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CONVEXIFICATION OF HIGH-DIMENSION MULTI-LABEL
PROBLEMS

NICOLAS PAPADAKIS∗, JEAN-FRANÇOIS AUJOL† , VICENT CASELLES‡ , AND ROMAIN

YILDIZOĞLU

Abstract. This paper is concerned with the problem of relaxing non convex functionals used in
image processing into convex problems. We review most of the recently introduced convexification
methods, and we propose a new one based on a probabilistic approach, which has the advantages
of being intuitive and flexible. We investigate in detail the connections between the solution of
the relaxed functional with a minimizer of the original one. As a case of study, we illustrate our
theoretical analysis with numerical experiments, namely for the optical flow problem.
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1. Introduction. This paper is concerned with image processing problems whose
solutions are computed as the minimizer of some functional (see e.g. [4]). The con-
sidered functionals have a data term which depends on the considered application,
and a regularization term. Many image processing problems can be modeled as the
minimizers of non convex functionals. This non convexity may arise from the physics
of the problem as in speckle noise removal [3]. It may be due to the non locality of
the functional [5]. It can also come from the problem itself as in image segmentation
[21, 13, 8, 19], optical flow computation [4, 23], . . . .

Non convexity of the functional to minimize may cause several issues. On the
one hand, the solution of the problem may not exist, and even when it exists may be
non unique. On the other hand, numerical algorithms to compute the solution may
get stuck into local minima, and the numerical solution may depend heavily on the
initialization choice (in the case of iterative algorithms).

For all these reasons, it is a major improvement when a non convex problem
can be turned into a convex one. Some steps in this direction have been done in
the last past years [9, 22, 2, 25, 23, 11, 27, 8, 17] within the mathematical image
processing community. It has first been used for image segmentation as in [22], but
it is now used for some higher dimensional problems such as optical flow [23]. The
main idea of all these approaches is to introduce a new variable of higher dimension
and solve a convex relaxed problem. If the original functional has some properties
such as satisfying some layer cake formula, then a thresholding of the minimizer of
the relaxed problem is a global minimizer of the original non convex problem (see
[9, 22] for seminal works in this direction). Of course, due to the curse of dimension,
resorting to higher dimensional variables increases the computation time. . This is
the reason why convexification methods become more challenging when the dimension
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of the variables is larger than one. This is the case for the optical flow problem (as
compared with the segmentation one [22]), and this is the reason why we focus in this
paper on the optical flow computation.

This paper is inspired by all the works recalled in the above paragraph. It proposes
new convexification choices, based on a probabilistic modeling and leading to new
algorithms. We illustrate our approach on the optical flow problem. Our numerical
experiments validate the interest of the approach.

In all the proposed models, the regularization term is based on total variation.
Such a term benefits from a layer cake formula thanks to the the coarea formula. This
property plays a key role when one wants to relate the solution of the relaxed problem
to the one of the original problem, as it will be detailed in the paper. Notice that
some approaches such as [27] propose to use a truncated version of total variation, as
it was shown to be useful in image restoration (see [4]). This non convexity of the
regularization term may lead to better preservation of discontinuities. However, as
explained in the next paragraph, an important aspect of our work lies in the study of
how to get back from the solution of the relaxed problem to the one of the original
problem. The natural setting for such a study is to consider a classical total variation
term for the regularization and not a non convex version of it.

The main contributions of the paper are the following:

• We provide the reader with a review of most of the recently introduced con-
vexification methods in image processing. We discuss in particular the con-
nections between theses approaches, as well as some of their advantages and
weaknesses.

• We introduce a new framework to relax image processing functionals into
convex problems. Our approach is based on a probabilistic point of view
which has the advantage of being flexible and intuitive.

• We discuss in details possible strategies to get back from a solution of the
relaxed functionals to a minimizer of the original problem. As far as we
know, this issue has not been investigated thoroughly in the literature yet. It
is nevertheless a major problem, since computing a minimizer of the relaxed
functional is of no interest if it is not related to a minimizer of the original
problem.

• We illustrate the different approaches presented in the paper as well as the
new ones on different applications including namely the optical flow problem.
Since dimension is a major issue with convexification (as the dimension of the
variables is increased when the functional is relaxed), we feel that optical flow
is a good application to test the different frameworks (in view of the curse of
dimension). Note that the different experiments focus on the ability of the
proposed approach to recover global minima of the original problems.

The outline of the paper is as follows. We introduce the discrete framework
we consider in Section 2. In particular, we detail the discretization choice, as well
as the primal-dual algorithm that will be at the heart of all the numerical methods
presented in the paper. For the sake of clarity, we first deal with the case of dimension
1 in Section 3. We recall the framework introduced in [25], and we then introduce
a new one based on a probabilistic modeling. In all these approaches, the solution
of the original problem is computed from the one of the relaxed problem with a
simple thresholding strategy. We conclude Section 3 by showing the connection of
our probabilistic framework with the approach of Chambolle et al in [11]. We then
concentrate on the dimension 2 case in section 4. We first recall the approach of [23]
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where the problem is relaxed independently for each variable (but which turns out
to be polyconvex). We also present the approach of [27] which proposes a way to
convexify the data term of the functional. However, the relationship with the original
problem is not clear, and as we illustrate in the numerical section this approach does
not lead to good solutions. We eventually recall the framework of [8] to get a general
convexification. However, it seems to be unrealistic to be used in practice for the
optical flow problem due to the use of Dijkstra algorithm to compute a complicated
projection. Then we introduce our probabilistic framework in the 2D setting and we
show the equivalence between the two last relaxed problems. However, contrary to
the 1D setting, there is no simple thresholding strategy to get back from the solution
of the relaxed problem to the solution of the original problem. This is the reason why
we investigate in Section 5 the problem of computing a good solution of the original
problem from the relaxed one. We then present extensive numerical examples for
optical flow in Section 6.

2. Preliminaries.

2.1. General problem. We focus here on multi-label problems for image pro-
cessing. Let Ω be the image domain: we assume Ω to be a non empty open bounded
subset of IR2 with Lipschitz boundary. We aim at estimating a set of N variables
ui : Ω 7→ Γi (with 1 ≤ i ≤ N) which take their values in a predefined discrete set con-
taining Mi ordered elements: Γ = {ui0 < · · · < uiMi−1}. This section is then dedicated
to the minimization w.r.t u = [u1, · · · , uN ] of the following class of functionals:

JN (u) =

N∑
i=1

∫
Ω

|Dui(x)|+
∫

Ω

ρ(x, u(x))dx, (2.1)

where ρ is a given positive data function and ρ(x, u(x)) represents the cost of assigning
the values u(x) to the pixel x. We only assume that ρ is a bounded function that can
be non linear with respect to u. In the following, we will refer to the 1D case when
N = 1.

The first terms
∫

Ω
|Dui| contain the spatial regularization of the unknowns on

the image domain. More precisely, they measure the integral of the perimeters of the
level sets of u, assuming that u is a function of bounded variation (see [1] for more
details). Such a term, introduced in image processing in the seminal work [26], is
known as the total variation of u. This regularization is general and has been applied
to a lot of image processing problems such as restoration [26], depth estimation [25],
3D reconstruction [18] or optical flow [29].

We now present some technical elements that will be used all along the paper.

2.2. Total variation.
Definition. For u ∈ BV (Ω,R) we have

∫
Ω
|Du| = sup{

∫
Ω
udivz, z ∈ C1

c (Ω), ‖
z ‖∞≤ 1} with C1

c (Ω) the space of continuous functions with compact support on
Ω (see [1]). Notice that in the case when u is a smooth function, then

∫
Ω
|Du| =∫

Ω
|∇u| dx.

Discretization schemes. The discretization used for the spatial gradient operator
Dx and its adjoint D∗x are the classical ones. We consider the discrete regular grid
x = (x, y), 1 ≤ x ≤ Lx, 1 ≤ y ≤ Ly representing the domain Ω. Looking at the discrete
gradient operator as a vector of matrices Dx = [Dx;Dy]T , the chosen discretizations
should satisfy (to have a discrete Gauss-Green formula without boundary terms):
〈Dxu, z1〉 + 〈Dyu, z2〉 =

〈
u,D∗xz1 +D∗yz2)

〉
. To that end, one can consider finite
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differences and take Dxu(x, y) with a forward scheme and D∗xz with a backward one.
The gradient with respect to the first dimension then reads

Dxu(x, y) =

 u(x + 1, y)− u(x, y) if 1 ≤ x < Lx,

0 if x = Lx.

The corresponding divergence operator is given by D∗xz = D∗xz1 + D∗yz2, where
the gradient over the first dimension is taken as:

D∗xz(x, y) =


z(x, y) if x = 1,

z(x, y)− z(x− 1, y) if 1 < x < Lx,

−z(x− 1, y) if x = Lx.

The discrete total variation of u can be defined as
∫

Ω
|Dxu| =

∑
1≤x≤Lx

|Dxu(x, y)|.
Let us denote by B the set of vector fields z = (z1, z2) with zi defined on Ω × Γ

such that

B = {z, s.t. z2
1(x, ui) + z2

2(x, ui) ≤ (ui − ui−1)2, ∀(x, ui) ∈ Ω× Γ}. (2.2)

Then the total variation can be rewritten in its dual form
∫

Ω
|Dxu| = maxz∈B 〈u,D∗xz〉.

2.3. Primal-dual algorithm.

Presentation. We recall the algorithm in [12]. U , Z are finite-dimensional vector
spaces, we note 〈., .〉 the standard inner products, K : U → Z is a linear operator and
G : U → R ∪ {∞} and F ∗ : Z → R ∪ {∞} are convex functions. We want to solve

min
u∈U

max
z∈Z
〈Ku, z〉+G(x)− F ∗(y).

The algorithm

Algorithm 1 Primal-dual algorithm ([12])

uk+1 = (I + τ∂G)−1(uk − τKtzk)
zk+1 = (I + σ∂F ∗)−1(zk − σK(2uk+1 − uk))

with (I+ τ∂G)−1(û) := arg minu∈U G(u) + 1
2τ ‖ u− û ‖

2 and τσ ‖ K ‖2< 1 converges
to a saddle point in O( 1

k ). Notice that when K is the chosen discretized gradient
operator, then ‖K‖2 = 8.

