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SUMMARY

We introduce spectral coarse spaces for the BDD (Balanced Domain Decomposition) and FETI (Finite
Element Tearing and Interconnecting) methods. These coarse spaces are specifically designed for the two-
level methods to be scalable and robust with respect to the coefficients in the equation and the choice of
the decomposition. We achieve this by solving generalized eigenvalue problems on the interfaces between
subdomains to identify the modes which slow down convergence. Theoretical bounds for the condition
numbers of the preconditioned operators which depend only on a chosen threshold and the maximal number
of neighbours of a subdomain are presented and proved. For FETI there are two versions of the two-level
method: one based on the full Dirichlet preconditioner and the other on the, cheaper, lumped preconditioner.
Some numerical tests confirm these results. Copyrightc© 0000 John Wiley & Sons, Ltd.
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INTRODUCTION

In domain decomposition it is a real challenge to solve problems with a decomposition given by an
automatic partitioner [1, 2] which does not take into account all the difficulties inthe problem for the
simple reason that there are too many. One well known challenge for elliptic problems is when the
coefficients in the equation are highly heterogeneous. This is often the casein practical applications.
Classical coarse spaces are known to give good results when the jumps inthe coefficients are across
subdomain interfaces (see e.g. [3, 4, 5, 6]) or inside the subdomains andnot near their boundaries (cf.
[7, 8]). However, when the discontinuities arealong subdomain interfaces, classical results break
down, and one observes very bad convergence of the iterative solvers for the interface problem
(see e.g. [9, 10]). It is also well known that non-smooth decompositions (where the interfaces are
jagged) [11] or bad aspect ratios of the domains [12] can also lead to poor convergence.This is what
we work to improve: we aim to design a method for which the convergence ratedoes not depend on
the choice of the decomposition into subdomains or on any of the coefficients in the equations.

In order to achieve this we will use the strategy introduced in the additive Schwarz framework
by [13, 14] and [15]. This strategy is based on the abstract theory of the two-level additive Schwarz
method [16]. The strategy is to write the Schwarz theory up to the point where itdepends on the set
of equations we are dealing with and where assumptions on the coefficient distribution with respect
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2 N. SPILLANE, D.J. RIXEN

Table I. Summary of Notations

Function space Description Definition

Wh(Ω) Global solution space for (1.1)
Wh(Ωi) Local {u|Ωi

;u ∈ Wh(Ω)} ((1.6);D = Ωi)
Wi Local trace {u|Γ∩∂Ωi

;u ∈ Wh(Ω)} ((1.6);D = Γ ∩ ∂Ωi)
W Product trace W1 × . . .WN

Ŵ Global trace {u|Γ;u ∈ Wh(Ω)} ((1.6) ;D = Γ)

Stiffness matrices (defined on) Matrix Bilinear form

Global (Wh(Ω)) K̂ (1.3) â (1.1)
Local (Wh(Ωi)) Ki aΩi

(1.7) forD = Ωi

Product space (
∏N

i=1 Wh(Ωi)) K (1.11) none
Lumped global (Wh(Ω)) K̂bb(1.18) âbb

Lumped product space (
∏N

i=1 Wh(Ωi)) Kbb(1.19) abb

Schur complement (defined on) Matrix Bilinear form

Global (Ŵ ) Ŝ (1.16) ŝ
Local (Wi) Si (1.13) si (1.22)

On the product space (W ) S (1.14) s
Weighted local (Wi) S̃i s̃i (1.23)

Right hand sides Notation

Condensed ontoΓ f̂Γ (1.20)
Condensed ontoΓ ∩ ∂Ωi fΓ,i (1.21)

Condensed on product space
∏N

i=1 Γ ∩ ∂Ωi fΓ (1.21)

to the decomposition into subdomains are needed to write estimates which do not depend on the
parameters. For the Darcy equation (−∇ · ∇(αu) = b) with the minimal coarse space (the constant
functions) the Poincaré inequality and trace theorem are needed to complete the proof and they
require quite strong assumptions. Instead, the authors in [15, 14, 13] propose to solve a generalized
eigenvalue problem in each subdomain which selects what modes of the solution satisfy the required
estimates for a chosen constant. The other modes, which do not satisfy the estimate, are used to build
the coarse space and are basically taken care of with a direct solve in the coarse space. This is what
we will refer to as the Schwarz-GenEO coarse space (Generalized Eigenvalues in the Overlaps).
It leads to a two-level method with a convergence rate chosen a priori forproblems described by
symmetric positive definite matrix.

The idea to use eigenvalue problems to build a coarse space is not new, it wasfirst explored
in the algebraic multigrid community. In [17], a strategy to build a coarse space based on spectral
information is presented that allows to achieve any a priori chosen target convergence rate. This idea
was further developed and implemented in the spectral AMGe method in [18]. More recently, in the
framework of two-level overlapping Schwarz, [19, 20, 21, 22, 15, 13, 14] also build coarse spaces
for problems with highly heterogeneous coefficients by solving local eigenproblems. However,
compared to the earlier works in the AMG context all of these approaches focus on generalized
eigenvalue problems. We can distinguish three sets of methods that differ bythe choice of the
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD ALGORITHMS 3

bilinear form on one side of the generalized eigenproblem. First, in the work of [19, 20] for the
Darcy equation it is the local mass matrix, or a ‘homogenised’ version obtained by using a multiscale
partition of unity. In [21, 22] it corresponds to anL2-product on the subdomain boundary, so that the
problem can be reduced to a generalized eigenproblem for the Dirichlet toNeumann operator. This
method was analysed in [23]. The latest set of papers, of which this one isinspired, [15, 13, 14],
uses yet another type of bilinear form inspired by the theory. There have also been some recent
multilevel extensions of some of the above approaches [24, 25, 26]. Theapproach in [27, 28], in the
multigrid framework is also comparable.

The purpose of this paper is to extend the GenEO strategy [15, 13, 14] to the BDD (Balancing
Domain Decomposition) algorithm and the FETI (Finite Element Tearing and Interconnecting)
algorithm. These are two well known non overlapping domain decomposition methods. Up until
now the GenEO strategy has been applied in the context of overlapping Schwarz which was first
introduced in [29]. The idea of a coarse space correction goes back to[30, 31] and the two-level
overlapping Schwarz preconditioner is due to [32]. As for the Balancing Domain Decomposition
(BDD) method, it is the work of [33] who added a coarse space to the preexisting Neumann
Neumann method [34] to deal with singularities in the local problems. We will refer to the analysis
of BDD in [16] which is very closely related to the analysis of the two-level Schwarz preconditioner.
Finally, the FETI algorithm was first introduced in [35] and the convergence proof is due to [36, 37].
It is generalized in [38]. Coarse spaces for the FETI method are introduced first in [39] and further
developed in [40, 41]. In [42] a two level FETI method is also introduced for a particular problem
and a convergence result is proved. However we will follow a very different approach here both
for choosing the coarse space and also for writing the proof. In both cases (BDD and FETI) the
generalized eigenvalue problem which we solve is used to prove a bound for the largest eigenvalue
of the preconditioned operator. As usual the lower bound for the eigenvalues of the preconditioned
operator is1 regardless of the coarse space.

The rest of the article is organized as follows. In Section 1 we introduce the notation which will be
needed for both algorithms. In Section 2 we introduce the two-level GenEO preconditioner for the
BDD algorithm. And in Section 3 we introduce the two-level preconditioner for the FETI algorithm.
The definitions of each of the coarse spaces with the corresponding generalized eigenvalue problems
can be found in Definitions 2.3 and 3.7 respectively. These generalized eigenvalue problems are
chosen specifically to ensure that the so called stable splitting properties in Lemmas 2.8 and 3.12
are satisfied. As for the convergence results they are stated (and proved) in Theorems 2.11 and 3.14.
Finally in section 4 we give a few numerical results.

1. NOTATION FOR FETI AND BDD

For a given domainΩ ∈ R
d and a finite dimensional Hilbert spaceWh(Ω), given a symmetric,

positive definite bilinear form,

â(·, ·) : Wh(Ω)×Wh(Ω) → R, (1.1)

and an element̂g ∈ Wh(Ω)
′, we consider the problem of findingu ∈ Wh(Ω), such that

â(u, v) = ĝ(v), ∀ v ∈ Wh(Ω). (1.2)

In order to introduce the BDD and FETI algorithms we will need to introduce notation for discrete
operators at the global and local (on each subdomain) levels.

1.1. Problem setting

We begin by rewriting Problem (1.2) in an algebraic framework. As usual in the finite element
setting, we start with a triangulationTh of Ω: Ω =

⋃

τ∈Th
τ and a basis{φk}1≤k≤N for the finite

element spaceWh(Ω).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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4 N. SPILLANE, D.J. RIXEN

Assumption 1.1
Given any elementτ of the meshTh, let Wh(τ) := {u|τ : u ∈ Wh(Ω)}. We assume that for each
elementτ ∈ Th, there exists a symmetric positive semi-definite (spsd) bilinear formaτ : Wh(τ)×
Wh(τ) → R, such that

â(u, v) =
∑

τ∈Th

aτ (u|τ , v|τ ), ∀u, v ∈ Wh(Ω),

and an elementgτ ∈ Wh(τ)
′ such that

ĝ(v) =
∑

τ∈Th

gτ (v|τ ), ∀ v ∈ Wh(Ω).

The stiffness matrix is assembled with the following entries

(K̂)kl := â(φk, φl)

(

=
∑

τ∈Th

aτ (φk|τ , φl|τ )

)

, ∀ k, l = 1, . . . , n, (1.3)

and the discrete right hand sidêf ∈ R
n is defined by the entries

(f̂)k := ĝ(φk)

(

=
∑

τ∈Th

gτ (φk|τ )

)

, ∀ k = 1, . . . , n.

As is quite customary we identify vectors of degrees of freedom, which arein some spaces
R

m, with the associated finite element functions. Operators between the spaces are represented
as matrices, and we frequently commit an abuse of notation by using matrices and operators
interchangeably. With this abuse of notation the original problem (1.2) is equivalent to the linear
system: findu ∈ Wh(Ω) such that

K̂u = f̂ , (1.4)

with K̂ symmetric, positive definite (spd).

1.2. Local setting and notation

Local Setting We introduce a partition of the global domainΩ into N non-overlapping
subdomainsΩi which are resolved by the mesh

Ω̄ =

N⋃

i=1

Ω̄i and Ωi ∩ Ωj = ∅, i 6= j,

and the resulting set of boundaries between subdomains

Γ :=
⋃

i6=i′

Ω̄i ∩ Ω̄i′ .

The reason why we have required the information on the non-assembled stiffness matrices is that
we want to have access to local matrices for any choice of the partition into subdomains. In order to
do this we also need to define local finite element spaces and local bilinear forms.

Assumption 1.2
The basis functionsφk are continuous onΩ. In particular for any subsetD ⊂ Ω the restrictionφk|D

of φk to D is well defined.

Definition 1.3(Local finite element spaces)
For any subsetD ⊂ Ω let the set of degrees of freedom inD be the set

dof(D) := {k = 1, . . . , n;φk|D 6= 0|D}, (1.5)

where0|D : D → R is identically zero. Then the finite element space onD is defined as

Wh(D) := {u|D;u ∈ Wh(Ω)} = span{φk|D; k ∈ dof(D)}. (1.6)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD ALGORITHMS 5

The second equality in the definition ofWh(D) is an immediate consequence.

Definition 1.4(Local bilinear forms and local right hand sides)
For any open subsetD ⊂ Ω which is resolved by the meshTh, let the local bilinear form onD be

aD : Wh(D)×Wh(D) → R; aD(v, w) :=
∑

τ⊂D

aτ (v|τ , w|τ ), (1.7)

and the local right hand side be the element

gD ∈ W ′
h(D); gD(v) :=

∑

τ⊂D

gτ (v|τ ). (1.8)

For anyi = 1, . . . , N , the space of finite element functions on eachΩi follows from (1.6) with
D = Ωi :

Wh(Ωi) = {u|Ωi
;u ∈ Wh(Ω)},

as well as the trace spaces forD = ∂Ωi ∩ Γ:

Wi := Wh(Γ ∩ ∂Ωi) = {u|Γ∩∂Ωi
;u ∈ Wh(Ω)}.

Finally, we define the product space

W :=

N∏

i=1

Wi.

We know from (1.6) thatWi = span{φk|∂Ωi∩Γ; k ∈ dof(∂Ωi ∩ Γ)}, we make the further assumption
that this set of functions is a basis ofWi.

Assumption 1.5
The set{φk|∂Ωi∩Γ; k ∈ dof(∂Ωi ∩ Γ)} is a basis ofWi.

