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QUASIHOMOGENEITY OF CURVES

AND THE JACOBIAN ENDOMORPHISM RING

MICHEL GRANGER AND MATHIAS SCHULZE

Abstract. We give a quasihomogeneity criterion for Gorenstein curves. For

complete intersections, it is related to the first step of Vasconcelos’ normaliza-
tion algorithm. In the process, we give a simplified proof of the Kunz–Ruppert

criterion.
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1. Introduction

We consider a reduced algebroid curve X over an algebraically closed field k of
characteristic 0 with coordinate ring A.

By Lipman [Lip69], X is smooth if and only if the Jacobian ideal JA is principal.
Based on this equivalence, Vasconcelos [Vas91] showed that the normalization of X
is obtained by repeatedly replacing A by the endomorphism ring

EndA(J−1A ) = (JAJ
−1
A )−1.

Not much is known about these endomorphism rings. As a coarse measure for the
“amount of normality” achieved by this operation we consider the length

ρX := `(EndA(J−1A )/A).

Smoothness of X is equivalent to ρX = 0 and it is natural to ask when ρX = 1. We
shall answer this question for complete intersection curves.

By definition, X is quasihomogeneous if the kernel of some epimorphism

k[[x1, . . . , xn]] � A

is a quasihomogeneous ideal with respect to some positive weights on the variables.
The main result of this article is the following quasihomogeneity criterion.
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2 MICHEL GRANGER AND MATHIAS SCHULZE

Theorem 1.1. Let X be a non-smooth complete intersection algebroid curve over
a field k = k̄ with char k = 0. Then X is quasihomogeneous if and only if ρX = 1.

The proof of Theorem 1.1 follows from Theorem 3.5 and Corollary 3.7 which rely
on a study of semigroups of curves developed in Sections 4 and 5.

2. Fractional ideals

Let p1, . . . , pr be the (minimal) associated primes of A. Then Ai := A/pi,
i = 1, . . . , r, are the coordinate rings of the branches of X. By reducedness of A,
[HS06, Cor. 2.1.13], Serre’s normality criterion and Cohen’s structure theorem, the

normalization Ã of A in the total ring of fractions L := Q(A) factorizes as
(2.1)

A ↪→
r∏
i=1

Ai ↪→
r∏
i=1

Ãi = Ã ↪→
r∏
i=1

Li = L, Ãi = k[[ti]], Li = Q(Ai) = Q(Ãi)

and we identify A and Ã with their images in L. For α = (α1, . . . , αr) ∈ Zr, we shall
abbreviate tα := (tα1

1 , . . . , tαr
r ), ∂t := (∂t1 , . . . , ∂tr ), and tα∂t := (tα1

1 ∂t1 , . . . , t
αr
r ∂tr ).

Recall that a fractional ideal is a finite A-submodule of L containing a non-zero
divisor of A. For any A-module I, we denote the dual by

I−1 := HomA(I, A)

It is easy to prove the following well-known statement.

Lemma 2.1. For each two fractional ideals I1 and I2, also

(2.2) HomA(I1, I2) = {x ∈ L | xI1 ⊆ I2}
is again a fractional ideal. In particular, this applies to the dual I−1. Moreover,
I 7→ I−1 is inclusion reversing.

Example 2.2.
(1) The maximal ideal mA and the Jacobian ideal JA of A and the normalization

Ã are fractional ideals.
(2) The conductor

CA := Ã−1

is a fractional ideal by Lemma 2.1 and (1). It is the largest ideal of Ã which is also

an ideal of A. Since Ã is a product of principal ideal domains and A is not smooth,

(2.3) CA =
〈
tδ
〉
⊆ mA

is generated by a monomial.
(3) The module

MA := At∂tmA

is a fractional ideal that is related to quasihomogeneity of X.
(4) For any fractional ideal M , EndA(M) is a fractional ideal and

A ⊆ EndA(M) ⊆ Ã
since the minimal polynomial of an endomorphism is a relation of integral depen-
dence.

We shall see that JA is related to MA and define

ρ′X := `(EndA(M−1A )/A).
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Remark 2.3. Note that for X smooth we have ρX = 0 = ρ′X .

From now on we assume that X is not smooth.