Proximal operator. If G is a convex proper lower semi continuous function, then
(I + τ∂G)−1 is the resolvent operator (which is a one to one mapping).

The proximity operator is defined by (see [20] for computation and details):

y = (I + τ∂G)−1(x) = proxGh (x) = argmin
u

{
‖u− x‖2

2τ
+G(u)

}
. (2.3)

We refer to [15] for examples of proximal operator computations. Notice that
computing the proximal operator is itself a minimization problem. This computation
amounts to a projection computation when G is the indicator of a closed convex set.
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For instance, assume G = χz∈B, where B is the set of vector fields z = (z1, z2)
defined by Equation (2.2). Then the resolvent operator (I+τ∂G)−1 is (for any τ > 0)
the orthogonal projection:

PB(z(x, ui)) =
(ui − ui−1)z(x, ui)

max(ui − ui−1, ||z(x, ui)||)
(2.4)

where ||z(x, ui)||2 = z2
1(x, ui) + z2

2(x, ui).
Preconditionning. In the same framework as 2.3 we can precondition the algo-

rithm in order to speed up the computation and to avoid the computation of ‖ K ‖.
We recall the algorithm of [24]:

Algorithm 2 Preconditioned primal-dual algorithm ([24])

uk+1 = (I + T∂G)−1(uk − TKtzk)
zk+1 = (I + Σ∂F ∗)−1(zk − ΣK(2uk+1 − uk))

with T and Σ symmetric positive definite matrices such that ‖ Σ
1
2KT

1
2 ‖2< 1 and

(I + T∂G)−1(û) := arg minu∈U G(u) + 1
2τ

〈
T−1(u− û), u− û

〉
. It converges to a

saddle point in O( 1
k ). We can take T = diag(τ1, ..., τn) and Σ = diag(σ1, ..., σm) with

τj <
1∑m

i=1 |Ki,j |
, σi <

1∑n
j=1 |Ki,j |

.

3. Convexification of the 1D multi-label problem. This section is dedicated
to the 1D case, where we only want to estimate 1 unknown for each pixel of an image
and minimize the functional:

J1(u) =

∫
Ω

|Du(x)|+
∫

Ω

ρ(x, u(x))dx. (3.1)

With u taking its values in Γ = {u0 < · · · < uM−1}.
For the segmentation of a grayscale image I : x ∈ Ω 7→ I(x) ∈ [0, 1] in M

gray color labels Γ = {0, 1/(M − 1), · · · 1}, the function would read: ρ(x, u(x)) =
(I(x) − u(x))2. In the case of disparity estimation between two images I1 and I2,
with disparity values in Γ = {0, 1, · · · ,M − 1}, the cost would be: ρ(x, u(x)) =
(I1(x)− I2(x+ u(x))2.

3.1. Convexification of the 1D multi-label problem with upper level
sets. We briefly recall here the convexification technique of Pock et al. [25]. The idea
is to write the non-linearities of the functional J1(u) in a convex way, by introducing
an auxiliary variable φ : Ω×Γ 7→ {0, 1} that represents the different values of u. The
treatment here will be heuristic. Let

φ(x, s) = H(u(x)− s), (3.2)

where H is the Heaviside function (H(r) = 1 if r ≥ 0, and 0 otherwise).
The unknown u can then be recovered from φ by the layer cake formula as

u(x) = u0 +

M−1∑
i=1

(ui − ui−1)φ(x, ui). (3.3)
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Using the coarea formula, we find

∫
Ω

|Du(x)| =
∫
s

∫
Ω

|D1u≥s(x)|dxds =

M−1∑
i=1

(ui − ui−1)

∫
Ω

|D1u≥ui(x)|dx

=

M−1∑
i=1

(ui − ui−1)

∫
Ω

|Dxφ(x, ui)|dx

∫
Ω

ρ(x, u(x)) =

∫
Ω

M−1∑
i=0

ρ(x, ui)1u=ui(x)dx

=

M−2∑
i=1

∫
Ω

ρ(x, ui)(φ(x, ui)− φ(x, ui+1))dx+

∫
Ω

ρ(x, uM−1)dx.

(3.4)

Hence we can rewrite functional (3.1) as a function of φ instead of u.

J1(u) =

M−1∑
i=1

(ui − ui−1)

∫
Ω

|Dxφ(x, ui)|dx+

M−2∑
i=1

∫
Ω

ρ(x, ui)(φ(x, ui)− φ(x, ui+1))dx

+

∫
Ω

ρ(x, uM−1)dx

=J(φ),

(3.5)

and we are thus led to consider the minimizing problem:

min
φ∈Ā1

J(φ), (3.6)

where

Ā1 = {φ ∈ BV (Ω× Γ, {0; 1}) such that φ(x, u0) = 1, φ(x, ui) ≥ φ(x, ui+1)}. (3.7)

Following [25], we have the following theorem.
Theorem 3.1. The layer cake formula (3.3) defines a bijection f between A0

and BV (Ω, {0, 1}) such that J1(f(φ)) = J(φ) (3.1).
Proof. We only need to verify that f is a bijection, the functional equality being

given by (3.5). Let φ ∈ A0, x ∈ Ω, there exists j such that φ(x, ui) = 1 for i ≤ j and

φ(x, ui) = 0 for i > j, so f(φ)(x) = u0 +
∑M−1
i=1 (ui − ui−1)φ(x, ui) = uj ∈ Γ. f(φ) is

of bounded variations by (3.5), so f is a bijection.

Functional (3.5) is convex in φ. To find the global minimum of (3.1), one can find a
φ minimizing (3.5), and then recover u from φ. Care must be taken to ensure that it
is possible to compute u from φ. In particular, φ must be binary and decreasing with
s. Unfortunately, the set of such functions φ is not convex.

To recover convexity, the function φ should be allowed to take values on [0, 1].
We introduce a convex set of admissible functions

A1 = {φ ∈ BV (Ω× Γ, [0, 1]) such that φ(x, a) = 1, φ(x, ui) ≥ φ(x, ui+1)}, (3.8)

and the convex problem
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min
φ∈A1

J(φ). (3.9)

Following [25], we have the following theorem.
Theorem 3.2. Let φ∗ be a solution of (3.9), then for almost any threshold µ,

H(φ∗ − µ) is a solution of (3.9) and of (3.6).
Proof. Let us consider the solution φ∗ of the relaxed problem (3.9). By the coarea

formula we obtain: ∫
Ω

|Dφ∗| =
∫ 1

0

(∫
Ω

|DH(φ∗ − µ)|
)
dµ. (3.10)

Furthermore ∫
Ω

ρ(x, ui)φ
∗(x, ui) =

∫
Ω

ρ(x, ui)

∫ 1

0

H(φ∗(x, ui)− µ)dµ

=

∫ 1

0

dµ

∫
Ω

ρ(x, ui)H(φ∗(x, ui)− µ).

(3.11)

Using (3.5) we have that J(φ∗) =
∫ 1

µ=0
J(H(φ∗ − µ))dµ.

Let us now assume that B := {µ ∈ [0, 1], H(φ∗ − µ) is not a global solution
of the non convex problem (3.6)} has a strictly positive measure. Then there exists
φ′ ∈ A1 such that J(φ′) < J(H(φ∗ − µ)) for every µ in B. This implies that J(φ′) =∫ 1

0
J(φ′)dµ <

∫ 1

0
J(H(φ∗ − µ))dµ = J(φ∗) which is impossible by definition of φ∗.

Therefore, a global minimum of (3.1) can be recovered as a ”cut” of φ. For almost
any threshold µ ∈ [0, 1], defining φµ = 1φ∗≥µ,

u(x) = u0 +

M−1∑
i=1

φµ(x, ui). (3.12)

is a global minimum of (3.1).

3.1.1. Numerical optimization. The previous minimization problem (3.9) can
be written as a primal-dual problem:

min
φ∈A1

max
z∈B,z3∈C

∫
Ω

M−1∑
i=1

(ui−ui−1)Dxφ(x, ui) ·z(x, ui)dx+

∫
Ω

M−1∑
i=0

Duφ(x, ui)z3(x, ui)dx,

(3.13)
where the operator Du and its adjoint D∗u are defined as:

Duφ(x, ui) =

 φ(x, ui+1)− φ(x, ui) if i < M − 1,

0 otherwise,
(3.14)

D∗uz(x, ui) =


z(x, ui) if i = 0,

z(x, ui)− z(x, ui−1) if 0 < i < M − 1,

−z(x, ui−1) if i = M − 1.

(3.15)
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The orthogonal projection onto B denoted by PB is recalled in Equation (2.4). The
last dual variable z3 ∈ Ω× Γ is finally defined on the set:

C = {z3, s.t. |z3(x, ui)| ≤ ρ(x, ui), ∀(x, ui) ∈ Ω× Γ} (3.16)

with the projection operator:

PC(z3(x, ui)) =


z3(x,ui)
|z3(x,ui)|ρ(x, ui) if |z3(x, ui)| > ρ(x, ui)

z3(x, ui) otherwise.

We end up with the algorithm 3 to minimize the energy (3.5)

Algorithm 3 Minimizing the 1D energy (3.5)

Initialize φ0(., ui) = φ̄0(., ui) = uM−1−ui
uM−1−u0

, zi = 0, chose θ ∈ [0, 1] and σ, τ > 0 such

that στ < 1
8

while ||φk − φk−1|| > ε do
zk+1 = PB

(
zk + σDxφ̄

k
)

zk+1
3 = PC

(
zk3 + σDuφ̄

k
)

φk+1 = PA1

(
φk − τ

(
D∗xz

k+1 +D∗uz
k+1
3

))
,

φ̄k+1 = φk+1 + θ(φk+1 − φk)
end while

3.1.2. Important detail. The convex set A1 defined in Equation (3.8) involves
the negativity of the quantities φ(x, ui+1)− φ(x, ui). In the original paper [25], such
property has not been considered and the projection was just:

PA1
(φ(x, ui)) =


1 if i = 0,

max(0,min(1, φ(x, ui))) if 0 < i < M − 1,

0 if i = M − 1.

