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1. Introduction

The study of boundary value problems where the domain and/or the coefficients

have singularities has attracted the interest of many researchers of the mathemat-

ical, of the physical and of the engineering communities. Hence the corresponding

literature is huge. Roughly speaking one can distinguish problems and methods

whose results have been fully justified by rigorous mathematical methods from

problems and methods whose results are mainly still formal. This distinction is not

definitive since the history of the subject indicates that problems and methods can

change of status with the development of new mathematical tools. This has been

the case e.g. for the problems connected with homogenisation, with the behaviour

of the solutions near singular points of the boundary, with the perturbation of the

coefficients giving rise to ill-posed problems. In the case of the matched asymp-

totic expansion method there are situations where it can be fully mathematically

justified, see e.g. Ref. 15, 16. The aim of this paper is to obtain simplified models

of the influence on the overall response of a linearly elastic body of small identi-

cal heterogeneities periodically distributed on an internal surface ω (cf. figure 1).

Let us strength that the successful classical methods of the homogenisation the-

ω

1

Fig. 1. The structure with the layer of het-
erogeneities

ω

1

Fig. 2. The structure without the layer of
heterogeneities

ory used when the heterogeneities are distributed in a volume, to obtain suitably

equivalent macroscopic problems cannot be applied in the present situation since

the heterogeneities are only localized near a surface. The goal (and the difficulty)

of the analysis is to approximate the initial problem with a set of new ones where

the layer of heterogeneities is replaced by a surface (cf. figure 2) on which particular

jumping conditions are defined. These are the macroscopic problems. Following a

formal method used by Nguetseng & Sanchez-Palencia21 for heterogeneities located

near the boundary, the influence of the heterogeneities will be obtained trough the

formal analysis of an associated internal boundary layer effect. The analysis of this

internal boundary layer uses the matched asymptotic expansion method and gives

rise to the macroscopic problems. This method has been recently developed for

other kind of heterogeneities localized near an internal surface in e.g. Ref. 1, 19

and 8. Our aim in the present paper is to give a precise description of the matched

asymptotic expansion method for the situation considered here and to prove its
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effectiveness through suitable numerical experiments. However we will not analyse

here the numerical methods used to realize the numerical experiments; this analysis

is done in Ref. 10.

In section 2 we give the precise statement of the problem in the unknowns

equilibrium displacement vector field uε and equilibrium stress tensor field σε of the

structure. In section 3 we present the steps of the inner-outer matched asymptotic

expansion method. These steps are:

(1) definition for every ε > 0 of the inner region Ωin,ε near the layer of the het-

erogeneities and of the outer region Ωout,ε far from the heterogeneities with a

non-empty matching region Ωm,ε := Ωout,ε ∩ Ωin,ε 6= ∅ ;

(2) introduction of suitable normalized system of coordinates in each region in such

a way that for ε → 0 the outer region and the inner region converge to fixed

domains: the inner and the outer domain;

(3) use of an Ansatz to a priori introduce an asymptotic expansion for the unknown

uε in the inner and in the outer domain;

(4) deduction from the elasticity stress-strain law of an asymptotic expansion of σε

in the inner and in the outer domain;

(5) deduction of the boundary value problems for each term of the asymptotic

expansion in the inner and in the outer domain;

(6) introduction of the matching conditions in order to obtain well-posed boundary

value problems.

In Section 4 we study the first two order outer and inner approximations. In par-

ticular we prove that the zero-order outer and inner approximations do not see the

heterogeneities. This is due to the particular choice of the geometry and of the ma-

terial characteristics of the heterogeneities. In the first order outer approximation

the layer of heterogeneities is replaced by a non-homogeneous transmission condi-

tion on the interface ω. The left members of the transmission conditions depend

linearly on the zero-order outer approximation with coefficients depending on the

type of heterogeneity. A remarkable characteristic of these coefficients is that, as in

homogenisation, they can be computed once for all on an elementary cell.

In Section 5 we present some numerical results in order to prove the effectiveness of

our method in particular when the number of heterogeneities increases. In Section

6 we give some further comments and comparison with some results obtained in the

case of an ε-small layer of linearly elastic material.

The convention of sum over repeated indexes will be employed. Furthermore, Latin indexes

range in {1, 2, 3} and Greek indexes range in {2, 3}. The 2D or 3D measure of a set A will be

always denoted by | A |. The norm of the elasticity tensor B = (Bijkl) is ‖B‖; since the elas-

ticity tensor can be identified with a symmetric matrix one can choose the spectral norm (or the

euclidean norm or any other norm since all the norms are equivalent). The spectral norm can be

easily expressed in terms of the Kelvin moduli (see e.g. 22, 20).
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2. Statement of the problem

Let (e1, e2, e3) be the canonical basis of R3 and let Ω be an open domain of R3 with

smooth boundary ∂Ω . Let ω be the intersection of Ω with the coordinate plane of

equation x1 = 0 ; ω is assumed to be a non empty bounded domain in R2 having a

positive two-dimensional measure and a smooth boundary. We assume that across

ω small (and all equal) 3D heterogeneities are periodically distributed. (cf. figure

1).

More precisely, let Ŷ ⊂ R2 be the basis of a periodic planar net and let I be a

non-empty 3D domain contained in R×Ŷ with smooth boundary ∂I, with diameter

d satisfying 0 <
d

diam(Ω)
< +∞ and such that I ∩ {x1 = 0} is strictly contained

in Ŷ . (cf. figure 3).

Ŷ

I

1

Fig. 3. Representation of Ŷ and of I

We assume that ω is contained in the union of N (ε) ≈ aire(ω)

aire(Ŷ )
ε−2 sets εŶ . We

also assume that the heterogeneities have a diameter εd and fill every domain εI.

We denote with ε∂I the boundary of εI and with Iε, resp. ∂Iε, the union of all the

heterogeneities, resp. of all their boundaries.

