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SUMMARY

We introduce spectral coarse spaces for the BDD (BalancedaPoBecomposition) and FETI (Finite
Element Tearing and Interconnecting) methods. These espaces are specifically designed for the two-
level methods to be scalable and robust with respect to thiiaests in the equation and the choice of
the decomposition. We achieve this by solving generalizgenvalue problems on the interfaces between
subdomains to identify the modes which slow down convergefitieoretical bounds for the condition
numbers of the preconditioned operators which depend angyahosen threshold and the maximal number
of neighbours of a subdomain are presented and proved. FOrtRE&re are two versions of the two-level
method: one based on the full Dirichlet preconditioner dreddther on the, cheaper, lumped preconditioner.
Some numerical tests confirm these results. Copy(@t000 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: Domain decomposition; FETI; BDD; robustnessalability; varying coefficients;
irregular partitions, interface heterogeneity

INTRODUCTION

In domain decomposition it is a real challenge to solve problems with a decompagiten by an
automatic partitioner [1, 2] which does not take into account all the difficultiseiproblem for the
simple reason that there are too many. One well known challenge for elliptidgmns is when the
coefficients in the equation are highly heterogeneous. This is often thengarsetical applications.
Classical coarse spaces are known to give good results when the juthpsoefficients are across
subdomain interfaces (see e.g. [3, 4, 5, 6]) or inside the subdomaim@anear their boundaries (cf.
[7, 8]). However, when the discontinuities aakong subdomain interfaces, classical results break
down, and one observes very bad convergence of the iterativersdbrethe interface problem
(see e.g. [9, 10]). It is also well known that non-smooth decompositiohsrg the interfaces are
jagged) [11] or bad aspect ratios of the domains [12] can also lead tapoeergence.This is what
we work to improve: we aim to design a method for which the convergenceoatenot depend on
the choice of the decomposition into subdomains or on any of the coefficients égtlations.

In order to achieve this we will use the strategy introduced in the additive &zhfiramework
by [13, 14] and [15]. This strategy is based on the abstract theornedib-level additive Schwarz
method [16]. The strategy is to write the Schwarz theory up to the point whéep&nds on the set
of equations we are dealing with and where assumptions on the coefficigiiiLdien with respect
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2 N. SPILLANE, D.J. RIXEN

Table I. Summary of Notations

Function space Description Definition
Wh(Q) Global solution space for (1.1)
Wh(Ql) Local {umi;u S Wh(Q)} ((16),D = Ql)
Wi Local trace | {ujrnoq,;u € Wr(Q)} ((1.6); D =I' N 0Q;)
w Product trace Wi x...Wn
W Global trace {ujr;u € Wi(2)} ((1.6) ;D =T)
Stiffness matrices (defined on) Matrix Bilinear form
Global (W5, (9)) K (1.3) a(1.1)
Local W (€2)) K; agq, (1.7)forD = Q;
Product space[(.", Wi (Q:)) K (1.11) none
Lumped global i, (92)) K**(1.18) ab
Lumped product spac§ [, Wi () K**(1.19) a
Schur complement (defined on) Matrix Bilinear form
Global () S (1.16) 8
Local (W;) S; (1.13) si(1.22)
On the product spacéi() S (1.14) s
Weighted local V) S; 3 (1.23)
Right hand sides Notation
Condensed ontb fr (1.20)
Condensed ontb N 0£2; fri (1.21)
Condensed on product spag’_, I' N 9Q; fr (1.21)

to the decomposition into subdomains are needed to write estimates which dgperatiden the
parameters. For the Darcy equatieny - V(au) = b) with the minimal coarse space (the constant
functions) the Poincérinequality and trace theorem are needed to complete the proof and they
require quite strong assumptions. Instead, the authors in [15, 14,d@&)g® to solve a generalized
eigenvalue problem in each subdomain which selects what modes of thersshtigfy the required
estimates for a chosen constant. The other modes, which do not satis$yithate, are used to build
the coarse space and are basically taken care of with a direct solve ioatse space. This is what
we will refer to as the Schwarz-GenEO coarse space (Generalizedviiges in the Overlaps).
It leads to a two-level method with a convergence rate chosen a prigprétems described by
symmetric positive definite matrix.

