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Invariance and homogenization of
an adaptive time gap car-following model

R. Monneau∗, M. Roussignol†, A. Tordeux‡

November 26, 2012

Abstract

In this paper we consider a microscopic model of traffic flow called the adaptive time gap car-
following model. This is a system of ODEs which describes the interactions between cars moving
on a single line. The time gap is the time that a car needs to reach the position of the car in front of
it (if the car in front of it would not move and if the moving car would not change its velocity). In
this model, both the velocity of the car and the time gap satisfy an ODE. We study this model and
show that under certain assumptions, there is an invariant set for which the dynamics is defined for
all times and for which we have a comparison principle. As a consequence, we show rigorously that
after rescaling, this microscopic model converges to a macroscopic model that can be identified as
the classical LWR model for traffic.

AMS Classification: 35B27, 35F20, 49L25, 70F45, 70H20.

Keywords: car-following model, homogenization, traffic, particle system, Hamilton-Jacobi equa-

tion.

1 Introduction

1.1 The adaptive time gap car-following model

We present the adaptive time gap car-following model that has been introduced in [15].
In the following, one denotes by n ∈ Z the index of the vehicle, xn(t) ∈ R its position at

time t, and ẋn =
dxn

dt
> 0 its velocity, and we assume that

(1.1) xn < xn+1.
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The distance gap of the vehicle n is by definition its distance to the vehicle in front of it, i.e.
xn+1 − xn. The time gap of the vehicle n is by definition the time that this vehicle needs to
reach the position of the vehicle in front of it (if the vehicle in front of it would not move
and if the moving vehicle would not change its velocity). This means that the time gap of
the vehicle n is equal to

τn =
1

ẋn

(xn+1 − xn).

Usually, car-following models are defined by a relaxation process applied to the speed or
the distance gap, towards a function of equilibrium. In the model that we consider here, this
is the vehicle time gap that is relaxed. The adaptive time gap car-following model is defined
by the following dynamics for each time t > 0 and each vehicle n ∈ Z,

(1.2)















ẋn(t) =
1

τn(t)
(xn+1(t)− xn(t)),

m τ̇n(t) = g(ẋn(t))− τn(t)

where m > 0 is a parameter calibrating the relaxation and g : R+ 7→ R
+ is a function called

the “targeted time” depending on the velocity. The parameters (even for a more general
model) have been calibrated on real data describing vehicles trajectories on a highway and
we refer the reader to [15] for more details on the calibration.
Mathematically, one of our motivation to study system (1.2) is to understand how the theory
developed in [8] can be adapted here.

The goal of this paper is to obtain homogenization properties for this model, i.e. to prove
a hydrodynamic limit towards a macroscopic model. To this end, we first control the long
time behaviour of vehicle trajectories. This is done identifying an invariant set on which
we can prove a comparison principle. Notice that in the limit case m = 0, these properties
are contained in the work [7] (see Theorem 1.3), since when m = 0, system (1.2) can be
rewritten as

(1.3) ẋn(t) = V (xn+1(t)− xn(t))

in the special case where the function V is well defined through its inverse:

V −1(v) = vg(v).

It is proven (when the function V is continuous monotone increasing) that at large scale,
the microscopic positions of vehicles (xn(t))n∈Z behave like a continuous macroscopic posi-
tion X(t, y) of vehicles at time t as a function of the continuous index y. The continuous
homogenized macroscopic model (see [7]) is the following Hamilton-Jacobi equation

Xt = V (Xy)

where Xα =
∂X

∂α
for α = t, y. Defining the density of vehicles as

ρ(t, X(t, y)) =
1

Xy(t, y)
,
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it is possible to check (at least formally) that ρ(t, x) solves the following LWR model

ρt + (ρV (1/ρ))x = 0.

We refer the reader to [11, 14] for the introduction of the classical LWR model for traffic. We
will see in the next subsection (see Theorem 1.6) that, under certain assumptions, system
(1.2) for m > 0 behaves like its limit case m = 0.

1.2 Main results

Even, if on the one hand it is easy to find solutions of (1.2) defined for all times (under
suitable conditions, see Lemma 4.1), on the other hand, it is not obvious to get a control
on the distance xn+1 − xn which is uniform in time. More precisely, in order to insure the
following property for all times t ≥ 0 and n ∈ Z

(1.4)

{

0 < α ≤ τn(t) ≤ β,
0 < a ≤ xn+1(t)− xn(t) ≤ b

for certain parameters 0 < α ≤ β, and 0 < a < b, we need to choose initial data satisfying
additional assumptions. We also need to impose structural conditions on the dynamics (1.2),
which are given in the following assumption (H). This assumption relates the parameter m,
the function g of the model and also an extra parameter γ which is used to map system (1.2)
onto a monotone system (see later (2.2)).

Assumption (H)
We assume that there exist 0 < α ≤ β, 0 < a < b and γ > 0, m > 0 such that g ∈
C1

([

a

β
,
b

α

])

and















































(H0) 0 < α ≤ g(v) ≤ β ∀v ∈
[

a

β
,
b

α

]

,

(H1) γ >
bβ

aα
> 1,

(H2) inf
v∈[ aβ , b

α ]
Ga,b(v) > b

(

1 +
1

γ

)

with Ga,b(v) := vg(v)
(

2− γm

a
v
)

+
ma

b
v + v2g′(v).

In order to check this assumption, it is interesting to consider low values of m and high
values of γ. In particular, in the limit case where m → 0 and γ → ∞ with γm → 0,
assumption (H) is satisfied for α = β (which implies that g is constant) and a < b < 2a.