Hence from a geometrical point of view there are two natural length scales: the

first is a global one (the 3D-diameter of Ω or the 2D-diameter of ω) the other one is

a local one connected with the heterogeneities (e.g. the diameter of each heterogene-
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ity). The ratio between these two scales will be denoted by ε. More precisely, the

parameter ε is a non-dimensional parameter characterizing the geometrical distribu-

tion of the heterogeneities in the structure since, at the same time, it characterizes

the ratio between the diameter of any heterogeneity (εd) and the diameter of Ω

and the ratio between the diameter of the period (εŶ ) of the planar net and the

diameter of the planar set ω supporting the heterogeneities.

We assume that, outside the heterogeneities, the structure Ω is constituted by

a linearly hyper-elastic material whose rigidity tensor A satisfies the usual assump-

tions of symmetry and positivity (we also assume for simplicity that A does not

depend on x). As far as the heterogeneities are concerned the following situations

can be of interest:

(i) hyper-elastic soft or hard inclusions characterized by a rigidity tensor Aε,I

depending on ε,

(ii) rigid inclusions,

(iii) holes.

In this paper we will consider the case of soft hyper-elastic inclusions, i.e. we

assume that

Aε,I = εpAI , AI w A , p ∈ N (2.1)

where AI w A means that 0 <
‖AI‖
‖A‖

< +∞. We also assume that AI satisfies the

usual symmetry and positivity assumptions. The case of holes has been considered

in a previous paper 9 (see also 19) and the cases of hard hyper-elastic (resp. rigid)

inclusions will be studied in a forthcoming paper.

Thanks to (2.1) the parameter ε is a non-dimensional parameter characterizing

at the same time the geometrical distribution of the heterogeneities in the struc-

ture and the ratio between the rigidity of the heterogeneities and the rigidity of the

structure. For simplicity we assume that the structure is free of applied body forces.

The structure is clamped on a part Γ0 ⊂ ∂Ω (of surface measure > 0) and on the

complementary part ΓF of the boundary ∂Ω is submitted to applied surface forces

F . Obviously one can consider other type of boundary conditions (e.g. a combina-

tion of some components of the stress vector and of the displacement).

Let uε and σε be the equilibrium displacement vector field and the equilibrium

stress tensor field of the structure. They are, for every ε > 0 fixed, the solutions of
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the following classical elastostatic problem P ε :

divσε = 0 in Ω

σε = Aγ(uε) in Ω\Iε

σε = εpAIγ(uε) in Iε , p ∈ N
σεn = F on ΓF

uε = 0 on Γ0

(2.2)

Notice that on the internal boundaries ∂Iε the following two continuity conditions

(also called transmission conditions) hold:{
[uε]∂Iε = 0 on ∂Iε

[σεn]∂Iε = 0 on ∂Iε

where as usual [w]∂Iε denotes the jump of w across ∂Iε and [σεn]∂Iε denotes the

jump of the stress vector. Let us remark that (2.2) has, for every ε > 0, a unique

solution uε ∈H1(Ω).

In order to see the influence of the heterogeneities when ε→ 0, we suitably adapt

the inner-outer matched asymptotic expansion method to obtain an approximation

of uε and of σε. A first general presentation of the method has been given in a

seminal book by M. Van Dyke25 (see also J. Sanchez Hubert & E. Sanchez Palencia23

for a more recent presentation).

3. The inner-outer matched asymptotic expansion method

3.1. Separation of the global or macroscopic scale of the structure

from the microscopic scale of the heterogeneities

In order to separate the macroscopic from the microscopic scale we introduce two

zones. The first one, situated far from the heterogeneities, cf. figure 4, is defined by

Ωout,ε := {x ∈ Ω ; |x1| > ε
2} = Ω+,ε ∪ Ω−,ε where

Ω+,ε :=
{
x ∈ Ω ; x1 >

ε

2

}
, Ω−,ε :=

{
x ∈ Ω ; x1 < −

ε

2

}
One can say, roughly speaking, that in this zone the fields uε and σε do not see the

heterogeneities. The second zone, situated near the the heterogeneities, cf. figure 5,

is defined by Ωin,ε := {x ∈ Ω ; |x1| < η(ε)
2 } where η(ε) is a function satisfying the

following conditions:  lim
ε→0

η(ε) = 0

lim
ε→0

η(ε)

ε
= +∞

(3.1)

In this zone the fields uε and σε are rapidly oscillating with respect to the variables

(x2, x3). It is important to stress that the two zones have a non-empty intersection,

cf. figure 6, Ωm,ε := {x ∈ Ω ; ε
2 < |x1| < η(ε)

2 }.



Matched Asymptotic Expansion for an Homogenized Interface Model 7

ε

1

Fig. 4. Ωout,ε = Ω+,ε ∪ Ω−,ε

ω

η(ε)

1

Fig. 5. Ωin,ε

1

Fig. 6. Ωm,ε

3.2. Introduction of normalized coordinate systems

• When ε → 0, the domain Ω+,ε ∪ Ω−,ε = {x ∈ Ω ; |x1| > ε} tends to a fixed

domain Ω− ∪ Ω+ = Ω \ ω = {x ∈ Ω ; |x1| > 0} which is also called the outer

domain. The outer system of coordinates is x := (x1, x2, x3) ∈ Ω \ ω .

• Since ω is contained in the union of N (ε) sets εŶ , as in the periodic homogeni-

sation procedure the position z := (z1, z2, z3) of a point M in the inner domain
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can be given by two independent data:

i) the macroscopic position (0, x̂) := (0, x2, x3) ∈ ω of the center of the period

εŶ containing the projection of M on ω

ii) the microscopic position defined as the position of the point M with respect

to this center.

In the following, without loss of generality, we take Ŷ =]− α
2 ,

α
2 [×]− α

2 ,
α
2 [.