The idea to use eigenvalue problems to build a coarse space is not new, fitsvaxplored
in the algebraic multigrid community. In [17], a strategy to build a coarse spasedbon spectral
information is presented that allows to achieve any a priori chosen tangetigence rate. This idea
was further developed and implemented in the spectral AMGe method in [18§ Mcently, in the
framework of two-level overlapping Schwarz, [19, 20, 21, 22, 15,143 also build coarse spaces
for problems with highly heterogeneous coefficients by solving local eigétgms. However,
compared to the earlier works in the AMG context all of these approadues fon generalized
eigenvalue problems. We can distinguish three sets of methods that diffiéaelghoice of the
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD AIARITHMS 3

bilinear form on one side of the generalized eigenproblem. First, in the widik9p 20] for the
Darcy equation itis the local mass matrix, or a ‘homogenised’ version olbthnesing a multiscale
partition of unity. In [21, 22] it corresponds to dn-product on the subdomain boundary, so that the
problem can be reduced to a generalized eigenproblem for the Dirichiletuimann operator. This
method was analysed in [23]. The latest set of papers, of which this anspised, [15, 13, 14],
uses yet another type of bilinear form inspired by the theory. There hbo been some recent
multilevel extensions of some of the above approaches [24, 25, 26hffreach in [27, 28], in the
multigrid framework is also comparable.

The purpose of this paper is to extend the GenEO strategy [15, 13, 14 ®80b (Balancing
Domain Decomposition) algorithm and the FETI (Finite Element Tearing and Imeecbng)
algorithm. These are two well known non overlapping domain decompositionogeetk/p until
now the GenEO strategy has been applied in the context of overlappinga&cthhich was first
introduced in [29]. The idea of a coarse space correction goes bdaR,t81] and the two-level
overlapping Schwarz preconditioner is due to [32]. As for the Balanciogp&n Decomposition
(BDD) method, it is the work of [33] who added a coarse space to thexiste®y Neumann
Neumann method [34] to deal with singularities in the local problems. We wilk tefthe analysis
of BDD in [16] which is very closely related to the analysis of the two-leveMgutz preconditioner.
Finally, the FETI algorithm was first introduced in [35] and the convergenoefjis due to [36, 37].
It is generalized in [38]. Coarse spaces for the FETI method are inteddirst in [39] and further
developed in [40, 41]. In [42] a two level FETI method is also introducedafparticular problem
and a convergence result is proved. However we will follow a veryedsfiit approach here both
for choosing the coarse space and also for writing the proof. In bo#s&DD and FETI) the
generalized eigenvalue problem which we solve is used to prove a boutiteflargest eigenvalue
of the preconditioned operator. As usual the lower bound for the eddigew of the preconditioned
operator isl regardless of the coarse space.

The rest of the article is organized as follows. In Section 1 we introduceotiagion which will be
needed for both algorithms. In Section 2 we introduce the two-level GenE¢pditioner for the
BDD algorithm. And in Section 3 we introduce the two-level preconditioner feiRETI algorithm.
The definitions of each of the coarse spaces with the correspondingtizee eigenvalue problems
can be found in Definitions 2.3 and 3.7 respectively. These generalizedveige problems are
chosen specifically to ensure that the so called stable splitting propertiesnmas 2.8 and 3.12
are satisfied. As for the convergence results they are stated (andipioVéneorems 2.11 and 3.14.
Finally in section 4 we give a few numerical results.

1. NOTATION FOR FETI AND BDD

For a given domair2 € R? and a finite dimensional Hilbert spad&), (), given a symmetric,
positive definite bilinear form,

a(, ) Wi(92) x Wi(22) = R, (1.1)
and an elemeni € W, (©2)’, we consider the problem of findinge W (€2), such that
a(u,v) = g(v), Yve Wp(Q). 1.2)

In order to introduce the BDD and FETI algorithms we will need to introducetiootéor discrete
operators at the global and local (on each subdomain) levels.

1.1. Problem setting

We begin by rewriting Problem (1.2) in an algebraic framework. As usual énfitiite element
setting, we start with a triangulatiof, of Q: Q = Ure’rh 7 and a basig ¢y }1<k<n for the finite
element spac#/, (). '

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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4 N. SPILLANE, D.J. RIXEN

Assumption 1.1

Given any element of the mesh7;, let Wy (7) := {u|, : v € W;,(Q)}. We assume that for each
elementr € Ty, there exists a symmetric positive semi-definite (spsd) bilinear formiv;, (1) x
W (1) — R, such that

a(u,v) = Z a-(ulr,vlr), Vu,ve W,(Q),
TETH
and an element, € W, ()" such that
g) =" g:(v]s), YveWy(Q).
TETh

The stiffness matrix is assembled with the following entries

(R)kl = d(¢k:a¢l) <— Z a7(¢k7—7¢l|7—)> ) Vkvl = 17 cee Ny (13)

TE€TH

and the discrete right hand sige= R™ is defined by the entries

()i = g(dn) (‘ > gr(¢k|7)) , Vk=1,...,n

TETH

As is quite customary we identify vectors of degrees of freedom, whichinaseme spaces
R™, with the associated finite element functions. Operators between the spacepr@esented
as matrices, and we frequently commit an abuse of notation by using matridespanators
interchangeably. With this abuse of notation the original problem (1.2) ivaqut to the linear
system: findu € W},(Q) such that

Ku=f, (1.4)
with & symmetric, positive definite (spd).