Lemma 2.4. For any non-principal fractional ideal I, we have I−1 = HomA(I,mA)
as fractional ideals. In particular, m−1A = EndA(mA).

Proof. After multiplying by a unit in L, we may assume that I ⊆ A. Any surjection
φ : I � A would have to split as I = A · x⊕ I ′ with x ∈ I a non-zero divisor and I ′

an A-module. For x′ ∈ I ′, we have x′x ∈ Ax ∩ I ′ = 0 and hence x′ = 0. But then
I would be principal contradicting to the assumption. Thus, any φ : I → A must
map to mA and the first claim follows. The second claim is due our assumption
that X is not smooth. �

We denote by −∨ := HomA(−, ω1
A) the dualizing functor. From now on we

assume that A is Gorenstein. Then ω1
A
∼= A and hence

(2.4) −−1 ∼= −∨

is an involution on finite A-submodules and on fractional ideals.

Lemma 2.5. For every fractional ideal I, we have EndA(I) = EndA(I−1) as frac-
tional ideals.

Proof. By (2.2), any φ ∈ EndA(I) is just multiplication by some x ∈ L. The same
x corresponds to φ−1 ∈ EndA(I−1) and hence EndA(I) ⊆ EndA(I−1). By (2.4),
the claim follows by applying the above argument to I−1 instead of I. �

3. Quasihomogeneity of curves

In the following theorem, we summarize several versions of the Kunz–Ruppert
criterion for quasihomogeneity of curves. The original formulation is the equivalence
(1) ⇔ (2) ⇔ (3). In the appendix, we comment on a possible issue in its proof by
Kunz–Ruppert [KR77] and give a simplified argument.

The equivalence with (4) originates from work of Greuel–Martin–Pfister [GMP85,
Satz 2.1] extending the criterion by a numerical characterization of quasihomogene-
ity, in case of Gorenstein curves. The implication (5) ⇒ (6) in their main result
was generalized by Kunz–Waldi [KW88, Thm. 6.21] by comparing the module of
Zariski differentials
(3.1)

((Ω1
A)−1)−1 = Derk(A)−1 = (HomA(A∂tA,A)∂t)

−1 = ((A∂tmA)−1∂t)
−1 = MA

dt

t
with the module of exact differentials cAdA = ∂tmAdt where

(3.2) cA : ΩA → ωA

is the trace map into the regular differential forms ω•A
∼= HomA(Ω1−•

A , ω1
A) on A

(see [Ker84, KW88]).

Theorem 3.1 (Kunz–Ruppert–Waldi). The following statements are equivalent:
(1) The curve X is quasihomogeneous.
(2) For some derivation χ ∈ Derk(A), A · χ(A) = mA.

(3) Multiplication by some unit in Ã induces an isomorphism mA ∼= t∂tmA.
(4) Every Zariski differential is exact, that is, t∂tmA = MA.

Corollary 3.2. If X is quasihomogeneous then ρ′X = 1.
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Proof. By Theorem 3.1, we have EndA(MA) = EndA(mA) as fractional ideals and
hence ρ′X = `(m−1A /A) = 1 by Lemma 2.4 and the Gorenstein hypothesis. �

Lemma 3.3. We have an inclusion EndA(mA) ⊆ EndA(MA).

Proof. By (3.1) and Lemma 5.3, Derk(A) = M−1A ∂t and hence EndA(MA) =

EndA(Derk(A)). So, by Lemma 2.4, it suffices to show that m−1A ⊆ EndA(Derk(A)).
But any δ ∈ Derk(A) lifts uniquely to δ′ ∈ Derk(L) and such a δ′ is in Derk(A)
exactly if δ′(A) ⊆ A. Now, let φ ∈ m−1A be multiplication by x ∈ L. Then
xδ′(A) ⊆ xmA ⊆ A since δ′(k) = 0. The claim follows. �

By Lemma 3.3, we have the following chain of fractional ideals

A ⊆ EndA(mA) ⊆ EndA(MA)

where the colength of the first inclusion equals `(m−1A /A) = 1 by Lemma 2.4 and
the Gorenstein hypothesis. This yields the following

Proposition 3.4. ρ′X = 1 implies that EndA(mA) = EndA(MA).

In Propositions 4.2 and 5.1 in the following sections, we shall see that the equality
in Proposition 3.4 implies that in Theorem 3.1.(4). Combined with Corollary 3.2
this proves the following statement.