To obtain a domain and a coordinate system independent from ε, one applies

to the inner domain a dilatation of the variables εyi of a factor 1
ε . Thus, using

(3.1) and the periodicity assumption on the heterogeneities, the inner domain

is ω×Y where Y := R× Ŷ is called the basic cell and the relation between the

coordinates z of the point M and the point ((0, x̂),y) of the inner domain is

given by:

z = (0, x̂) + εy. (3.2)

Ŷ

y1

y2

y3

1

Fig. 7. The elementary cell Y

This correspondence implies that the operators divergence (div) and symmet-

ric gradient (γ) must be reformulated in terms of the macroscopic x̂ and the

microscopic y = (y1, ŷ) coordinates in the following way:

div τ (x̂,y) = divxτ (x̂,y) +
1

ε
divyτ (x̂,y)

γ(v(x̂,y)) = γx(v(x̂,y)) +
1

ε
γy(v(x̂,y))

(3.3)

with: 
divxτ =

∂τij
∂xj

ei , divyτ =
∂τij
∂yj

ei

(γx(v))ij =
1

2
(
∂vj
∂xi

+
∂vi
∂xj

) , (γy(v))ij =
1

2
(
∂vj
∂yi

+
∂vi
∂yj

)
(3.4)

3.3. Ansatz: introduction of the two a priori asymptotic

expansions of uε

• the outer expansion

uε(x1, x2, x3) =

∞∑
i=0

εiui(x1, x2, x3) (3.5)
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• the inner expansion

uε(x1, x2, x3) =

∞∑
i=0

εivi(x̂, y1, ŷ) (3.6)

where the vi are Ŷ -periodic, i.e. such that:

vi(x̂, y1, ŷ + pαe2 + qαe3) = vi(x̂, y1, ŷ) ∀(p, q) ∈ Z2 (3.7)

and x̂ ∈ ω has to be considered as a parameter.

3.4. Deduction of the outer and inner expansion of σε

We use the constitutive equations and the inner and outer expansion of uε to

determinate the outer and the inner expansion of σε. Since the material in the

inclusions is hyper-elastic and characterized by the hyper-elastic fourth-order tensor

Aε,I = εpAI with AI w A and p ∈ N and since outside the heterogeneities the

structure is constituted by a linearly hyper-elastic material whose rigidity tensor is

A, the stress tensor field has the following asymptotic expansion:

• Outer expansion:

σε(x) =

∞∑
i=0

εiσi(x) (3.8)

with

σi = Aγx(ui) (3.9)

• Inner expansion:

– in Y \I :

σε(x) =

∞∑
i=−1

εiτ i(x̂,y) (3.10)

with {
τ−1 = Aγy(v0)

τ i = Aγx(vi) +Aγy(vi+1) for i ≥ 0
(3.11)

– in I :

σε(x) =

∞∑
i=p−1

εiτ i(x̂,y) (3.12)

with {
τ p−1 = AIγy(v0)

τ i = AIγx(vi−p) +AIγy(vi−p+1) for i ≥ p
(3.13)

The fields τ i are Ŷ -periodic, with respect to ŷ and x̂ ∈ ω has to be considered

as a parameter.
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3.5. Deduction of the boundary value problems in the outer and in

the inner domain

Using the equations of the problem (2.2) we find the boundary value problems

that ui and vi must satisfy. We also prove that vi are completely determined

(eventually up to a constant vector) by the boundary value problem set in the

unit cell Y ; on the contrary the boundary value problems for ui is not completely

determined in the global domain Ω since one needs some transmission conditions

on ω. These transmission conditions follow from the matching conditions. More

precisely, identifying the terms with the same powers of ε we obtain the following

family of equilibrium equations:

Equilibrium equations

Order In: I

p− 2 divyτ
p−1 = 0

i ≥ p− 1 divxτ
i + divyτ

i+1 = 0

Order In: Ω\ω In: Y \I
−2 × divyτ

−1 = 0

−1 × divxτ
−1 + divyτ

0 = 0

i ≥ 0 divxσ
i = 0 divxτ

i + divyτ
i+1 = 0

and boundary conditions

Boundary conditions

Order Outer

i = 0 σ0n = F on ΓF
u0 = 0 on Γ0

i > 0 σin = 0 on ΓF
ui = 0 on Γ0

and for every x̂ ∈ ω and every y1 ∈ R the periodicity conditions with respect to

ŷ ∈ Ŷ . These periodicity conditions can be written in the following way:

i ≥ −1 τ i(x̂, y1,
α
2 , y3)e2 = τ i(x̂, y1,

−α
2 , y3)e2

τ i(x̂, y1, y2,
α
2 )e3 = τ i(x̂, y1, y2,

−α
2 )e3

i ≥ 0 vi(x̂, y1,
α
2 , y3) = vi(x̂, y1,

−α
2 , y3)

vi(x̂, y1, y2,
α
2 ) = vi(x̂, y1, y2,

−α
2 )

The previous conditions have to be supplemented for every x̂ ∈ ω with the inner

transmission conditions on ∂I. In order to avoid ambiguities when useful we use the

subscript +, resp. −, to indicate the restriction from outside, resp. inside, I.
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Order 0n ∂I

if p = 0 i ≥ −1
[
τ in

]
∂I

=
[
vi+1

]
∂I

= 0

if p > 0 i = −1, ..., p− 2 τ i+n = 0

i ≥ p− 1
[
τ in

]
∂I

=
[
vi−p+1

]
∂I

= 0

3.6. Introduction of the matching conditions

Since the inner and the outer expansions represent the same functions they have

to coincide in the intermediate region Ωm,ε, cf figure 6. In order to achieve this

requirement one makes at first a Taylor development with respect to x1 of each

term of the outer expansion near ω (i.e. for x1 = 0). In this way one obtains for

instance for every ui and for ε
2 < x1 <

η(ε)
2 :

ui(x) = ui(0+, x̂) + x1
∂ui

∂x1
(0+, x̂) + ...