(3.17)

This issue has been fixed in [10], where an iterative algorithm inspired from the
Dijkstra algorithm is introduced to define PA1 and impose the constraint pointwise,
for each x ∈ Ω.

This is the main drawback of this convexification, as the process involves time
consuming iterative projections (and the primal projection PA1 is in theory only
exact with an infinite number of Dijkstra iterations). We now explain how a slight
modification of the previous approach leads to simple projections for any N ≥ 1. We
found out that the proposed approach is connected with the recent one of [11], while
we here propose an exact and simple dual projection.

3.2. A new convexification based on a probabilistic point of view. Let
us recall that the functional to minimize in order to obtain a label assignation map u
reads:

J1(u) =

∫
Ω

|Du(x)|+
∫

Ω

ρ(x, u(x))dx. (3.18)



CONVEXIFICATION OF HIGH-DIMENSION MULTI-LABEL PROBLEMS 9

The idea is to model the possible values of the data function ρ with

min
u∈Γ

∫
Ω

ρ(x, u(x))dx = min
w∈D1

∫
Ω

M−1∑
i=0

ρ(x, ui)w(x, ui)dx,

where w(x, ui) represents the probability of assigning the label ui to the pixel x. The
equivalence with the original problem is obtained by considering a particular space
for w that corresponds to a single assignation for each pixel x ∈ Ω: there exists a
unique s̃ ∈ Γ with w(x, s̃) = 1 and w(x, s) = 0 for s 6= s̃. Since probabilities with
binary values are involved, this problem of assignation is not convex.

The new variable w is then relaxed within the convex space

D1 =

{
w : Ω× Γ 7→ [0, 1], s.t.

∑
i

w(x, ui) = 1, ∀x ∈ Ω

}
. (3.19)

The Total Variation of u can be rewritten in terms of w as:

∫
Ω

|Du| =
∫

Ω

M−1∑
i=1

(ui − ui−1)|DxH(u(x)− ui)|ds

=

∫
Ω

M−1∑
i=1

(ui − ui−1)

∣∣∣∣∣∣Dx

∑
j≥i

w(x, uj)

∣∣∣∣∣∣ dx,
and the functional finally is:

Jw(w) =

∫
Ω

M−1∑
i=1

(ui − ui−1)

∣∣∣∣∣∣Dx

∑
j≥i

w(x, uj)

∣∣∣∣∣∣ dx+

∫
Ω

M−1∑
i=0

ρ(x, ui)w(x, ui)dx.

(3.20)

The problem of minimizing (3.20) w.r.t w ∈ D1 is convex and a global minimum
can be estimated with the previously introduced optimization method involving a
dual formulation of the TV term.

3.2.1. Numerical optimization. The dual formulation consists in rewriting
the regularization term as:

∫
Ω

M−1∑
i=1

(ui − ui−1)

∣∣∣∣∣∣Dx

∑
j≥i

w(x, uj)

∣∣∣∣∣∣ dx
= max

z∈B

∫
Ω

M−1∑
i=1

∑
j≥i

w(x, uj)

D∗xz(x, ui)dx,

where the variable z = (z1, z2), with zk ∈ Ω × Γ, is defined on the convex set given
by Equation (2.2) that we recall here:

B = {z, s.t. z2
1(x, ui) + z2

2(x, ui) ≤ (ui − ui−1)2, ∀(x, ui) ∈ Ω× Γ}, (3.21)
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with the convention that z(., u0) = 0 since the level u0 is useless for the TV energy
of w as

∑
j≥0 w(x, uj) = 1, ∀x ∈ Ω.

The projection operator PB is given in Equation (2.4).
The projection of w onto the convex set D1 (defined in Equation (3.19)) can

finally be done point-wise for each pixel x with the projection of w(x, .) onto a sim-
plex of dimension M through the operator PD1

: R|Ω|M → D1 (see [14] for a fast
implementation).

A sketch of the process for estimating w∗ following the Primal-Dual approach of
[12] and the discretizations given in section 2 is given in Algorithm 4.

Algorithm 4 Minimizing the 1D energy (3.20)

Initialize w0 = w̄0 = 1
M , z0 = 0, chose θ ∈ [0, 1] and σ, τ > 0 such that στ < 1

8M2

while ||wk − wk−1|| > ε do

zk+1(., ui) = PB

(
zk(., ui) + σDx

(∑
l≥i w̄

k(., ul)
))

, ∀ui ∈ Γ

w̃(., ui) = wk(., ui)− τ
(
ρ(., ui) +

∑
l≤iD

∗
xz
k+1(., ul)

)
, ∀ui ∈ Γ

wk+1 = PD1 (w̃),
w̄k+1 = wk+1 + θ(wk+1 − w̄k)

end while

With respect to the previous section and the estimation of φ ∈ A1 (defined in
Equation (3.8)), the computational complexity is increased with the term

∑
l≥i w(x, ul).

However, the projection of the variable w is here exact [14], and not iterative as in the
previous formulation. This makes the computational time of one iteration k of both
approaches equivalent, when considering two iterations of the Dijkstra algorithm to
project φ on A1 (whereas 2 Dijkstra iterations are not sufficent in may cases). It is
also relevant to note that preconditionning techniques can be considered to speed-up
the current process [24], as illustrated in Algorithm 5.

Algorithm 5 Minimizing the 1D energy with the preconditioned algorithm (3.20)

Initialize w0 = w̄0 = 1
M , z0 = 0, take σi = 1

2i , τi = 1
4(M+1−i) .

while ||wk − wk−1|| > ε do

wk+1 = PD1

((
wk(., ui)− τi

(
ρ(., ui) +

∑
l≤iD

∗
xz
k+1(., ul)

))
i

)
,

zk+1(., ui) = PB

(
zk(., ui) + σiDx

(∑
l≥i(2w

k+1 − wk)(., ul)
))

, ∀ui ∈ Γ

end while

3.2.2. Equivalence with the original problem (3.18). We now have to show
that a solution of the original problem (i.e. a label assignation) can be obtained from
the computed solution w∗.

First of all, let us observe the relation with the previous section 3, where the
convexification is done with φ = H(u(x) − s), and the functional to minimize for
φ ∈ A1 is:

J(φ) =

M−1∑
i=1

(ui − ui−1)

∫
Ω

|Dxφ(x, ui)|dx+

M−1∑
i=1

∫
Ω

ρ(x, ui)(φ(x, ui)− φ(x, ui+1))dx

(3.22)
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with

A1 = {φ ∈ BV (Ω× Γ, [0, 1]) such that φ(x, uO) = 1, φ(x, ui) ≥ φ(x, ui+1)}. (3.23)

Proposition 3.3. There exists a bijection f between the convex sets A1 and D1,
with f(φ)(x, ui) = φ(x, ui)− φ(x, ui+1) and f−1(w)(x, ui) =

∑
j≥i w(x, uj).

Hence, setting φ(x, ui) =
∑
j≥i w(x, uj) and observing that w(x, ui) = φ(x, ui)−

φ(x, ui+1), we can now see that

min
φ∈A1

J(φ) = min
w∈D1

J(f−1(w))

= min
w∈D1

Jw(w).
(3.24)

As a consequence, if w∗ is a global minimizer of the energy (3.20), then φ∗ =
f−1(w∗) is a global minimizer of the energy (3.22).

We know from section 3 that the problem in φ is convex and that for almost any
threshold µ then H(φ∗ − µ) is also a global solution. We can therefore build φ∗ from
w∗ and threshold to recover a global solution of the original problem.

3.3. Connections with the approach of Chambolle et al [11]. Notice that
in [11], the authors have tackled the related problem of minimal partitions. Each label
i corresponds to a couple (s, t)i and a cost σij is given to represent distance between
labels i and j. In our problem σij = |si − sj |. The problem is then to minimize w.r.t
to a label map λ : x ∈ Ω 7→ λ(x) = i ∈ [1;N ], the energy:

J(λ) =

∫
Ω

ρ(x, λ(x)) +
∑
i

∑
j

σij |∂Ωi ∩ ∂Ωj |,

where the partition of Ω in N areas is defined as:

Ωi = {x ∈ Ω s.t. λ(x) = i}.

The problem is relaxed by minimizing

min
w∈D1

Ψ(Dw) +

∫
Ω

ρ(x, ui)w(x, ui)dx (3.25)

with Ψ(Dw) := sup(q)∈K
∫

Ω
qij .Dxw(x, ui, ), K = {(qi), |qi − qj | ≤ |ui − uj |}. This is

equivalent to our formulation. Indeed, we have

M−1∑
i=1

(ui − ui−1)

∫
Ω

|D
∑
j≥i

wj | = sup
|qi|≤ui−ui−1

M−1∑
i=1

∫
Ω

qiD
∑
j≥i

wj

= sup
|qj |≤ui−ui−1

∫
Ω

N∑
j=1

Dwj

∑
i≤j

qi

 .

(3.26)
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Setting q′j =
∑
i≤j qi, we have qj = q′j+1 − q′j and :

M−1∑
i=1

(ui − ui−1)

∫
Ω

|D
∑
j≥i

wj | = sup
|q′j+1−q′j |≤ui−ui−1

M−1∑
j=1

∫
Ω

q′jDwj , (3.27)

which gives exactly the set K = {|q′j+1 − q′j | ≤ ui − ui−1} they prove to be the best
relaxation for the minimal partition problem. Our approach is similar to [11], but
with a different point of view (a probabilistic one).

4. Convexification of the 2D multi-label problem. We now look at the
following class of functionals:

J2(u, v) =

∫
Ω

|Du(x)|+
∫

Ω

|Dv(x)|+
∫

Ω

ρ(x, u(x), v(x))dx, (4.1)

defined for the variables u(x) and v(x) taking their values in the discrete sets Γu =
{u0 < · · ·uM−1} and Γv = {v0 < · · · vM−1}. For sake of clarity we will now consider
that the discretization step of Γu and Γv is uniform, so that ui − ui−1 = ∆u, and
vi − vi−1 = ∆v for i = 1 · · ·M − 1.