In order to make assumption (H) less mysterious, let us give some (indirect) consequences
of it:

Proposition 1.1 (Consequences of assumption (H))
i) (Range of m)
If (m, g) satisfies assumption (H) for a set of parameters (α, β, a, b, γ), then (m′, g) also
satisfies (H) for the same set of parameters for any m′ ∈ (0, m).
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ii) (Definition of V )

If (H) is satisfied, then for any p ∈ [a, b], there exists a unique λ ∈
[

a

β
,
b

α

]

such that

f(λ) = p with f(λ) := λg(λ).

Let us call λ+, λ− ∈
[

a

β
,
b

α

]

the following roots:

f(λ−) = a and f(λ+) = b.

Then the map v 7→ f(v) is increasing on [λ−, λ+] and we define a sort of inverse function

(1.5) V (p) =







λ− if p < a,
λ ∈ [λ−, λ+] with f(λ) = p if p ∈ [a, b],
λ+ if p > b.

Notice (see Lemma 4.2)) that there exists a γ > 1 such that (H2) is satisfied for a = b = p
and α = β = g(λ) with λg(λ) = p if and only if (with the notation of Proposition 1.1):

(1.6) 0 < mV ′(p) <
1

Q

(

p

mV (p)

) with Q(τ) :=







τ if τ ≤ 1,

2
√
τ − 1 if τ > 1.

The function V will appear later in the ergodic and homogenization properties (see
respectively Theorems 1.5 and 1.6). Our first main result is

Theorem 1.2 (Existence, uniqueness and invariance)
Assume (H). Let us introduce the notation

ξn := xn + γmẋn = xn + γm

(

xn+1 − xn

τn

)

.

If there exists an initial data (xn(0), ξn(0))n satisfying for t = 0 and for all n ∈ Z

(1.7)











α ≤ τn(t) ≤ β,

a ≤ xn+1(t)− xn(t) ≤ b,

a ≤ ξn+1(t)− ξn(t) ≤ b

then there exists a unique solution (xn, ξn)n of (1.2), satisfying (1.7) for all t ≥ 0 and all
n ∈ Z.

We can interpret conditions (1.7) as defining an invariant set for the dynamics. More
generally, we can wonder when conditions (1.7) can be checked for the initial conditions.
The following result answers this question under the restriction (1.8) on m > 0.

Proposition 1.3 (Sufficient conditions to check (1.7))
Assume (H) and the following condition

(1.8) 0 < m ≤ 1

γ

(b− a)

(b+ a)

(

1

α
− 1

β

) .
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If the initial data (xn(0), τn(0))n satisfies the following condition for all n ∈ Z

(1.9)























0 < α ≤ τn(0) ≤ β,

0 < a+ c ≤ xn+1(0)− xn(0) ≤ b− c with c =

γm

(

b

α
− a

β

)

1 + γm

(

1

α
+

1

β

) > 0,

then (xn(0), τn(0))n satisfies (1.7).

Notice that assumption (1.8) is equivalent to a+c ≤ b−c with c given in (1.9). Condition
(1.7) shows in particular that the vehicles do not cross each other, which is a natural property
that this model does satisfy.

Indeed, we even have the following comparison principle (on the invariant set):

Theorem 1.4 (Comparison principle for solutions)
Assume (H). Let us consider two solutions (given by Theorem 1.2) (xn, τn)n∈Z and (x̄n, τ̄n)n∈Z
of (1.2) both satisfying (1.7). We set

ξn := xn + γmẋn and ξ̄n := x̄n + γm ˙̄xn.

If
{

xn(t) ≤ x̄n(t),
ξn(t) ≤ ξ̄n(t)

∣

∣

∣

∣

for all n ∈ Z

is satisfied for t = 0, then it is satisfied for all t ≥ 0.

This result is derived in the spirit of the results in [8].
We also have the following long time asymptotics (also called ergodicity property in the

literature on homogenization):

Theorem 1.5 (Ergodicity property)
Assume (H) and let us consider an initial data satisfying (1.7) for t = 0. Let us call
(xn, τn)n∈Z the corresponding solution of (1.2) given by Theorem 1.2. Let us define

ξn := xn + γmẋn.

If there exists p > 0 and C0 ≥ 0 such that for all n ∈ Z

(1.10)

{

|xn(0)− pn| ≤ C0,
|ξn(0)− pn| ≤ C0,

then there exists a constant C1 > 0 such that for all n ∈ Z and for all t ≥ 0

(1.11)

{

|xn(t)− pn− λt| ≤ C1,
|ξn(t)− pn− λt| ≤ C1,

where p ∈ [a, b] and λ = V (p) with V defined in Proposition 1.1.

In particular (1.11) shows that xn(t)/t → λ as t → ∞ and λ is then the mean velocity
of the vehicles.

Our last main result is the following homogenization of the microscopic model:
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Theorem 1.6 (Homogenization)
Assume (H) and (1.8). Let u0 ∈ Lip(R) be a function satisfying

a + c ≤ u′
0(y) ≤ b− c with c =

γm

(

b

α
− a

β

)

1 + γm

(

1

α
+

1

β

) > 0.

For ε > 0, let us consider the initial data for n ∈ Z

(1.12)











xε
n(0) =

u0(εn)

ε
,

0 < α ≤ τ εn(0) ≤ β.