Hence since x1 = εy1 one obtains rearranging the terms:

uε(x1, x̂) = u0(0+, x̂) + ε

(
u1(0+, x̂) + y1

∂u0

∂x1
(0+, x̂)

)
+ ...

In Ωm,ε one has also :

uε(x1, x̂) = v0(x̂, y1, ŷ) + εv1(x̂, y1, ŷ) + .....

Remarking that Ωm,ε = {x ∈ Ω ; 1
2 < |y1| = |x1|

ε < η(ε)
2ε } one can identify each

power of ε of the outer expansion with the corresponding power of the inner expan-

sion. As the image of the intermediate region in the coordinates (x1, x2, x3) of the

outer domain tends for ε→ 0 to {x = (x1, x2, x3) ; x1 = 0} (= ω), and in the coor-

dinates of the inner domain to the unbounded domain {y = (y1, y2, y3) ; |y1| > 1},
the matching conditions will be for each power of ε and for every x̂ ∈ ω and every

ŷ ∈ Ŷ :

limit for x1 going to 0± of the outer expansion =

limit for y1 going to ±∞ of the inner expansion

Following Ref. 25 (or Ref. 23) these conditions correspond to the assumption:

inner limit of the outer limit = outer limit of the inner limit.

In our situation we only use the following matching conditions to be satisfied for

every x̂ ∈ ω and every ŷ ∈ Ŷ :

lim
y1→±∞

τ−1(x̂, y1, ŷ)e1 = 0 (3.14)

lim
y1→±∞

v0(x̂, y1, ŷ) = u0(0±, x̂) (3.15)
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lim
y1→±∞

τ 0(x̂, y1, ŷ)e1 = σ0(0±, x̂)e1 (3.16)

lim
y1→±∞

(
v1(x̂, y1, ŷ)− u1(0±, x̂)− y1

∂u0

∂x1
(0±, x̂)

)
= 0 (3.17)

lim
y1→±∞

(
τ 1(x̂, y1, ŷ)e1 − σ1(0±, x̂)e1 − y1

∂σ0

∂x1
(0±, x̂)e1

)
= 0 (3.18)

3.7. Definition of the outer and inner approximations

Once determined the different terms ui and vi one can define for every m ≥ 0 an

outer and an inner approximation of order m:

uoutm =

i=m∑
i=0

εiui (3.19)

uinnm =

i=m∑
i=0

εivi (3.20)

The quality of these approximations increases with m. In the following we compute

only the first two terms ui and vi for i = 0, 1 and hence the corresponding outer and

inner approximations of order m = 0, 1. In Section 5 the numerical experiments will

prove the gain of precision that is obtained increasing the value of m from m = 0

to m = 1.

4. The two first orders outer approximations

4.1. Zero order outer approximation

Theorem 4.1. The zero order outer approximation (u0,σ0) is the solution of the

following transmission linear problem :
divσ0 = 0 in Ω

σ0 = Aγ(u0) in Ω

σ0n = F on ΓF

u0 = 0 on Γ0

(4.1)

Remark 4.1. Let us state explicitly that in the zero order outer approximation

the heterogeneities have completely disappeared and that the problem has a unique

solution u0 ∈H1(Ω). Moreover the solution u0 is regular when the data are regular

and in particular its trace on ω will be also regular.
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4.1.1. Determination of v0

Lemma 4.1. For p ≥ 0 one has v0(x̂, y1, ŷ) = v0(x̂) and hence

lim
y1→−∞

v0(x̂, y1, ŷ) = lim
y1→+∞

v0(x̂, y1, ŷ) = v0(x̂) (4.2)

Proof. In the case p = 0, v0 and τ−1 are solutions for every x̂ ∈ ω of the following

problem : 

divyτ
−1 = 0 in Y

τ−1 = Ãγy(v0) in Y

τ−1(x̂, y1,
α
2 , y3)e2 = τ−1(x̂, y1,

−α
2 , y3)e2 on R× ∂Ŷ

τ−1(x̂, y1, y2,
α
2 )e3 = τ−1(x̂, y1, y2,

−α
2 )e3 on R× ∂Ŷ

v0(x̂, y1,
α
2 , y3) = v0(x̂, y1,

−α
2 , y3) on R× ∂Ŷ

v0(x̂, y1, y2,
α
2 ) = v0(x̂, y1, y2,

−α
2 ) on R× ∂Ŷ

lim
y1→±∞

τ−1(x̂, y1, ŷ)e1 = 0 for ŷ ∈ Ŷ

(4.3)

with

Ã =

{
A in Y \I
AI in I

(4.4)

It follows that τ−1 = Ãγy(v0) = 0 and hence v0(x̂, y1, ŷ) = v0(x̂) and (4.2).

When p > 0, the proof is essentially the same. One has only to remark that

τ−1 = 0 in I and hence v0 and τ−1 are solutions in Y \I of a problem analogous to

(4.3). Therefore in Y \I one has τ−1 = Aγy(v0) = 0 and so v0(x̂, y1, ŷ) = v0(x̂).

As a consequence (4.2) holds true also in this case.

4.1.2. Proof of Theorem 4.1

Thanks to 3.5 it is enough to prove only that on ω one has
[
u0
]
ω

= 0 and
[
σ0e1

]
ω

=

0. These follow from the matching conditions (3.15) and (3.16). Let us remark at

first that (4.2) and the matching condition (3.15) imply that
[
u0
]
ω

= 0. In order

to prove the continuity of σ0e1 through ω, one remarks that for p ≥ 0 one has in

all ω × Y :

divyτ
0 = 0 (4.5)

and then that the matching condition (3.16) can also be written as follows:

| Ŷ |
[
σ0e1

]
ω

= lim
L→+∞

(∫
Ŷ

(
τ 0(x̂, L, ŷ)e1 − τ 0(x̂,−L, ŷ)e1

)
dŷ

)
(4.6)

Therefore integrating the equation (4.5) on YL :=] − L,L[×Ŷ , from the Green

formula and the periodicity conditions on τ 0 one deduces for every L > 0:∫
Ŷ

(
τ 0(x̂, L, ŷ)e1 − τ 0(x̂,−L, ŷ)e1

)
dŷ = 0 (4.7)
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and hence
[
σ0e1

]
ω

= 0.