1.2. Local setting and notation

Local Setting We introduce a partition of the global domain into N non-overlapping
subdomaing$2; which are resolved by the mesh

N
Qiuﬁi and QiﬂQj:@, Z?é],
1=1

and the resulting set of boundaries between subdomains

I:= U Ql N Qi/.
i/
The reason why we have required the information on the non-assembfadsstimatrices is that

we want to have access to local matrices for any choice of the partition intmmains. In order to
do this we also need to define local finite element spaces and local bilinear forms

Assumption 1.2
The basis functions,, are continuous of2. In particular for any subsé? C 2 the restrictionpy,
of ¢, to D is well defined.

Definition 1.3(Local finite element spaces)
For any subseD c (2 let the set of degrees of freedomiinbe the set

dOf(D) = {k:]-a"wn;(blﬂD?éO\D}? (15)

where0|, : D — R is identically zero. Then the finite element space/dis defined as
Wh(D) == {up;u € Wi,(Q)} = spa{ ¢y p; k € dof(D)}. (1.6)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD AIARITHMS 5

The second equality in the definition Bf,, (D) is an immediate consequence.
Definition 1.4(Local bilinear forms and local right hand sides)
For any open subsé? C 2 which is resolved by the mesfj,, let the local bilinear form o be
ap : Wir(D) x Wi(D) = R; ap(v,w) := Z ar (V)7 wir), a.7)

TCD

and the local right hand side be the element

gp € Wi(D);  gp(v) ==Y 9-(v},). (1.8)
TCD
For any: = 1,..., N, the space of finite element functions on e&xhollows from (1.6) with

D=9Q;:
Wh(QZ) = {um%;u S Wh(Q)},

as well as the trace spaces for= 0Q; NI
W, = Wh(F N 891) = {u‘pmagi;u S Wh(Q)}

Finally, we define the product space
N
1=1

We know from (1.6) thatV; = spaf{ ¢ sq,r; k € dof (052 NT)}, we make the further assumption
that this set of functions is a basis ;.

Assumption 1.5
The sef{ ¢y 90,nr; k € dof(0Q; NT)} is a basis otV;.

Throughout the analysis, we will consider elements in the product spadéach component
u; € W; is defined on a paift N 992; of the boundary and two contributions from two neighbouring
subdomains do not necessarily match on the shared interface. This idteofeéle partition of(2
into subdomains. Our finite element approximation of the elliptic problem is, howleased on
functions inW;, (2) which are defined on the whole 8fwith one value per degree of freedom. We
denote the space of restrictions of these functions to the set of intenmadiades” by 17

W = Wi(T) = {ursu € Wa(Q)} (= spa{ gy i k € dof (T)}) . (1.9)
Next we introduce interpolation (prolongation) operatays: W, — Wifori=1,...,N:

k k T k
Vui= > Frpngn, (@F €R) Rluii= Y afeup.
kedof(INaY,) kedof(INAKY,)

These are the natural interpolation operators represented by boole#@emahe continuous global
function RZ.TuZ- € W shares the same values asfor degrees of freedom idof(I' N 0%2;) and
has no contributions from any other degrees of freedom. The condsmprestriction operator
R; : W — W, is defined as

Vu = Z o"gpp (ax €R);  Rju = Z " Brrnog, -

k€dof(T) kedof(INOK;)

We note thatW ¢ W and W = S  RTW,. It is obvious from the definition of?] and
Assumption 1.5 that foir = 1,..., N andu; € W;:

u; = Ojrnoq, < R ui = Opr. (1.10)

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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6 N. SPILLANE, D.J. RIXEN

Stiffness matrices The local stiffness matrix¢; : W, () — W, (Q;) is the matrix associated
with bilinear formag, defined by (1.7) folD = ;. From these, the stiffness matrix on the product
space is defined as

K, 0 ... 0
0 Ky ... 0
K : Wh(Ql) X Wh(QN) — Wh(Q1) X ...Wh(QN); K = (111)
0 0 ... Ky
so that
Ku:(Klul,...,KNuN)T7 Vu:(ul,...,uN)TGWh(Ql) X...Wh(QN). (112)