We call (xε
n, τ

ε
n) the solution of (1.2) given by Theorem 1.2 with initial data satisfying (1.12)

(which implies condition (1.7) at the initial time). We denote by ⌊x⌋ the floor integer part
of a real x. Then we have

|εxε
⌊y/ε⌋(t/ε)− u(t, y)| → 0 as ε → 0

locally uniformly on R
+ × R, where u is the unique viscosity solution of

(1.13)

{

ut = V (uy) on (0,∞)× R,
u(0, y) = u0(y) on R.

Recall that (1.13) is a reformulation of the classical LWR model (see the end of Subsection
1.1). We refer the reader to [3, 4] for references on viscosity solutions.

1.3 Brief review of the literature

We refer the reader to [13] for a nice overview a several families of microscopic models for
traffic. As an example, a classical car-following model with acceleration is the “optimal
velocity” model developed by Bando et al. [2]. This model assumes a relaxation of vehicle
speed towards an optimal speed that is a function of the distance gap. Notice that in the
“adaptive time gap car-following“ model [15] that we study in this paper, this is the vehicle
time gap that is relaxed.

Although the microscopic car-following approach is frequently used, rigorous mathemati-
cal analysis of the models are rarely done. Notably, the relation between microscopic models
with macroscopic ones is a research field under development. We refer to [10] for formal
computations, to [1] for partial rigorous results and to [7, 8] for rigorous results.

In the same spirit, let us mention a few stability analysis of microscopic traffic models.
See [12, 16] for such an analysis performed on a ring and also [2, 17] for the case of an infinite
line. Note that probability theory for interacting particles system have also been used to
analyse traffic models, see for instance [9] and [5].

1.4 Organization of the paper

In Section 2 we discuss existence, uniqueness and invariance property for the solutions of
(1.2). More precisely, in a first subsection, we reformulate the dynamics on the new unknown
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(xn, ξn)n, and get a short time existence result in a second subsection, using a truncated
system. In the third subsection, we prove an invariance property satisfied by the dynamics,
which allows us to get global existence of solutions. In a fourth subsection, we give the proof
of Theorem 1.2 of existence and uniqueness of a solution (satisfying an invariance property)
and the proof of Proposition 1.3. In Section 3, we prove a general comparison principle
(Theorem 3.1) for sub and supersolutions, which implies Theorem 1.4. Finally in Section 4,
we prove Theorem 1.5, Proposition 1.1 and Theorem 1.6.

2 Existence, uniqueness and invariance

This section is subdivided in four subsections. In the first subsection, we reformulate the
original system in (xn, τn) in an equivalent system for (xn, ξn) for which we show certain
monotonicity properties of the dynamics. In a second subsection, we consider a truncated
system to apply Cauchy-Lipschitz theorem for existence of a solution. In the third subsection,
we show a crucial property of invariance of the dynamics that allows in the fourth subsection
to get a global existence and uniqueness result.

2.1 Equivalent system

We first show that the original system in (xn, τn) can be reformulated in a system on the
unknown (xn, ξn) (which will enjoy good properties for the comparison principle).

Proposition 2.1 (Equivalent system)
We assume m, γ > 0. Let us set

(2.1) ξn(t) := xn(t) + γmẋn(t).

If (xn, τn)n solves (1.2) with xn+1 − xn > 0 and τn > 0, then (xn, ξn)n solves the following
system:

(2.2)















ẋn =
1

γm
{ξn − xn} ,

ξ̇n = F (xn, xn+1, ξn, ξn+1),

with

F (xn, xn+1, ξn, ξn+1) :=
1

m
(ξn − xn)



1 +
1

γ







ξn+1 − ξn
xn+1 − xn

−
(ξn − xn) g

(

ξn−xn

γm

)

m(xn+1 − xn)









 .

Reciprocally, if (xn, ξn)n solves (2.2) with xn+1 − xn > 0 and ξn − xn > 0, then (xn, τn)n
solves (1.2) with

(2.3) τn = γm
(xn+1 − xn)

(ξn − xn)
.

All the solutions here are assumed to be C1 in time.
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Proof of Proposition 2.1
Step 1: Preliminary
We notice that we have the following equivalence

(2.4)



























ξn = xn + γmẋn,

ẋn =
1

τn
(xn+1 − xn),

τn > 0, xn+1 − xn > 0,

⇐⇒



































ẋn =
1

γm
{ξn − xn} ,

τn = γm
(xn+1 − xn)

(ξn − xn)
,

ξn − xn > 0, xn+1 − xn > 0.

Step 2: derivation of the ODE on ξn
We compute

ξ̇n = ẋn + γm

{

− τ̇n
τn

ẋn +
1

τn
(ẋn+1 − ẋn)

}

= ẋn − γ
mτ̇n
τn

ẋn +
1

τn
{(ξn+1 − ξn)− (xn+1 − xn)}

= −γ
mτ̇n
τn

ẋn +
1

τn
(ξn+1 − ξn)

=
(ξn − xn)

m
− γ

(mτ̇n + τn)

τn
ẋn +

1

τn
(ξn+1 − ξn)

where in the first line we have used the first line of (1.2); in the second line we have also
used the first line of (1.2); in the last line we have used (2.1). In the last line, we can replace
ẋn by its value in (2.4) (without time derivative), and we check that

ξ̇n = F (xn, xn+1, ξn, ξn+1)

if and only if
mτ̇n = g(ẋn)− τn.

Step 3: Conclusion
We have shown the equivalence between (2.2) and (1.2).
This ends the proof of the proposition.