Let us give an example of the data term ρ for the problem of the optical flow
estimation between two images. In this case, we seek the 2D vector field corresponding
to the flow w(x) = (u(x), v(x)) going from image I1 to image I2.

The field w(x) = (u(x), v(x)) then represents the displacement field of pixels x of
image I1. The cost function ρ can then be defined as:

ρ(x, u(x), v(x)) = |I1(x)− I2(x+ w(x))|. (4.2)

4.1. Independent convexification. In this part, we consider the natural ex-
tension of the previous section that consists in introducing an auxiliary function for
each variable to estimate. Following the probability formulation of section 3.2, we
now have two functions wu and wv that belongs to the convex set of admissible func-
tions D1, defined in (3.19). The regularization terms of energy (4.1) can therefore be
written as

∫
Ω

|Du| =
∫

Ω

M−1∑
i=1

(ui − ui−1)|DxH(u(x)− ui)|ds

= ∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wu(x, uj)

∣∣∣∣∣∣ dx∫
Ω

|Dv| = ∆v

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wv(x, vj)

∣∣∣∣∣∣ dx
(4.3)

Let us now detail how to treat the data term.
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4.1.1. Non convex data term. Using the previously introduced notations, the
data term reads∫

Ω

ρ(x, u(x), v(x))dx =

∫
Ω

M−1∑
i=0

M−1∑
j=0

ρ(x, ui, vj)1u=ui(x)1v=vj (x)dx

=

∫
Ω

M−2∑
i=0

M−2∑
j=0

ρ(x, ui, vj) ((H(u(x)− ui))−H(u(x)− ui+1))

(H(v(x)− vj)−H(v(x)− vj+1))) dx

=

M−1∑
i=0

M−1∑
j=0

∫
Ω

ρ(x, ui, vj)wu(x, ui)wv(x, vj),

(4.4)

and we end up with the following problem

min
(wu,wv)∈D1×D1

J(wu, wv), (4.5)

with

J(wu, wv) =

M−1∑
i=0

M−1∑
j=0

∫
Ω

ρ(x, ui, vj)wu(x, ui)wv(x, vj)

+ ∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wu(x, uj)

∣∣∣∣∣∣dx+ ∆v

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wv(x, vj)

∣∣∣∣∣∣ dx.
(4.6)

The data term of this energy is not convex in variables wu and wv, so that
alternate minimization over wu and wv will only able to reach a local minima of the
problem (4.5). Such local minima can be obtained in the following way. Assuming
that wv (resp. wu) is known, the energy is minimized with respect to wu (resp.
wv) until convergence. In both cases, we can linearize with respect to the optimized
variable and recover the original 1D problem. For instance, when optimizing with
respect to φ, we have the problem

min
wu

∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wu(x, uj)

∣∣∣∣∣∣ dx+

M−1∑
i=0

∫
Ω

ρu(x, ui)wu(x, ui) (4.7)

where the data value ρu is obtain by integration over the dimension associted to v:

ρu(x, ui) =

M−1∑
j=0

ρ(x, ui, vj)wv(x, vj) (4.8)

and the numerical optimization method of section 3.1.1 can be used to minimize (4.7).
At convergence of the process, the obtained local minima (w∗u, w

∗
v) can be used to build

φu = f(w∗u) and φv = f(w∗v), with the function f defined in Proposition 3.3.
By thresholding such functions, we can produce an admissible function of the

original non convex problem : u∗(x) = u0 + ∆u

∑M−1
i=1 φu(x, ui, ) and v∗(x) = v0 +

∆v

∑M−1
i=1 φv(x, vi). However, we here have no information on the obtained couple

(u∗(x), v∗(x)), which has no reason to be a local extremum.
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Algorithm 6 Minimizing the 2D non-convex energy (4.6)

Initialize w0
u = w̄0

u = 1
M , w0

v = w̄0
v = 1

M ,z0
u = z0

v = 0, chose θ ∈ [0, 1] and σ, τ > 0
such that στ < 1

8M
while ||wku − wk−1

u ||+ ||wkv − wk−1
v || > ε do

Compute ρu(x, ui) =
∑M−1
j=0 ρ(x, ui, vj)w

k
v (x, vj)

while ||wku − wk−1
u || > ε do

zk+1
u (., ui) = PB

(
zku(., ui) + σDx

(∑
l≥i w̄

k
u(., ul)

))
, ∀ui ∈ Γu

w̃u(., ui) = wku(., ui)− τ
(
ρu(., ui) +

∑
l≤iD

∗
xz
k+1
u (., ul)

)
, ∀ui ∈ Γu

wk+1
u = PD1

(w̃u),
w̄k+1
u = wk+1

u + θ(wk+1
u − w̄ku)

end while
Compute ρv(x, vj) =

∑M−1
i=0 ρ(x, ui, vj)w

k+1
u (x, ui)

while ||wkv − wk−1
v || > ε do

zk+1
v (., vj) = PB

(
zkv(., vj) + σDx

(∑
l≥j w̄

k
v (., vl)

))
, ∀vj ∈ Γv

w̃v(., vj) = wkv (., vj)− τ
(
ρv(., vj) +

∑
l≤j D

∗
xz
k+1
v (., vl)

)
, ∀vi ∈ Γv

wk+1
v = PD1

(w̃v),
w̄k+1
v = wk+1

v + θ(wk+1
v − w̄kv )

end while
end while

Remark. When looking at the continuous formulation (∆u and ∆v tending to
0) within the upper level sets framework, this corresponds to introduce 2 auxiliary
variables φu and φv defined in A1, and the data term reads:∫

Γu

∫
Γv

∫
Ω

ρ(x, s, t)∂sφu(x, s)∂tφv(x, t)dsdtdx.

It has been noticed in [23] that this term is polyconvex in the sense of [7] as it
involves the determinant of the Jacobian Matrix in (s, t): ∂sφ ∂tφ

∂sψ ∂tψ

 =

 ∂sφ 0

0 ∂tψ

 .

Polyconvex functionals are quasiconvex. As quasiconvexity is the right extension of
the notion of convexity for vector valued functions, it guarantees, under assumptions,
the existence of minimizers and the well-posedness (in a certain sense) of the energies.
Since the probability formulation shares the properties of the upper level sets one, it
may explain the good behavior of the non convex approach on real experiments that
will be detailed in the application section.

4.1.2. Convexification of the data term. To tackle properly the whole en-
ergy, some convex relaxations of the data term have been proposed in [16, 27]. The
idea of [27] is to compute the biconjugate of the data term with the Legendre-Fenchel
transform in order to obtain a tight relaxation. This leads to reformulate the data
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term as:

M−1∑
i=0

M−1∑
j=0

∫
Ω

ρ(x, ui, vj)wu(x, ui)wv(x, vj)

= max
(qu,qv)∈Q

M−1∑
i=0

∫
Ω

(wu(x, ui)qu(x, ui) + wv(x, vi)qv(x, vi)) ,

where two other auxiliary variables qu(x, ui) and qv(x, vj) have been introduced. They
are defined in the convex set:

Q ={qu : Ω× Γu 7→ R, qv : Ω× Γv 7→ R,
s.t. qu(x, ui) + qv(x, vj) ≤ ρ(x, ui, vj)∀x ∈ Ω, 0 ≤ i, j ≤M − 1}.

We end up with the following energy to minimize w.r.t wu andwv:

J(wu, wv) = max
(qu,qv)∈Q

M−1∑
i=0

∫
Ω

(wu(x, ui)qu(x, ui) + wv(x, vi)qv(x, vi))

+ ∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wu(x, uj)

∣∣∣∣∣∣dx+ ∆v

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

∑
j≥i

wv(x, vj)

∣∣∣∣∣∣ dx.
(4.9)

As the orthogonal projection on Q can not be written explicitely, we can not
define the corresponding proximal operator needed by the primal-dual algorithm of
[12] can not be formulated directly for the new variables (qu, qv). One solution could
be to do inner loops in order to approximate the proximal operator related to the
projection on Q. Nevertheless, the authors of [27] chose to consider a Lagrange
multiplier to enforce the constraint qu(x, ui) + qv(x, vj) ≤ ρ(x, ui, vj). Their process
then consists in maximizing over (qu, qv) with an Uzawa’s algorithm parameterized
with an appropriate time step τ . Such approach for the management of the constraint
leads to introduce another variable and appeared to be quite sensible numerically in
our experiments.

As a consequence, we here propose an explicit projection into the convex set Q
in order to prevent the observed numerical instabilities. This projection, denoted as
PQ, is not orthogonal, but projects into Q by computing for each pixel x ∈ Ω the
residual: r(x, ui, vj) = ρ(x, ui, vj)− (qu(x, ui) + qv(x, vj)) and defines:[
PQ(qu(x, ui)),PQ(qv(x, vj))

]
,PQ

([
qu(x, ui), qv(x, vj)

])
=[qu(x, ui)−max

vj
r(x, ui, vj), qv(x, vj)−max

ui
r(x, ui, vj)]

which ensures that PQ(qu(x, ui)) +PQ(qv(x, vj)) ≤ ρ(x, ui, vj), ∀x ∈ Ω and 0 ≤ i, j ≤
M − 1. As illustrated by the algorithm 7, such projection is acceptable in practice.
Indeed, let us assume that the updated quantities q̃u and q̃v leave the convex set Q.
If σ is small enough, q̃u and q̃v will go in an outer band of the frontier of the convex
set Q, the size of the band being monitored by the time step. Hence the norm of
the residual is controlled with σ, this ensures that the quantities will be projected
in an inner band of the frontier of the convex set Q, the size of the band being also
controlled with σ.
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With this new convexification of the data term, the equivalence with the upper
level set formulation does no longer hold, and the layer cake formula can no longer
be used either. This is the reason why the authors of [27] proposed to build an
admissible function of the original problem by keeping for each pixel x, the couple
of labels (ui, vj) that maximize w∗u(x, ui) + w∗v(x, vi). It leads in practice to noisy
estimations. Moreover, as in the previous non convex approach, there is no way to
show that the so-obtained estimation is a solution of the original non-linear problem.
We will even see in the application section that it does not produce better estimations,
in terms of energy, than the non convex approach.