Schur complement matrices The degrees of freedondof(€2;) in W;(£2;) can be split into
the setb; := dof(T' N 9N;) of degrees of freedom that are also in the trace spéiceand the
remainderl; := dof(2;) \ dof(T' N 9%;). This way we can rewrite the local stiffness matrix in

block formulation
KlbLbL Kf'LIl
K; = Kzlibz K{’I’ :

The interior variables of any subdomain are then eliminated in work that cparb#elized across
the subdomains. The resulting matrices are the local Schur complements

Si Wi — Wi; 8= Klib — KUI(gEIy =1 glibe =1, N, (1.13)
and the Schur complement on the product space is
S0 ... 0
S Wi x.. Wy Wy x... Wy; S:= 0 %% ... 0 (1.14)
W W 00 ... Sy
so that
Su = (Slul,...,SNuN)T, Vu= (ul,...,uN)T cw. (1.15)

The Schur complemerst on the product spadé” admits the following counterpat for functions
in W:
N
S:W = W; Su:=> R]SiRu. (1.16)
i=1
We notice that this is the usual Schur complement for the global problemeédadhe set” of
internal boundaries:

§— K% _ KPR, (1.17)
whereK?, KbI K1 and K!? are the components in the bloc formulationfof
. Kb bl
= <IA(H7 KII> , b:=dof(T') and I :=dof(Q)\ dof(T). (1.18)

Lumped matrices In the FETI literature the lumped version of the stiffness matrix is the
extraction of the entries in the stiffness matrix which correspond to boyrmitsyrees of freedom.
We have already introduced”® and K", let K** be the counterpart on the product spéice

Kioo0 L 0
babo
K% Wy x . Wy =Wy x.. Wy, K= | 0 K7 0 (1.19)
w w 00 ... Khwhs

We notice thatk® = S° | R K" R; and the next Lemma gives an important relation between
lumped matrices and Schur complement matrices.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD AIARITHMS 7

Lemmal6
For anya € W and anyu € W the following inequalities hold

(Si,a) < (K*a,a) and (Su,u) < (K"u,u).

Proof X
Leta € W. Then by definition of5

(St iy = (K" — KM(K') 7 K™Y, 4) = (K40, a) — (K7 K0, K'™4).

The first inequality follows by noticing that K'/)~* K4, Kb4) > 0 becausg K7/)~! is spd.
For the second, let € W. Then by definition ofS

N N

<S’LL, U> _ Z<Szuuuz> _ Z«KlbLbL o Kibi[i (KiIiIi)_lKiIibi)uiyui>

=1 =1

N
Kbbuu Z IKIbuZ,KIb >

i=1

And the second inequality follows by noticing thatr,; "/ )~ K, 7w, K;7%u;) > 0 for any
i=1,...,N becausg¢K;" /")~ is spd. O

Right hand sides In order to reduce the problem to the set of interfaces between subdgmain
define the following right hand side

fro= 1" = KM(ET) L, (1.20)

which is the right hand side of the original problem (1.4) condensed oatdebrees of freedom in
W. As for the right hand side on the product spéke for each subdomain=1,..., N: first let

/i be the local right hand side given by (1.8) with= ;. Then condense it onto the interfaces
following: fr; := f' — K''i (k7 =1 1 (We have used the identification between the finite
element representation gf and its vector representation.) Finally, the right hand side for the
problem condensed onto the spdEds

fra
=00, (1.21)

fron

Most of this notation is summed up in Table | at the beginning of the article. Some auisime
are given in subsection 1.4, along with an important lemma on which of these rearepositive
definite.

Remark 1.7

Assumption 1.1 is actually stronger than what we really need but enablesehaf any partition
into subdomains and allowed us to define each component of the algorithaghbdroFor a given
non overlapping partition into subdomains it is enough to have access to #ieratricesk; on
each subdomain, the local right hand sigesthe local-global interpolation operatoRs' and the
information on the boundary of each subdomiin 9¢2;.

1.3. Partition of unity and weighted operators

An important role in the description of the BDD algorithms is played by a weightogr{ting)
function onlV. As in the original GenEO algorithm [13, 14] this induces patrtition of unityratmas
=; which act directly on the degrees of freedom of the finite element functions.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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8 N. SPILLANE, D.J. RIXEN

Definition 1.8(Partition of unity)
Letu = (u1,...,un) € W be adiscretepartition of unity:

Z R pi =1, wherel;, € W and all vector entries are
i=1,..,N

Then for any function,; € W; written as

k k
Ui = § Q; ¢k|I‘man a; €R,
kedof (DNOSY)

the local partition of unity operat&; : W, — W; is defined by:

Ei(ui) = Y phaf drirnon,
k
wherey! is thek-th entry iny;. The inverseE; ! : W, — W is defined by:

. 1 .
B () = Eai‘ Pk |rrog; -

k K2

It is clear that the2; define a partition of unity froni/” onto the product spad® = Wy x - - - x
Wy in the sense that

u = ZRLT Zi(Riu), YueW.
i=1 o

It is also clear that=; ' is the inverse ofZ; since anyu, € W; satisfies=; ! (Z;(u;)) =
= =—1
=5 (w) = w.