Corollary 4.1. One has v0(x̂) = u0(0, x̂).

The result follows immediately from (4.2) and the matching condition (3.15).

4.2. First order outer approximation

The outer equilibrium and constitutive equations and the boundary conditions im-

ply that u1 and σ1 are solutions of the following set of equations:
divσ1 = 0 in Ω\ω
σ1 = Aγ(u1) in Ω\ω
σ1n = 0 on ΓF

u1 = 0 on Γ0

(4.8)

In order to obtain a well-posed boundary value problem we need to find the trans-

mission conditions on ω. The matching conditions (3.17), (3.18) and the Proposition

4.1 imply that these transmission conditions are the following:[
u1
]
ω

=

lim
y1→+∞

(
1

| Ŷ |

∫
Ŷ

(
v1(x̂, y1, ŷ)− v1(x̂,−y1, ŷ)

)
dŷ − 2y1

∂u0

∂x1
(0, x̂)

)
(4.9)

[
σ1e1

]
ω

=

lim
y1→+∞

(
1

| Ŷ |

∫
Ŷ

(
τ 1(x̂, y1, ŷ)e1 − τ 1(x̂,−y1, ŷ)e1

)
dŷ − 2y1

∂σ0

∂x1
(0, x̂)e1

)
(4.10)

From the Green formula and the periodicity conditions one finds∫
Ŷ

(
τ 1(x̂, L, ŷ)e1 − τ 1(x̂,−L, ŷ)e1

)
dŷ =

∫
YL

divyτ
1(x̂,y)dy (4.11)

and hence the inner equilibrium equation of order 0 implies that it is enough to

completely determine τ 0.

4.2.1. Determination of v1 and of τ 0

The transmission condition (4.9) being a limit condition for y1 → +∞ for every

x̂ ∈ ω we shall decompose v1 as follows:

v1(x̂,y) = f(y1; a, b)
∂u0

∂x1
(0, x̂) + v?(x̂,y) (4.12)

where f(y1; a, b) is a smooth odd function (e.g. of class C2(R)) with:

f(y1; a, b) =

{
0 if 0 < |y1| ≤ a
y1 if |y1| ≥ b

(4.13)
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and d < 2a < 2b (let us also recall that I ∩ {y1 = 0} is strictly contained in Ŷ , cf.

figure 7). In the sequel for simplicity we only write f(y1).

Proposition 4.1. (i) When p = 0, let Ã be defined by Ã = A in Y \I and by

Ã = AI in I; then the displacement field v?(x̂, y1, ŷ) is, for every x̂ ∈ ω, the

unique, up to a translation with respect to y, solution of the following problem:

divyτ
? = −f ′′(y1)Ã

(
∂u0

∂x1
(0, x̂)⊗S e1

)
e1 in Y

τ ? = Ãγy(v?) in Y

τ ?(x̂, y1,
α
2 , y3)e2 = τ ?(x̂, y1,

−α
2 , y3)e2 on R× ∂Ŷ

τ ?(x̂, y1, y2,
α
2 )e3 = τ ?(x̂, y1, y2,

−α
2 )e3 on R× ∂Ŷ

v?(x̂, y1,
α
2 , y3) = v?(x̂, y1,

−α
2 , y3) on R× ∂Ŷ

v?(x̂, y1, y2,
α
2 ) = v?(x̂, y1, y2,

−α
2 ) on R× ∂Ŷ

lim
y1→±∞

τ ?(x̂, y1, ŷ)e1 = 0 for ŷ ∈ Ŷ

[v?]∂I = 0

[τ ?n]∂I =
((
AI −A

)
γx
(
u0(0, x̂)

))
n

(4.14)

(ii) For every x̂ ∈ ω the displacement field v?(x̂, y1, ŷ) does not depend when

p > 0 on p and is for every x̂ ∈ ω, the unique, up to a translation with respect to

y, solution of the following problem:

divyτ
? = −f ′′(y1)A

(
∂u0

∂x1
(0, x̂)⊗S e1

)
e1 in Y \I

τ ? = Aγy(v?) in Y \I
τ ?(x̂, y1,

α
2 , y3)e2 = τ ?(x̂, y1,

−α
2 , y3)e2 on R× ∂Ŷ

τ ?(x̂, y1, y2,
α
2 )e3 = τ ?(x̂, y1, y2,

−α
2 )e3 on R× ∂Ŷ

v?(x̂, y1,
α
2 , y3) = v?(x̂, y1,

−α
2 , y3) on R× ∂Ŷ

v?(x̂, y1, y2,
α
2 ) = v?(x̂, y1, y2,

−α
2 ) on R× ∂Ŷ

lim
y1→±∞

τ ?(x̂, y1, ŷ)e1 = 0 for ŷ ∈ Ŷ

τ ?+n = −A
(
∂u0

∂x2
(0, x̂)⊗S e2 + ∂u0

∂x3
(0, x̂)⊗S e3

)
n on ∂I

(4.15)

(iii) For every x̂ ∈ ω when p > 0 the displacement field v1(x̂, y1, ŷ) does not

depend on p and is the unique solution of the Dirichlet boundary value problem:{
divyA

Iγy(v1) = 0 in I

v1 = v? on ∂I
(4.16)

(iv) For all p ≥ 0 the following asymptotic behaviour holds true:

lim
y1→±∞

∫
Ŷ

v?(x̂, y1, ŷ)dŷ = v?±(x̂) (4.17)
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Proof. (i), (ii) The first equations and the limit behaviour of τ ? in the case p > 0

(resp. p = 0) follow immediately from the equilibrium of order p− 1 (resp. −1), the

constitutive equations of order i = p (resp. i = 0), the periodicity conditions, the

choice of f(y1), the property v0(x̂, y1, ŷ) = v0(x̂) = u0(0, x̂) and the transmission

conditions of order p− 1 (resp. −1) on ∂I.