Throughout the analysis, we will consider elements in the product spaceW . Each component
ui ∈ Wi is defined on a partΓ ∩ ∂Ωi of the boundary and two contributions from two neighbouring
subdomains do not necessarily match on the shared interface. This is a result of the partition ofΩ
into subdomains. Our finite element approximation of the elliptic problem is, however, based on
functions inWh(Ω) which are defined on the whole ofΩ with one value per degree of freedom. We
denote the space of restrictions of these functions to the set of internal boundariesΓ by Ŵ :

Ŵ := Wh(Γ) = {u|Γ;u ∈ Wh(Ω)}
(
= span{φk|Γ; k ∈ dof(Γ)}

)
. (1.9)

Next we introduce interpolation (prolongation) operatorsR⊤
i : Wi → Ŵ for i = 1, . . . , N :

∀ui =
∑

k∈dof(Γ∩∂Ωi)

αk
i φk|Γ∩∂Ωi

(αk
i ∈ R); R⊤

i ui :=
∑

k∈dof(Γ∩∂Ωi)

αk
i φk|Γ.

These are the natural interpolation operators represented by boolean matrices: the continuous global
function R⊤

i ui ∈ Ŵ shares the same values asui for degrees of freedom indof(Γ ∩ ∂Ωi) and
has no contributions from any other degrees of freedom. The corresponding restriction operator
Ri : Ŵ → Wi is defined as

∀u =
∑

k∈dof(Γ)

αkφk|Γ (αk ∈ R); Riu :=
∑

k∈dof(Γ∩∂Ωi)

αkφk|Γ∩∂Ωi
.

We note thatŴ 6⊂ W and Ŵ =
∑N

i=1 R
⊤
i Wi. It is obvious from the definition ofR⊤

i and
Assumption 1.5 that fori = 1, . . . , N andui ∈ Wi:

ui = 0|Γ∩∂Ωi
⇔ R⊤

i ui = 0|Γ. (1.10)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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6 N. SPILLANE, D.J. RIXEN

Stiffness matrices The local stiffness matrixKi : Wh(Ωi) → Wh(Ωi) is the matrix associated
with bilinear formaΩi

defined by (1.7) forD = Ωi. From these, the stiffness matrix on the product
space is defined as

K : Wh(Ω1)× . . .Wh(ΩN ) → Wh(Ω1)× . . .Wh(ΩN ); K :=






K1 0 . . . 0
0 K2 . . . 0
. . . . . . . . . . . .
0 0 . . . KN




 (1.11)

so that

Ku = (K1u1, . . . ,KNuN )⊤, ∀u = (u1, . . . , uN )⊤ ∈ Wh(Ω1)× . . .Wh(ΩN ). (1.12)

Schur complement matrices The degrees of freedomdof(Ωi) in Wh(Ωi) can be split into
the setbi := dof(Γ ∩ ∂Ωi) of degrees of freedom that are also in the trace spaceWi and the
remainderIi := dof(Ωi) \ dof(Γ ∩ ∂Ωi). This way we can rewrite the local stiffness matrix in
block formulation

Ki =

(
Kbibi

i KbiIi
i

KIibi
i KIiIi

i

)

.

The interior variables of any subdomain are then eliminated in work that can beparallelized across
the subdomains. The resulting matrices are the local Schur complements

Si : Wi → Wi; Si := Kbibi
i −KbiIi

i (KIiIi
i )−1KIibi

i , i = 1, . . . , N, (1.13)

and the Schur complement on the product space is

S : W1 × . . .WN
︸ ︷︷ ︸

W

→ W1 × . . .WN
︸ ︷︷ ︸

W

; S :=






S1 0 . . . 0
0 S2 . . . 0
. . . . . . . . . . . .
0 0 . . . SN




 (1.14)

so that
Su = (S1u1, . . . , SNuN )⊤, ∀u = (u1, . . . , uN )⊤ ∈ W. (1.15)

The Schur complementS on the product spaceW admits the following counterpart̂S for functions
in Ŵ :

Ŝ : Ŵ → Ŵ ; Ŝu :=

N∑

i=1

R⊤
i SiRiu. (1.16)

We notice that this is the usual Schur complement for the global problem reduced to the setΓ of
internal boundaries:

Ŝ = K̂bb − K̂bI(K̂II)−1K̂Ib, (1.17)

whereK̂bb, K̂bI , K̂II andK̂Ib are the components in the bloc formulation ofK̂

K̂ =

(
K̂bb K̂bI

K̂Ib K̂II

)

, b := dof(Γ) and I := dof(Ω) \ dof(Γ). (1.18)

Lumped matrices In the FETI literature the lumped version of the stiffness matrix is the
extraction of the entries in the stiffness matrix which correspond to boundary degrees of freedom.
We have already introduced̂Kbb andKbibi

i , letKbb be the counterpart on the product spaceW :

Kbb : W1 × . . .WN
︸ ︷︷ ︸

W

→ W1 × . . .WN
︸ ︷︷ ︸

W

; Kbb :=







Kb1b1
1 0 . . . 0

0 Kb2b2
2 . . . 0

. . . . . . . . . . . .

0 0 . . . KbNbN
N







. (1.19)

We notice thatK̂bb =
∑N

i=1 R
⊤
i K

bibi
i Ri and the next Lemma gives an important relation between

lumped matrices and Schur complement matrices.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD ALGORITHMS 7

Lemma 1.6
For anyû ∈ Ŵ and anyu ∈ W the following inequalities hold

〈Ŝû, û〉 ≤ 〈K̂bbû, û〉 and 〈Su, u〉 ≤ 〈Kbbu, u〉.

Proof
Let û ∈ Ŵ . Then by definition of̂S

〈Ŝû, û〉 = 〈(K̂bb − K̂bI(K̂II)−1K̂Ib)û, û〉 = 〈K̂bbû, û〉 − 〈(K̂II)−1K̂Ibû, K̂Ibû〉.

The first inequality follows by noticing that〈(K̂II)−1K̂Ibû, K̂Ibû〉 ≥ 0 because(K̂II)−1 is spd.
For the second, letu ∈ W . Then by definition ofS

〈Su, u〉 =
N∑

i=1

〈Siui, ui〉 =
N∑

i=1

〈(Ki
bibi −Ki

biIi(Ki
IiIi)−1Ki

Iibi)ui, ui〉

= 〈Kbbu, u〉 −
N∑

i=1

〈(Ki
IiIi)−1Ki

Iibiui,Ki
Iibiui〉.

And the second inequality follows by noticing that〈(Ki
IiIi)−1Ki

Iibiui,Ki
Iibiui〉 ≥ 0 for any

i = 1, . . . , N because(Ki
IiIi)−1 is spd.

Right hand sides In order to reduce the problem to the set of interfaces between subdomains, we
define the following right hand side

f̂Γ := f̂ b − K̂bI(K̂II)−1f̂ I , (1.20)

which is the right hand side of the original problem (1.4) condensed onto the degrees of freedom in
Ŵ . As for the right hand side on the product spaceW , for each subdomaini = 1, . . . , N : first let
fi be the local right hand side given by (1.8) withD = Ωi. Then condense it onto the interfaces
following: fΓ,i := f bi

i −KbiIi
i (KIiIi

i )−1f Ii
i . (We have used the identification between the finite

element representation offi and its vector representation.) Finally, the right hand side for the
problem condensed onto the spaceW is

fΓ =





fΓ,1
. . .
fΓ,N



 . (1.21)

Most of this notation is summed up in Table I at the beginning of the article. Some comments
are given in subsection 1.4, along with an important lemma on which of these matrices are positive
definite.

Remark 1.7
Assumption 1.1 is actually stronger than what we really need but enables the use of any partition
into subdomains and allowed us to define each component of the algorithm thoroughly. For a given
non overlapping partition into subdomains it is enough to have access to the local matricesKi on
each subdomain, the local right hand sidesfi, the local-global interpolation operatorsR⊤

i and the
information on the boundary of each subdomainΓ ∩ ∂Ωi.

1.3. Partition of unity and weighted operators

An important role in the description of the BDD algorithms is played by a weighting (counting)
function onW . As in the original GenEO algorithm [13, 14] this induces partition of unity operators
Ξi which act directly on the degrees of freedom of the finite element functions.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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8 N. SPILLANE, D.J. RIXEN

Definition 1.8(Partition of unity)
Let µ = (µ1, . . . , µN ) ∈ W be adiscretepartition of unity:

∑

i=1,...,N

R⊤
i µi = 1|Ŵ , where1|Ŵ ∈ Ŵ and all vector entries are1.

Then for any functionui ∈ Wi written as

ui =
∑

k∈dof(Γ∩∂Ωi)

αk
i φk|Γ∩∂Ωi

, αk
i ∈ R,

the local partition of unity operatorΞi : Wi → Wi is defined by:

Ξi(ui) :=
∑

k

µk
i α

k
i φk|Γ∩∂Ωi

,

whereµk
i is thek-th entry inµi. The inverseΞ−1

i : Wi → Wi is defined by:

Ξ−1
i (ui) :=

∑

k

1

µk
i

αk
i φk|Γ∩∂Ωi

.

It is clear that theΞi define a partition of unity from̂W onto the product spaceW = W1 × · · · ×
WN in the sense that

u =

N∑

i=1

R⊤
i Ξi(Riu)
︸ ︷︷ ︸

∈Wi

, ∀u ∈ Ŵ .

It is also clear thatΞ−1
i is the inverse ofΞi since anyui ∈ Wi satisfiesΞ−1

i (Ξi(ui)) =
Ξi(Ξ

−1
i (ui)) = ui.

Remark 1.9
Two common choices forµ are the multiplicity scaling whereµk

i is chosen as
(#{i = 1, . . . , N ; k ∈ dof(Γ ∩ ∂Ωi)})

−1 and theK-scaling whereµ depends on the diagonal
entries of the stiffness matrices [43, 38]. In the numerical result section we mostly useK-scaling.

We introduce the local bilinear forms which correspond to the local Schur complementsSi as
follows. Fori = 1, . . . , N define

si : Wi ×Wi → R, si(ui, vi) := 〈Siui, vi〉; ∀ui, vi ∈ Wi. (1.22)

Next we use the partition of unity operators to define weighted versions of theSchur complements
which will be instrumental in defining the BDD algorithm.

Definition 1.10(Weighted Schur complements)
For anyi = 1, . . . , N , let s̃i : Wi ×Wi → R be the bilinear form defined by

s̃i(ui, vi) := si(Ξ
−1
i (ui),Ξ

−1
i (vi)); ∀ui, vi ∈ Wi, (1.23)

wheresi is the local Schur complement, andΞ−1
i is the inverse partition of unity operator introduced

in Definition 1.8.
Next, let the matrixS̃i : Wi → Wi be the matrix counterpart of̃si :

〈S̃iui, vi〉 := s̃i(ui, vi).
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1.4. Summary of the notation and complements

We have introduced quite a lot of notation. Table I at the beginning of the article sums up most of
the notation which will appear in the description of the algorithms and the reference to where it is
first introduced. Some of the operators are introduced for the first time (âbb, abb, ŝ ands) as the
bilinear forms associated with a matrix. More precisely, letâbb andŝ be defined as

âbb : Ŵ × Ŵ → R; âbb(û, v̂) := 〈K̂bbû, v̂〉 and ŝ : Ŵ × Ŵ → R; ŝ(û, v̂) := 〈Ŝû, v̂〉,

for anyû andv̂ ∈ Ŵ , and letabb ands be defined as

abb : W ×W → R; abb(u, v) := 〈Kbbu, v〉 and s : W ×W → R; s(u, v) := 〈Su, v〉,

for anyu andv ∈ W .
The operators with â· always correspond to functions defined either on the whole ofΩ or the

whole of Γ. The subscripti always refers to a local operator defined on a subdomainΩi or its
boundary. Operators without a·̂ or a subscripti are defined on the product spaces. Finally operators
S̃i are weighted by the inverse partition of unity operators.

In many cases the local stiffness matricesKi are not spd on all floating subdomains. (A floating
subdomain is a subdomain which does nottouchthe Dirichlet part of the boundary). For example,
in the case of the Darcy equation, the kernel ofKi for a floating subdomain is the set of constant
functions. In the case of linear elasticity, the kernel ofKi is the set of rigid body motions. It is easy
to see that these kernels induce kernels for the corresponding Schur complementsSi as well as their
weighted counterparts̃Si and, possibly, the lumped matricesKbibi

i .The next lemma makes precise
which matrices are positive definite. They are all symmetric positive semi definite.

Lemma 1.11
The stiffness matrixK, lumped stiffness matrixKbb and Schur complementS, which correspond
to the product spaces, can be singular. Their respective counterparts,K̂, K̂bb andŜ, on the original
spaces of functionsWh(Ω) andŴ are symmetric positive definite. Finally, under Assumption 1.5
each of the local matricesRiK̂

bbR⊤
i andRiŜR

⊤
i is also symmetric positive definite.