Remark 1.9

Two common choices fory are the multiplicity scaling whereuf is chosen as
(#{i=1,...,N;k € dof(T n9Q;)})”" and the K-scaling whereu depends on the diagonal
entries of the stiffness matrices [43, 38]. In the numerical result secitomestly usex’-scaling.

We introduce the local bilinear forms which correspond to the local Schupnentss; as
follows. For: = 1,..., N define

si Wy x W; = R, si(ui,vi) = <Siui,vi>; Yu,;,v; € Wi. (122)

Next we use the partition of unity operators to define weighted versions &cdher complements
which will be instrumental in defining the BDD algorithm.

Definition 1.10(Weighted Schur complements)
Foranyi =1,..., N, lets; : W; x W; — R be the bilinear form defined by

Si(ug,v;) = si(Efl(uiLE;l(vi)); Yu;, v; € Wi, (1.23)
wheres; is the local Schur complement, aBg* is the inverse partition of unity operator introduced
in Definition 1.8.

Next, let the matrixS; : W; — W, be the matrix counterpart 6f :

<5’Z—ui, ’Ui> = 57,(“27 ’Ui).

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD AIARITHMS 9

1.4. Summary of the notation and complements

We have introduced quite a lot of notation. Table | at the beginning of thdeastitns up most of
the notation which will appear in the description of the algorithms and the refer® where it is
first introduced. Some of the operators are introduced for the first tifie(**, s ands) as the
bilinear forms associated with a matrix. More preciselyafétands be defined as

A W x W — R; a®(a4,0) := (K%4,0) and &: W x W — R; §(a,9) := (Sa,0),
for anyd andd € W, and leta” ands be defined as
a” W x W = R; a®(u,v) := (K%u,v) and s: W x W = R; s(u,v) := (Su,v),

foranyu andv € W.

The operators with aalways correspond to functions defined either on the whol@ of the
whole of I'. The subscript always refers to a local operator defined on a subdorfaior its
boundary. Operators without @r a subscript are defined on the product spaces. Finally operators
S, are weighted by the inverse partition of unity operators.

In many cases the local stiffness matridésare not spd on all floating subdomains. (A floating
subdomain is a subdomain which does tmichthe Dirichlet part of the boundary). For example,
in the case of the Darcy equation, the kernelqffor a floating subdomain is the set of constant
functions. In the case of linear elasticity, the kernekgfis the set of rigid body motions. It is easy
to see that these kernels induce kernels for the corresponding Schpletoentss; as well as their
weighted counterparts; and, possibly, the lumped matric&g**". The next lemma makes precise
which matrices are positive definite. They are all symmetric positive semi definite.

Lemma 1.11

The stiffness matrixs<, lumped stiffness matrix*® and Schur complemeist, which correspond

to the product spaces, can be singular. Their respective courgedgai® andsS, on the original
spaces of function®,(Q) and W are symmetric positive definite. Finally, under Assumption 1.5
each of the local matriceR; K" R andR;SR; is also symmetric positive definite.

Proof
The fact thatk” and .S are positive definite is clear because the original problem is well posed. Th
positive definiteness ok follows from Lemma 1.6 and the positive definitenessofet u ¢ W

(K%, u) = 0= (Su,u) = 0= u=0.

The positive definiteness dt; SR, and R; K" R] is obvious from the positive definiteness ff
andS and (1.10) which is a direct consequence of Assumption 1.5. O

Remark 1.12
Note that in nearly all practical casé&” is also symmetric positive definite.

We are now ready to introduce the BDD preconditioner.

2. BALANCING DOMAIN DECOMPOSITION

The problem which we solve is the original problem (1.4) reduced to thie sinterfaces between
subdomains: find € W such that ) R
Su = fr. (2.1)

2.1. One level BDD preconditioner in the abstract Schwarz framewdk [1

The only thing that is needed in order to define the one-level preconditisr@solver on each
subdomain. Then we will precondition the global problem (2.1) with a sumedehocal solves.
The usual BDD strategy is to use the weighted Schur complenseimigroduced in Definition 1.10
to build local problems. Then each local solve is the solution of a NeumaitepnoS| .