We now present some monotonicity properties of F (xn, xn+1, ξn, ξn+1) = F (y) that will
be used later and set the notation

(2.5)















y = (y1, y2, y3, y4) = (xn, xn+1, ξn, ξn+1),

F ′
i (y) =

∂F

∂yi
(y) for i = 1, ..., 4.

Lemma 2.2 (Monotonicity of F )
Let us consider a function g ∈ C1(R) ∩W 1,∞(R) such that assumption (H) is satisfied. We
define

f(v) := vg(v).

8



i) Perturbation of assumptions (H1) and (H2)
Then there exists ρ > 0 (small enough) such that setting

(2.6)



















































ā := a− ρ,

b̄ := b+ ρ,

a :=
a− ρ

β + ρ
,

b :=
b+ ρ

α− ρ
,

we have

(2.7) γ

(

inf
v∈[a,b]

f(v)

)

> b̄

and

(2.8) inf
v∈[a,b]

Gā,b̄(v) > b̄

(

1 +
1

γ

)

where the function Gā,b̄ is defined in (H2).
ii) Monotonicity of F
Then (with notation (2.5)) we have

F ′
1(y) ≥ 0, F ′

2(y) ≥ 0, F ′
4(y) ≥ 0,

if y ∈ co(Kρ), where co(Kρ) is the convex hull of the set Kρ defined by
(2.9)

Kρ :=































y = (y1, y2, y3, y4) ∈ R
4,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 < a− ρ ≤ y2 − y1 ≤ b+ ρ,

0 < a− ρ ≤ y4 − y3 ≤ b+ ρ,

0 < α− ρ ≤ τ ≤ β + ρ with τ = γm

(

y2 − y1
y3 − y1

)































.

Proof of Lemma 2.2
We have

(2.10) F (y) =
1

m
(y3 − y1)

(

1 +
1

γ(y2 − y1)

{

(y4 − y3)− γf

(

y3 − y1
γm

)})

.

Step 0: proof of i)

We notice that for v ∈
[

a

β
,
b

α

]

, assumption (H0) implies

γf(v) ≥ γ
a

β
α

and then

(2.11) γf(v) > b

9



by assumption (H1). Then (2.7) and (2.8) follow respectively by perturbation of (2.11) and
(H2).
Step 1: proof of F ′

4 ≥ 0
We have

F ′
4(y) =

1

γm

y3 − y1
y2 − y1

> 0.

Step 2: proof of F ′
2 ≥ 0

We have

F ′
2(y) = − 1

γm

(y3 − y1)

(y2 − y1)2
J with J := (y4 − y3)− γf

(

y3 − y1
γm

)

.

If y ∈ Kρ, we set v =
y3 − y1
γm

=
y2 − y1

τ
∈
[

a− ρ

β + ρ
,
b+ ρ

α− ρ

]

= [a, b]. If now y ∈ co(Kρ), then

v =
y3 − y1
γm

∈ co([a, b]) = [a, b] and we can compute

−J = γf(v)− (y4 − y3)

≥ γf(v)− (b+ ρ)

≥ 0

where in the second line we have used the definition of Kρ, and we have used (2.7) in the
last line. This implies F ′

2 ≥ 0 on co(Kρ).
Step 3: proof of F ′

1 ≥ 0
Setting z = y2 − y1 and z̄ = y4 − y3, we write

F (y) =
1

m
(y3 − y1)

(

1 +
1

γz

{

z̄ − γf

(

y3 − y1
γm

)})

and we compute with the previous notation

F ′
1(y) = − 1

m

(

1 +
1

γz
{z̄ − γf(v)}

)

+
1

γm

(y3 − y1)

z2
{z̄ − γf(v)}+ f ′(v)

γm2

(

y3 − y1
z

)

= − 1

m

(

1 +
1

γz
{z̄ − γf(v)}

)

+
v

z2
{z̄ − γf(v)}+ vf ′v)

mz

=
1

mz

{

f(v) + vf ′(v) +
mv

z
{z̄ − γf(v)} −

(

z +
z̄

γ

)}

≥ 1

mz

{

f(v) +mv

(

ā

b̄
− γf(v)

ā
+

f ′(v)

m

)

− b̄

(

1 +
1

γ

)}

≥ 0

where in the fourth line we have used the fact that y ∈ Kρ, and the last line follows from
(2.8) and the fact that v ∈ [a, b] when y ∈ co(Kρ).
This ends the proof of the lemma.
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2.2 Truncated system

Notice that the dynamics of system (2.2) is not globally Lipschitz. This is the reason to
introduce a new truncated system. To this end, for any r ≤ s, we define the truncation
function

Tr,s(x) =







r if x < r,
x if x ∈ [r, s],
s if x > s.

We want our new truncated system to be equivalent to the original system (without trun-
cation) when (xn, xn+1, ξn, ξn+1) ∈ Kρ for all n ∈ Z, for Kρ defined in (2.9) with ρ > 0. For
this reason we consider the following truncated system

(2.12)















ẋn = Ta,b

(

ξn − xn

γm

)

,

ξ̇n = F̄ (xn, xn+1, ξn, ξn+1) = F̄

with (keeping in mind the expression (2.10) of F )

F̄ = γTa,b

(

ξn − xn

γm

)(

1 +
1

γTā,b̄(xn+1 − xn)

{

Tā,b̄(ξn+1 − ξn)− γf

(

Ta,b

(

ξn − xn

γm

))})

where 0 < ā, b̄, 0 < a, b are defined in (2.6).
Then we have

Proposition 2.3 (Existence and uniqueness for the truncated system)
Assume 0 < a < b, 0 < α ≤ β, m, γ > 0 and that g ∈ C1 (R) ∩W 1,∞(R).
i) (Existence and uniqueness)
Given any initial condition (xn(0), ξn(0))n, there exists a unique solution (xn(t), ξn(t))n of
(2.12) defined for all times t ≥ 0.
ii) (Time estimate)
Assume (H) and let ρ given by Lemma 2.2. There exists δ > 0 such that if

(2.13) (xn(0), xn+1(0), ξn(0), ξn+1(0)) ∈ K0 for all n ∈ Z

then

(2.14) (xn(t), xn+1(t), ξn(t), ξn+1(t)) ∈ Kρ for all n ∈ Z for all t ∈ [0, δ]

where Kρ is defined in (2.9).