Theorem 3.5. A Gorenstein curve X is quasihomogeneous if and only if ρ′X = 1.

Recall the following result from [Sch12] which uses the coincidence of the Jaco-
bian and the ω-Jacobian ideal for complete intersections (see [OZ87, §3]).

Proposition 3.6. If X is a complete intersection then ω0
A
∼= J−1A .

Proof. By hypothesis and [Pie79, Prop. 1], (3.2) induces a surjection Ω1
A � JA

with torsion kernel. The claim follows by dualizing. �

In the situation of Proposition 3.6, (3.1) yields

JA ∼= (ω0
A)−1 ∼= ((Ω1

A)∨)−1 ∼= ((Ω1
A)−1)−1 = MA

and, by Lemma 5.3, we deduce the following statement.

Corollary 3.7. If X is a complete intersection curve then EndA(JA) = EndA(MA)
and, in particular, ρX = ρ′X .

4. Semigroups

Let νi : Li → Z ∪ {∞} be the discrete valuation with respect to the parameter
ti and define the multivaluation on L to be

ν := (ν1, . . . , νr) : L→ (Z ∪ {∞})r.

Let D(L) := {x ∈ L | ∀i = 1, . . . , r : xi 6= 0} denote the set of non-zero divisors in L
and set D(M) := D(L)∩M for any subset M ⊆ L. Note that D(A) := A\

⋃r
i=1 pi.

Definition 4.1. For any subset M ⊆ L, we set Γ(M) := ν(M ∩D(L)). Then the
semigroup of A is defined as

ΓA := Γ(A) ⊂ Nr.
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Note that, for any fractional ideal I, Γ(I) is a Γ-set, that is,

α ∈ Γ, β ∈ Γ(I)⇒ α+ β ∈ Γ(I).

Although, in general, mA and t∂tmA are incomparable and mA 6∼= MA (see ap-
pendix), we have at least t∂tmA ⊆MA and

(4.1) Γ(mA) = Γ(t∂tmA) ⊆ Γ(MA).

The purpose of this section is to prove the following result.

Proposition 4.2. If Γ(mA) = Γ(MA) then t∂tmA = MA.

By (2.3), we have that
CA ⊆ t∂tmA

Thus, the proof of Proposition 4.2 follows from equation (4.1) and the following
lemma.

Lemma 4.3. Let M ⊆ N ⊆ L be two k-vector subspaces of Ã and δ ∈ Nr+ such

that tδÃ ⊆M . Then the equality Γ(M) = Γ(N) implies M = N .

Proof. Let x = (x1, . . . , xr) be an element of N . If νi(x) ≥ δi for all i, then already

x ∈ tδÃ ⊆M .
We can eliminate the zero components of x by choosing y ∈ tδÃ ⊆M such that

x+ y ∈ D(N) and hence νi(x+ y) ≥ min(νi(x), δi) for all i. If for some i we have
νi(x) < δi, there is by hypothesis an element x′ ∈ D(M) such that ν(x′) = ν(x+y)
and νi(x+ y−x′) > νi(x+ y) as well as νj(x+ y−x′) ≥ νj(x+ y) for all j 6= i. We
can then conclude by an induction on

∑r
i=0 max{δi− νi(x), 0} that x+ y−x′ ∈M

and hence x ∈M . �

Remark 4.4. By Lemma 4.3, δ′ +Nr ⊆ ΓA implies that δ ≤ δ′ for δ as in (2.3).

5. Gorenstein symmetry

The purpose of this section is to prove the following result.

Proposition 5.1. If EndA(mA) = EndA(MA) then Γ(mA) = Γ(MA).

The proof of Proposition 5.1 uses that X being Gorenstein is equivalent to a
symmetry property of ΓA which is due to Kunz [Kun70] in the irreducible case and
to Delgado [DdlM88] in general. The formulation of the precise statement requires
some notation. Recall that Γ(CA) = δ +Nr by (2.3) and we set τ = δ − (1, . . . , 1).
For any α ∈ Zr, we denote

∆(α) :=

r⋃
i=1

∆i(α), ∆i(α) := {β ∈ Zr | αi = βi and αj < βj if j 6= i}.