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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10 N. SPILLANE, D.J. RIXEN

Definition 2.1(One level preconditioner)
Foreach =1,..., N, let P, and P, be defined as

where S' is a pseudo inverse of;. Equivalently for anyu € W, Pu is the unique vector in
rang€S!) which satisfies

52(]5111,1)1) = §(U,R7Tl)1), V’UZ S Wz (23)
The one-level preconditioner is the sum of local soNgY' , R/ S/R; so the one-level

preconditioned operator E?’:l P;.

The next lemma gives a lower bound on the eigenvalues of the one-lewemptitioned operator.
It does not depend on the specific choice of the pseudo inverse oy@oarse space.

Essentially what we do is check that a stable splitting assumption (Assumption[2&])iholds
on the whole ofii’. Then we give the result of Lemma 2.5 in [16] which is that this implies a lower
bound for the condition number of the one-level preconditioned opefater of the assumptions in
[16] is that the local bilinear formsS( in this case) be positive definite. Here they are only positive
semi definite but the proof goes through in the exact same way so we danit ggain.

Lemma 2.ZStable splitting — Lower bound for the eigenvalues of the preconditionecmpg
For anyu € W there exists a stable splitting,, ..., vxy) of w ontoW =Wy x --- x Wy

N
w=Rlv+-+Rivy; vi € Wy and > §(vi,v;) < $(u,u). (2.4)

i=1

This implies that the one-level preconditioned operator satisfies

N
S(u,u) < § (Z Pm,u) for anyu e W. (2.5)

i=1

Proof
Letu € W. The fact that, by definition, the operatasdefine a partition of unity allows us to write
an obvious splitting of, onto W:

N
(vi:=Ei(Rw), Vi=1,..,N) = u=)» Rlv
We prove (2.4) for this splitting using only the definitionsspfands:

N
Zgi(vhvz Zsz Z M Ei(Ri), E7H(Ei(Riu))

i=1 i=1 i=1

Mz

si(Riju, Rju) = §(u,u).

The second part of the lemma is the result of Lemma 2.5 in [16], we refer tHeraathere for the
proof. O

The fact that (2.5) provides a lower bound for the eigenvalues of teeopditioned operator
Zf.vzl P; is easy to see: supposes an eigenvector associated with eigenvalughen

ZPu—AuéSZPu—)\Su:sZPuu A§(u, u),

and (2.5) implies that > 1.
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD AIARITHMS 11

In other words the lower bound for the eigenvalues of the preconditiopedator does not depend
on the choice of the coarse space. This is a big difference with the Ad@thevarz method
where the proof of a lower bound depends very strongly on the chditieeccoarse space and
on restrictive assumptions on the coefficient distribution. This is why the Seh@@@nEO strategy
in [14] is precisely to build an enriched coarse space for which the stabténg property and
thus a lower bound for the spectrum of the preconditioned operator égiddless of the partition
into subdomains and the coefficient distribution. Luckily, the upper bounithéoeigenvalues of the
Additive Schwarz operator depends only on the number of neighbouebfsibdomain enabling
the proof of a bound for the condition number of the preconditioned tqrera

Here the situation is reversed: Lemma 2.2 gives a lower bound for the eigesvof the
preconditioned operator which does not depend on the choice of thsecspace thanks to the
adequate weighting of the local solvers. However the upper bound esquore work and with the
usual coarse space it can only be independent of the coefficients iguaga if some assumptions
on the coefficient distribution are satisfied. The GenEO strategy will enattewssive all of these
assumptions.

2.2. GenEO coarse space for BDD

The abstract Schwarz theory tells us that the upper bound for the eigesvd the preconditioned
operator is implied by the stability of the local solvesson the local subspaces once the coarse
components have been removed (this is made explicit in Lemma 2.8). This is thiee@enEO
strategy comes in. We solve a generalized eigenvalue problem which idetiidibad’ modes: in
this case those for which we cannot ensure that the local solver is stalsle€bnstant independent
of the coefficients in the equations. These ‘bad’ modes are then usedridrspaoarse space,
and the local solvers are stable on all remaining local components (thé’ ‘gopmponents). More
precisely, the next two definitions introduce the generalized eigenvallepipthe coarse space
and the corresponding two-level BDD-GenEO preconditioners.

