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Guaranteed Cost Certification for Discrete-Time

Linear Switched Systems with a Dwell Time

Marc Jungers and Jamal Daafouz, Member IEEE,

Abstract— This paper studies the guaranteed cost of a

quadratic criterion associated with a linear discrete-time

switched system for all the set of admissible switching laws.

The admissible switching laws are here the ones exhibiting

a dwell time. The approach provided here is to design an

upper bound and a parametrized family of lower bounds of

the guaranteed cost as close as possible in order to obtain

a certification of the guaranteed cost. The upper bound

is determined via a switched Lyapunov function and the

lower bounds are obtained via the numerical computation

of the cost induced by particular periodic switching laws.

The features of the proposed approach are illustrated by

a numerical example.

Index Terms— Switched systems; performance certifica-

tion; periodic Lyapunov equations

I. INTRODUCTION

A
linear switched system is an association of a

set of a finite number of LTI dynamic systems

and a switching law [1]. In practice, there are many

applications where switched systems modelling is

appropriate, like embedded systems in automotive

industry, aerospace and energy management. The

last decades have witnessed an increasing inter-

est from the scientific community in the study

of the stability property for this class of hybrid

systems [1]–[4], by emphasizing tools among them

Lyapunov functions depending on the switching

parameter [5] or multiple Lyapunov functions [6],

[7]. A situation which is often encountered in real

applications is the one where a mode must remain
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active at least during a constant time interval called

a dwell time.

Beyond questions of stability, the performance

aspects of switched systems have been investigated

and still remain an open issue [8], like the notion

of the guaranteed cost of a performance index. De-

termining such an extremum over all the admissible

switching laws is a difficult task, even if theoretical

answers have been provided via hybrid versions

of the Pontryagin Maximum Principle [9], [10], or

dynamic programming [11], [12]. Another way to

study the guaranteed cost of a performance index is

to consider a set of its upper bounds and to select

in this set the smallest value. Obtaining an upper

bound of a guaranteed cost as small as possible does

not provide information on its gap. This is the issue

of the certification by exhibiting upper and lower

bounds as close as possible.

This manuscript deals with the problem of the

performance certification for a discrete-time linear

switched system with a switching law under a dwell

time assumption. The performance is chosen as

the 2-norm of the output. Firstly the upper bound

of the guaranteed cost will be designed by the

help of the initial value of a switched Lyapunov

function. Secondly the lower bounds are determined

from the following observation: the exact value of

the criterion associated with a particular admissible

switching law is less than the guaranteed cost and

is one of its lower bounds. Such a certification was

firstly illustrated in [13], [14] by considering for the

lower bounds the simple case of constant switching

laws. Here we propose a less restrictive case using

switching laws exhibiting the following specifica-

tions: being periodic and satisfying a dwell time.

The exact value of the criterion, in this framework,

is obtained via periodic Lyapunov equations.

The periodic Lyapunov equations have been

studied [15], for both the theoretic (see for in-

stance [16]–[19]) and numerical aspects [20], [21].

Here an algorithm based on the shift-invariant rep-
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resentation and adapted to include the dwell time as

a parameter is proposed.

The paper is organized as follows. Section II

gives the problem formulation. Section III provides

the main results to design upper and lower bounds

of the guaranteed cost by taking into account the

dwell time. Section IV presents the certification

of the guaranteed cost and offers computational

methods for its obtaining. Section V emphasizes

the efficiency of our certification on an academic

example.

Notations. R, N, C are respectively the sets

of real, natural and complex numbers and N∗ =
N/{0}. If S is a set, SN is the cartesian product

S×· · ·×S, N times. For two symmetric matrices, A
and B, A > B means that A − B is positive

definite. A′ denotes the transpose of A. The operator

diag(A; B) is a block diagonal matrix of A and B.

II. PROBLEM DEFINITION

Let us consider the autonomous linear switched

system in discrete-time

xk+1 = Aσ(k)xk, (1)

zk = Cσ(k)xk, (2)

where xk ∈ Rn is the state of the system, zk ∈ Rp

the performance output and σ ∈ Σ = {σ : N → I},

where I = {1, · · · , N} is the switching rule which

indicates the active mode at each time k: Aσ(k)

(respectively Cσ(k)) belonging to the finite set of ma-

trices {A1, · · · , AN} (respectively {C1, · · · , CN}).