Definition 5.2. The semigroup ΓA is called symmetric if

(5.1) ∀α ∈ Zr : α ∈ ΓA ⇔ ∆(τ − α) ∩ ΓA = ∅.

Theorem 5.3. (Delgado) The curve X is Gorenstein if and only if its semigroup
ΓA is symmetric.

Remark 5.4. In the irreducible case r = 1 the symmetry condition of Delgado
reduces to the classical Kunz symmetry condition

∀α ∈ {0, . . . , τ} : α ∈ ΓA ⇔ τ − α /∈ ΓA.
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We prove Proposition 5.1 in a sequence of lemmas.

Lemma 5.5.
(1) ΓA ⊆ {0} ∪ ((1, . . . , 1) +Nr).
(2) τ ∈ ΓA if and only if r > 1.
(3) ∆(τ) ∩ ΓA = ∅.

Proof.
(1) Let α ∈ ΓA be such that αi = 0 for some i. Then α = ν(x) for some x ∈ A

with xi 6∈ mAi
. This implies that x 6∈ mA and hence α = 0.

(2) By (1), ∆(0) ∩ ΓA = ∅ if and only if r > 1 and the claim follows from (5.1).
(3) This follows from 0 ∈ ΓA and (5.1).

�

Remark 5.6. For any β ∈ Nr, τ + β /∈ ΓA if and only if β has exactly one zero
component, generalizing Lemma 5.5.(3).

Lemma 5.7.
(1) If Γ(mA) ( Γ(MA) then ∆(τ) ∩ Γ(MA) 6= ∅.
(2) If ∆(τ) ∩ Γ(MA) 6= ∅ then ∆i(τ) ⊆ Γ(MA) for some i.

Proof.
(1) Let α ∈ Γ(MA) \ Γ(mA). Then, by (5.1) and (4.1), there is a β ∈ ∆i(τ −

α) ∩ ΓA ⊆ Γ(mA) ⊆ Γ(MA). Thus, α+ β ∈ ∆i(τ) ∩ Γ(MA) ⊆ ∆(τ) ∩ Γ(MA).
(2) We may assume that there is an element x ∈MA with ν(x) ∈ ∆1(τ)∩Γ(MA).

Up to a factor in k∗, x ≡ (tτ1 , . . . ) mod tδÃ. For any β ∈ ∆i(τ), x−tβ ∈ tδÃ ⊆MA

and hence tβ ∈MA and β ∈ Γ(MA).
�

Lemma 5.8.
(1) Γ(EndA(mA)) \ ΓA = ∆(τ).
(2) If ∆i(τ) ⊆ Γ(MA) for some i then (Γ(EndA(MA))\ΓA)∩

⋃
j<0 jei+∆i(τ) 6=

∅.

Proof.
(1) By Lemma 5.5.(1), ∆(τ) + Γ(mA) ⊆ δ + Zr ⊆ Γ(mA) and hence ⊇ by

Lemma 4.3 and 5.5.(3). To prove ⊆, let α ∈ Γ(EndA(mA)) \ ΓA. Then, by (5.1),
there is a β ∈ ∆(τ − α) ∩ ΓA and hence α+ β ∈ ∆(τ). As β ∈ Γ(mA) leads to the
contradiction α + β ∈ ∆(τ) ∩ Γ(mA) = ∅ by Lemma 5.5.(3), we must have β = 0
and hence α ∈ ∆(τ).

(2) There exists a minimal m ≤ 0 such that
⋃
m<j≤1 jei + ∆i(τ) ⊆ Γ(mA). In

fact, m ≥ −τi by Lemma 5.5.(1). By (4.1) and the hypothesis, δ + mei + Nr ⊆
Γ(MA) and hence α+ Γ(MA) ⊆ Γ(mA) ⊆ Γ(MA) for any α ∈ mei + ∆i(τ) \ ΓA by
Lemma 5.5.(1). This implies tα ∈ EndA(MA) by Lemma 4.3.