Proof of Proposition 2.3
Proof of i)
The result is a simple consequence of the classical Cauchy-Lipschitz theorem in Banach
spaces (see for instance the proof of theorem 5.1 in [6], where a similar argument is given).
Proof of ii)
We notice that we have

|ẋn|, |ξ̇n| ≤ Mρ.

Therefore there exists δ > 0 (only depending on ρ, but not on the initial data satisfying
(2.13)) such that (2.14) holds.
This ends the proof of the proposition.
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2.3 Invariance

Proposition 2.4 (Invariance property)
Under the assumptions of Proposition 2.3, assuming in particular that the initial data satis-
fies (2.13), we have

(2.15) (xn(t), xn+1(t), ξn(t), ξn+1(t)) ∈ K0 for all n ∈ Z for all t ∈ [0, δ].

Proof of Proposition 2.4
Because of Proposition 2.3 ii), we deduce that our solution (xn, ξn)n solves the original system
(without truncation) (2.2) on the time interval [0, δ], and then by Proposition 2.1, we have
equivalence with system (1.2).
Let us define







































































z1n(t) = xn+1(t)− xn(t)− b,

z2n(t) = a− (xn+1(t)− xn(t)),

z3n(t) = ξn+1(t)− ξn(t)− b,

z4n(t) = a− (ξn+1(t)− ξn(t)),

z5n(t) = τn(t)− β,

z6n(t) = α− τn(t)

where τn is given in (2.3). We set

M(t) = sup
n∈Z

max
j=1,...,6

zjn(t).

Let us consider t∗ ∈ (0, δ) and let us assume that

M(t∗) = sup
n∈Z

zjn(t∗) for some j ∈ {1, ..., 6}.

Part I: first (formal) analysis
In a first analysis, we assume that

M(t∗) = zjn∗

(t∗) for some j ∈ {1, ..., 6} and for some n∗ ∈ Z.

Step 1: j = 1
We have for t = t∗, using the dynamics

ż1n∗

=
1

γm

(

z3n∗

− z1n∗

)

≤ 0

where the last inequality follows from the fact that zjn∗

(t∗) is maximal for j = 1.
Step 2: j = 2
Similarly, we have for t = t∗

ż2n∗

=
1

γm

(

z4n∗

− z2n∗

)

≤ 0.
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Step 3: j = 3
We set

Yn = ((Yn)1, (Yn)2, (Yn)3, (Yn)4) = (xn, xn+1, ξn, ξn+1).

We have for t = t∗, n = n∗ and B = (b, b, b, b)

ż3n∗

= F (Yn+1)− F (Yn)

= F (Yn+1 −B)− F (Yn)

=
∑

i=1,...,4

((Yn+1)i − (Yn)i − b)F ′
i (Z) with Z = θ(Yn+1 − B) + (1− θ)Yn

= z1nF
′
1(Z) + z1n+1F

′
2(Z) + z3nF

′
3(Z) + z3n+1F

′
4(Z)

≤ z3n

(

∑

i=1,...,4

F ′
i (Z)

)

= 0.

In the third line we have introduced θ ∈ [0, 1], in the fifth line, we have used the monotonicity
F ′
1, F

′
2, F

′
4 ≥ 0 on co(Kρ), and in the last line we have used the fact that

∑

i=1,...,4F
′
i = 0

because F (Y + (z, z, z, z)) = F (Y ) for all admissible real z.
Step 4: j = 4
Similarly, we get with the same notation for t = t∗, n = n∗ and A = (a, a, a, a)

ż4n∗

= −(F (Yn+1 − A)− F (Yn))

= z2nF
′
1(Z̄) + z2n+1F

′
2(Z̄) + z4nF

′
3(Z̄) + z4n+1F

′
4(Z̄) with Z̄ = θ(Yn+1 −A) + (1− θ)Yn

≤ z4n

(

∑

i=1,...,4

F ′
i (Z̄)

)

= 0.

Step 5: j = 5
We recall that τn satisfies the second equation of (1.2). Then we have for t = t∗ and n = n∗

(2.16) ż5n∗

=
1

m
(g(ẋn)− τn) =

1

m

(

g(ẋn)− β − z5n
)

and with Lg the Lipschitz constant of g:

g(ẋn)− β ≤















































g(ẋn)− g

(

a

β

)

≤ Lg

(

a

β
− ẋn

)

if ẋn <
a

β
,

0 if ẋn ∈
[

a

β
,
b

α

]

,

g(ẋn)− g

(

b

α

)

≤ Lg

(

ẋn −
b

α

)

if ẋn >
b

α
.
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We also have

ẋn −
a

β
=

xn+1 − xn

τn
− a

β
=

β(xn+1 − xn − a)− a(τn − β)

βτn
=

−βz2n − az5n
βτn

and similarly

ẋn −
b

α
=

αz1n + bz6n
ατn

which implies (using the fact that the zjn are maximal for j = 5)

g(ẋn)− β ≤ Lg

(

1 +
b

α

) |z5n|
τn

.