We assume that the switching law verifies a dwell

time, defined as follows.

Definition 1: For an integer ∆ ∈ N∗, the set of

the switching laws satisfying a dwell time at least

equal to ∆ is defined by

D∆ =
{

σ ∈ Σ; ∃{ℓq}q∈N, ℓq+1 − ℓq ≥ ∆;

σ(k) = σ(ℓq),∀ℓq ≤ k < ℓq+1; σ(ℓq) 6= σ(ℓq+1)
}

.
The subsequence {ℓq}q∈N, induced in D∆ consists

in the switching times related to the switching law σ.

Due to the definition of D∆ we have the following

properties ∆̃ ≥ ∆ ⇒ D∆̃ ⊂ D∆.

In addition D1 = Σ is the set of arbitrary

switching laws and D∞ is the set of the N constant

switching laws. The performance of the system (1)

is chosen as the norm of the performance output zk:

J(σ, x0) =
+∞
∑

k=0

z′kzk =
+∞
∑

k=0

x′
kC

′
σ(k)Cσ(k)xk. (3)

The aim of this note is to obtain an evaluation of

the guaranteed cost,

γ(x0) = sup
σ∈D∆

J(σ, x0), (4)

which is a quadratic form with respect to the initial

state x0.

Obtaining analytically the value of γ(x0) is not

possible in general via the Pontryagin Maximum

Principle or dynamic programming, even in the

case of switched linear systems, due to the time-

dependency and the infinite time horizon of the

criterion J . Moreover, one may apply dynamic

programming over a truncated horizon but at the ex-

pense of a numerical explosion when increasing the

size of the truncated horizon. The exact numerical

computation of an upper bound and a parametrized

family of lower bounds for particular switching laws

is considered in this note.

III. UPPER AND LOWER BOUNDS OF THE

GUARANTEED COST

This section is devoted to designing upper bounds

and a family of lower bounds of γ(x0). The associ-

ated main results are given in Theorem 1.

A. Preliminaries and notations

Preliminaries about tools for periodic sys-

tems [15], [17] are recalled here.

Definition 2: For K ∈ N∗, the set of the K-

periodic switching laws is defined by PK =
{σ ∈ Σ; σ(k + K) = σ(k),∀k ∈ N}.

Definition 3: For (∆, d) ∈ N∗×N∗, let us define

S∆,d =
{

σ ∈ Σ; σ(k + d∆) = σ(k),∀k ∈ N,

σ(i∆) = σ(i∆ + j),

∀(j, i) ∈ {0, · · · , ∆ − 1} × {0, · · · , d − 1}
}

. (5)

A switching law belonging to S∆,d has a dwell-

time equal to ∆ and is d∆-periodic. S∆,d is then

a subset of D∆ and Pd∆ and one gets S∆,d ⊂
(D∆ ∩ Pd∆).

The set S∆,d contains exactly Nd switching laws,

which are characterized by the d-uplet σd ∈ Id

defined by σd = (σ(0), σ(∆), · · · , σ((d − 1)∆).
We note π the natural bijection allowing the link

between S∆,d and the cartesian product Id by

π :







Id −→ S∆,d

(i0, i1, · · · , id−1) 7−→ σ; σ(q∆) = iq,
∀q ∈ {0, · · · , d − 1}.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 3

Definition 4: The state-transition matrix related

to the system (1) is defined by ∀i ∈ N, Φi,i = In

and Φi+j,i = Aσ(i+j−1)Aσ(i+j−2) · · ·Aσ(i), j ∈ N∗.

Definition 5: For K ∈ N∗ and σ ∈ PK , the mon-

odromy matrix at time i is defined as Ψi = Φi+K,i.

The eigenvalues of Ψi are called the characteristic

multipliers of the system (1).