Proof
The fact thatK̂ andŜ are positive definite is clear because the original problem is well posed. The
positive definiteness of̂Kbb follows from Lemma 1.6 and the positive definiteness ofŜ: let u ∈ Ŵ

〈K̂bbu, u〉 = 0 ⇒ 〈Ŝu, u〉 = 0 ⇒ u = 0.

The positive definiteness ofRiŜR
⊤
i andRiK̂

bbR⊤
i is obvious from the positive definiteness ofK̂

andŜ and (1.10) which is a direct consequence of Assumption 1.5.

Remark 1.12
Note that in nearly all practical casesKbb is also symmetric positive definite.

We are now ready to introduce the BDD preconditioner.

2. BALANCING DOMAIN DECOMPOSITION

The problem which we solve is the original problem (1.4) reduced to the setΓ of interfaces between
subdomains: findu ∈ Ŵ such that

Ŝu = f̂Γ. (2.1)

2.1. One level BDD preconditioner in the abstract Schwarz framework [16]

The only thing that is needed in order to define the one-level preconditioneris a solver on each
subdomain. Then we will precondition the global problem (2.1) with a sum of these local solves.
The usual BDD strategy is to use the weighted Schur complementsS̃i introduced in Definition 1.10
to build local problems. Then each local solve is the solution of a Neumann problem:S̃†

i .
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10 N. SPILLANE, D.J. RIXEN

Definition 2.1(One level preconditioner)
For eachi = 1, . . . , N , let P̃i andPi be defined as

P̃i := S̃†
iRiŜ and Pi := R⊤

i P̃i, (2.2)

where S̃†
i is a pseudo inverse of̃Si. Equivalently for anyu ∈ Ŵ , P̃iu is the unique vector in

range(S̃†
i ) which satisfies

s̃i(P̃iu, vi) = ŝ(u,R⊤
i vi), ∀ vi ∈ Wi. (2.3)

The one-level preconditioner is the sum of local solves
∑N

i=1 R
⊤
i S̃

†
iRi so the one-level

preconditioned operator is
∑N

i=1 Pi.

The next lemma gives a lower bound on the eigenvalues of the one-level preconditioned operator.
It does not depend on the specific choice of the pseudo inverse or on any coarse space.

Essentially what we do is check that a stable splitting assumption (Assumption 2.2 in[16]) holds
on the whole ofŴ . Then we give the result of Lemma 2.5 in [16] which is that this implies a lower
bound for the condition number of the one-level preconditioned operator. One of the assumptions in
[16] is that the local bilinear forms (̃Si in this case) be positive definite. Here they are only positive
semi definite but the proof goes through in the exact same way so we don’t give it again.

Lemma 2.2(Stable splitting – Lower bound for the eigenvalues of the preconditioned operator)
For anyu ∈ Ŵ there exists a stable splitting(v1, . . . , vN ) of u ontoW = W1 × · · · ×WN :

u = R⊤
1 v1 + · · ·+R⊤

NvN ; vi ∈ Wi and
N∑

i=1

s̃i(vi, vi) ≤ ŝ(u, u). (2.4)

This implies that the one-level preconditioned operator satisfies

ŝ(u, u) ≤ ŝ

(
N∑

i=1

Piu, u

)

for anyu ∈ Ŵ . (2.5)

Proof
Letu ∈ Ŵ . The fact that, by definition, the operatorsΞi define a partition of unity allows us to write
an obvious splitting ofu ontoW :

(vi := Ξi(Riu), ∀ i = 1, . . . , N) ⇒ u =

N∑

i=1

R⊤
i vi .

We prove (2.4) for this splitting using only the definitions ofs̃i andŝ:

N∑

i=1

s̃i(vi, vi) =

N∑

i=1

si(Ξ
−1
i (Ξi(Riu)),Ξ

−1
i (Ξi(Riu)) =

N∑

i=1

si(Riu,Riu) = ŝ(u, u).

The second part of the lemma is the result of Lemma 2.5 in [16], we refer the reader to there for the
proof.

The fact that (2.5) provides a lower bound for the eigenvalues of the preconditioned operator
∑N

i=1 Pi is easy to see: supposeu is an eigenvector associated with eigenvalueλ, then

N∑

i=1

Piu = λu ⇒ Ŝ

N∑

i=1

Piu = λŜu ⇒ ŝ(

N∑

i=1

Piu, u) = λŝ(u, u),

and (2.5) implies thatλ ≥ 1.
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In other words the lower bound for the eigenvalues of the preconditionedoperator does not depend
on the choice of the coarse space. This is a big difference with the AdditiveSchwarz method
where the proof of a lower bound depends very strongly on the choice of the coarse space and
on restrictive assumptions on the coefficient distribution. This is why the Schwarz-GenEO strategy
in [14] is precisely to build an enriched coarse space for which the stable splitting property and
thus a lower bound for the spectrum of the preconditioned operator hold regardless of the partition
into subdomains and the coefficient distribution. Luckily, the upper bound for the eigenvalues of the
Additive Schwarz operator depends only on the number of neighbours of each subdomain enabling
the proof of a bound for the condition number of the preconditioned operator.

Here the situation is reversed: Lemma 2.2 gives a lower bound for the eigenvalues of the
preconditioned operator which does not depend on the choice of the coarse space thanks to the
adequate weighting of the local solvers. However the upper bound requires more work and with the
usual coarse space it can only be independent of the coefficients in the equation if some assumptions
on the coefficient distribution are satisfied. The GenEO strategy will enable usto waive all of these
assumptions.

2.2. GenEO coarse space for BDD

The abstract Schwarz theory tells us that the upper bound for the eigenvalues of the preconditioned
operator is implied by the stability of the local solverss̃i on the local subspaces once the coarse
components have been removed (this is made explicit in Lemma 2.8). This is wherethe GenEO
strategy comes in. We solve a generalized eigenvalue problem which identifies the ‘bad’ modes: in
this case those for which we cannot ensure that the local solver is stable for a constant independent
of the coefficients in the equations. These ‘bad’ modes are then used to span the coarse space,
and the local solvers are stable on all remaining local components (the ‘good’ components). More
precisely, the next two definitions introduce the generalized eigenvalue problem, the coarse space
and the corresponding two-level BDD-GenEO preconditioners.

Definition 2.3(GenEO coarse space for BDD)
For each subdomaini = 1, . . . , N , find the eigenpairs(pki , λ

k
i ) ∈ Wi ×R

+ of the generalized
eigenvalue problem:

s̃i(p
k
i , vi) = λk

i â
bb(R⊤

i p
k
i , R

⊤
i vi) for anyvi ∈ Wi. (2.6)

Next, given a thresholdKi > 0 for each subdomain, define the coarse space as

W0 = span{R⊤
i p

k
i ; λ

k
i < Ki, i = 1, . . . , N}

(

⊂ Ŵ
)

. (2.7)

Let the interpolation operatorR⊤
0 be the matrix whose columns are the coarse basis functions

{R⊤
i p

k
i ; λ

k
i < Ki, i = 1, . . . , N}. Finally, let the coarse solver be the exact solver onW0:

S0 := R0ŜR
⊤
0 ,

andP0 be theŜ-orthogonal projection operator defined by

P0 := R⊤
0 S

†
0R0Ŝ. (2.8)

This definition gives rise to a few immediate remarks.

Remark 2.4

(i) The operatorR⊤
0 is a mapping between the coordinates of a vector fromW0 in the set of coarse

basis functions and its representation inŴ (range(R⊤
0 ) ⊂ Ŵ ). Its transposeR0 is a restriction

operator which maps an element in̂W to the coordinates of itsl2 projection ontoW0 in the set
of coarse basis functions.
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12 N. SPILLANE, D.J. RIXEN

(ii) Eigenvalue0 for eigenproblem (2.6) is associated with the kernel ofs̃i so in some sense the
coarse space will take care of the fact thats̃i is not necessarily coercive. Note that if the coarse
space would include only the kernel ofs̃i, one would obtain the usual coarse grid of the BDD.

(iii) In the definition of P0 we used a pseudo inverseS†
0 because the columns ofR⊤

0 are not
necessarily linearly independent. The pseudo inverse is defined up to an element in Ker(R⊤

0 )
and the specific choice of the pseudo inverse makes no difference because the application of
S†
0 is followed by an application ofR⊤

0 .

(iv) The fact thatP0 is anŜ-orthogonal projection can be proved easily using the definitions ofP0

andS0 and it is equivalent to the fact thatP0 is self adjoint with respect toS0.

We are now ready to introduce the BDD-GenEO preconditioner. There are two ways to add
the second level once that we have chosen the coarse space: either weuse a deflation based
preconditioner (2.10) with the preconditioned conjugate gradient (PCG) algorithm or we use the
projected preconditioned conjugate gradient (PPCG) algorithm in the space range(I − P0) with
the projected preconditioner (2.9). Both alternatives will lead to essentially identical convergence
bounds.

Definition 2.5(Two-level preconditioners)
Recall that, according to (2.2) and (2.8), we have definedPi = R⊤

i S̃
†
iRiŜ for anyi = 1, . . . , N and

P0 = R⊤
0 S

†
0R0Ŝ. Then define the projected preconditioned operator as

Pproj :=

N∑

i=1

(I − P0)
⊤Pi(I − P0), (2.9)

and the deflation based preconditioned operator as

Pdef := P0 +

N∑

i=1

(I − P0)
⊤Pi(I − P0). (2.10)

In the remainder of this subsection we show that the BDD-GenEO coarse space leads to an upper
bound for the eigenvalues of the preconditioned operators which does not depend on the number
of subdomains or the coefficients in the equations. Instead it depends on thethresholdsKi which
were introduced to select the coarse basis functions. First we give some properties of the family of
generalized eigenvectors (Lemma 2.6). Then we use these properties to show that the local bilinear
forms are stable on the deflated local subspaces (Lemma 2.8) and the upper bound follows from
there (Lemma 2.10).

Lemma 2.6
For a given subdomaini = 1, . . . , N , the eigenpairs(pki , λ

k
i ) of generalized eigenproblem (2.6) can

be chosen so that the set{pki }k of eigenvectors is an orthonormal basis ofWi with respect to the
inner product induced̂abb(R⊤

i ·, R
⊤
i ·). This writes

âbb(R⊤
i p

k
i , R

⊤
i p

k
i ) = 1; and âbb(R⊤

i p
k
i , R

⊤
i p

k′

i ) = 0, k 6= k′.

An orthogonality type property with respect tos̃i (which is not necessarily coercive) also holds:

s̃i(p
k
i , p

k′

i ) = 0, k 6= k′.

Proof
Lemma 1.11 tells us thatRiK̂

bbR⊤
i is positive definite onWi so we may indeed speak of a

âbb(R⊤
i · , R⊤

i · ) orthonormal basis ofWi. Then for the proof see e.g. [44].

Remark 2.7
The fact that the generalized eigenproblem (2.6) is equivalent to a non-generalized eigenproblem
implies that all eigenvalues are finite. Because both matrices are symmetric positive semi definite,
the eigenvalues are also non negative: for anyk, 0 ≤ λk

i < +∞.
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The next lemma states that the local solvers are stable and strongly relies on the definition of
the GenEO coarse space. In fact the purpose of the GenEO strategy is specifically to ensure that
Lemma 2.8 holds. This corresponds to Assumption 2.4 in [16].

Lemma 2.8(Stability of the local solvers)
Suppose the pseudo inverseS̃†

i in Definition 2.1 is chosen such that range(S̃†
i ) = span{pki ;λ

k
i > 0}.

Then for anyi = 1, . . . , N , the local solvers are stable in the sense

ŝ(R⊤
i ui, R

⊤
i ui) ≤

1

Ki
s̃i(ui, ui), ∀ui ∈ range(P̃i(I − P0)),

where theKi are the thresholds that were used to select eigenvectors for the coarsespace in
Definition 2.3.

Proof
We may indeed choose range(S̃†

i ) = span{pki ;λ
k
i > 0} because the pseudo inverse of an operator is

defined up to an element in the kernel of this operator. Precisely there are aninfinity of pseudo
inverse and we may choose the range ofS̃†

i among all the spaces which satisfy range(S̃†
i )⊕

Ker(S̃i) = Wi. Here, Ker(S̃i) = span{pki ;λ
k
i = 0} and the set of allpki is a basis ofWi so our choice

fits this limitation.
Next we prove that

range(P̃i(I − P0))
(

= range(S̃†
iRiŜ(I − P0))

)

⊂ span
{
{pki }K

}
.

where we have introduced the notation{pki }K for the set ofgoodeigenvectors

{pki }K = {pki ; λ
k
i ≥ Ki}.