(iii) The boundary value problem (4.16) on ∂I follows from the equilibrium equa-

tions of order p − 2 and p − 1, the constitutive equations (3.12) of order i = p − 1

and i = p, the Corollary 4.1, the transmission condition of order p and the decom-

position (4.12). Let us remark that the solution of (4.16) is uniquely determined;

hence when a translation with respect to y is added to v? in Y \I then the same

translation will be added to v1 in I.

(iv) In order to prove (4.17) let us only remark that the assumptions on f(y1) im-

ply that divyτ
? = 0 for |y1| > b and hence for a result on the analyticity of the

solutions of the linear elasticity system (see e.g. Gurtin 14, Sect. 27 in the isotropic

case ) one has that v?(x̂, y1, ŷ) is an analytic function of y in the strip |y1| > b. The

periodicity conditions and the limit behaviour of τ ?(x̂, y1, ŷ)e1 imply the result.

Remark 4.2. The problem (4.15) coincides with the problem obtained in the case

of the holes in Ref. 9. Hence in order to simplify the statements in the following

proposition 4.2 we only consider the case p = 0. The corresponding statements for

p > 0 can be deduced with obvious modifications; let us only remark that from the

decomposition of v? in ω × Y \I it follows easily the decomposition of v1 in ω × I.

The linearity of problem (4.14) implies a decomposition in nine elementary uni-

versal problems.

Proposition 4.2. For every x̂ ∈ ω, the solution v? of the problem (4.14) can be

decomposed as follows:

v?(x̂,y) =
∂u0

l

∂xk
(0, x̂)V lk(y) + v̌(x̂). (4.18)

Here v̌ is a constant (with respect to y) displacement field and (V lk(y),T lk(y)) are

the unique solutions satisfying the asymptotic condition V ij+ + V ij− = 0, whith

V ij± := lim
y1→±∞

∫
Ŷ

V ij(y1, ŷ)dŷ, of the following elementary problems :
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i) for (l,1), l = 1, 2, 3 :



divyT
l1 = −f ′′(y1)Ãi1l1ei in Y

T l1 = Ãγy(V l1) in Y

T l1(x̂, y1,
α
2 , y3)e2 = T l1(x̂, y1,

−α
2 , y3)e2 on R× ∂Ŷ

T l1(x̂, y1, y2,
α
2 )e3 = T l1(x̂, y1, y2,

−α
2 )e3 on R× ∂Ŷ

V l1(x̂, y1,
α
2 , y3) = V l1(x̂, y1,

−α
2 , y3) on R× ∂Ŷ

V l1(x̂, y1, y2,
α
2 ) = V l1(x̂, y1, y2,

−α
2 ) on R× ∂Ŷ

lim
y1→±∞

T l1(y1, ŷ)e1 = 0 for ŷ ∈ Ŷ[
V l1

]
∂I

=
[
T l1n

]
∂I

= 0

(4.19)

ii) when (l,k) = (1,2) ; (2,2) ; (3,2) ; (1,3) ; (2,3) ; (3,3),



divyT
lk = 0 in Y

T lk = Ãγy(V lk) in Y

T lk(x̂, y1,
α
2 , y3)e2 = T lk(x̂, y1,

−α
2 , y3)e2 on R× ∂Ŷ

T lk(x̂, y1, y2,
α
2 )e3 = T lk(x̂, y1, y2,

−α
2 )e3 on R× ∂Ŷ

V lk(x̂, y1,
α
2 , y3) = V lk(x̂, y1,

−α
2 , y3) on R× ∂Ŷ

V lk(x̂, y1, y2,
α
2 ) = V lk(x̂, y1, y2,

−α
2 ) on R× ∂Ŷ

lim
y1→±∞

T lk(y1, ŷ)e1 = 0 for ŷ ∈ Ŷ[
V lk

]
∂I

= 0[
T lkn

]
∂I

=
((
AI −A

)
(el ⊗S ek)

)
n

(4.20)
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4.2.2. The boundary value problem of the first order outer approximation

Theorem 4.2. The first order outer approximation (u1,σ1) is the unique solution

of the following boundary value problem:

divσ1 = 0 in Ω\ω
σ1 = Aγ(u1) in Ω\ω
σ1n = 0 on ΓF

u1 = 0 on Γ0[
u1
]
ω

=
1

| Ŷ |
∂u0

i

∂xj
(0, x̂)

[
V ij

]∞

[
σ1e1

]
ω

=



divx

(
| I |
| Ŷ |

(
A−AI

)
γx
(
u0(0, x̂)

)
− ∂u0

i

∂xj
(0, x̂)

∫
Y
T ij(y) dy

| Ŷ |

)
if p = 0

divx

(
| I |
| Ŷ |

Aγx
(
u0(0, x̂)

)
− ∂u0

i

∂xj
(0, x̂)

∫
Y \I T

ij(y) dy

| Ŷ |

)
if p > 0

(4.21)

Proof. From (4.9), (4.12) and (4.18) one immediately deduces the first transmission

condition on ω: [
u1
]
ω

=
1

| Ŷ |
∂u0

i

∂xj
(0, x̂)

[
V ij

]∞
(4.22)

where
[
V ij

]∞
= V ij+ − V ij−.