The characteristic multipliers of the system (1)

are independent on the time i (see [15, Chapter

3] for more details and a proof). The system (1)

is globally exponentially stable if its characteristic

multipliers belong strictly to the unit circle. The

inclusion {Ai}i∈I will be assumed here stable in

order to have all the possible monodromy matrices

stable and ensure the finiteness of γ(x0).
Definition 6: For σ ∈ PK , a characteristic multi-

plier of Aσ(·) is said to be (Aσ(·), Cσ(·))-observable

at time i if ∀λ ∈ C

Ψix = λx, Cσ(k+i)Φk+i,ix = 0, 0 ≤ ∀k ≤ K − 1

implies x = 0 or rank

[

Ψi − λIn

Ci,K,σ

]

= n, ∀λ ∈ C,

where Ci,K,σ =









Cσ(i)

Cσ(i+1)Φi+1,i

...

Cσ(i+K−1)Φi+K−1,i









.

The pair (Aσ(·), Cσ(·)) is called observable if it is

observable at any time i, 0 ≤ i ≤ K − 1.

B. Main results

Theorem 1: For (∆, d) ∈ N∗×N∗, let us consider

the system (1)-(2) and the performance index J
defined by (3). Assume that for σ ∈ D∆, the pair

(Aσ(·), Cσ(·)) is observable. If there exists symmetric

positive definite matrices Pi ∈ Rn×n, (i ∈ I),

symmetric positive definite matrices Wh ∈ Rn×n,

(h = 0, · · · , d−1) and a scalar β∆ satisfying in one

hand the LMIs, ∀(i, j) ∈ I2, i 6= j

Pi < β∆In, (6)

A′
iPiAi − Pi + C ′

iCi < 0n, (7)

(A′
i)

∆PjA
∆
i − Pi + Qi < 0n, (8)

where Qi =
∑∆−1

k=0 (A′
i)

kC ′
iCiA

k
i , ∀i ∈ I and in

the other hand the equalities, for a d-uplet σd =
(i0, i1, · · · , id−1) ∈ Id, ∀ℓ ∈ {0, · · · , d − 2},

(A′
id−1

)∆W0A
∆
id−1

− Wd−1 + Qid−1
= 0n, (9)

(A′
iℓ
)∆Wℓ+1A

∆
iℓ
− Wℓ + Qiℓ = 0n, (10)

then J(π(σd), x0) = x′
0W0x0, and for any σ ∈ D∆,

the origin is globally exponentially stable and in

addition the guaranteed cost γ(x0) is finite and

verifies

γ(x0) ≥ W d(x0) = max
σd∈Id

J(π(σd), x0); (11)

γ(x0) ≤ V (x0) = max
i∈I

x′
0Pix0 ≤ β∆‖x0‖

2 (12)

where V (x0) is an upper bound when x0 is known,

and β∆‖x0‖
2 when x0 is unknown.

Proof: The proof is decomposed into two parts

dedicated to the bounds (12) and (11).
The conditions (7) and (8) imply A′

iPiAi − Pi <
0n and (A′

i)
∆PjA

∆
i − Pi < 0n, ∀(i, j) ∈ I2, i 6= j.

These conditions are the same as those of [22,

Theorem 1] leading to the global asymptotic sta-

bility of the origin. The relation (12) is proven

in the same way of [22, Theorem 2], by noticing

that C ′
σ(k)Cσ(k) is constant between two consecutive

switching times: C ′
σ(k)Cσ(k) = C ′

σ(ℓq)Cσ(ℓq), ∀ℓq ≤
k < ℓq+1.

A′
i(Pi − Qi)Ai − (Pi − Qi) < −

∆
∑

k=1

(A′
i)

kC ′
iCiA

k
i

−C ′
iCi+

∆−1
∑

k=0

(A′
i)

kC ′
iCiA

k
i < −(A′

i)
∆C ′

iCiA
∆
i < 0n.