Using the fact that τn ≥ α − ρ > 0, we deduce from (2.16) that there exists a constant L5

such that
ż5n∗

≤ L5|z5n|.
Step 6: j = 6
Similarly we have for t = t∗ and n = n∗

(2.17) ż6n∗

=
1

m
(g(ẋn)− τn) =

1

m

(

z6n + α− g(ẋn)
)

and we get the existence of a constant L6 such that

ż6n∗

≤ L6|z6n|.

Step 7: Conclusion
Under the previous assumptions, we have (formally)

(2.18) Ṁ(t∗) ≤ L|M(t∗)|.

Part II: the (rigorous) proof
In general we may also have

M(t∗) = sup
n∈Z

zjn(t∗) = lim
k→∞

zjnk
(t∗)

for some unbounded sequence (nk)k. In that case, up to redefine the sequences, we have






xk
n(t) = xn+nk

(t)− xnk
(0) → x∞

n (t),

ξkn(t) = ξn+nk
(t)− xnk

(0) → ξ∞n (t)

∣

∣

∣

∣

∣

∣

as k → +∞

and we can apply the reasoning of part I (Steps 1 to 6) to the solution (x∞
n , ξ∞n )n. And then

this implies that (2.18) holds true, but this has to be understood in the viscosity sense (see
[3, 4]). We now notice that

M(0) ≤ 0

because the initial data satisfies (2.13). Then a Gronwall type argument (which, in the
viscosity setting, is simply the comparison principle applied with the zero solution) implies
that

M(t) ≤ 0 for all t ∈ [0, δ]

which means exactly (2.15). This ends the proof of the Proposition.
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2.4 Proofs of Theorem 1.2 and Proposition 1.3

Proof of Theorem 1.2
Propositions 2.3 and 2.4 imply the existence and uniqueness of a solution (xn, ξn)n satisfying
condition (2.15) on the time interval [0, δ]. This implies (1.7) on the same time interval.
Iterating on new intervals [kδ, (k + 1)δ], we get the result for all times t ≥ 0. This ends the
proof of the theorem.

Proof of Proposition 1.3
We have at time t = 0:

ξn = xn + γm
(xn+1 − xn)

τn
and then

ξn+1 − ξn = xn+1 − xn + γm

{

(xn+2 − xn+1)

τn+1
− (xn+1 − xn)

τn

}

.

Notice that
(a+ c)

β
≤ (xn+1 − xn)

τn
≤ (b− c)

α
.

This implies that ξn+1 − ξn ∈ [a, b] (and then condition (1.7) is checked at time t = 0) if

c ≥ γm

{

(b− c)

α
− (a+ c)

β

}

i.e.

(2.19) c ≥
γm

(

b

α
− a

β

)

1 + γm

(

1

α
+

1

β

)

which is true because our choice (1.9) of c means equality in (2.19). Finally the (necessary)
condition that a + c ≤ b − c is satisfied if and only if condition (1.8) is satisfied. This ends
the proof of the proposition.

3 Comparison principle

This section is devoted to the proof of the comparison principle.
We say that (xn, ξn)n is a subsolution of (2.2) if for all n ∈ Z and all t > 0















ẋn ≤ 1

γm
{ξn − xn} ,

ξ̇n ≤ F (xn, xn+1, ξn, ξn+1).

Similarly, we say that (x̄n, ξ̄n)n is a supersolution of (2.2) if for all n ∈ Z and all t > 0














˙̄xn ≥ 1

γm

{

ξ̄n − x̄n

}

,

˙̄ξn ≥ F (x̄n, x̄n+1, ξ̄n, ξ̄n+1).
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We have the following generalization which implies Theorem 1.4.

Theorem 3.1 (Comparison principle for Lipschitz sub and supersolutions)
Assume (H). Let us consider a subsolution (xn, ξn)n∈Z and a supersolution (x̄n, ξ̄n)n∈Z of
(2.2) both satisfying (1.7) with

τn := γm
(xn+1 − xn)

(ξn − xn)
, τ̄n := γm

(x̄n+1 − x̄n)

(ξ̄n − x̄n)
.

We also assume that there exists a constant C > 0 such that

(3.1) |ẋn(t)|, |ξ̇n(t)|, | ˙̄xn(t)|, | ˙̄ξn(t)| ≤ C for all t ≥ 0 and for all n ∈ Z.

If

(3.2)

{

xn(t) ≤ x̄n(t),
ξn(t) ≤ ξ̄n(t)

∣

∣

∣

∣

for all n ∈ Z

is satisfied for t = 0, then it is satisfied for all t ≥ 0.

Proof of Theorem 3.1
We proceed similarly as in the proof of Proposition 2.4. We define

{

z1n = xn − x̄n,
z2n = ξn − ξ̄n

and we set
M(t) = sup

n∈Z
max
j=1,2

zjn(t).

Let us consider t∗ > 0 and let us assume that

M(t∗) = sup
n∈Z

zjn(t∗) for some j ∈ {1, 2}.