In order to find the second transmission condition one remarks that (4.11) and

the interior equilibrium equation of order i = 0 imply:

• for p = 0∫
Ŷ

(
τ 1(x̂, L, ŷ)e1 − τ 1(x̂,−L, ŷ)e1

)
dŷ = −

∫
YL

divxτ
0(x̂,y) dy; (4.23)

since divx
(
σ0(0, x̂)

)
=

∂σ0

∂x2
(0, x̂)e2 +

∂σ0

∂x3
(0, x̂)e3, the equation (4.1)1 and

the proposition 4.2 imply :∫
Ŷ

(
τ 1(x̂, L, ŷ)e1 − τ 1(x̂,−L, ŷ)e1

)
dŷ − 2L

∂σ0

∂x1
(0, x̂)e1 =

| I | divx
(

(A−AI)γx(u0(0, x̂))
)
− divx

(
∂u0

i

∂xj

∫
Y

T ij(y) dy

)
.

(4.24)

• for p > 0∫
Ŷ

(
τ 1(x̂, L, ŷ)e1 − τ 1(x̂,−L, ŷ)e1

)
dŷ = −

∫
YL\I

divxτ
0(x̂,y) dy; (4.25)
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and as in the previous case one obtains:∫
Ŷ

(
τ 1(x̂, L, ŷ)e1 − τ 1(x̂,−L, ŷ)e1

)
dŷ − 2L

∂σ0

∂x1
(0, x̂)e1 =

|I|divx
(
Aγx(u0(0, x̂))

)
− divx

(
∂u0

i

∂xj

∫
Y \I

T ij(y) dy

) (4.26)

In conclusion, taking limL→∞ one finds the second transmission condition on ω:

[
σ1e1

]
ω

=



divx

(
| I |
| Ŷ |

(
A−AI

)
γx
(
u0(0, x̂)

)
− ∂u0

i

∂xj
(0, x̂)

1

| Ŷ |

∫
Y

T ij(y) dy

)
if p = 0

divx

(
| I |
| Ŷ |

Aγx
(
u0(0, x̂)

)
− ∂u0

i

∂xj
(0, x̂)

1

| Ŷ |

∫
Y \I

T ij(y) dy

)
if p > 0

(4.27)

Let us state explicitly that the missing transmission conditions obtained for

p > 0 coincide with the analogous transmission conditions obtained in the case of

the holes in Ref. 9.

Remark 4.3. It is worthwhile to remark that the solution u1 of (4.21) in general

cannot be in H1(Ω). One only has u1 ∈ Z where Z := {z ∈ L2(Ω);divAγ(z±) =

0 in Ω±, where z± = z|Ω±}. Hence the transmission conditions of (4.21) have to

be taken in a weak sense adapting the methods of Lions-Magenes Ref. 18.

5. Numerical validation

The numerical validation needs at first the computation with a standard finite

element method of a reference solution uεh on a suitable mesh for a test problem and

for decreasing values of ε. We then compare this computed reference solution with

the solutions uout0,h = u0
h and uout1,h = u0

h+εu1
h obtained by the asymptotic approach.

The aim will be to verify numerically that these approximations improve when ε

decreases and also for each fixed ε far from ω, i.e. far from the heterogeneities. For

this we test the approximations on the family of domains Ωout,δ := {x ∈ Ω ; |x1| >
δ
2} varying the parameter δ.

5.1. Description of the test problem

Let be Ω = (−L,L)× (−H,H) a plane domain containing N (ε) = 2Hε−1 identical

discs of diameter εD, arranged periodically (with period ε), along the line ω of

equation x1 = 0. Outside the heterogeneities the structure is constituted of an elastic

homogeneous isotropic material, characterized by its Young modulus E and Poisson

coefficient ν. The elastic homogeneous isotropic material forming the heterogeneities
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is characterized by the Young modulus Eε,I = εpEI and the Poisson coefficient

νε,I = ν. The boundary Γ0 of the structure is clamped and a density F of linear

force is applied on the complementary part ΓF . There are no body forces (see Fig.8).

In order to evaluate the asymptotic model, we choose four values of ε: ε = 2H
10 ,

ε = 2H
20 , ε = 2H

40 and ε = 2H
80 . And for each value of ε we consider two values of

Eε,I : Eε,I = ε0E
2 and Eε,I = εE2 . Each problem is solved considering the plane

stress approximation.

Let us remark that, in order to capture the influence of the heterogeneities, for

ε

ε

ω

x1

x2

Γ0

1

Fig. 8. Test Problem

each value of ε one has to use a suitably fine mesh so that the computed reference

solution uεh be precise enough. Since in the finite element computations we have

used P2 Lagrange elements the error in the energy norm will be of order O(h2) (and

of order O(h3) in the L2-norm) where as usual h corresponds to the diameter of the

largest element, see e.g. Ref. 7. In our numerical simulations we have chosen for

all values of ε the same value of h. Let us point out that in practice the mesh will

be non uniform since the mesh used near the heterogeneities must have a diameter

< ε; this rapidly gives a very stringent condition on the number of the elements of

the mesh.

5.2. Validation of the outer approximations in all Ω

We compute u0
h on the full domain Ω by a standard finite element method with

a uniform mesh of size h; for the computation of u1
h we use a suitable domain

decomposition method (see Ref. 10 for the details). In this way we obtain uout0,h and

uout1,h . These computations are done for p = 0 and p = 1. Let us explicitly remark
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that in the comparison with uεh the value of ε plays an important role since when

ε decreases the number of heterogeneities increases.

For uout0,h the validation is performed by computing the relative error for the energy

norm ‖uεh − uout0,h‖Ω/‖uεh‖Ω where for a given vector field w the energy norm is

defined by:

‖w‖2Ω :=

∫
Ω

Aεγ(w)γ(w)dx.

As pointed out in Remark 4.3 u1 ∈ Z ⊂ L2(Ω); hence the validation for uout1,h

is performed by computing the relative error for the L2-norm |uεh − uout1,h |Ω/|uεh|Ω
where for a given vector field w the L2-norm is defined by

|w|2Ω :=

∫
Ω

w2dx.

The results obtained for the cases p = 0 and p = 1 are given in the following tables.