By induction, we infer that (A′
i)

τ (Pi − Qi)A
τ
i <

(Pi − Qi), ∀τ ∈ N∗ and for any σ ∈ D∆,

x′
ℓq+1

Pσ(ℓq+1)xℓq+1

< x′
ℓq

(A
ℓq+1−ℓq−∆

σ(ℓq) )′(Pσ(ℓq) − Qσ(ℓq))A
ℓq+1−ℓq−∆

σ(ℓq) xℓq
,

< x′
ℓq

Pσ(ℓq)xℓq
− x′

ℓq
Qσ(ℓq)xℓq

. (13)

By reordering the set N via the switching times:

N = ∪q∈N{ℓq, · · · , ℓq+1 − 1}, we have

J(σ, x0) =
+∞
∑

k=0

x′
kC

′
σ(k)Cσ(k)xk

=
+∞
∑

q=0

ℓq+1−ℓq−1
∑

j=0

x′
ℓq

(Aj

σ(ℓq))
′C ′

σ(ℓq)Cσ(ℓq)A
j

σ(ℓq)xℓq
.

By the definition of Qi, one gets

Qσ(ℓq) =
∆−1
∑

k=0

(Ak
σ(ℓq))

′C ′
σ(ℓq)Cσ(ℓq)A

k
σ(ℓq),

≥

ℓq+1−ℓq−1
∑

k=0

(Ak
σ(ℓq))

′C ′
σ(ℓq)Cσ(ℓq)A

k
σ(ℓq)
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because (Ak
σ(ℓq))

′C ′
σ(ℓq)Cσ(ℓq)A

k
σ(ℓq) is positive

semidefinite. With the help of inequality (13),

the inequality J(σ, x0) ≤
∑+∞

q=0 x′
ℓq

Qσ(ℓq)xℓq
<

∑+∞
q=0(x

′
ℓq

Pσ(ℓq)xℓq
− x′

ℓq+1
Pσ(ℓq+1)xℓq+1

) holds.

Furthermore, it has been shown that the func-

tion (xk, σ(k)) → x′
kPσ(k)xk is a switched

Lyapunov function for this system. Due to

limk→+∞ x′
kPσ(k)xk = 0 and to the structure of a

telescopic series, we have

J(σ, x0) < x′
0Pσ(0)x0. (14)

By multiplying the inequality (6) from the left by

x′
0 and from the right by x0, we have x′

0Pσ(0)x0 ≤
β∆‖x0‖

2. By taking the supremum over all σ ∈ D∆

of the inequality (14), we obtain the inequality (12).

The second part of the proof is based on the de-

sign of a d∆-periodic Lyapunov function associated

with the d∆-periodic switching law σ = π(σd), by

the help of the symmetric positive definite matrices

Wh, h ∈ {0, · · · , d − 1}.

Set P̃0 = W0 > 0n. Define P̃d∆−1 by the

equation (19), that is

P̃d∆−1 = A′
σ(d∆−1)P̃0Aσ(d∆−1)+C ′

σ(d∆−1)Cσ(d∆−1),

= A′
id−1

P̃0Aid−1
+ C ′

id−1
Cid−1

. (15)

For j ∈ {2, · · · , ∆}, we set

P̃d∆−j = A′
σ(d∆−j)P̃d∆−j+1Aσ(d∆−j)

+ C ′
σ(d∆−j)Cσ(d∆−j) = (Aj

id−1
)′P̃0,σd

Aj
id−1

+

j−1
∑

k=0

(Ak
id−1

)′C ′
id−1

Cid−1
Ak

id−1
. (16)

It is noteworthy that for j = ∆, we have

P̃(d−1)∆ = (A∆
id−1

)′W0A
∆
id−1

+
∆−1
∑

k=0

(Ak
id−1

)′C ′
id−1

Cid−1
Ak

id−1

= (A∆
id−1

)′W0A
∆
id−1

+ Qid−1
= Wd−1 > 0n. (17)

In the same way, it induces that P̃0 = A′
i0
P̃1Ai0 +

C ′
i0
Ci0 = (A′

i0
)∆W1A

∆
i0

+ Qi0 = W0, which proves

that such a sequence {P̃ℓ}ℓ∈{0,...,d∆−1} is positive

definite, symmetric and solves the periodic Lya-

punov equation associated with σ = π(σd); 0 ≤
∀k ≤ d∆ − 2:

A′
σ(k)P̃k+1Aσ(k) − P̃k + C ′

σ(k)Cσ(k) = 0n; (18)

A′
σ(K−1)P̃0Aσ(K−1)− P̃K−1 +C ′

σ(K−1)Cσ(K−1) = 0n.
(19)

Due to inequalities (7) and (8), the system (1) is

stable for any σ ∈ D∆, that is the characteristic

multipliers belong strictly to the unit circle. The

infinite series

+∞
∑

i=0

Φ′
ℓ+i,ℓC

′
σ(ℓ+i)Cσ(ℓ+i)Φℓ+i,ℓ

=
+∞
∑

q=0

(Ψ′
ℓ)

qC′
ℓ,K,σCℓ,K,σΨq

ℓ , ∀ℓ ∈ N (20)

are well defined, symmetric and solve the periodic

Lyapunov equation (18)-(19), by arguments pro-

posed in [16], [17], [23]. By invoking [17, The-

orem 1], the solution of the periodic Lyapunov

equation is unique. This implies that the infinite

series, definied by (20) are equal to P̃ℓ. Because the

pair (Aσ(·), Cσ(·)) is assumed observable, classical

arguments allow to prove the positive-definitness of

matrix P̃ℓ.

Let us prove now that the value of the criterion

J(π(σd), x0) is given by x′
0P̃0x0 = x′

0W0x0, because

+∞
∑

k=0

x′
0Φ

′
k,0C

′
σ(k)Cσ(k)Φk,0x0 = x′

0P̃0x0. (21)

The switching law π(σ) belonging to S∆,d which

is a subset of D∆, we obtain the inequality (11),

which ends the proof.

The main results proposed in Theorem 1 deserve

some comments.

• The stability of Ai and the observability of the

N pairs (Ci, Ai), i ∈ I are necessary condi-

tions for the existence of symmetric positive

definite matrices Pi satisfying inequalities (7).

• The upper bound V (x0) = maxi∈I x′
0Pix0 of

γ(x0) is less than β∆‖x0‖
2 but depends on the

direction of x0 instead of β∆‖x0‖
2. β∆ is the

maximal eigenvalue of matrices Pi.

• For ∆ = 1, we recover the method and the

conditions proposed originally in [13], [14].

IV. CERTIFICATION AND NUMERICAL METHODS

Theorem 1 offers tools to obtain classes of upper

bounds (12) and lower bounds (11) of the guaran-

teed cost γ(x0). The smallest upper bound is given

by the following optimization problem
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Optimization problem 1: Under the assumptions

of Theorem 1, the smallest upper bound (12) is

solution of

min
Pi,β∆

β∆

subject to the inequalities (6); (7) and (8).

The Theorem 1 provides a family of lower

bounds, based on the solution of the d∆-periodic

Lyapunov equation (18)-(19) parametrized by a d-

uplet σd ∈ Id. The numerical computation of

the lower bounds may be conveniently achieved

by using a shift-invariant representation [20], [21],

with a block-diagonal structure of the extended

Lyapunov matrix. An optimization problem under

linear matrix inequalities is then proposed to solve

the periodic Lyapunov equations [24], when the

symmetric positive definite solution exists and is

unique. This allows to obtain numerically the lower

bound W d(x0) defined by (11) and satisfying also

W d(x0) = maxσd∈Id x′
0W0x0, due to the fact that

W0 depends on the d-uplet σd. The numerical

result is gathered in the optimization problem 2.

For σd = (i0, i1, · · · , id−1) ∈ Id, we denote

Wd = diag
(

W0; W1; · · · ; Wd−1

)

; Qσd
=

diag
(

Qi0 ; Qi1 ; · · · ; Qid−1

)

and

A∆,σd
=











0n A∆
id−1

A∆
i0

. . .

. . .
. . .

A∆
id−2

0n











.