We will use the following linear algebra identity:

Ker((I − P0)
⊤ŜR⊤

i )⊕
⊥ range(RiŜ(I − P0)) = Wi, (2.11)

where the symbol⊥ refers to thel2 orthogonality between both spaces and⊕ means that the sum is
direct. By definition (2.8) ofP0, (I − P0)

⊤ = I − ŜR⊤
0 S

†
0R0 so

range(ŜR⊤
0 ) ⊂ Ker((I − P0)

⊤).

In particular, for a giveni = 1, . . . , N : span{ŜR⊤
i p

k
i ;λ

k
i < Ki} ⊂ Ker((I − P0)

⊤), which implies

span
{
{pki }K

}
⊂ Ker((I − P0)

⊤ŜR⊤
i ). (2.12)

Next we use another linear algebra identity:Wi is finite dimensional so

span
{
{pki }K

}
⊕⊥ span{pki ;λ

k
i < Ki}

⊥ = Wi. (2.13)

According to Lemma 2.6 the{pki }K form aRiK̂
bbR⊤

i -orthonormal basis ofWi so

〈pki , RiK̂
bbR⊤

i p
k′

i 〉 = 0, ∀k 6= k′.

This implies that span{RiK̂
bbR⊤

i p
k
i ;λ

k
i ≥ Ki} ⊂ span

{
{pki }K

}⊥
. The equality between these

subsets follows by a dimensional argument: the set{pki }K forms a basis ofWi andRiK̂
bbR⊤

i is
spd so

rank{RiK̂
bbR⊤

i p
k
i ;λ

k
i ≥ Ki} = rank{pki ;λ

k
i ≥ Ki} = rank

{
{pki }K

}⊥
,

and in turn the inclusion becomes an equality:

span{RiK̂
bbR⊤

i p
k
i ;λ

k
i ≥ Ki} = span

{
{pki }K

}⊥
.
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Injecting this into (2.13) implies

span
{
{pki }K

}
⊕⊥ span{RiK̂

bbR⊤
i p

k
i ;λ

k
i ≥ Ki} = Wi. (2.14)

Putting (2.11), (2.12) and (2.14) we get

range(RiŜ(I − P0)) ⊂ span{RiK̂
bbR⊤

i p
k
i ;λ

k
i ≥ Ki},

where the argument is:

(E1 ⊕
⊥ E2 = E3 ⊕

⊥ E4 andE1 ⊂ E3) ⇒ E4 ⊂ E2,

for any vector spacesE1, . . . , E4.
By definition of eigenproblem (2.6),λk

iRiK̂
bbR⊤

i p
k
i = S̃ip

k
i so

range(RiŜ(I − P0)) ⊂ span{S̃ip
k
i ;λ

k
i ≥ Ki}.

Finally, for the specific choice of the pseudo inverseS̃†
i it follows that

range(S̃†
iRiŜ(I − P0))

(
= range(P̃i(I − P0))

)
⊂ span

{
{pki }K

}
.

Now we prove the inequality in the lemma. Anyui ∈ range(P̃i(I − P0)) writes ui =∑

{k;λk
i
≥Ki}

αk
i p

k
i for some coefficientsαk

i ∈ R. From Lemma 1.6, it is obvious that

ŝ(R⊤
i ui, R

⊤
i ui) ≤ âbb(R⊤

i ui, R
⊤
i ui) = âbb



R⊤
i

∑

{k;λk
i
≥Ki}

αk
i p

k
i , R⊤

i

∑

{k;λk
i
≥Ki}

αk
i p

k
i



 .

Using successively the first orthogonality property in Lemma 2.6, the definition of the eigenproblem
and the second orthogonality property in Lemma 2.6 we get

ŝ(R⊤
i ui, R

⊤
i ui) ≤

∑

{k;λk
i
≥Ki}

αk
i

2
âbb(R⊤

i p
k
i , R

⊤
i p

k
i )

=
∑

{k;λk
i
≥Ki}

1

λk
i

αk
i

2
s̃i(p

k
i , p

k
i )

≤
1

Ki

∑

{k;λk
i
≥Ki}

αk
i

2
s̃i(p

k
i , p

k
i )

=
1

Ki
s̃i(ui, ui).

Remark 2.9(Local stability, Exact solvers, and Choice of the eigenproblem)
The bilinear form on the left hand side of the inequality in the lemma isŝ(R⊤

i ·, R
⊤
i ·). This is the

so called exact solver on subdomaini for the global problem given bŷS. The exact solvers are by
definition the solvers which are used to build the Additive Schwarz preconditioner. For the problem
Ŝu = f̂Γ the Additive Schwarz preconditioner would be

∑N
i=1 R

⊤
i ŜRi. If these exact solvers were

used instead of̃Si the upper bound for the eigenvalues of the preconditioned operator would depend
only on a constant related to the number of neighbours (introduced in the next lemma). The nice
bound that we have for the lowest eigenvalue of the preconditioned operator would no longer hold
though. The most straightforward generalized eigenproblem which arises from the theory is

s̃i(p
k
i , vi) = λk

i ŝ(R
⊤
i p

k
i , R

⊤
i vi) for any vi ∈ Wi, (2.15)
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so the eigensolve operates some sort of spectral comparison between theexact solver (on the right)
and the one which we actually use (on the left). We then isolate the modes for which the chosen
preconditioner is not a good enough approximation in the coarse space anduse a direct solve on
these modes. It is however expensive to assemble and to solve (2.15). This is is why in this article
we have chosen to go through only with eigenproblem (2.6) whereŝ is replaced bŷabb. For a coarse
space based on Eigenproblem (2.15) the theory goes through to the exact same final estimate simply
by replacinĝabb by ŝ in the proofs.

The following lemma gives a consequence of the stability of the local solvers.It is very narrowly
related to Lemma 2.6 in [16].

Lemma 2.10(Upper bound for the eigenvalues of the preconditioned operator)
The stability of each of the local solvers which was proved in Lemma 2.8 implies

ŝ

(
N∑

i=1

Piu, u

)

≤ N max
1≤i≤N

(
1

Ki

)

ŝ(u, u) ∀u ∈ range(I − P0),

whereN is the maximal number of neighbours of a subdomain (including itself) in the sense:

N := max
1≤i≤N

(
#{j;RjR

⊤
i 6= 0}

)
.

Proof
This is basically the proof of Lemma 2.6 in [16] but where we have chosen not to rely on
strengthened Cauchy Schwarz inequalities. Instead we make the number of neighbours of a
subdomain appear explicitly. Letu ∈ range(I − P0), then

ŝ(Piu, Piu) = ŝ(R⊤
i P̃iu,R

⊤
i P̃iu)

≤
1

Ki
s̃i(P̃iu, P̃iu) (Lemma 2.8)

=
1

Ki
ŝ(u,R⊤

i P̃iu) (definition ofP̃i (2.3))

=
1

Ki
ŝ(u, Piu).

We use the fact thatPi = R⊤
i P̃i and the definition of̂s to write

ŝ(Piu, u) =

N∑

j=1

sj(RjR
⊤
i P̃i, Rju) =

∑

{j;RjR⊤

i
6=0}

sj(RjR
⊤
i P̃i, Rju).

We apply the Cauchy Schwarz inequality first forsj then for the Euclidean inner product to this and
inject the previous result (in the last step)

ŝ(Piu, u) ≤
∑

{j;RjR⊤

i
6=0}

sj(RjR
⊤
i P̃i, RjR

⊤
i P̃i)

1/2sj(Rju,Rju)
1/2

≤




∑

{j;RjR⊤

i
6=0}

sj(RjR
⊤
i P̃i, RjR

⊤
i P̃i)





1/2 


∑

{j;RjR⊤

i
6=0}

sj(Rju,Rju)





1/2

= ŝ(Piu, Piu)
1/2




∑

{j;RjR⊤

i
6=0}

sj(Rju,Rju)





1/2

≤

(
1

Ki
ŝ(u, Piu)

)1/2



∑

{j;RjR⊤

i
6=0}

sj(Rju,Rju)





1/2

.
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Raising to the square and simplifying byŝ(Piu, u) yields

ŝ(Piu, u) ≤
1

Ki




∑

{j;RjR⊤

i
6=0}

sj(Rju,Rju)



 .

Finally summing these inequalities overi gives the result.

2.3. Main theorem: convergence bound for BDD with the GenEO coarse space

We are now ready to give the estimates for the condition number of BDD with the GenEO coarse
space.

Theorem 2.11(Main theorem for BDD with the GenEO coarse space)
The condition number for BDD solved in range(I − P0) with the projected additive operator (2.9)
satisfies

κ (Pproj) ≤ N max
1≤i≤N

(
1

Ki

)

. (2.16)

As for the condition number of the deflated operator (2.10) with the GenEO coarse space, it satisfies

κ (Pdef ) ≤ max

{

1,N max
1≤i≤N

(
1

Ki

)}

. (2.17)

These bounds depend only on the chosen thresholdsKi which we use to select eigenvectors for the
coarse space in Definition 2.3 and on the maximal numberN of neighbours of a subdomain:

N = max
1≤i≤N

(
#{j;RjR

⊤
i 6= 0}

)
.

Proof
The proof of this theorem is the proof of Theorem 2.13 in [16]. The factthat the local solvers (̃S†

i

here) are not spd does not play a role in the proof. The idea is to prove the following bounds:

ŝ(u, u) ≤ ŝ(Pproju, u) ≤ N max
1≤i≤N

(
1

Ki

)

ŝ(u, u); u ∈ range(I − P0), (2.18)

and

ŝ(u, u) ≤ ŝ(Pdefu, u) ≤ max

{

1,N max
1≤i≤N

(
1

Ki

)}

ŝ(u, u); u ∈ Ŵ . (2.19)

Following Lemma C.1 in the appendix of [16] these bounds imply the bounds for the condition
numbers. They are proved using Lemma 2.2 and Lemma 2.10 combined with the fact thatP0 is an
ŝ-orthogonal projection.

Remark 2.12
The fact thatKi can be chosen such that

(

N max1≤i≤N

(
1
Ki

))

< 1 in (2.18) is not a contradiction:

in this case the space range(I − P0) is simply empty.

3. FINITE ELEMENT TEARING AND INTERCONNECTING

We use the following references to introduce FETI: the book by Toselli andWidlund [16], Tezaur’s
dissertation [37] and the article by Klawonn and Widlund [38]. A second level was introduced for
FETI in [39], and further developed in [40, 41].
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3.1. The FETI formulation

In the BDD section we built the coarse space for problem (2.1) which we simplyrecall here: find
û ∈ Ŵ such that̂Sû = f̂Γ, whereŴ is the space of functions defined on the interfaceΓ. Instead the
FETI formulation of the problem is on the product spaceW with an additional matching constraint
at the interfaces. This constraint is ensured using matrix

B = (B1, B2, . . . , BN ); Bu =
∑

i=1,...,N

Biui, ∀u ∈ W, (3.1)

which is constructed from entries0, 1,−1 such that the componentsui of a vectoru in the product
spaceW coincide onΓ whenBu = 0. More precisely each line inB corresponds to one continuity
constraint for one degree of freedom and two of the subdomains to whichit belongs: each line inB
contains one1 and one−1 while all other entries are zero. Denoting byλ the vector of Lagrange
multipliers which is used to enforce the constraintBu = 0 we obtain a saddle point formulation of
the problem: find(u, λ) ∈ W × U such that

(
S B⊤

B 0

)(
u
λ

)

=

(
fΓ
0

)

. (3.2)

We note that the solutionλ of (3.2) is unique only up to an additive element of Ker(B⊤) however
the solutionu to our problem does not depend on the choice ofλ so this is not an issue in practice.
For the theoretical study we introduce the space

U := range(B) = Ker(B⊤)⊥,

and will search forλ ∈ U . Given a basis for Ker(S) which consists ofnK vectors, an important role
is played by the prolongation operatorR⊤

N : RnK → W which columns are these basis functions.
The transposeRN is a restriction operator which maps an element inW to the coordinates of itsl2-
orthogonal projection onto Ker(S) in the same basis. We have used the subscriptN because Ker(S)
is often referred to as theNatural coarse space for FETI. Going back to the system, the solution of
the first equation in (3.2) can be written as

u = S†(fΓ −B⊤λ) +R⊤
Nα, for some α ∈ range(RN ), (3.3)

if the right-hand side associated to the operatorS is such that

fΓ −B⊤λ ⊥ Ker(S) ⇔ RN (fΓ −B⊤λ) = 0, (3.4)

or with notation inspired by the usual FETI notation:

G⊤
Nλ = RNfΓ, GN := BR⊤

N . (3.5)

Injecting (3.3) into the second equation in (3.2) we get

BS†B⊤λ−GNα = BS†fΓ, for some α ∈ range(RN ).