Algorithm 7 Minimizing the 2D convex energy (4.9)

Initialize w0
u = w̄0

u = 1
M , w0

v = w̄0
v = 1

M ,z0
u = z0

v = q0
u = q0

v = 0, chose θ ∈ [0, 1] and
σ, τ > 0 such that στ < 1

8M2

while ||wku − wk−1
u ||+ ||wkv − wk−1

v || > ε do

zk+1
u (., ui) = PB

(
zku(., ui) + σDx

(∑
l≥i w̄

k
u(., ul)

))
, ∀ui ∈ Γu

zk+1
v (., vj) = PB

(
zkv(., vj) + σDx

(∑
l≥j w̄

k
v (., vl)

))
, ∀vj ∈ Γv

q̃u(., ui) = qku(., ui) + σw̄ku(., ui)
q̃v(., vj) = qkv (., vj) + σw̄kv (., vj)
[qk+1
u , qk+1

v ] = PQ([q̃u, q̃v])

w̃u(., ui) = wku(., ui)− τ
(
qk+1
u (., ui) +

∑
l≤iD

∗
xz
k+1
u (., ul)

)
, ∀ui ∈ Γu

wk+1
u = PD (w̃u),

w̄k+1
u = wk+1

u + θ(wk+1
u − w̄ku)

w̃v(., vj) = wkv (., vj)− τ
(
qk+1
v (., vj) +

∑
l≤j D

∗
xz
k+1
v (., vl)

)
, ∀vj ∈ Γv

wk+1
v = PD (w̃v),

w̄k+1
v = wk+1

v + θ(wk+1
v − w̄kv )

end while

Finally note that this process involves relations between all the pairs (qu(x, ui), qv(x, vj)),
so that it will necessarily lead to stock additional variables of size |Ω|M2.

4.2. General convexification. We now look at another convexification that
increases the primal dimension but allows gathering all the unknowns in a single
auxiliary variable.

4.2.1. Convexification with upper level sets. As in [8], we can follow the
strategy of section 3.1 and consider the function φ(x, ui, vj) = H(u(x)− ui)H(v(x)−
vj) to convexify the problem (4.1). Note that since H(u(x)− u0) = H(v(x)− v0) = 1
we have φ(x, u0, vj) = H(v(x)− vj) and φ(x, ui, v0) = H(u(x)− ui). Observing that:∫

Ω

ρ(x, u(x), v(x))dx

=

∫
Ω

M−2∑
i,j=0

ρ(x, ui, vj)(H(u(x)− ui)−H(u(x)−ui+1))(H(v(x)−vj)−H(v(x)−vj+1)) dx

=

M−1∑
i,j=0

∫
Ω

ρ(x, ui, vj)(φ(x, ui, vj)−φ(x, ui, vj+1)−φ(x, ui+1, vj)+φ(x, ui+1, vj+1))

(4.10)
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∫
Ω

|Du(x)| =
M−1∑
i=1

∫
Ω

(ui − ui−1)|DxH(u(x)− ui)|dx

=∆u

M−1∑
i=1

∫
Ω

|Dxφ(x, ui, v0)|dx (4.11)

∫
Ω

|Dv(x)| =∆v

M−1∑
i=1

∫
Ω

|Dxφ(x, u0, vi)|dx (4.12)

we can then consider the functional J(φ) defined as the sum of the three terms (4.10),
(4.11) and (4.12) and look at the convex problem

min
φ∈Ā2

J(φ), (4.13)

defined on the relaxed convex set of admissible functions:

Ā2 = {φ : (x, s, t) ∈ BV (Σ, [0, 1]), φ(x, u0, v0) = 1,

φ(x, ui, vj)− φ(x, ui, vj+1)− φ(x, ui+1, vj) + φ(x, ui+1, vj+1) ≥ 0

φ(x, ui, uj) ≥ φ(x, ui+1, vj), φ(x, ui, uj) ≥ φ(x, ui, vj+1)},

where Σ = Ω× Γu × Γv.
Hence, one can show that if the function φ∗ is a binary minimizer of J , then the

couple (u∗, v∗) defined as:

u∗(x) = u0 + ∆u

M−1∑
i=1

φ(x, ui, v0)

v∗(x) = v0 + ∆v

M−1∑
i=1

φ(x, u0, vi)

(4.14)

is a global minimizer of the functional (4.1). However, if φ∗ is not binary, we can not
use relations (4.14) to build a solution of the original non convex problem. This is
due to the fact that in the 2D case, the characteristic functions of the level sets of φ
may not belong to the set of admissible functions A2, defined as:

A2 = {φ : (x, s, t) ∈ BV (Σ, [0, 1]), φ(x, u0, v0) = 1,

φ(x, ui, vj)− φ(x, ui, vj+1)− φ(x, ui+1, vj) + φ(x, ui+1, vj+1) ∈ {0; 1}
φ(x, ui, uj) ≥ φ(x, ui+1, vj), φ(x, ui, uj) ≥ φ(x, ui, vj+1)}.

This main issue will be discussed in section 5. As the projection on the derivative
constraints included in the convex set A2 seems here unrealistic due to the complexity
of the iterative Dijkstra algorithm that should be done pointwise, for each x ∈ Ω, we
now detail the equivalent probabilistic formulation that involves exact projections.

4.3. The 2D probabilistic point of view. A probabilistic formulation of the
convexification for the 2D problem is now proposed. As in section 3.2, we introduce
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the variable w(x, ui, vj) measuring the probability of assigning the label pair (ui, vj) ∈
Γu × Γv to the pixel x ∈ Ω. The data term now reads:

min
u∈Γu,v∈Γv

∫
Ω

ρ(x, u(x), v(x))dx = min
w∈D2

∫
Ω

M−1∑
i=0

M−1∑
j=0

ρ(x, ui, vj)w(x, ui, vj)dx,

where Σ = Ω × Γu × Γv. The previous relation is valid for binary values of w with
a single one that is 1 for each x ∈ Ω. As before, since such class of functions is not
convex, the set of admissible functions is relaxed as

D2 =

w : Σ 7→ [0, 1], s.t.

M−1∑
i=0

M−1∑
j=0

w(x, ui, vj) = 1, ∀x ∈ Ω

 . (4.15)

Again, the Total Variation of u and v can be rewritten in terms of w as:

∫
Ω

|Du| = ∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

M−1∑
j=1

∑
k≥i

w(x, uk, vj)

∣∣∣∣∣∣ dx∫
Ω

|Dv| = ∆v

∫
Ω

M−1∑
j=1

∣∣∣∣∣∣Dx

M−1∑
i=1

∑
k≥j

w(x, ui, vk)

∣∣∣∣∣∣ dx
The functional to minimize is then:

Jw(w) =

∫
Ω

M−1∑
i=1

M−1∑
j=1

ρ(x, ui, vj)w(x, ui, vj)dx+∆u

∫
Ω

M−1∑
i=1

∣∣∣∣∣∣Dx

M−1∑
j=1

∑
k≥i

w(x, uk, vj)

∣∣∣∣∣∣dx
+ ∆v

∫
Ω

M−1∑
i=j

∣∣∣∣∣∣Dx

M−1∑
i=1

∑
k≥j

w(x, ui, vk)

∣∣∣∣∣∣dx.
(4.16)

The problem of minimizing (4.16) w.r.t w ∈ D2 is convex and a global minimum
can be found with the previously introduced dual optimization methods. The process
is summed up in Algorithm 8 and its preconditionned version in the Algorithm 9.
The projection on D2 can also be done point-wise by projecting, for each pixel x
the vector of coordinates w(x, ., .) onto a simplex of dimension M2, which make the
primal projection exact, contrary to the upper level set formulation.

Equivalence between the relaxed problems. Probability and upper level sets formu-
lations are equivalent, as in 1D. Indeed, by taking φ(x, s, t) = H(u(x)−s)H(v(x)− t)
and consider the problem minφ∈A2

J(φ). we find the same kind of relation than in
section 3.2:

Proposition 4.1. There exists a bijection f between the convex sets A2 and D2,
with f(φ)(x, ui, vj) = φ(x, ui, vj) − φ(x, ui, vj+1) − φ(x, ui+1, vj) + φ(x, ui+1, vj+1)
and f−1(w)(x, ui, vj) =

∑
k≥i
∑
l≥j w(x, uk, vl) and we have J(φ) = Jw(f(φ)).

An example of such relation between local values of w(x, ., .) and φ(x, ., .) is given in
Figure 4.1. Note that the upper level set approach for 2D problems have also been
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Algorithm 8 Minimizing the 2D convex energy (4.16)

Initialize w0 = w̄0 = 1
M2 ,z0

u = z0
v = 0, chose θ ∈ [0, 1] and σ, τ > 0 such that

στ < 1
16M3

while ||wk − wk−1|| > ε do

zk+1
u (., ui) = PB

(
zku(., ui) + σDx

(∑M−1
l=0

∑
j≥i w̄

k(., uj , vl)
))

, ∀ui ∈ Γu

zk+1
v (., vj) = PB

(
zkv(., vj) + σDx

(∑M−1
l=0

∑
j≥i w̄

k(., ul, vj)
))

, ∀vj ∈ Γv

w̃(., ui, vj) = wku(., ui)−τ
(
ρ(., ui, vj) +

∑
l≤iD

∗
xz
k+1
u (., ul)+

∑
l≤j D

∗
xz
k+1
v (., vl)

)
,

∀ui, vj ∈ Γu × Γv

wk+1 = PD (w̃),
w̄k+1 = wk+1 + θ(wk+1 − w̄k)

end while

Algorithm 9 Minimizing the 2D energy with the preconditioned algorithm (4.16)

Initialize w0 = w̄0 = 1
M , z0 = 0, take σu,i = 1

2iM , σv,i = 1
2iM , τi,j =

1
(4(M+1−i))(4(M+1−j)) .

while ||wk − wk−1|| > ε do

wk+1 = PD

((
wk(., ui, vj)− τi,j

(
ρ(., ui, vj) +

∑
l≤iD

∗
xz
k+1
u (., ul)+∑

l≤j D
∗
xz
k+1
v (., vl)

))
i,j

)
zk+1
u (., ui) = PB

(
zku(., ui) + σu,iDx

(∑M−1
l=0

∑
j≥i w̄

k(., uj , vl)
))

, ∀ui ∈ Γu

zk+1
v (., vj) = PB

(
zkv(., vj) + σv,jDx

(∑M−1
l=0

∑
j≥i w̄

k(., ul, vj)
))

, ∀vj ∈ Γv

end while

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0.4 0

0 0 0.2 0.2 0 0

0 0 0 0 0 0

0.2 0 0 0 0 0

⇔

0 0 0 0 0 0

0 0 0 0 0 0

0.4 0.4 0.4 0.4 0.4 0

0.8 0.8 0.8 0.6 0.4 0

0.8 0.8 0.8 0.6 0.4 0

1 0.8 0.8 0.6 0.4 0

w∗(x, ., .) φ∗(x, ., .)