�

Proof of Proposition 5.1. Assuming that Γ(mA) ( Γ(MA), Lemma 5.7 applies fol-
lowed by Lemma 5.8. The conclusions of the latter show that

Γ(EndA(mA)) ( Γ(EndA(MA))

and hence that EndA(mA) ( EndA(MA) by Lemma 4.3. �
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Appendix: Kunz-Ruppert criterion

In the process of proving the implication (2) ⇒ (1) in Theorem 3.1, Kunz and
Ruppert seem to claim (see [KR77, page 6, line 2]) and use that

(5.2) A · t∂t(A) ∼= mA

as A-submodule of Ã. The following is a counter-example for this statement.
By abuse of notation, we denote mÃ := mÃ1

× · · · ×mÃr
.

Example 5.9. Consider the (non-quasihomogeneous) plane curve singularity defined
by x4 + xy4 + y5 = 0. After a coordinate change, the equation reads

f := x4 − y(x+ y)4 = 0.

Then the normalization A = k[[x, y]]/〈f〉 ⊂ Ã = k[[t]] is given by

x =
t5

1− t
= t5 + t6 + t7 + · · · , y = t4.

On the other hand, the left hand side of (5.2) considered modulo m8
Ã
⊃ mA · t∂t(A)

is the k-vector space generated by the 7-jets

(5.3) x̃ = t∂t(x) = η · x ≡ 5t5 + 6t6 + 7t7 mod m8
Ã
, ỹ = t∂t(y) = 4y,

where

η :=
5− 4t

1− t
.

If there were an isomorphism (5.2) then, both sides being fractional ideals, it would

have to be induced by multiplication by some unit ε ∈ Ã∗ with

ε ≡ η ≡ 5 + t+ t2 mod m3
Ã
.

Note that the 3-jet

ε ≡ 5 + t+ t2 + αt3 mod m4
Ã
, α ∈ k,

determines the 7-jet

ε · y ≡ 5t4 + t5 + t6 + αt7 mod m8
Ã
.

But for no choice of α this expression lies in the k-span of (5.3). Therefore, there
is no isomorphism (5.2) for the curve under consideration.

The following Proposition 5.11 contains the statement of [KR77, Satz 2.2], which
yields the implication (2) ⇒ (1) in Theorem 3.6.

Remark 5.10. By Scheja–Wiebe [SW73, (2.5)], χ(pi) ⊂ pi and hence χ induces a
derivation χi ∈ Derk(Ai). As Ai is a domain, Seidenberg [Sei66] shows that χi lifts

to a derivation χ̃i ∈ Derk(Ãi). So by (3.3), χ̃ := (χ̃1, . . . , χ̃r) ∈ Derk(Ã) is a lift of
χ. As χ extend uniquely to any localization and hence to L, χ̃ is unique. While
this proves part 1) of [KR77, Satz 2.2], it is actually not needed.

Recall [SW73, page 168, Def.], that a derivation δ ∈ Derk(A) is called diagonal-
izable if mA is generated by eigenvectors of δ.

Proposition 5.11. Any χ ∈ Derk(A) satisfying (2) lifts uniquely to χ̃ ∈ Derk(Ã)
such that

(5.4) χ̃ = γ · t∂t
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for some

(5.5) γ ∈ kr

after a suitable coordinate change. Moreover, χ is diagonalizable with non-zero
eigenvalues on mA and can be chosen with eigenvalues in N+.

Proof. The k-derivation χ lifts uniquely to a k-derivation χ̃ = (χ̃1, . . . , χ̃r) ∈
Derk(L). By finiteness of the normalization, 0 6= xi ∈ mÃi

for some x = (x1, . . . , xr) ∈
mA. Choosing x ∈ mA with νi(xi) minimal yields νi(χ̃i(xi)) ≥ νi(xi). By (2), equal-

ity holds for some such choice of x ∈ mA. Hence χ̃i = γi · ti∂ti for some γi ∈ Ã∗i
and (5.4) is obtained by setting γ := (γ1, . . . , γr) ∈ Ã∗.

In order to achieve (5.5) by a coordinate change, apply the Poincaré–Dulac
decomposition theorem (see [AA88, Ch. 3. §3.2] or [Sai71, Satz 3]) to δ = χ̃i. Then

δ = σ + η, σ = γ(0) · t∂t, η ∈ Endk(mÃi
/m2

Ãi
) nilpotent, [σ, η] = 0,

and hence η = 0. Finally, the conductor is a χ̃-invariant (see (2.3)) finite-codimensional

k-subspace of Ã contained in mA which yields the last statement (see [KR77, page
7] for details). �
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