We may again rewrite the problem using a saddle point formulation as
(

F −GN

G⊤
N 0

)(
λ
α

)

=

(
d
e

)

, (3.6)

where
F := BS†B⊤, d := BS†fΓ, e := RNfΓ, and againGN = BR⊤

N . (3.7)

In order to homogenize the second equation and bring the problem down to asingle equation we
decomposeλ into λ = λ̃+ λN whereG⊤

N λ̃ = 0 andG⊤
NλN = e. Then we introduce a projection

operatorPN as follows: letQ : U → U be a self-adjoint matrix which is positive definite on
range(GN ), then define

PN : U → U ; PN := I −QGN (G⊤
NQGN )−1G⊤

N . (3.8)
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18 N. SPILLANE, D.J. RIXEN

Remark 3.1
It is straightforward to prove thatPN is a projection operator fromU onto Ker(G⊤

N ) and that
its transposeP⊤

N = I −GN (G⊤
NQGN )−1G⊤

NQ is a Q-orthogonal projection. It is however less
obvious to prove that the inverse(G⊤

NQGN )−1 is well defined. This can be derived from the fact that
Q is positive definite on range(GN ) soG⊤

NQGNβ = 0 impliesGNβ = 0 ⇔ BR⊤
Nβ = 0. In other

wordsR⊤
Nβ ∈ Ker(S) ∩ Ker(B) and this intersection is zero because the problem is well posed.†

Finally β = 0 and(G⊤
NQGN )−1 is well defined.

The system which we solve is the projected system into the space

VN := Ker(G⊤
N ) = range(PN ). (3.9)

For the choiceλN := QGN (G⊤
NQGN )−1RNfΓ (which fulfills the conditionG⊤

NλN = e) the
problem is: find̃λ ∈ VN andα ∈ range(RN ) such that

Fλ̃−GNα = d− FλN . (3.10)

Testing this against elements inVN yields the final form of the problem before preconditioning

P⊤
NFλ̃ = P⊤

N (d− FλN ), (3.11)

whereas testing against function in range(I − PN ) allows us to define the componentα of the
solution completely with respect tõλ:

(I − P⊤
N )GNα = (I − P⊤

N )(Fλ̃− d+ FλN ) ⇔ α = (G⊤
NQGN )−1G⊤

NQ(Fλ− d),

where we simply used a multiplication by(G⊤
NQGN )−1G⊤

NQ to write the equivalence. Next we
introduce the two usual FETI preconditioners.

3.2. Usual preconditioners for FETI

We first need to introduce diagonal scaling matricesDi : Wi → Wi for eachi = 1, . . . , N . These
are the matrix counterparts of the partition of unity operatorsΞi used in the BDD section. Then

let D : W → W be the diagonal scaling matrixD :=






D1 0 . . . 0
0 D2 . . . 0
. . . . . . . . . . . .
0 0 . . . DN




, on the product

space. We will consider two different preconditioners for (3.11): the Dirichlet preconditioner with
the subscriptD and the lumped preconditioner with the subscriptL [35]. When scaled, those
preconditioners can be written as the following operators onU [38]:

M−1
D =

[
D−1B⊤(BD−1B⊤)†

]⊤
S
[
D−1B⊤(BD−1B⊤)†

]
(3.12)

M−1
L =

[
D−1B⊤(BD−1B⊤)†

]⊤
Kbb

[
D−1B⊤(BD−1B⊤)†

]
. (3.13)

We use the subscript∗ to refer to either of these preconditioners generically: if∗ denotesD then
M−1

∗ = M−1
D is the Dirichlet preconditioner and if∗ denotesL thenM−1

∗ = M−1
L is the Lumped

preconditioner. When the diagonal scaling matrixD is chosen to be the diagonal of the local operator
matrix K, the scaling in the preconditioners (3.12,3.13) are equivalent to so-calledsuper-lumped
scaling (orK-scaling) originally proposed in [43].

Remark 3.2
In (3.12,3.13) we have used a pseudo inverse where the usual FETI theory uses an inverse. This
has no impact on what follows. Indeed,(BD−1B⊤)† is defined up to an additive element in

†In case the global operator̂K is singular, a solution exists for the original problem iff̂ is in the range of̂K. In that case
the natural coarse grid becomes singular but the FETI approach can still be applied [45].
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Ker(BD−1B⊤) and we have the inclusion Ker(BD−1B⊤) ⊂ Ker(B⊤) since

λ ∈ Ker(BD−1B⊤) ⇒ D−1B⊤λ ∈ Ker(B) ⇒ B⊤λ = Dv for somev ∈ Ker(B),

and Ker(B) = (range(B⊤))⊥ so v⊤B⊤λ = v⊤Dv = 0 ⇒ v = 0 ⇒ λ ∈ Ker(B⊤). The operator
(BD−1B⊤)† is applied to elements in range(B) = Ker(B⊤)⊥ so this application is well
defined. Moreover the application of(BD−1B⊤)† is followed by an application ofB⊤ so
D−1B⊤(BD−1B⊤)† is uniquely defined independently of the choice of the pseudo inverse. This
pseudo inverse can be avoided by defining scaling matrices directly on the space of Lagrange
multipliers which is done for instance in the redundant Lagrange multiplier section of [38].
For sensible choices both approaches can lead to identical preconditioners and in practical
implementations the scaling matrices are actually never computed explicitly as is explained in [43].

Using the subscript∗ for eitherD or L, the preconditioned operator isM−1
∗ P⊤

NF . Because we
solve the system using a projected conjugate gradient method we require that the search directions
remain inVN . Therefore we actually solve: findλ ∈ VN such that

PNM−1
∗ P⊤

NFλ = PNM−1
∗ P⊤

N (d− FλN ). (3.14)

Because of the projection step (3.11) and the choiceλN := QGN (G⊤
NQGN )−1RNf this

is already a two-level preconditioner where the coarse space is Ker(PN ) = range(QGN ) =
range(QBR⊤

N ). The PPCG solver is initialized withλN and the entire solution space isλN + VN .
We will refer toPN as the natural coarse space projector.

The theoretical study of the preconditioner is related to operator

PD : W → W ; PD := D−1B⊤(BD−1B⊤)†B, (3.15)

whereD : W → W is the diagonal scaling matrix already introduced. This is a projection that is
orthogonal in the scaledl2 inner productx⊤Dy (x, y ∈ W ). The next two lemmas follow essentially
by noticing thatBPDu = Bu. They are Lemmas 4.1 and 4.3 in [38]. We give the proofs for sake of
completeness because they are short.

Lemma 3.3
For anyµ ∈ U there exists̃u ∈ range(PD) such thatµ = Bũ.

Proof
By definition ofU there existsu ∈ W such thatµ = Bu. Now takeũ = PDu, Bũ = Bu = µ.

Lemma 3.4
Let u ∈ W , then

PDu = u− EDu, (3.16)

where EDu : W → W is an averaging operator defined by its components as:(EDu)i =

Ri

∑N
j=1 R

⊤
j Djuj .

Proof
We start by noticing thatB(u− PDu) = 0. This means thatu− PDu matches at the interfaces and
thus its weighted average satisfiesED(u− PDu) = u− PDu. A sufficient condition to ensure that
the result holds is nowEDPDu = 0.

By definition ofED, EDPDu is aD-weighted average of the values ofPDu which correspond
to the same global dof. One way to compute the averaged value for global dof k is to first compute
DPDu = B⊤(BD−1B⊤)†Bu and then sum the contributions from the different subdomains for
which k is a degree of freedom. This is the same as computing anl2 scalar product between
B⊤(BD−1B⊤)†Bu and the functionex ∈ W which is zero everywhere except at the degrees of
freedom which correspond to global dofk. By definitionBex = 0. The orthogonality of Ker(B) and
range(B⊤) allows us to conclude that〈Bex, B

⊤(BD−1B⊤)†Bu〉 = 0 and thusEDPDu = 0.
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This last lemma allows us to prove that two suitable choices forQ in the projection operatorPN

areM−1
D andM−1

L .

Lemma 3.5
Both preconditionersM−1

D andM−1
L defined by (3.12) and (3.13) are self adjoint onU and positive

definite on range(GN ). Consequently they are possible choices for matrixQ in the natural projection
operator defined by (3.8).

Proof
We will only prove positive definiteness. Anyλ ∈ range(GN ) writesλ = Bz for somez ∈ Ker(S).
Moreover, according to Lemma 1.6,λ ∈ Ker(M−1

L ) impliesλ ∈ Ker(M−1
D ) so whether∗ denotes

D or L we getλ = Bz ∈ Ker(M−1
D ). Using the definitions ofM−1

D andPD as well as Lemma 3.4

0 = 〈M−1
D Bz,Bz〉 = 〈SPDz, PDz〉 = 〈S(z − EDz), z − EDz〉.

Now we havez ∈ Ker(S) and z − EDz ∈ Ker(S) so necessarilyEDz ∈ Ker(S). By definition
EDz ∈ Ker(B) (it is the D-weighted average ofz). The problem is well posed so Ker(S) ∩
Ker(B) = 0. Finally z = 0 andM−1

∗ is positive definite on range(GN ).

We have just given two possible choices which complete the definition of the natural coarse space
projector and thus the definitions of the spacesVN andV ′

N . The main result which we prove holds
for these particular choices. For∗ denoting eitherD or L, we introduce the notation:

P∗,N := I −M−1
∗ GN (G⊤

NM−1
∗ GN )−1G⊤

N (3.17)

and
V∗,N = range(P∗,N ), V ′

∗,N = range(P⊤
∗,N ). (3.18)

The next lemma states a crucial property for the preconditioners which is that they are positive
definite.

Lemma 3.6
The preconditionersP∗,NM−1

∗ : V ′
∗,N → V∗,N are symmetric positive definite for∗ denoting either

D or L.

Proof
Again, we only prove positive definiteness. Consider anyµ ∈ V ′

∗,N with 〈P∗,NM−1
∗ µ, µ〉 =

〈M−1
∗ µ, µ〉 = 0. By Lemma 3.3,µ = Bũ for someũ ∈ range(PD). OperatorPD is a projection

soPDũ = ũ, and we obtain

0 = 〈M−1
∗ Bũ,Bũ〉 =

{
|D−1B⊤(BD−1B⊤)†Bũ|2S = |PDũ|2S = |ũ|2S if ∗ = D,
|D−1B⊤(BD−1B⊤)†Bũ|2Kbb = |PDũ|2Kbb = |ũ|2Kbb if ∗ = L.

According to Lemma 1.6,|ũ|2Kbb = 0 implies |ũ|2S = 0 so, whether∗ denotesD or L, we get
that ũ ∈ Ker(S). By definition of RN , Ker(S) = range(R⊤

N ) and in turnM−1
∗ Bũ = M−1

∗ µ ∈
range(M−1

∗ GN ).
The definition ofV ′

∗,N rewrites

V ′
∗,N = range(P⊤

∗,N ) = Ker(G⊤
NM−1

∗ ) = range(M−1
∗ GN )⊥,

which together withµ ∈ V ′
∗,N andM−1

∗ µ ∈ range(M−1
∗ GN ) implies:

0 = 〈µ,M−1
∗ µ〉.

Finally, ũ ∈ range(R⊤
N ) implies µ ∈ range(GN ) andM−1

∗ is positive definite on range(GN ) so
µ = 0.
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3.3. Two level FETI preconditioner with the GenEO coarse space

The proof of an upper bound for the spectrum of the preconditioned FETI system usually relies
on strong assumptions on the set of equations at hand and the coefficient distribution. Once again
we build a coarse space which allows us to waive all of these assumptions. The coarse space is
defined next along with the two-level FETI preconditioners (projected and deflated). We use again
the subscript0 to refer to the coarse space. In order to avoid confusion with the BDD case we use
calligraphic notation for the projection operatorP∗,0.