Part I: first (formal) analysis
In a first analysis, we assume that

M(t∗) = zjn∗

(t∗) for some j ∈ {1, 2} and for some n∗ ∈ Z

and that all the functions are derivable at time t∗.
Step 1: j = 1
We have for t = t∗, using the dynamics

ż1n∗

≤ 1

γm

(

z2n∗

− z1n∗

)

≤ 0

where the last inequality follows from the fact that zjn∗

(t∗) is maximal for j = 1.
Step 2: j = 2
We proceed similarly to Step 3 of the proof of Proposition 2.4. We set

Yn = ((Yn)1, (Yn)2, (Yn)3, (Yn)4) = (xn, xn+1, ξn, ξn+1)
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and
Ȳn = ((Ȳn)1, (Ȳn)2, (Ȳn)3, (Ȳn)4) = (x̄n, x̄n+1, ξ̄n, ξ̄n+1).

We have for t = t∗ and n = n∗

ż2n∗

≤ F (Yn)− F (Ȳn)

≤ z2n

(

∑

i=1,...,4

F ′
i (Z)

)

with Z = θYn + (1− θ)Ȳn

= 0.

Step 3: Conclusion
Under the previous assumptions, we have (formally)

(3.3) Ṁ(t∗) ≤ 0.

Part II: the (rigorous) proof
Using (3.1), we proceed as in the proof of Proposition 2.4 and then conclude from M(0) ≤ 0
that M(t) ≤ 0 for all times t ≥ 0. This shows (3.2) and ends the proof of the Theorem.

4 Ergodicity and homogenization

This section is composed of three subsections. In the first subsection we establish the ergod-
icity properties of the dynamics, while in the second short subsection we indicate how the
homogenization result can be obtained. Finally in the third subsection, we prove miscella-
neous results of independent interest.

4.1 Ergodicity property

Proof of Theorem 1.5
Because the initial data satisfies both (1.10) and (1.7), we deduce that p ∈ [a, b].
Step 1: Construction of a root of λg(λ) = p
Step 1.1: First proof
The existence of a root λ of the equation λg(λ) = p, can be obtained following the lines of
proof of [8] (see Definition 1.8 and Theorem 1.10 in [8]). Indeed, given p ∈ [a, b], we can
show the existence of an effective Hamiltonian λ = H̄(p) such that there exists hull functions
h1, h2 satisfying h′

1 = 1 = h′
2 (because of the invariance by translation of the problem) such

that (x(t, y), ξ(t, y)) = (h1(py + λt), h2(py + λt)) is solution of the system

(4.1)















xt =
1

γm
(ξ − x),

ξt = F (x(t, y), x(t, y + 1), ξ(t, y), ξ(t, y+ 1)).

Up to translation, we can then show that we can choose

x(t, y) = py + λt, ξ(t, y) = py + λt+ d
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where
p = λg(λ) and d = γmλ.

Step 1.2: Second proof
It is usefull to give a second self-contained proof of the existence of a root λ, that will be
also useful later for showing the monotonicity of λ in terms of p. We consider initial data
for p ∈ [a, b]

xn(0) = pn, ξn(0) = pn+ d0

with d0 > 0 that we choose such that

τn(0) := γm

(

xn+1(0)− xn(0)

ξn(0)− xn(0)

)

=
γmp

d0
∈ [α, β].

Our initial data satisfies (1.7) and then Theorem 1.2 gives us the existence of (xn, τn)n
solution of (1.2) (or equivalently (xn, ξn)n solution of (2.2)) such that (1.7) is satisfied for all
times t ≥ 0. In particular, this implies that

(4.2)
p

ẋn(0)
∈ [α, β] and ẋn(t) ∈

[

a

β
,
b

α

]

.

Notice that

(4.3) xn+1(t) = xn(t) + p, ξn+1(t) = ξn(t) + p

holds for t = 0, and then (using a comparison principle for (4.1), or alternatively the unique-
ness result of Theorem 1.2), we get that (4.3) holds true for all times t ≥ 0. This shows
that

xn(t) = pn+ x0(t), ξn(t) = pn+ ξ0(t)

and (x0, ξ0) solves



















ẋ0 =
1

γm
(ξ0 − x0),

ξ̇0 = F (x0, x0 + p, ξ0, ξ0 + p) =
(ξ0 − x0)

m

(

1 +
1

γp

{

p− γf

(

ξ0 − x0

γm

)})

where f(v) = vg(v). Setting
λ0 = ẋ0

we deduce that λ0 solves

(4.4)



















mλ̇0 = λ0

{

1− 1

p
f(λ0)

}

,

p

λ0(0)
∈ [α, β]

where λ0(t) ∈
[

a

β
,
b

α

]

because of (4.2).

We choose λ0(0) =
a

β
, and then realize that λ0(t) is non decreasing and bounded, and then
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converges as t → +∞ to a value λ which is a root of p = f(λ) which establishes the desired
result.
Step 2: Uniqueness of λ

Assume that we have two candidates λ < λ̄ with λ, λ̄ ∈
[

a

β
,
b

α

]

satisfying

p = λg(λ) = λ̄g(λ̄)

and let us set
d = γmλ, and d̄ = γmλ̄.

We set

(4.5) xn(t) = pn+ λt, ξn(t) = pn + λt+ d

and
x̄n(t) = pn+ λ̄t− C, ξ̄n(t) = pn+ λ̄t+ d̄− C.

We choose C > 0 large enough such that

(4.6) x̄n(t) < xn(t) and ξ̄n(t) < ξn(t)

holds at t = 0, and then the comparison principle implies that (4.6) holds true for all t ≥ 0,
which implies that λ̄ ≤ λ. Contradiction. This shows the uniqueness of the parameter λ.
Step 3: proof of (1.11)
The result follows from the comparison to the exact solution given in (4.5).
This ends the proof of the theorem.