Table 1. Relative errors for p = 0.

ε
‖uε

h − uout
0,h‖Ω

‖uε
h‖Ω

|uε
h − uout

0,h |Ω
|uε

h|Ω

|uε
h − uout

1,h |Ω
|uε

h|Ω
1/10 0.0581 0.00839 0.00078

1/20 0.0413 0.00421 0.00034
1/40 0.0289 0.00210 0.00015

1/80 0.0205 0.00104 0.00006

Table 2. Relative errors for p = 1.

ε
‖uε

h − uout
0,h‖Ω

‖uε
h‖Ω

|uε
h − uout

0,h |Ω
|uε

h|Ω

|uε
h − uout

1,h |Ω
|uε

h|Ω
1/10 0.16493 0.03603 0.00796
1/20 0.12412 0.02008 0.00215

1/40 0.09057 0.01062 0.00055
1/80 0.06484 0.00542 0.00016

5.3. Validation of the outer approximations far from ω

The construction of the matched asymptotic expansion method has as Ansatz

that the outer approximations are of better quality far from ω. In order to ver-

ify this assumption we define the following family of varying outer domains:

Ωout,δ = Ω\(δ) × (−H,H)). Let us remark that the classical regularity results

for elliptic equations imply that u1 ∈ H1(Ωout,δ); hence for every domain we can
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compute the relative errors
‖uεh−u

out
p,h‖δ

‖uεh‖δ
in the energy norms that now are defined

as:

‖w‖2δ :=

∫
Ωout,δ

Aεγ(w)γ(w)dx.

The numerical results for decreasing values of ε and increasing values of δ are given

for p = 0 in tables 3 and 4, and for p = 1 in tables 5 and 6. Let us explicitly point

Table 3. Relative errors
‖uεh−uout0,h ‖δ
‖uε
h
‖δ

for p = 0.

δ ε = 0.1 ε = 0.05 ε = 0.025 ε = 0.0125

0.01 0.0499 0.03065 0.01527 0.00508
0.03 0.0399 0.01480 0.00378 0.00284

0.06 0.0214 0.00614 0.00205 0.00281
0.10 0.0135 0.00239 0.00188 0.00280
0.15 0.00547 0.00182 0.00178 0.00282

0.20 0.00335 0.00155 0.00173 0.00284
0.25 0.00271 0.00139 0.00172 0.00286
0.30 0.00243 0.00128 0.00171 0.00289

Table 4. Relative errors
‖uεh−uout1,h ‖δ
‖uε
h
‖δ

for p = 0.

δ ε = 0.1 ε = 0.05 ε = 0.025 ε = 0.0125

0.01 0.0499 0.03062 0.01523 0.00505

0.03 0.0398 0.01467 0.00364 0.00279
0.06 0.0212 0.00590 0.00186 0.00278
0.10 0.0133 0.00193 0.00174 0.00278
0.15 0.00500 0.00139 0.00168 0.00280
0.20 0.00274 0.00118 0.00166 0.00282

0.25 0.00207 0.00105 0.00166 0.00285

0.30 0.00184 0.00098 0.00166 0.00288

Table 5. Relative errors
‖uεh−uout0,h ‖δ
‖uε
h
‖δ

for p = 1.

δ ε = 0.1 ε = 0.05 ε = 0.025 ε = 0.0125

0.01 0.14870 0.10510 0.06074 0.02165

0.03 0.12769 0.06880 0.01676 0.00472
0.06 0.09096 0.02833 0.00629 0.00419
0.10 0.05783 0.00976 0.00512 0.00378

0.15 0.02224 0.00712 0.00428 0.00349

0.20 0.01212 0.00598 0.00374 0.00334
0.25 0.00894 0.00524 0.00339 0.00326
0.30 0.00764 0.00470 0.00313 0.00322
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Table 6. Relative errors
‖uεh−uout1,h ‖δ
‖uε
h
‖δ

for p = 1.

δ ε = 0.1 ε = 0.05 ε = 0.025 ε = 0.0125

0.01 0.14937 0.10484 0.06040 0.02131

0.03 0.12787 0.06815 0.01563 0.00329
0.06 0.09075 0.02712 0.00353 0.00304

0.10 0.05761 0.00700 0.00275 0.00293

0.15 0.02179 0.00431 0.00232 0.00288
0.20 0.01140 0.00342 0.00208 0.00287

0.25 0.00808 0.00286 0.00193 0.00288

0.30 0.00674 0.00246 0.00185 0.00290

out that the previous numerical tests are in good agreement with the Ansatz.

6. Final comments

1. The numerical validation of the matching asymptotic method suggests that one

might give a more rigorous proof, eventually using variational convergence methods

at least for uout0 . Indeed e.g. in Ref. 4, 5, 6, 12 ,... using variational convergence

methods has been studied the situation of a full heterogeneous ε-thin layer whose

elastic coefficients Aε,L satisfy:

Aε,L = εpAL , AL w A ,

where p takes positive or negative values. In all the situations considered in these

papers the influence of the layer appears in the zero order approximation whereas

Theorem 4.1 states that there is no influence of the heterogeneities at zero order.

2. As has been observed in Remark 4.3 the non-homogeneous transmission problem

(4.21) is non-classical since the data are in Sobolev spaces with highly negative

exponents. For this reason it is natural to search the solution u1 ∈ Z; however the

corresponding theory has to be carefully developed (following the methods used in

Ref. 18) when ω is smooth and ∂ω ∩ ∂Ω = ∅. Also when the data are regular some

singularities are present in ∂ω∩∂Ω as can also be seen in the numerical experiments,

see Ref. 10 and see Ref. 13 for a general study of these singularities.

3. One could consider a more general situation with many parameters: for instance

one can study what happens if the diameter of the heterogeneities is of the type

εmd with m > 1.

4. In a forthcoming paper Ref. 11 we study some situations of strong heterogeneities.
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