Definition 3.7(GenEO coarse spaces for FETI)
Let ∗ denote eitherD (for Dirichlet) orL (for Lumped). For each subdomaini = 1, . . . , N , find the
eigenpairs(qki ,Λ

k
i ) ∈ Wi ×R

+ of the generalized eigenvalue problem:

Si q
k
i = Λk

i (B
⊤
i M−1

∗ Bi) q
k
i . (3.19)

whereM−1
∗ is the preconditioner defined either by (3.12) or (3.13). Next, given a thresholdKi > 0

for each subdomain, define the coarse space as

U∗,0 = span({M−1
∗ Biq

k
i ; 0 < Λk

i < Ki, i = 1, . . . , N}). (3.20)

Let the interpolation operatorG∗,0 be the matrix whose columns are the coarse basis functions
{M−1

∗ Biq
k
i ; 0 <Λk

i < Ki, i = 1, . . . , N}. Let the coarse solver be the exact solver onU∗,0:

F∗,0 := G⊤
∗,0(P

⊤
∗,NFP∗,N )G∗,0,

and letP∗,0 be the(P⊤
∗,NFP∗,N )-orthogonal projection operator defined by

P∗,0 := I −G∗,0F
†
∗,0G

⊤
∗,0(P

⊤
∗,NFP∗,N ). (3.21)

Then the two-level preconditioners (respectively projected and deflated) for F are

P∗,NP∗,0M
−1
∗ P⊤

∗,0P
⊤
∗,N and P∗,NP∗,0M

−1
∗ P⊤

∗,0P
⊤
∗,N + P∗,NG∗,0F

†
∗,0G

⊤
∗,0P

⊤
∗,N . (3.22)

The operatorG∗,0 is a mapping between the coordinates of a vector fromU∗,0 in the set of coarse
basis functions and its representation inU . Its transposeG⊤

∗,0 is a restriction operator which maps
an element inW to the coordinates of itsl2 projection ontoW∗,0 in the set of coarse basis functions.
The main difference with the coarse space for BDD is that we have left outthe zero eigenvalues
which correspond to the kernel ofS because they are already taken care of by the natural coarse
space throughPN .

Remark 3.8
One common point with the BDD GenEO eigenvalue problem is that one of the operators (Si) is
a non assembled operator on the local spaceWi whereas the other (B⊤

i M−1
∗ Bi) is an assembled

operator restricted to the local spaceWi. This time the words assembled and restricted are to be
understood in the FETI context and rely on the mappingsBi between the degrees of freedom inWi

and the Lagrange multipliers inU . In the same way as for BDD, the role of the GenEO eigenvalue
problem for FETI can be interpreted as finding the modes necessary for describing the discrepancy
between the interface behavior as seen from a single domain (left hand side of (3.19)), and the
assembled interface operatorF−1, approximated byM−1

∗ (right hand side of (3.19)). The idea is
then to introduce those differences, which will not be well accounted forby the preconditioner, into
the coarse space.

Once again in proving our estimate for the condition number we will take advantage of the
orthogonality type properties which result from the generalized eigenvalue problem.

Lemma 3.9
Let ∗ denote eitherD or L. For a given subdomaini = 1, . . . , N , the eigenpairs(qki ,Λ

k
i ) of
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the generalized eigenproblem (3.19) can be chosen so that the set{qki }k of eigenvectors is an
orthonormal basis ofWi with respect to the inner product induced byB⊤

i M−1
∗ Bi. This writes

〈M−1
∗ Biq

k
i , Biq

k
i 〉 = 1; and 〈M−1

∗ Biq
k
i , Biq

k′

i 〉 = 0, k 6= k′.

An orthogonality type property with respect toSi (which is not necessarily coercive) also holds:

〈Siq
k
i , q

k′

i 〉 = 0, k 6= k′.

Proof
We proved in Lemma 3.5 thatM−1

∗ is spd on range(GN ) = Ker(P⊤
N ). We also proved in Lemma 3.6

thatM−1
∗ is spd onV ′

N = range(P⊤
N ). SoM−1

∗ is spd on Ker(P⊤
N )⊕ range(P⊤

N ) = U . Finally by
definition ofBi, Biui = 0 impliesui = 0 soB⊤

i M−1
∗ Bi is symmetric positive definite onWi and

the result is well known.

In the next lemma we give some useful properties of the projections.

Lemma 3.10

(i) range(P⊤
∗,0P

⊤
∗,N ) ⊂ range(P⊤

∗,N ).

(ii) P⊤
∗,0P

⊤
∗,N = P⊤

∗,NP⊤
∗,0P

⊤
∗,N

(iii) P⊤
∗,0P

⊤
∗,N andP∗,NP∗,0 are projections.

Proof

(i) By definition ofP∗,0 (3.21):P⊤
∗,0P

⊤
∗,N = P⊤

∗,N (I − FP∗,NG0F
†
0G

⊤
0 ).

(ii) It follows from (i) and the fact thatP⊤
∗,N is a projection thatP⊤

∗,0P
⊤
∗,N = P⊤

∗,NP⊤
∗,0P

⊤
∗,N .

(iii) Then P⊤
∗,0 is also a projection soP⊤

∗,0P
⊤
∗,N = P⊤

∗,0P
⊤
∗,NP⊤

∗,0P
⊤
∗,N .

For two spd matricesM1 and M2 of same size, the spectrum ofM1M2 is identical to the
spectrum ofM2M1. Following this idea we decide to look at the problem in reverse:Is F a good
preconditioner forM−1

∗ ? The reason why we do this is that then we recognize an abstract Schwarz
type preconditionerF =

∑N
i=1 BiS

†
iB

⊤
i . In this framework, the local subspaces are theWi and the

local solvers are the pseudo inversesS†
i of the local bilinear formsSi. The prolongation operators

are theBi : Wi → U and the restriction operators are theB⊤
i : U → Wi. Taking advantage of the

abstract Schwarz framework, in Lemmas 3.11 and 3.13 we will prove the same estimates as in
the BDD subsection forF viewed as the preconditioner andM−1

∗ viewed as the matrix problem.
In the proof of our final theorem it will become apparent that these estimatesallow to prove the
condition number of FETI with the two-level preconditioners given by (3.22). In the next Lemma,
applying the exact same strategy as in Lemma 2.2 we give an estimate related to a lower bound for
the eigenvalues of the preconditioned operatorFP∗,NP∗,0M

−1
∗ . This bound does not depend on the

choice of the coarse space.

Lemma 3.11(Stable splitting – Lower bound for the eigenvalues of the preconditioned operator)
For anyµ ∈ V ′

∗,N there exists a stable splitting(v1, . . . , vN ) ∈ W1 × · · · ×WN of µ :

µ = B1v1 + . . . BNvN ; vi ∈ Wi and
N∑

i=1

〈Sivi, vi〉 ≤ 〈M−1
∗ µ, µ〉. (3.23)

This implies

〈M−1
∗ µ, µ〉 ≤ 〈FP∗,NP∗,0M

−1
∗ µ,P∗,NP∗,0M

−1
∗ µ〉 for anyµ ∈ range(P⊤

∗,0P
⊤
∗,N ).
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Proof
Letµ ∈ V ′

∗,N and letvi = D−1
i B⊤

i (BD−1B⊤)†µ for eachi = 1, . . . , N . This provides a splitting of
µ:

N∑

i=1

Bivi =

N∑

i=1

BiD
−1
i B⊤

i (BD−1B⊤)†µ = (BD−1B⊤)(BD−1B⊤)†µ = µ,

sinceµ ∈ range(BD−1B⊤) = range(B) = U . Moreover, the splitting is stable:

N∑

i=1

〈Sivi, vi〉 =
N∑

i=1

〈SiD
−1
i B⊤

i (BD−1B⊤)†µ,D−1
i B⊤

i (BD−1B⊤)†µ〉

= 〈SD−1B⊤(BD−1B⊤)†µ,D−1B⊤(BD−1B⊤)†µ〉

= 〈M−1
D µ, µ〉,

≤ 〈M−1
∗ µ, µ〉,

by Lemma 1.6. This is exactly (3.23). Now letµ ∈ range(P⊤
∗,0P

⊤
∗,N ), then 〈M−1

∗ µ, µ〉 =

〈P∗,NP∗,0M−1
∗ µ, µ〉. Moreover, the fact that thevi provide a splitting implies

〈M−1
∗ µ, µ〉 = 〈P∗,NP∗,0M

−1
∗ µ,

N∑

i=1

Bivi〉

=

N∑

i=1

〈P∗,NP∗,0M
−1
∗ µ,Bi(S

†
i Si)vi〉

=

N∑

i=1

〈Sivi, S
†
iB

⊤
i P∗,NP∗,0M

−1
∗ µ〉.

Then we apply the Cauchy Schwarz inequality twice, first in theSi inner product and then in thel2
inner product and finish by using (3.23)

〈M−1
∗ µ, µ〉 ≤

N∑

i=1

[

〈Sivi, vi〉
1/2〈SiS

†
iB

⊤
i P∗,NP∗,0M

−1
∗ µ, S†

iB
⊤
i P∗,NP∗,0M

−1
∗ µ〉1/2

]

≤

[
N∑

i=1

〈Sivi, vi〉

]1/2 [ N∑

i=1

〈SiS
†
iB

⊤
i P∗,NP∗,0M

−1
∗ µ, S†

iB
⊤
i P∗,NP∗,0M

−1
∗ µ〉

]1/2

≤ 〈M−1
∗ µ, µ〉1/2〈P∗,NP∗,0M

−1
∗ µ,

N∑

i=1

BiS
†
iB

⊤
i P∗,NP∗,0M

−1
∗ µ〉1/2.

The result follows by raising to the square, simplifying by〈M−1
∗ µ, µ〉 and recognizingF =

∑N
i=1 BiS

†
iB

⊤
i .

The next lemma is the FETI counterpart of lemma 2.8 and the proof follows the exact same steps.
We prove a crucial result which relies very strongly on the choice of the coarse space. In fact the
coarse space was chosen specifically to ensure that this estimate holds.

Lemma 3.12(Stability of the local solvers)
Let ∗ denote eitherD or L. For eachi = 1, . . . , N , let the pseudo inverseS†

i be chosen such that
range(S†

i ) = span{qki ; Λ
k
i > 0}. Then the following estimate for the local solver holds

〈M−1
∗ Biui, Biui〉 ≤

1

Ki
〈Siui, ui〉, ∀ui ∈ range(S†

iB
⊤
i M−1

∗ P⊤
∗,0P

⊤
∗,N ), (3.24)

where theKi are the thresholds that were used to select eigenvectors for the coarsespace in
Definition 3.7.
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Proof
First we prove that range(S†

iB
⊤
i M−1

∗ P⊤
∗,0P

⊤
∗,N ) ⊂ span{qki ; Λ

k
i ≥ Ki}. We will use the following

linear algebra identity

Ker(P∗,NP∗,0M
−1
∗ Bi)⊕

⊥ range(B⊤
i M−1

∗ P⊤
∗,0P

⊤
∗,N ) = Wi, (3.25)

where the symbol⊥ refers to thel2 orthogonality between both spaces and⊕ means that the sum is
direct. According to item (ii) in Lemma 3.10,P⊤

∗,0P
⊤
∗,N = P⊤

∗,NP⊤
∗,0P

⊤
∗,N . This impliesP∗,NP∗,0 =

P∗,NP∗,0P∗,N . So Ker(P∗,N ) ⊂ Ker(P∗,NP∗,0). It is also obvious that Ker(P∗,0) ⊂ Ker(P∗,NP∗,0).
Using the definitions of these projections ((3.17) and (3.21)) this rewrites

Ker(P∗,NP∗,0) ⊃ (Ker(P∗,N ) ∪ Ker(P∗,0)) ⊃
(
range(G∗,0) ∪ range(M−1

∗ GN )
)
.

By definition ofG∗,0 andGN , in particular, for eachi = 1, . . . , N ,

span{M−1
∗ Biq

k
i ; Λ

k
i < Ki} ⊂ Ker(P∗,NP∗,0),

so
span{qki ; Λ

k
i < Ki} ⊂ Ker(P∗,NP∗,0M

−1
∗ Bi). (3.26)

Following the same procedure as to prove (2.14) in Lemma 2.8, the first orthogonality property in
Lemma 3.9 implies that

span{qki ; Λ
k
i < Ki} ⊕

⊥ span{B⊤
i M−1

∗ Biq
k
i ; Λ

k
i ≥ Ki} = Wi. (3.27)

Putting (3.25), (3.26) and (3.27) together tells us that

range(B⊤
i M−1

∗ P⊤
∗,0P

⊤
∗,N ) ⊂ span{B⊤

i M−1
∗ Biq

k
i ; Λ

k
i ≥ Ki}.

Next the definition of eigenproblem (3.19),Si q
k
i = Λk

i (B
⊤
i M−1

∗ Bi) q
k
i , yields

range(B⊤
i M−1

∗ P⊤
∗,0P

⊤
∗,N ) ⊂ span{Siq

k
i ; Λ

k
i ≥ Ki}.

Finally for the specific choice of the pseudo inverseS†
i it is obvious that

range(S†
iB

⊤
i M−1

∗ P⊤
∗,0P

⊤
∗,N ) ⊂ span{qki ; Λ

k
i ≥ Ki}.