Proof of Proposition 1.1
Proof of Proposition i)
We compute

−1

v

∂

∂m
(Ga,b(v)) =

γ

a
vg(v)− a

b
>

b

a
− a

b
> 0

which implies the result.
Proof of Proposition ii)
Because of our proof of Theorem 1.5, it only remains to show that f(v) = vg(v) is increasing

on
[

a
β
, b
α

]

. To this end, we notice that if p < p̄ and λ0 solves (4.4) and λ̄0 solves

m ˙̄λ0 = λ̄0

{

1− 1

p̄
f(λ̄0)

}

with the same initial data λ0(0) = λ̄0(0) =
a

β
, then we have

λ̄0(t) ≥ λ0(t)

and then
λ̄ = λ̄0(+∞) ≥ λ0(+∞) = λ

where
p̄ = f(λ̄) and p = f(λ).

19



This implies that f is non decreasing on

[

a

β
,
b

α

]

, and then increasing on the same interval,

by uniqueness of the λ. This allows us to define the inverse V given in (1.5). This ends the
proof of the proposition.

4.2 Homogenization

Proof of Theorem 1.6
The proof follows closely the lines of the proof of Theorem 1.5 in [8] with no further difficul-
ties. For this reason, we skip the details of the proof.

4.3 Proofs of miscellaneous results

In this subsection we first prove that the dynamics (1.2) is well defined for all time under poor
assumptions (Lemma 4.1). We next characterize assumption (H2) restricted on homogeneous
states.

Lemma 4.1 (Existence and uniqueness under poor assumptions)
Let 0 < α ≤ β, 0 < a ≤ b. Let us assume that g ∈ C1 ([0,+∞); [α, β]) and that the initial
data (xn(0), τn(0))n satisfies (1.4) at t = 0. Then there exists a unique solution (xn(t), τn(t))n
of (1.2) satisfying for all times t ≥ 0 and all n ∈ Z

(4.7) 0 < ae−
t
α ≤ xn+1(t)− xn(t) ≤ be

t
α , 0 < α ≤ τn(t) ≤ β

Sketch of the proof of Lemma 4.1
The proof of existence (and uniqueness) can be done similarly to the proof of Theorem 1.2.
We only focus on the proof of estimate (4.7).
Step 1: control on τn
We recall that τn solves

mτ̇n = g(ẋn)− τn.

Because of the range [α, β] of g and τn(0) ∈ [α, β], we immediately deduce that τn(t) ∈ [α, β]
for all times.
Step 2: control on xn+1 − xn

Let us call
dn = xn+1 − xn

and
M(t) = sup

n∈Z
dn(t) and M(t) = inf

n∈Z
dn(t).

We have

ḋn =
dn+1

τn+1
− dn

τn
.

Therefore we deduce (while M ≥ 0)

Ṁ ≥ −M

α
and Ṁ ≤ M

α
.

This implies (4.7) and ends the proof of the lemma.
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Lemma 4.2 (Equivalent condition for (H2) on a homogeneous state)
There exists a γ > 1 such that (H2) is satisfied for a = b = p > 0 and α = β = g(λ) with
f(λ) = p if and only if

(4.8)
1

m
f ′ (λ) > Q

(

1

m
g (λ)

)

> 0

with

(4.9) Q(τ) :=







τ if τ ≤ 1,

2
√
τ − 1 if τ > 1

of equivalently

(4.10) 0 < mV ′(p) <
1

Q

(

p

mV (p)

) .

Proof of Lemma 4.2
Step 1: reduction
We first notice that if (xn(t), τn(t))n satisfies (1.2), then











x̄n(t̄) = xn(t),

τ̄n(t̄) =
τn(t)

m
,

with t = mt̄

and (x̄n, τ̄n)n solves

(4.11)











˙̄xn =
1

τ̄n
(x̄n+1 − x̄n),

˙̄τn = ḡ( ˙̄xn)− τ̄n

which is similar to system (1.2) with m replaced by 1 and g replaced by

ḡ(v̄) =
1

m
g
( v̄

m

)

.

Step 2: checking (H2)
By construction, condition (H2) for (1.2) for v = λ is equivalent to (H2) for system (4.11)
for v̄ = λ̄ = mλ, i.e. with p = λg(λ) = λ̄ḡ(λ̄):

(4.12) ḡ(λ̄) + 1 + λ̄ḡ′(λ̄) > γ +
ḡ(λ̄)

γ
=: H(γ).

If is easy to check that

inf
γ∈(1,+∞)

H(γ) = H

(

max

(

1,
√

ḡ(λ̄)

))
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and then there exists a γ > 1 such that (4.12) holds if and only if

ḡ(λ̄) + 1 + λ̄ḡ′(λ̄) > H

(

max

(

1,
√

ḡ(λ̄)

))

i.e. with f̄(λ̄) = λ̄ḡ(λ̄):

(4.13) f̄ ′(λ̄) > Q(ḡ(λ̄)) > 0.

Setting V̄ = (f̄)−1, we see that (4.13) is equivalent to

(4.14) 0 < V̄ ′(p) <
1

Q

(

p

V̄ (p)

) .

Step 3: conclusion

Finally we notice that f̄(λ̄) = f

(

λ̄

m

)

and then V̄ (p) = mV (p), and conclude that (4.13)

and (4.14) are respectively equivalent to (4.8) and (4.10).
This ends the proof of the lemma.
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