm/year
CO2 leaching velocity 1 mm/(year)0.5

CO2 degradation factor 10
CO2 generalized corrosion 2 mm/year
CO2 pitting corrosion 0
Flow leaching velocity of geologic formations 0.1 mm/(year)0.5

Degradation factor of geologic formations 10
Flow generalized corrosion of geologic formations 0.2 mm/year, except F7: 2 mm/year
Flow pitting corrosion of geologic formations 0.5 mm/year, except F7: 0

Physical parameters, cement sheaths Values

Porosity 0.35
Initial axial and radial permeability 10 mD
Capillary pressure head 1
Water residual saturation 0.2

Physical parameters, cement plugs Values

Porosity 0.25
Initial axial and radial permeability 0.1 mD
Capillary pressure head 1
Water residual saturation 0.2

Physical parameters, aquifer, F3 Values

Porosity 0.2
Initial radial permeability 44 mD
Initial axial permeability 103 mD
Capillary pressure head 1
Water residual saturation 0.2

Physical parameters, reservoir, F7 Values

Porosity 0.2
Initial radial permeability 40 mD
Initial axial permeability 40 mD
Capillary pressure head 1
Water residual saturation 0.2
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Table 2 Values of the parameters of the probability distributions for the uncertain parameters of the system

Cement item Physical parameter Data

Cement sheaths Axial permeability [mD] Min = 1, Max = 100, µ = 37, σ = 22
Radial permeability [mD] Min = 1, Max = 100, µ = 37, σ = 22
Capillary pressure head [bar] Min = 1, Max = 105, µ = 33334, σ = 23570
Water residual saturation Min = 0.2, Max = 0.4, µ = 0.27, σ = 0.05

Cement plugs Axial permeability [mD] Min = 0.01, Max = 0.1, µ = 0.07, σ = 0.02
Radial permeability [mD] Min = 0.01, Max = 0.1, µ = 0.07, σ = 0.02
Capillary pressure head [bar] Min = 1, Max = 105, µ = 33334, σ = 23570
Water residual saturation Min = 0.2, Max = 0.4, µ = 0.27, σ = 0.05

Geological formation

Aquifer F3 Axial permeability [mD] Min = 10, Max = 103, µ = 670, σ = 233
Radial permeability [mD] Min = 0.44, Max = 44, µ = 29, σ = 10
Capillary pressure head [bar] Min = 1, Max = 105, µ = 33334, σ = 23570
Porosity Min = 0, Max = 0.2 µ = 0.13, σ = 0.05
Water residual saturation Min = 0.01, Max = 0.2, µ = 0.14, σ = 0.04

Reservoir F7 Axial permeability [mD] Min = 1, Max = 100, µ = 47, σ = 20
Radial permeability [mD] Min = 1, Max = 100, µ = 47, σ = 20
Capillary pressure head [bar] Min = 1, Max = 105, µ = 33334, σ = 23570
Porosity Min = 0, Max = 0.2, µ = 0.13, σ = 0.05
Water residual saturation Min = 0.2, Max = 0.4, µ = 0.27, σ = 0.05

Degradation model

Water leaching velocity [mm/year1/2 ] Min = 0.001, Max = 0.1, µ = 0.04, σ = 0.02
generalized corrosion [mm/year] Min = 0.001, Max = 0.1, µ = 0.00533, σ = 0.00184
pitting corrosion [mm/year] Min = = 0.002, Max = 0.02, µ = 0.01, σ = 0.00368

CO2 leaching velocity [mm/year1/2 ] Min = 0.1, Max = 2, µ = 1, σ = 0.4
degradation factor Min = 1, Max = 10, µ = 5.33, σ = 1.84
generalized corrosion [mm/year] Min = 1, Max = 5, µ =3, σ = 0.82
pitting corrosion [mm/year] 0

Geological formations leaching velocity [mm/year1/2 ] Min = 0.1, Max = 0.5, µ = 0.3, σ = 0.08
degradation factor Min = 1, Max = 10, µ = 5.33, σ = 1.84
generalized corrosion [mm/year] Min = 0.1, Max = 0.5, µ = 0.3, σ = 0.08

except for F7:
Min = 1, Max = 5, µ = 3, σ = 0.82

pitting corrosion [mm/year] Min = 0.2, Max = 1, µ = 0.6, σ = 0.16
except for F7:
0