Now it is easy to prove (3.24) using the orthogonality type properties in Lemma 3.9
and the definition of the eigenproblem. Anyui ∈ range(S†

iB
⊤
i M−1

∗ P⊤
∗,0P

⊤
∗,N ) writes ui =

∑

{k;Λk
i
≥Ki}

αk
i q

k
i for some coefficientsαk

i ∈ R, so:

〈M−1
∗ Biui, Biui〉 =

∑

{k;Λk
i
≥Ki}

αk
i

2
〈M−1

∗ Biq
k
i , Biq

k
i 〉

=
∑

{k;Λk
i
≥Ki}

1

Λk
i

αk
i

2
〈Siq

k
i , q

k
i 〉

≤
1

Ki

∑

{k;Λk
i
≥Ki}

αk
i

2
〈Siq

k
i , q

k
i 〉

=
1

Ki
〈Siui, ui〉

The next lemma is a direct consequence. It is the FETI counterpart of Lemma2.10 and gives
an estimate related to an upper bound for the eigenvalues of the preconditioned operator. The
relationship will become apparent in the proof of the final theorem.
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Lemma 3.13(Upper bound for the eigenvalues of the preconditioned operator)
The following estimate holds

〈FM−1
∗ λ,M−1

∗ λ〉 ≤ N max
1≤i≤N

(
1

Ki

)

〈M−1
∗ λ, λ〉 for anyλ ∈ range(P⊤

∗,0P
⊤
∗,N ), (3.28)

whereN is the maximal number of neighbours of a subdomain (including itself) in the sense

N = max
1≤i≤N

(
#{j;B⊤

j Bi 6= 0}
)
.

Proof
In order to simplify notation lets writeP̃∗,i := S†

iB
⊤
i M−1

∗ and P∗,i := BiP̃∗,i. Let λ ∈
range(P⊤

∗,0P
⊤
∗,N ), then

〈M−1
∗ P∗,iλ,P∗,iλ〉 = 〈M−1

∗ BiP̃∗,iλ,BiP̃∗,iλ〉

≤
1

Ki
〈SiP̃∗,iλ, P̃∗,iλ〉 (Lemma 3.12)

=
1

Ki
〈M−1

∗ λ,BiP̃∗,iλ〉 (definition ofP̃∗,i)

=
1

Ki
〈M−1

∗ λ,P∗,iλ〉 (3.29)

Taking a close look at the definition of the preconditioners in (3.12) and (3.13) we notice that they
can be written as a sum of local contributions:

M−1
∗ =

N∑

j=1

M−1
∗,j ; M−1

∗,j :=
[
D−1

j B⊤
j (BD−1B⊤)†

]⊤
Sj

[
D−1

j B⊤
j (BD−1B⊤)†

]
,

and〈M−1
∗,jBiui, ui〉 6= 0 if and only ifB⊤

j Bi 6= 0. A consequence of this is that

〈M−1
∗ λ,P∗,iλ〉 = 〈M−1

∗ λ,BiP̃∗,iλ〉 =
∑

{j;BjB⊤

i
6=0}

〈M−1
∗,jλ,BiP̃∗,iλ〉.

We apply the Cauchy Schwarz inequality forM−1
∗,j and then for the Euclidean inner product to this

and inject the previous result

〈M−1
∗ λ,P∗,iλ〉 ≤

∑

{j;BjB⊤

i
6=0}

〈M−1
∗,jλ, λ〉

1/2〈M−1
∗,jP∗,iλ,P∗,iλ〉

1/2

≤




∑

{j;BjB⊤

i
6=0}

〈M−1
∗,jλ, λ〉





1/2 


∑

{j;BjB⊤

i
6=0}

〈M−1
∗,jP∗,iλ,P∗,iλ〉





1/2

=




∑

{j;BjB⊤

i
6=0}

〈M−1
∗,jλ, λ〉





1/2

〈M−1
∗ P∗,iλ,P∗,iλ〉

1/2

≤




∑

{j;BjB⊤

i
6=0}

〈M−1
∗,jλ, λ〉





1/2
[
1

Ki
〈M−1

∗ λ,P∗,iλ〉

]1/2

(from (3.29)).

Raising to the square and simplifying by〈M−1
∗ λ,P∗,iλ〉 yields

〈M−1
∗ λ,P∗,iλ〉 ≤

1

Ki

∑

{j;BjB⊤

i
6=0}

〈M−1
∗,jλ, λ〉.

Finally summing these inequalities overi and noticing that
∑N

i=1 P∗,i = FM−1
∗ ends the proof.
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We are now ready to prove the main theorem for the GenEO FETI algorithm which is similar to
Theorem 2.11.

Theorem 3.14(Main theorem for FETI with the GenEO coarse space)
Let ∗ denote eitherL for Lumped orD for Dirichlet. The condition number for FETI solved in
range(P∗,NP∗,0) with the projected additive operator satisfies

κ
(
P∗,NP∗,0M

−1
∗ P⊤

∗,0P
⊤
∗,NF

)
≤ N max

1≤i≤N

(
1

Ki

)

. (3.30)

As for the two-level preconditioner based on deflating the GenEO coarse space and solving in
range(P∗,N ), it satisfies

κ
(

P∗,NP∗,0M
−1
∗ P⊤

∗,0P
⊤
∗,NF + P∗,NG∗,0F

†
∗,0G

⊤
∗,0P

⊤
∗,NF

)

≤ max

{

1,N max
1≤i≤N

(
1

Ki

)}

.

(3.31)
These bounds depend only on the chosen thresholdsKi we use to select eigenvectors for the coarse
space in Definition 3.7 and on the maximal numberN of neighbours of a subdomain (including
itself):

N = max
1≤i≤N

(
#{j;B⊤

j Bi 6= 0}
)
.

Proof
From Lemma C.1 in the appendix of [16], in order to prove (3.30), it is sufficient to show that, for
anyλ ∈ range(P∗,NP∗,0), the following holds:

〈(P∗,NP∗,0M
−1
∗ P⊤

∗,0P
⊤
∗,N )−1λ, λ〉 ≤ 〈Fλ, λ〉 ≤ N max

1≤i≤N

(
1

Ki

)

〈(P∗,NP∗,0M
−1
∗ P⊤

∗,0P
⊤
∗,N )−1λ, λ〉.

(3.32)
Lemma 3.6 tells us that the inverse is well defined. First of all note that the fact that Ki can be
chosen such that

(

N max1≤i≤N

(
1
Ki

))

< 1 in (3.32) is not a contradiction: in this case the space

range(P∗,NP∗,0) is simply empty. Next we prove (3.32): letµ ∈ range(P⊤
∗,0P

⊤
∗,N ), Lemma 3.11 tells

us that
〈M−1

∗ µ, µ〉 ≤ 〈FP∗,NP∗,0M
−1
∗ µ,P∗,NP∗,0M

−1
∗ µ〉.

Then, using the fact thatP∗,NP∗,0M
−1
∗ P⊤

∗,0P
⊤
∗,Nµ = P∗,NP∗,0M

−1
∗ µ, this is equivalent to

〈(P∗,NP∗,0M
−1
∗ P⊤

∗,0P
⊤
∗,N )−1P∗,NP∗,0M

−1
∗ µ,P∗,NP∗,0M

−1
∗ µ〉 ≤ 〈FP∗,NP∗,0M

−1
∗ µ,P∗,NP∗,0M

−1
∗ µ〉.

In turn, range(P∗,NP∗,0M
−1
∗ P⊤

∗,0P
⊤
∗,N ) = range(P∗,NP∗,0) implies

〈(P∗,NP∗,0M
−1
∗ P⊤

∗,0P
⊤
∗,N )−1λ, λ〉 ≤ 〈Fλ, λ〉, ∀λ ∈ range(P∗,NP∗,0),

which is the lower bound in (3.32).
For the upper bound we use the result from Lemma 3.13 which is that

〈FM−1
∗ µ,M−1

∗ µ〉 ≤ N max
1≤i≤N

(
1

Ki

)

〈M−1
∗ µ, µ〉, ∀µ ∈ range(P⊤

∗,0P
⊤
∗,N ).

We know thatM−1
∗ µ = P∗,NM−1

∗ µ and projectionP∗,0 is (P⊤
∗,NFP∗,N )-orthogonal so

〈FP∗,NP∗,0M
−1
∗ µ,P∗,NP∗,0M

−1
∗ µ〉 ≤ 〈FM−1

∗ µ,M−1
∗ µ〉,

and in turn

〈FP∗,NP∗,0M
−1
∗ µ,P∗,NP∗,0M

−1
∗ µ〉 ≤ N max

1≤i≤N

(
1

Ki

)

〈M−1
∗ µ, µ〉.

In the same way as for the lower bound we may then show the upper bound in (3.32). This ends the
proof for the condition number of the projected preconditioned operator (3.30). The proof for the
deflated operator (3.31) is similar to the BDD case, it relies simply on the fact thatthe projection
operatorP∗,0 is (P⊤

∗,NFP∗,N )-orthogonal.
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Figure 1. Decomposition of the unit square into 64 regular subdomains (left) –Decomposition of the unit
square into 64 subdomains using Metis (middle) – Checkerboard coefficient distribution (right)

4. NUMERICAL RESULTS FOR TWO DIMENSIONAL ELASTICITY (FETI)

We give here a few numerical results to confirm the estimate for the condition number in the FETI
case. The system of equations which we solve is related to two dimensional linear elasticity where
the domain is clamped on the left hand side and subject to gravity. An important feature of the
methods which we presented is that, given a FETI code, they do not demand alot of implementation
work: all the mathematical objects which are used to build the coarse space already appear in the
algorithms.

All the results that follow were obtained using Freefem++ [46] to build the problem matrices
and visualize solutions and Matlab for the solving procedure. The test problems we present here
are only small tests which we use to validate our theoretical results. Of course, a full validation
of the efficiency of the method would require larger scale tests with an optimized code. Full
reorthogonalization at each iteration is used in PPCG. The meshes are regularwith quadrilateral
elements and the finite element discretization of the two dimensional elasticity equationuses
standardP1 (linear) functions. There are two parameters in the linear elasticity system ofequations:
Young’s modulusE and Poisson’s ratioν. Each time an iteration count is given, the stopping
criterion is that the relative primal residual at the final iterationk reach10−4:

‖
∑N

i=1 R
⊤
i SiD

−1
i B⊤

i (BD−1B⊤)†P⊤
∗,0P

⊤
∗,N (d− Fλk)‖2

‖f̂Γ‖2
< 10−4.

The fact that this is indeed the primal residual is explained in [47] and proved for instance in [48].

4.1. Checkerboard coefficient distribution

We discretize a square of size1× 1 using81× 81 nodes. We use two different decompositions
of this unit square: a regular decomposition into8× 8 regular subdomains (Figure 1 – left) and a
decomposition into 64 subdomains obtained using Metis [1] (Figure 1 – middle). Throughout this
subsection, the scaling matrices are chosen to be theK-scaling matrices [43, 38], meaning that in
the definitions of the preconditioners (3.12) and (3.13) we set

Di = diag(Ki). (4.1)

The criterion for selecting which modes are used to build the coarse space isset to

Ki = 0.1; ∀ i = 1, . . . , N,

so the condition number should satisfyκ ≤ 10×N whereN is the maximal number of neighbours.
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Table II. Checkerboard (64 regular subdomains)κ : condition number;#U0: size of the GenEO coarse space;
it: number of iterations – For the Dirichlet preconditioner theGenEO coarse space is empty so FETI-GenEO

and FETI-1 are identical

Dirichlet Lumped
FETI-GenEO FETI-1

Coefficients κ #U0 it κ #U0 it κ it
Constant 9.5 0 15 11.1 15 17 86 24

Checkerboard 6.3 0 13 9.7 49 19 93 25

4.1.1. The partition resolves the heterogeneitiesIt is well known by now that in the case of a regular
decomposition into subdomains which resolves the jumps in the coefficients and theDirichlet
preconditioner, the use of theK-scaling matrices (4.1) is sufficient to ensure good convergence. We
check here that in these cases the (automatic) GenEO strategy is to do nothingspecial which is to say
that no extra modes are selected to build the additional coarse spaceU0. Table II gives the results
for the regular partition (Figure 1 – left) into subdomains and a constant coefficient distribution
(E; ν) = (107; 0.4) as well as acheckerboardcoefficient distribution (Figure 1 – right) where the
coefficients take the values(E1; ν1) = (107; 0.4) and(E2; ν2) = (1012; 0.3). We have solved each of
these problems with the Dirichlet preconditioner and the Lumped preconditioner with and without
the GenEO coarse space (we refer to these cases as FETI-GenEO and FETI-1 respectively). For each
test we give the condition numberκ of the preconditioned operator, the size of the GenEO coarse
space#U0 (if there is one) and the numberit of iterations needed to reach convergence. The first
thing that we notice is that in all four cases where the GenEO coarse spaceis used the estimate for
the condition number is satisfied. In the Dirichlet preconditioner case, no modes where selected to
build the coarse space which is what we expected since theK-scaling alone is known to be efficient.
With the Lumped preconditioner case only few modes were selected (less thanone per subdomain).
This test indicates that the GenEO coarse grid circumvents the fact that the lumped preconditioner
does not properly predict the corrections needed on the interface forcheckerboard problems.