Definition 2.3(GenEO coarse space for BDD)
For each subdomain=1,..., N, find the eigenpairgp®, \¥) € W; x R* of the generalized
eigenvalue problem:

5(pk v) = Arat (R pk R v;) | foranyv; € W (2.6)

Next, given a threshol&; > 0 for each subdomain, define the coarse space as
Wo = spar{R; p; \f < ki, i=1,...,N} (c W). 2.7)

Let the interpolation operatoR] be the matrix whose columns are the coarse basis functions
{R]pF; \F < K;,i=1,...,N}. Finally, let the coarse solver be the exact solveFian

S() = R()S’RJ,
and P, be theS-orthogonal projection operator defined by
Py := RJ SIR,S. (2.8)

This definition gives rise to a few immediate remarks.
Remark 2.4

() The operatoi?] is a mapping between the coordinates of a vector figgin the set of coarse
basis functions and its representatioiiinrangé R] ) ¢ W). Its transpose®, is a restriction
operator which maps an elementiinto the coordinates of its projection ontd¥, in the set
of coarse basis functions.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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12 N. SPILLANE, D.J. RIXEN

(ii) Eigenvalue0 for eigenproblem (2.6) is associated with the kerne§,afo in some sense the
coarse space will take care of the fact thas not necessarily coercive. Note that if the coarse
space would include only the kernel §f one would obtain the usual coarse grid of the BDD.

(i) In the definition of P, we used a pseudo inverﬁ because the columns dt] are not
necessarily linearly independent. The pseudo inverse is defined up teraent in Ke(R )
and the specific choice of the pseudo inverse makes no differenceskeet@uapplication of
S{ is followed by an application o .

(iv) The fact thatP, is anS-orthogonal projection can be proved easily using the definitiord% of
andS, and it is equivalent to the fact th&y is self adjoint with respect t§;.

We are now ready to introduce the BDD-GenEO preconditioner. Therévar ways to add
the second level once that we have chosen the coarse space: eithesevee deflation based
preconditioner (2.10) with the preconditioned conjugate gradient (PC@jitlgn or we use the
projected preconditioned conjugate gradient (PPCG) algorithm in the spagélr— P,) with
the projected preconditioner (2.9). Both alternatives will lead to essentiahti@hl convergence
bounds.

Definition 2.5(Two-level preconditioners) o
Recall that, according to (2.2) and (2.8), we have defiReg RIS}RiS foranyi=1,...,N and
Py = ROTS(T)ROS‘. Then define the projected preconditioned operator as

N
Pyroj 1=y (I = Po) " Pi(I - Py), (2.9)

i=1

and the deflation based preconditioned operator as

N
Py =Po+ Y (I - Py) P(I - Pp). (2.10)

i=1

In the remainder of this subsection we show that the BDD-GenEO coaase Bads to an upper
bound for the eigenvalues of the preconditioned operators which diefepend on the number
of subdomains or the coefficients in the equations. Instead it depends treékbolds/C; which
were introduced to select the coarse basis functions. First we give soperies of the family of
generalized eigenvectors (Lemma 2.6). Then we use these propertiesvtthahthe local bilinear
forms are stable on the deflated local subspaces (Lemma 2.8) and the oppdrfbllows from
there (Lemma 2.10).

Lemma 2.6

For a given subdomain= 1,..., N, the eigenpair§p?, \¥) of generalized eigenproblem (2.6) can
be chosen so that the sgit}, of eigenvectors is an orthonormal basislBf with respect to the
inner product induced®® (R -, R -). This writes

A" (RIpf, RIpE) =1; and @™ (R pf, R/pl) =0,k #K.
An orthogonality type property with respectip(which is not necessarily coercive) also holds:

Proof

Lemma 1.11 tells us thaR;, K® R is positive definite oni¥; so we may indeed speak of a
a" (R} -, R -) orthonormal basis dfi’;. Then for the proof see e.g. [44]. O
Remark 2.7

The fact that the generalized eigenproblem (2.6) is equivalent to ayeweralized eigenproblem
implies that all eigenvalues are finite. Because both matrices are symmetricgesitiv definite,
the eigenvalues are also non negative: for iy < \¥ < +oo.
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AUTOMATIC SPECTRAL COARSE SPACES FOR ROBUST FETI AND BDD AIARITHMS 13

The next lemma states that the local solvers are stable and strongly relies defithition of
the GenEO coarse space. In fact the purpose of the GenEO stratgupcifically to ensure that
Lemma 2.8 holds. This corresponds to Assumption 2.4 in [16].

Lemma 2.§Stability of the local solvers) B
Suppose the pseudo inver§kin Definition 2.1 is chosen such that rai§g) = spar{p¥; \¥ > 0}.
Thenforanyi = 1,..., N, the local solvers are stable in the sense

1 -
§(RZTuZ,RlTul) < Eéi(ui,ui), Yu; € rangQPi(I— Po)),

where thek’; are the thresholds that were used to select eigenvectors for the cpase in
Definition 2.3.