Fig. 4.1. On the left: example of values w∗(x, ., .). On the right: corresponding values φ∗(x, ., .).

recently proposed in [17], where the constraints associated to A2 are treated with an
aditional auxiliary variable instead of using a Dijkstra algorithm , as done in [6] for
1D problems.

The next proposition is a straightforward consequence of what has been discussed
so far:

Proposition 4.2. If w∗ is a global minimizer of the functional Jw defined in
(4.16) w.r.t w ∈ D2, then φ∗ = f−1(w∗) is a global minimzer of problem (4.13).

The method can easily be extended to N −D by following the previous approach
and defining the corresponding convex set DN . With respect to the non convex
approach of section 4, we here gain convexity. On the other hand, the dimension
of the state explodes, as |Ω|MN > MN |Ω| for practical problems where M >> 1.
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Moreover, the question remains in dimensions N > 1 of getting back to a minimizer
of the original problem. This is a tough question, as explained in [11], since there
may be no connections between the two minimizers. Notice that this issue is not
considered in [27], and that the solution proposed in [8] is not satisfactory as will be
explained in the next section.

5. How to get back to the original problem ?. In the 1D case, we know how
to get a solution of the original problem from the relaxed one. In 2D the approach
with upper level sets does not always give a solution since upper level sets do not
always lie in the domain of the original problem. We discuss this further and propose
strategies to go back to the domain of the original problem. We compare the energies
of the original problem obtained by these strategies with some others strategies used
for the previous formulations.

5.1. Box functions : where it works. In any dimension N , the layer cake
formula is valid for the energy J so that

J(φ∗) =

∫ 1

0

J(H(φ∗ − µ))dµ,

In dimension N = 1, the characteristic function of the level sets of φ also belong of the
set of acceptable solutions A1, which means, as we have already seen in Theorem 3.2,
that for almost every threshold µ ∈ [0, 1], H(φ∗−µ) is a global solution of the convex
and non convex problems. In 2D the layer cake formula is still true if we extend the
energy to BV (Ω×Γu×Γv, [0, 1]) but H(φ∗−µ) is not bound to be in A2 and we can
not conclude in general.

Next, following [8], we define the box functions set Bf as the set of functions such
that for almost every threshold µ, H(φ(x, ui, vj)−µ) = H(ui−ukx,µ)H(vj−vlx,µ). This
definition is motivated by the fact that it is then possible to get back by thresholding to
the definition domain of the original problem by choosing (u(x), v(x)) = (ukx,µ , vlx,µ)
and we find a global minimum of the original energy. This is illustrated in Figure 5.1.

0 0 0 0 0 0

0 0 0 0 0 0

0.4 0.4 0.4 0.4 0.4 0

0.8 0.8 0.8 0.6 0.4 0

0.8 0.8 0.8 0.6 0.4 0

1 0.8 0.8 0.6 0.4 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

φ∗(x, ., .) µ = 0.3 µ = 0.5 µ = 0.7

Fig. 5.1. When φ∗(x, ., .) is a box function (on the left), then any level set 1φ∗(x,.,.)>µ is also
a box function (examples are given for thresholds µ ∈ {0.3; 0.5; 0.7}).

Unfortunately, for general problems, we may have that φ∗ is not a box function,
so that recovering (u, v) involves ambiguities. A sketch of such ambiguity is given in
Figure 5.2. Moreover, as the box function set is not convex, it is difficult to impose
such a constraint in practice. Nevertheless, we show in Figure 5.3 the percentage
of pixels where we do not find a box function after thresholding in an optical flow
estimation. This shows that for real applications, where few global minima of the
non convex energy are expected, we can expect recovering interesting solutions of the
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original problem. Note that this result contradicts the analysis of [17], where the
authors observe box functions everywhere on their results.

0 0 0 0 0 0

0 0 0 0 0 0

0.4 0.4 0.4 0.4 0 0

0.8 0.4 0.4 0.4 0 0

0.8 0.8 0.4 0.4 0 0

1 0.8 0.8 0.6 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

φ∗(x, ., .) µ = 0.3 µ = 0.5 µ = 0.7

Fig. 5.2. When φ∗(x, ., .) is not a box function (on the left), then its level sets 1φ∗(x,.,.)>µ have
no reason to be box functions. Examples are given for thresholds µ ∈ {0.3; 0.5; 0.7}. A box function
is obtained with µ = 0.3 but stairs functions are obtained with the other thresholds.

Fig. 5.3. For any threshold µ ∈]0, 1[, we plot the percentage of pixels where the function
H(φ∗−µ) is not a box function. These estimations have been done on 4 different data configurations,
the last one being with random data, whereas the other correspond to realistic, where few global
minima are expected.

5.2. Stair functions. As we have seen, we can conclude in the case of box
functions, but this case is not general enough for our purpose. Let us explain what
happens in dimension 2, if we threshold φµ = φ∗ ≥ µ, then φµ(x, s, t) ∈ {0; 1}, but
φµ(x, ui, vj) − φµ(x, ui, vj+1) − φµ(x, ui+1, vj) + φµ(x, ui+1, vj+1) ∈ {−1; 0; 1}. With
respect to wµ = ∂stφµ, we will have

∑
s

∑
t wµ(x, s, t) = 1, but wµ(x, s, t) ∈ {−1; 0; 1},

which is not acceptable for a distribution.
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Let us now assume that at a point x, H(φ∗ − µ) is not a box function, then
H(φ∗ − µ) is necessarily a binary ”stair function” defined in the set Sf :

Sf = {φ(s, t) : φ(x, y) ≥ φ(s, t)∀x < s, y < t)}.

A sketch of binary stair functions is given in Figure 5.2. The trouble is that stair
functions are not necessary box functions, so that the characteristic function of the
level sets of φ∗ do not necessary belong to the set of acceptable solutions A2.

This explains the reasoning of [8]. The authors advocate the threshold µ = 1 that
always lead to a binary box function. The trouble is that such a thresholding is not
the best choice as we will see. Another solution to necessarily obtain a box function
is to select one (if not unique) of the highest values of w∗(x, ., .) for each x ∈ Ω, but
we will see that that such strategy is not optimal in practice.

5.3. How to choose a box function to approximate a solution of the
original problem. In view of the discussion above, a solution to estimate u and v is
to consider different thresholdings of φ∗ that leads to box functions. Let us consider
the box function φbµ,ν = H(φ∗(x, s, v0)− µ)H(φ∗(x, u0, t)− ν)

Regularization term case. We have that :∫
Ω

M−1∑
i=1

(ui − ui−1)|Dxφ
b
µ,ν(x, ui, v0)|

=

∫
Ω

M−1∑
i=1

(ui − ui−1)|DxH(φ∗(x, ui, v0)− µ)H(φ∗(x, u0, v0)− ν)|

=

∫
Ω

M−1∑
i=1

(ui − ui−1)|DxH(φ∗(x, ui, v0)− µ)|

∫
Ω

M−1∑
i=1

(vi − vi−1)|Dxφ
b
µ,ν(x, u0, vi)|

=

∫
Ω

M−1∑
i=1

(vi − vi−1)|DxH(φ∗(x, u0, vi)− ν)|.

Denoting as JTV , the total variation part of the energy J , thanks to the coarea formula
we therefore see that:∫ 1

µ=0

∫ 1

ν=0

JTV (φ
b
µ,ν)

=

∫ 1

µ=0

∫ 1

ν=0

(∫
Ω

M−1∑
i=1

(ui − ui−1)|Dxφbµ,ν(x, ui, v0)| +
∫

Ω

M−1∑
i=1

(vi − vi−1)|Dxφbµ,ν(x, u0, vi)|

)

=

∫ 1

µ=0

∫ 1

ν=0

(∫
Ω

M−1∑
i=1

(ui − ui−1)|DxH(φ∗(x, ui, v0)− µ)|

+

∫
Ω

M−1∑
i=1

(vi − vi−1)|DxH(φ∗(x, u0, vi)− ν)|

)

=

∫
Ω

M−1∑
i=1

(ui − ui−1)|Dxφ∗(x, ui, v0)|+
∫

Ω

M−1∑
i=1

(vi − vi−1)|Dxφ∗(x, u0, vi)|

=JTV (φ
∗)



CONVEXIFICATION OF HIGH-DIMENSION MULTI-LABEL PROBLEMS 23

Data term case. For the data term JData, we would want
∫ 1

µ=0

∫ 1

ν=0
φbµ,ν = φ∗,

but ∫ 1

µ=0

∫ 1

ν=0

φbµ,ν =

∫ 1

µ=0

∫ 1

ν=0

H(φ∗(x, s, v0)− µ)H(φ∗(x, u0, t)− ν)

=φ∗(x, s, v0)φ∗(x, u0, t).

(5.1)

So if φ∗(x, s, v0)φ∗(x, u0, t) = φ∗(x, s, t) or in terms of w if u and v are inde-
pendent, then we can find a global solution of the original problem for almost any
threshold (µ, ν).