Optimization problem 2: For (∆, d) ∈ N∗ × N∗,

consider the optimization variables as symmetric

positive definite matrices Wi, i = 0, · · · d − 1. If

the system (1) is stable and if the pair (Aσ(·), Cσ(·))
is observable, then the optimization problem

min
{Wi}i∈{0,··· ,d−1}

Trace(Wd)

subject to Wd = W′
d > 0dn, and

A′
∆,σd

WdA∆,σd
− Wd + Qσd

≤ 0dn, (22)

leads to the unique symmetric and positive solution

of equations (9)-(10).

Moreover, it is possible to quantify

more precisely the smallest gap between

γ(x0) and W d(x0). Let introduce the scalar

ξ∆,d = supx0, ‖x0‖=1 W d(x0) = maxσd∈Id λmax(W0).
By definition of β∆ and ξ∆,d, we have

infx0∈Rn

(

(V (x0) − W d(x0))/‖x0‖
2
)

≤ β∆ − ξ∆,d.

The certification of the guaranteed cost γ(x0) is

especially good for an particular initial condition

as ξ∆,d is close to β∆. The decreasing inclusion of

D∆ implies that β∆ is a decreasing function of ∆.

Because β∆ ≥ 0, we have lim∆→∞ β∆ = β∞, where

β∞ is the solution of the optimization problem 1,

without inequality (8) as a constraint.

In addition, when d = 1, the periodic Lyapunov

solutions are restricted to be constant and they

depend only on the initial mode, we have thus

W0 = Pσ(0) = P̃σ(0), for any dwell time ∆. One gets

ξ∆,1 = β∞. Furthermore, if d2 is a multiple of d1,

then S∆,d1
⊂ S∆,d2

which implies that ξ∆,d1
≤ ξ∆,d2

.

Nevertheless, ξ∆,d is not an increasing function of d.

V. ILLLUSTRATION

Let us consider the next example, with N = 2,

n = 2, A1 =

[

0.9 0
0.1 0.8

]

, A2 =

[

0.9 0.5
0 0.8

]

,

C1 = I2 and C2 = 0.5I2. We can check in Fig. 1

that β∆ is a decreasing function of the dwell time,

converging, as expected, to β∞ = 7.07.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

U

’

Fig. 1. Upper bound β in function of the dwell time ∆.

For a dwell time ∆, we define x0 =
(cos(α) sin(α))′, with α ∈ [0, π], because J is

quadratic. We consider here ∆ = 4. The value

of the upper bound V (x0) and the lower bounds

W d(x0) (d ∈ {1, · · · , 6}) are depicted on Fig. 2

in function of α. It can be seen that the periodic

behavior helps to take into account the evolution of

the switched system and improves the lower bound.

The values ξ4,d (d ∈ {1, · · · , 6}) are compared with

β4 = 27.2 in Tab. I. We could verify that ξ4,3 < ξ4,2,

that is ξ4,d is not an increasing function of d, but

we have ξ4,1 < ξ4,2 < ξ4,4 < ξ4,6 < ξ4,8 and

ξ4,1 < ξ4,3 < ξ4,6. The gap between the bounds

is characterized by (β4 − ξ4,2)/β4 = 3%, which

drastically improves the rate (β4 − ξ4,1)/β4 = 71%.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 6

d 1 2 3 4 5 6
ξ4,d 7.07 26.3 19.9 26.3 23.4 26.3

TABLE I

VALUES ξ4,d IN FUNCTION OF THE PARAMETER d.

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

̃

Fig. 2. For ∆ = 4, bounds V (x0) (depicted by ’+–’) and W d(x0)
(d ∈ {1, · · · , 9}, depicted by ’–’) in function of α.

VI. CONCLUSION

The performance certification of a quadratic cost

associated with an autonomous linear discrete-time

switched system for the class of switching laws with

a dwell time has been studied. The certification

proposed here consists in designing, for a dwell

time, upper and lower bounds as close as possible.

The presented upper bound is obtained via the initial

value of a switched Lyapunov function taking into

account the dwell time. A family of lower bounds

is determined by computing the cost value for a

specific periodic switching law. The algorithm used

for this computation is based on solving a periodic

Lyapunov equation with a period multiple of the

dwell time. An academic example illustrates the

features of our approach.
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