4.1.2. The partition does not resolve the heterogeneitiesThis time we use the automatic partition
into 64 subdomains obtained using METIS [1] (Figure 1 – middle). The coefficient distribution
is still the checkerboard distribution shown on the right hand side of Figure 1so the subdomain
interfaces do not coincide with the jumps in the coefficients. The coefficients are a fixed(E1; ν1) =
(107; 0.4) and a variable(E2; ν2) one. Table III gives the results for different values of(E2; ν2).
The middle line shows a case where the coefficients are constant throughout the subdomain
((E2; ν2) = (E1; ν1)). Once again we observe that in all cases the condition number satisfies the
estimate and that it hardly varies with the jumps in the coefficients. In the worse case the number
of modes used to build the coarse space is370 (less than 6 modes per subdomain on average).
Because of bad numerical conditioning there are a few cases where the FETI-1 residual never
reaches10−4, instead it stagnates. In this case we report the iteration count before theplateau
and the corresponding residual. Figure 2 shows a comparison between theconvergence curves
with and without the additional GenEO coarse space where this phenomenoncan be observed.
Figure 3 shows the spectrum of the preconditioned operators with and without the additional coarse
space. The spectrum is represented in the complex plane but the imaginary part is always almost
zero (imaginary parts result from numerical errors in the eigensolver).The zeros in the spectrum
correspond to the coarse modes (either natural or GenEO) as well as thenull space ofB⊤. Whether
the GenEO coarse space is used or not, the first non zero eigenvalue of the preconditioned operator
is 1 which is what is expected.

4.2. Discontinuities along the interfaces

In this subsection we focus only on the GenEO coarse space for the Dirichlet preconditioner and
we conduct a more extensive study. We use a partition intoN regular subdomains of a rectangle of
sizeN × b whereb is the aspect ratio of each subdomain (see Figure 4). The discretization of each
subdomain isnel × nel rectangular elements so that each element has the same aspect ratio as the
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Table III. Checkerboard (64 Metis subdomains)(E1; ν1) = (107; 0.4); κ : condition number;#U0: size of
the GenEO coarse space;it: number of iterations. When(E2; ν2) = (107; 0.4) there are no jumps in the

coefficients.

Dirichlet Preconditioner Lumped Preconditioner
FETI-GenEO FETI-1 FETI-GenEO FETI-1

(E2; ν2) κ #U0 it κ it κ #U0 it κ it

(1012; 0.3) 10.4 126 18 1.5 · 106 142(1) 11.7 186 19 6.2 · 106 154(2)

(107; 0.4) 10.5 26 18 447 31 12.2 99 23 2.1 · 103 58
(102; 0.49) 12.2 182 21 5.3 · 106 170(3) 16.3 370 23 4.0 · 107 198(4)

(1)
the relative residual reaches a plateau at2 · 10−4 after 142 iterations.

(2) the relative residual reaches a plateau at3 · 10−4 after 154 iterations.
(3) the relative residual reaches a plateau at2 · 10−3 after170 iterations.
(4) the relative residual reaches a plateau at1 · 10−3 after 198 iterations.

Figure 2. Checkerboard coefficient distribution – Convergence curve: primal residual versus iteration count
– Left: with GenEO, Right : without GenEO – Lumped preconditioner for the Metis decomposition into 64

subdomains –(E1; ν1) = (107; 0.4) and(E2; ν2) = (1012; 0.3).

Figure 3. Checkerboard coefficient distribution – Spectrumof the preconditioned operator – Left: with
GenEO, Right : without GenEO – Lumped preconditioner for theMetis decomposition into 64 subdomains

– (E1; ν1) = (107; 0.4) and(E2; ν2) = (1012; 0.3).

subdomain to which it belongs. The coefficient distribution consists of a constant valueν = 0.3 of
Poisson’s ratio and 7 layers ofE (4 soft layers, 3 hard layers, see again Figure 4). Throughout this
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Figure 4. Discontinuities along the interfaces

subsection we use again theK-scaling matrices (4.1) which is in fact, for this case, equivalent to
choosing multiplicity scaling since the coefficient jumps are only along the interfaces.

The parameters are:b = 1 (aspect ratio),nel = 21 (number of elements per direction per
subdomain) andE1/E2 = 10−5 (jump in the coefficient). The spectrum is shown in Figure 5 along
with the first 11 generalized eigenvectors and corresponding eigenvalues. We observe that there
is a gap in the spectrum of the generalized eigenproblem after the9-th generalized eigenvalue
sinceλ9 = 0.11 andλ10 = 0.98. For this reason a judicious choice of the threshold for selecting
eigenvectors which are put into the coarse space is for instance

Ki = 0.15,

we will use this in all following numerical tests. With this criteria, the GenEO eigenproblem for a
floating subdomain will provide 9 modes: the first three are rigid body modes included in the usual
FETI natural coarse space, and 6 deformation modes that are included in the GenEO coarse grid. As
can be seen in Figure 5 those deformation modes represents the behavior ofthe subdomain when
the hard layers deform the soft ones. The 9 modes can be seen as a basis to describe the nearly
rigid motion of the hard layers (3 modes for each of the 3 layers, amounting to 9modes) and the
basis spanned by those modes represent the behavior of the domain as if the hard layers were its
backbones. In some sense the GenEO coarse space can be interpretedin this case as askeletonof
the overall problem describing the dominant behavior of the structure according to its hard layers.

Next we actually solve the problem for different numbers of subdomains,different aspect ratios
and different discretizations. The results are shown in Table IV. The twolevel method with the
GenEO coarse space is robust throughout all of these tests: the condition number varies between 1.34
and 4.51 only, which is indeed lower than the upper bound given by the theory,N/Ki = 20,N being
equal to three in this simple decomposition. Further the following observations are noteworthy:

• When the number of domains increases, the classical FETI-1 method sees its number of
iteration increase significantly, whereas equipped with the GenEO coarse space, the number
of iteration remains small. The dimension of the GenEO coarse spaces is roughlyproportional
to the number of domains in this case.

• The classical FETI method convergences very slowly when the height of the domain is large
compared to its width (b = 5). For that case the GenEO strategy generates only a small number
of modes (43 in total) and converges very fast.

• For this layered structure, the preconditioned interface problem of FETI-1 has a condition
number that barely depends on the number of elements per domain, and the number of
iterations is nearly invariant with respect to the discretization step. When equipped with the
GenEO coarse space, a small number of modes is included in the coarse space (38 GenEO
modes, independent of the discretization step), and the number of iteration isvery small

It is thus remarkable that the GenEO coarse space can handle automatically (once a proper
thresholdK has been chosen) the difficult cases of bad aspect ratios and heterogeneities along the
interface.
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Figure 5. Eigenvalues and eigenmodes of the GenEO generalized eigenproblem for the geometry given in
Figure 4 – dark or pink: hard material, light or yellow: soft material – The first eigenmodes (rigid body

modes) are part of the natural coarse grid, and the next 6 are selected for the GenEO coarse space.

4.3. Discontinuities along and across interfaces

In this subsection we consider the case of Figure 6 where the only difference with the previous
subsection is that we have added jumps across the interfaces in subdomains3 and 6 by inverting
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Table IV. Three tests for the geometry in Figure 4 –κ : condition number;#U0: size of the GenEO coarse
space;it: number of iterations

Various number of subdomains (N ), fixed aspect ratio (b = 1), fixed discretization (nel = 21),fixed jump in
coefficients (E1/E2 = 10−5), the problem size increases withN

FETI-GenEO FETI-1
N subdomains κ #U0 it κ it

4 3 14 5 1.4 · 103 20
8 1.34 38 5 1.9 · 103 39
16 1.34 86 4 2.1 · 103 75
32 1.35 182 4 2.2 · 103 137
64 1.35 374 4 2.2 · 103 190

Various aspect ratios (b), fixed number of subdomains (N = 8), fixed discretization (nel = 21),fixed jump in
coefficients (E1/E2 = 10−5)

FETI-GenEO FETI-1
aspect ratiob κ #U0 it κ it

5 2.33 43 6 1.7 · 105 47(∗)

2 1.42 40 5 1.0 · 104 43
1 1.34 38 5 1.9 · 103 40

1/2 4.51 27 9 446 33
1/5 4.07 14 11 70 22

(∗)
the relative residual reaches a plateau at2 · 10−3 after 47 iterations.

Various discretizations (nel), fixed aspect ratios (b = 1), fixed number of subdomains (N = 8), fixed jump in
coefficients (E1/E2 = 10−5), the problem size increases withnel.

FETI-GenEO FETI-1
nel elements κ #U0 it κ it

21 1.34 38 5 1.92 · 103 39
42 1.42 38 5 1.93 · 103 40
70 1.46 38 5 1.94 · 103 40
84 1.47 38 5 1.94 · 103 40

the soft and hard layers. The parameters are as follows:nel = 21 elements in each direction and
each subdomain,N = 8 subdomains,ν = 0.3 for Poisson’s ratio,E1/E2 = 10−5 for the magnitude
of the jump in the coefficient,b = 1 for the aspect ratio of the subdomains andKi = 0.15 for
the threshold on the GenEO eigenvalues. This is a known hard problem forFETI even with the
Dirichlet preconditioner (which we use here again). In this case we showin Table V that with the
K-scaling matrices (4.1) the number ofbad eigenmodes is largely reduced compared to the case
where multiplicity scaling is used (here multiplicity scaling reduces to setting all entries of eachDi

to 1/2). Indeed withK-scaling we have selected 46 modes which is only 8 more than for the same
case but without the extra jumps across the interfaces (see Table IV – top –N = 8 subdomains). With
the multiplicity scaling the GenEO strategy selects 173 modes. In fact, withK-scaling fewer modes
are necessary because jumps across the interfaces are already accounted for in the preconditioner.
The additional modes are needed to take into account the jumps across the interfaces. This confirms
that GenEO compensates for the discrepancy between the preconditionerand the actual inverse of
F : when inadequate weighting is used the preconditioner is less effective and hence a larger coarse
space is needed. The condition numbers for both types of scaling are almost equal when the GenEO
coarse space is introduced, which confirms the theory.

5. CONCLUSION

We have constructed a two-level BDD method and two two-level FETI methods for which the
convergence rates depend only on a chosen parameter and the maximal number of neighbours of a
subdomain. The choice of this parameter is key in dimensioning the coarse space. Optimizing the
choice of the parameter with respect to efficiency and the size of the coarsespace is crucial. Here
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Figure 6. Discontinuities across and along interfaces (subdomains 3 and 6)

Table V. Geometry given in Figure 6 (discontinuities acrossand along the interfaces),nel = 21, N = 8,
E1/E2 = 10−5 – κ : condition number;#U0: size of the GenEO coarse space;it: number of iterations

FETI-GenEO FETI-1
scaling (Di) κ it #U0 κ it
K-scaling 3.71 9 46 7.0 · 104 55

multiplicity 3.89 7 173 4.5 · 104 189(∗)

(∗)
the relative residual reaches a plateau at1.5 · 10−3 after 189 iterations.

it has been set heuristically. For FETI the result holds for the full preconditioner based on solving
Dirichlet problems in the subdomains and also on the lumped version which is a lotless expensive
to implement. Compared to the Schwarz-GenEO algorithm these methods have the advantage of
being non overlapping methods which means that they do not carry the extracost of computations
in the overlap.

In this paper the fundamental ideas and proofs underlying the GenEO coarse space have been
explained and the numerical efficiency has been illustrated on problems hardto solve with classical
FETI approaches. Future research will investigate the computational cost incurred by the GenEO
coarse space (computation of the GenEO modes per domain, building and solving the coarse grid)
in order to assess the overall computational efficiency of the FETI-GenEO when applied to realistic
engineering problems.
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45. Rixen D. Dual schur complement method for semi-definite problems.Contemporary Mathematics1998;218:341–

348. Tenth International Conference on Domain Decomposition Methods, Boulder, CO, August 1997.
46. Hecht F.FreeFem++. 3.7 edn., Numerical Mathematics and Scientific Computation, Laboratoire J.L. Lions,

Universit́e Pierre et Marie Curie: http://www.freefem.org/ff++/, 2010.
47. Rixen D. Extended preconditioners for FETI method applied to constrained problems.Internat. J. Num. Meth.

Engin.2002;54(1):1–26.
48. Mandel J, Dohrmann C, Tezaur R. An algebraic theory for primal and dual substructuring methods by constraints.

Applied numerical mathematics2005;54(2):167–193.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
Prepared usingnmeauth.cls DOI: 10.1002/nme