If this is not the case, coming back to the upper level sets φ∗µ = H(φ∗ − µ), one
knows that the points (s, t) such that φ∗µ(x, ui, vj)−φ∗µ(x, ui, vj+1)−φ∗µ(x, ui+1, vj) +
φ∗µ(x, ui+1, vj+1) = 1 should correspond to high probabilities w(x, s, t), one could then
observe that choosing one of these couples to build a box function should be better
for the data term of the energy. We denote by (si, ti) these nx ≥ 1 points. For
each point x and each extremal point (si, ti), we can therefore define a box function
φbi (x, s, t) = H(si − s)H(ti − t). The two box functions associated to the particular
extremal points (s1, t1) and (snx , tnx) are then represented as φb1 and φbn.

With these notations, the box function φbµ,µ is the smallest one to include the
binary stair function H(φ∗−µ). The coordinates of such box function are represented
with the couple of point (s∗, t∗). An illustration of this is given in Figure 5.4 to explicit
all these cases.

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(s4, t4) (s∗, t∗)
1 0 0 0 0 0 0

(s3, t3)
1 1 0 0 0 0 0

(s2, t2)
1 1 1 1 0 0 0

(s1, t1)
1 1 1 1 1 0 0

1 1 1 1 1 0 0

Fig. 5.4. The thresholded solution H(φ∗−µ) is given, and the different possible natural binary
box functions are shown (defined with the pairs of labels (s, t)). We here have nx = 4.

As a consequence, setting JTV = Ju + Jv, we could expect that:
- JTV (φbµ,µ) = JTV (φ∗µ) ≈ JTV (φ∗) and there is no prior on JData(φbµ,µ)

- Ju(φb1) = Ju(φ∗µ) ≈ Ju(φ∗), JData(φb1) ≈ JData(φ∗) and there is no prior on Ju(φb1)

- Jv(φ
b
n) = Jv(φ

∗
µ) ≈ Jv(φ∗), JData(φbN ) ≈ JData(φ∗) and there is no prior on Jv(φ

b
N )

The energies for the three previously mentioned particular box functions derived
from H(φ∗ − µ) are given in Table 5.5. These results demonstrate numerically what
has been detailed before, apart from the fact that the data term is increasing for large
µ > 0.5. This is due to the fact that in the present experiment, the estimated w(x, ., .)
appeared to be either unimodal or bimodal for almost any x ∈ Ω.

It can be noticed that the first thresholding choice (where the regularization term
is controlled by selecting a box function with the pairs (s∗, t∗)) seems to lead to good
results in all the cases. We will therefore consider such a thresholding approach in
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the following. The best threshold is around µ = 0.5 and we will consider this value
from now on. This experiment also shows that the strategy of [8] is not optimal, as
the threshold µ = 1 leads to a worse energy.

(a) (b)

(c) (d)

Fig. 5.5. The energy of the computed global minima φ∗ is compared to the eneries of the
different thresholding approaches to obtain box functions. (a) Data term. (b) Tv(u). (c) TV(v).
(d) Complete energies ((a)+(b)+(c)).

Remark. Recalling the equivalence between w and φ described Figure 4.1, it is
interesting to see that box functions will be found anytime as long as we can define,
for every x ∈ Ω a non decreasing path (sk, tk) with sk+1 ≥ sk and tk+1 ≥ tk that
crosses all the non null weights w(x, s, t). Naturally, if we can define for every x ∈ Ω
a path (sk, tk) with sk+1 ≤ sk and tk+1 ≥ tk, then we would have box functions by
taking the upper level sets of u and the lower level sets of v. Having such the same
configuration of weights for all pixels has nevertheless no reason to occur in general.

5.4. Quality Indicator. The estimated global minima w∗ of the relaxed en-
ergy can be used to define an empirical quality criterion. We know that if w∗(x, ., .)
is unimodal for any x ∈ Ω, then w∗ will give a feasible optimal solution of the
original non convex problem. As a consequence, we can measure how w∗(x, ., .)
is far from an unimodal distribution. This will give an indication of the possibil-
ities of having non-box functions when thresholding the global minima. To that
end, we first define the mean estimation given by: ū(x) =

∑M
i=1

∑M
j=1 uiw(x, ui, vj),

v̄(x) =
∑M
i=1

∑M
j=1 vjw(x, ui, vj). Then, the dispersion of the distribution is measured
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with: dw(x) =
∑M
i=1

∑M
j=1 w(x, ui, vj)

(
(ui − ū(x))2 + (vj − v̄(x))2

)
, and normalized

(using that the maximum value of dw(x) is M2

2 ) to obtain the following Quality Indi-
cator:

QI(w) = 1.−
(∫

x∈Ω

2dw(x)

|Ω|M2

)− 1
2

,

that will tend to 1 (resp. 0) as soon as w(x, ., .) is unimodal (resp. uniform). As
a consequence, we can see that the energy of the original problem recovered from
w∗ will be very close to global minima of the relaxed energy if QI(w∗) → 0. The
computed value then indicates the level of possibility of recovering a bad solution of
the original problem.

5.5. Comparison with the other approaches. With respect to the non con-
vex approach [23] (which is a lot faster), the solutions obtained with our convex
approach (taken with φbµ,µ and µ = 0.5) always have smaller energies. We also reach
the same global energy minima than the ones obtained with the convexification of the
data term [27]. This is illustrated in Table 5.1, where the energies estimated by the
convex and non convex approaches are presented for a real optical flow experiment.
As suggested in [27], we also show the energies obtained by keeping the most proba-
ble value for every x ∈ Ω, that leads to bad estimations for the convex approaches.
We also computed the energy associated with the weighted mean value, but do not
present them as it gives worse results in practice. As expected, the solutions obtained
with the convex approaches are independent from the initialization. Note that when
increasing the number of labels, the non convex approach is also more frequently stuck
in poor local minima.

Relaxed energy: Original energy: Original energy:

minima estimation best threshold highest probability

Uniform initialization

Non convex [23] 441.73 (QI 0.984) 444.55 (+0.64%) 445.02 (+0.75%)

Data convexified [27] 436.56 (QIk 0.66) 467.01 (+6.98%) 541.74 (+24.09%)

Proposed convex 437.11 (QI 0.969) 441.40 (+0.98%) 454.76 (+4.04)%)

Best label initialization

Non convex [23] 479.56 (QI 0.98) 481.29 (+0.36%) 481.77 (+0.46%)

Data convexified [27] 436.85 (QI 0.66) 466.01 (+6.67%) 539.35 (+23.46%)

Proposed convex 437.15 (QI 0.969) 441.43 (+0.98%) 456.47 (+4.42%)

Random initialization

Non convex [23] 538.40 (QI 0.972) 541.67(+0.61%) 542.97 (+0.85%)

Data convexified [27] 437.12 (QI 0.66) 466.74 (+6.78%) 539.13 (+23.34%)

Proposed convex 437.12 (QI 0.969) 441.44 (+0.99%) 455.66 (+4.24%)

Table 5.1
Comparison for a real example. The energies of the minima of the relaxed problems obtained

with the different methods and different initializations (uniform, best label without regularization and
random) are given in the first column. The original energy is then computed for the solution built
by thresholding the corresponding upper level set function (second column) or by keeping the label
with the highest probability (last column). The convex approaches lead to the same global minima
for any initialization. The non convex approach allows recovering solutions of the original problem
whose energies are close to the one of the local solution estimated for the relaxed problem.

We show in Figure 5.6 that the non convex method and the proposed convex
method gives reasonable estimations (in terms of energy) for any threshold, whereas
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(a) (b)

Fig. 5.6. Comparison of thresholded solutions. (a) The convex approach of [27] gives very bad
estimations for threshold far from µ = 0.5. (b) A zoom of the plot is given for threshold in the
interval [0.4; 0.6].

the convex method of [27] is more sensible to thresholding values. This is also illus-
trated by the Quality Indicator that is always far from 1 with the method of [27]. As
expected, the Quality Indicator here shows that the thresholded solution will have
energies close to the computed minima with the non convex approach and the pro-
posed convex method. The corresponding optical flow estimations are given in the
Figure 6.5 of next section. Note that in this example realized on a realistic data con-
figuration, we expect the modeling to be well suited, so that the original non convex
problem should have few global minima. This explains why the recovered solutions
give satisfying energies.

These examples have been obtained by considering Mu = 8 and Mv = 7 labels.
One can observe that the required memory needed by each approach is:

• Non convex : 3(Mu +Mv)|Ω|, as ρu, wu, and zu are of size Mu|Ω|, while ρv,
wv and zv are of size Mv|Ω|

• Convex [27]: (3Mu+3Mv+MuMv)|Ω|, as wu, qu and zu are of size Mu|Ω| and
ρ of size MuMv|Ω| (the original method also requires an aditionnal lagrange
multiplier of size MuMv|Ω|).

• Our approach: (Mu + Mv + 2MuMv)|Ω|,as zu is of size Mu|Ω| and ρ and w
of size MuMv|Ω|.

This shows that the proposed approach doe not take more memory than the original
approach of [27], while it gives more accurate results. Note that in all cases, the
required memory could be reduced by computing the cost variables ρ when needed,
but this would drastically increase the computational cost.

We finally show in Table 5.2 the same kind of results for random data ρ. We also
observe that the convex approaches allow to estimate a better minima of the relaxed
energy. However, as the data are totally random, the TV denoising is here not a good
model. As a consequence, there are no reasons to recover unimodal probabilities.
Hence, when thresholding the solutions given by the convex approaches, it here leads
to very bad estimations for the original non convex problem, whereas the non convex
approach still allows recovering acceptable solutions for the original problem. The
Quality Indicator associated to the computed minima is here very informative for
our approach, whereas it gives the same kind of values than for non random data
for the method of [27]. This shows that, contrary to our convex approach, it seems
impossible to have a prior information on the quality of the estimation computed with
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the convex method of [27] that appears to be not favoring the estimation of unimodal
distributions.

Relaxed energy: Original energy: Original energy:

minima estimation best threshold highest probability

Non convex [23] 6596 (QI 0.94) 6622.2 (+0.4%) 6622.9 (+0.4%)

Data convexified [27] 6207 (QI 0.6) 6829 (+10%) 16352 (+163%)

Proposed convex 6208 (QI 0.62) 6714 (+8.1%) 12385 (+99.5%)

Table 5.2
The energies of the minima of the relaxed problems obtained with the different methods for

random data ρ are given in the first column. The original energy is then computed for the solution
built by thresholding the corresponding upper level set function (second column) or by keeping the
label with the highest probability (last column).

We can therefore conclude that:
- The level sets of the solution φ∗ obtained with the non convex approach have

almost the same energy than φ∗, but it is not the case for the solution obtained
with the convex method

- The proposed thresholding method associated to our convex method seem good
enough for real applications (since the energy is not so far after thresholding to a
box function)

- The non convex approach gives quite good local minima when a non random ini-
tialization is made. This validates experimentally the work of [23].

6. Applications. In this section, we present some numerical results obtained
for multi-label problems involving up to N = 3 dimensions.

6.1. The 1D case.

6.1.1. Color based segmentation. Given one grayscale image I, we look at
the segmentation problem

J1(u) = λ

∫
Ω

|Du(x)|+
∫

Ω

|I(x)− u(x)|dx. (6.1)

With u taking its values in Γu = {0 < 1/(M − 1) · · · < 1}. This corresponds to
take ρ(x, u(x)) = |I(x) − u(x)| and we apply Algorithm 5. This is a simple case
as the data term ρ is here convex w.r.t u. The result obtained for λ = 10 and
M = 9 are presented in Figure 6.1 and compared to the method of [25] (Algorithm 3).
The obtained segmentations as well as the computational times are here equivalent,
whereas our projection is exact.

I Our method [25]
Fig. 6.1. Comparison of the results with [25] with the same parameters M = 9 and λ = 4.

Both methods are equivalent.
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6.1.2. Disparity. Given two rectified images I1 and I2, (presented in Figure
6.2), we look at the disparity estimation problem

J1(u) = λ

∫
Ω

|Du(x)|+
∫

Ω

|I1(x)− I2(x+ u(x)|dx, (6.2)

with u taking its values in Γu = {4 = u0 < · · · < uM−1 = 16} and λ = 7. The data
term is non convex as we have ρ(x, u(x)) = |I1(x)− I2(x+u(x)|. The result obtained
with Algorithm 5 is presented in Figure 6.3 and compared with the method of [25]
obtained with Algorithm 4, Figure 6.3 shows that both methods are equivalent.

I1 I2 utruth
Fig. 6.2. Stereo data and disparity ground truth.

Our method [25]
Fig. 6.3. Comparison of the method with [25] with the same parameters M = 13 and λ = 7.

We recover exactlty the same dispartity maps.

6.2. 2D optical flow. The optical flow between the images shown in 6.4 has
been computed with various approaches: Non convex (Algorithm 6), Convex [27]
(Algorithm 7) and proposed convex (Algorithm 9). The results are presented in
Figure 6.5. It illustrates that the non convex approach leads to good estimations
when initialized with uniforms probabilities.

I1 I2 (u, v)truth
Fig. 6.4. Images I1 and I2 of the RubberWhale sequence. The optical flow ground truth is

presented, the color representing the direction of the flow, while the intensity is related to the norm
of the vector.

The convex approaches are more sensible to thresholding, namely the one of [27].
Note that the proposed approach allows to recover a thresholded solution with the
lower energy, as illustrated in Table 5.1.
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(a)

(b)

(c)

(d)

Proposed Convex Convex [27] Non convex [23]

Fig. 6.5. Comparison of the optical flow between I1 and I2 of Figure 6.4 estimated with the
proposed convex, convex of [27] and non convex [23] approaches for different thresholds (a: µ = 0.4,
b: µ = 0.5, c:µ = 0.6) or highest probability (d). For this simple experiments realized on images
of size 146× 97 (a 25% rescale of the original size to let the methods converge in reasonable time),
we set λ = 0.04 and only used 8× 7 labels in order to visualize the difference between the methods.
Note that these results correspond to the Table 5.5, so that the energy of the relaxed solution of
[27] is the global minima, but the thresholded solutions are noisy. The proposed convex method
allows recovering better solutions of the original problem. The non convex method is less sensible to
thresholding.

In Figure 6.6, we show the results corresponding to the three methods on the
Hamburg taxi sequence. The images are of size 256 × 190 and we took λ = 0.1 and
considered 9× 9 labels. The different energies and computational details are given in
Table 6.1.

Image Proposed Convex Convex [27] Non convex [23]

Fig. 6.6. Results obtained after thresholding with µ = 0.5, for the estimation of the optical
flow between 2 frames of the Hamburg Taxi sequence. All three methods give good thresholded
results as the regularization coefficient is here higher, which increases the convexity of the
problem.
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The regularization parameter is here larger than in the previous experiments. This
increases the convexity of the problem and all methods here give good thresholded so-
lutions. In particular, the approach of [27] present a better behavior (as illustrated by
the Quality indicator given in Table 6.1). Note that the code has been parallelized on
GPU, but not fully optimized, so that better computational times could be expected,
as the ones mentioned in [27] (1 minute for 256× 256 images and 32× 32 labels).

Relaxed energy: Original energy: Computational

minima estimation threshold µ = 0.5 time

Non convex [23] 1616 (QI 0.983) 1628 (+0.7%) 150s

Data convexified [27] 1613(QI 0.55) 1675 (+3.8%) 220s

Proposed convex 1614 (QI 0.93) 1631 (+1.1%) 250s

Table 6.1
First column: Relaxed energies obtained with the different methods for the estimation of the

optical flow between two frames of the Hamburg taxi sequence. Second column: The original energy
is computed for the solution built by thresholding the corresponding upper level set function. Last
column: the computational time needed to reach the same level of residual between 2 iterations.

As the non convex approach leads to very accurate results while being faster to
the convex ones, we show in Figure 6.7 the kind of estimations that can be obtained
with an additional non convex narrow band approach [6] that allows speeding up the
non convex process by only performing the calculations in the neighborhood of the
current estimated labels. Such an approach then leads to interesting computational
costs, while giving accurate estimations, as illustrated in Table 6.2.

Fig. 6.7. Results obtained with the non convex approach on the Middlebury data
Dimetrodon and Rubberwhale. The original images are shown in the first and second columns.
The true optical flow in the third column is then compared to the estimated one in the forth.

Images RMSE Nu Nv Time

Dimetrodon 0.22 51 51 20s

RubberWhale 0.36 31 31 5s

Table 6.2
Quantitative results of the non convex approach coupled with a narrow band method

applied on the Middlebury optical flow benchmark datasets containing images of size 584×388.
The RMS Error between estimation and ground truth is given for the 2 studied examples.

6.3. Experiments for N = 3. We now show some experiments involving higher
dimensions. The following results have been obtained by extending the Algorithm 9
to dimensions 3.
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6.3.1. Optical flow with occlusion mask. In order to enhance the optical
flow modeling, one could also consider the simultaenous estimation of the occlusion
mask. This comes to increase with one other dimension to model the occlusion mask.
We then have as data term:

ρ(x, u(x), v(x),m(x)) = |I1(x)− I2(x+ w(x))|(1−m(x)) + κm(x),

where m(x) ∈ [0, 1] represent the occlusion map and κ ≥ 0 is the occlusion cost. As
occlusions form connex areas, the occlusion map can therefore be spatially regularized
by minimizing:

β

∫
Ω

|∇m|,

with β > 0. An example of estimation with κ = 40/255, β = 0.005, λ = 0.04 and
comparisons with the proposed convex method (without occlusion mask) as well as
the non convex method are given in Figure 6.8. This illustrates the ability of the
method to deal with larger dimensions and simultaneously estimate information of
different nature (flow and mask) in a convex way.

Non convex Convex Convex+occlusion

Fig. 6.8. Solutions obtained on the image RubberWhale of size 292 × 196 (rescaled at 50% of
its original size) with 10× 9 labels. The occlusions are represented with black pixels.

6.3.2. The Chan and Vese model. We finally consider the Chan and Vese
model:

J(u, c0, c1) =

∫
Ω

||I − c0||2udx+

∫
Ω

||I − c1||2(1− u)dx+ λ

∫
Ω

|Du|

Following [8], we convexify the problem by considering the function w(x, r, s, t) =
δ(u(x) = r)δ(c0 = s)δ(c1 = t) and follow the strategy of [8], which gives us a data
cost:

ρ(x, r, s, t) = ||I − s||2r + ||I − t||2(1− r).

With this formulation, we have to consider maps of constants c0(x) and c1(x) and
add additional terms: κ

∫
Ω
|Dc0| and κ

∫
Ω
|Dc1| to the energy, with κ→∞, to ensure

recovering constants. The problem is nevertheless ill-posed. Indeed, if (u, c0, c1) is a
solution, so is (1−u, c1, c0), and also (1/2, (c1 + c0)/2, (c1 + c0)/2), with convexity. A
constraint like c0 < c1 should be added. It could be done by adding the penalization:
ε(
∫

Ω
||c0||2dx +

∫
Ω
||1 − c1||2dx) or better by defining the domain of search as s ≤ t,

which correspond to only treat half of the possibilities.
We applied such a framework as illustrated in Figure 6.9 with a set of possible

labels [0; 1
4 ; 1

2 ; 3
4 ; 1] which gives us the estimation c0 = 1

4 and c1 = 3
4 . By injecting
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u∗ c∗0(= 1
4 ) c∗1(= 3

4 ) u∗2

Fig. 6.9. Solution obtained with the full convex model (u∗, c∗0, c
∗
1). The image u∗2 denotes the

solution obtained when fixing c0 = 1
4

and c1 = 3
4

. We see that u∗ = u∗2, which means that the
recovered solution u∗ should be optimal.

these estimated constants c0 and c1 in a classic TV segmentation model, where c0 and
c1 are fixed [28], we even exactly recover the same segmentation map with the same
energy. It shows that the thresholded solutions are optimal in practice.
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