Proof
We may indeed choose ran@é) = sparf{p}; \¥ > 0} because the pseudo inverse of an operator is
defined up to an element in the kernel of this operator. Precisely there anéirdaty of pseudo
inverse and we may choose the range&}famong all the spaces which satisfy ra(@e) @
Ker(S;) = W;. Here, KetS;) = spar{p¥; \¥ = 0} and the set of ajp* is a basis of¥; so our choice
fits this limitation.

Next we prove that

rangé P (I - 1)) (= rangeS! RiS(1 — Ry)) ) © spanf{pt}ic} -
where we have introduced the notatigyf } . for the set ofgoodeigenvectors
(P = {pf; AP =2 K}
We will use the following linear algebra identity:
Ker((I — Py) "SR] ) &+ rangéR;S(I — Py)) = W; (2.11)

where the symbal refers to the, orthogonality between both spaces antheans that the sum is
direct. By definition (2.8) of%, (I — Py)T = I — SR] S{ R, so

rangéSR]) c Ker((I — Py)").
In particular, for a giveri = 1,..., N : spa{SR; p¥; \¥ < K;}  Ker((I — Py)T), which implies
spar{ {pf}c} C Ker((I — By)"SR]). (2.12)
Next we use another linear algebra identity; is finite dimensional so
spar{{p; }xc } & spar(pf; Af < K} =W, (2.13)
According to Lemma 2.6 thép* } form aR; K* R -orthonormal basis di’; so
(PF, RK™R ¥y =0, vk # k.

This implies that spafR, K" R pk; \k > K} € spar{{pf}K}L. The equality between these
subsets follows by a dimensional argument: the{gét  forms a basis oiV; and R; K"’R," is
spd so

rank{ R K" R pf; b > G} = rank{ph; \¥ > K} = rank{ {pf 1},

and in turn the inclusion becomes an equality:
~ 1
spaf{ R K" R pli \f > K;} = spar{ {pf}c} -
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14 N. SPILLANE, D.J. RIXEN

Injecting this into (2.13) implies
spar{{p}}x} & spaf{ R, K" R pf; A} > K} = W (2.14)
Putting (2.11), (2.12) and (2.14) we get
rangé R, 5(I — Py)) C spaf Ri K™ R pl;s \f > K.},
where the argument is:
(E, @+ Ey = Es @&+ EyandE, C E3) = E, C Es,

for any vector spacek,, ..., E;. . R
By definition of eigenproblem (2.6\*R; K** R p¥ = S;p* so

rangeé R, 5(1 — Py)) C spar{ Sipf; Af > K}
Finally, for the specific choice of the pseudo inve@e’t follows that
rangeS! R, S(I — Fo)) (= range P,(I — Fy))) < spar{{p{}x }.

Now we prove the inequality in the lemma. Any; crangdP;(I — P,)) writes u; =
D tkarsicyy @i pi for some coefficienta; € R. From Lemma 1.6, it is obvious that

anT T ~bb( T T ~bb [ pT ko k T ko k
S(R; ug, Ry wi) < a7 (R ug, Ry wi) =a” | R; Z api o, R Z Qg P;
(kAT 2K} (kA7 2K}

Using successively the first orthogonality property in Lemma 2.6, the definitithe@igenproblem
and the second orthogonality property in Lemma 2.6 we get

. 2,
S(Rwi, Riw) < Y7 of a"(RIpf, R p))
{RAF2KC:}

Low2 0k &
= Z ﬁai $i(pi>py)
?

{k;AF>Ki}

| —

<

2 X
> ksl

C{kAE>K )

>

|~

>

1

O

Remark 2.9Local stability, Exact solvers, and Choice of the eigenproblem)

The bilinear form on the left hand side of the inequality in the lemm& &' -, R -). This is the
so called exact solver on subdomaifor the global problem given bg. The exact solvers are by
definition the solvers which are used to build the Additive Schwarz preconeitibor the problem
Su = fr the Additive Schwarz preconditioner would B&" | R SR;. If these exact solvers were
used instead of; the upper bound for the eigenvalues of the preconditioned operatdd wepend
only on a constant related to the number of neighbours (introduced in ghdéenema). The nice
bound that we have for the lowest eigenvalue of the preconditionedtmpevould no longer hold
though. The most straightforward generalized eigenproblem whictsdra the theory is

§i(pf7vz‘) = /\f §(R;pf’RiTUz') forany v; € W;, (2.15)
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so the eigensolve operates some sort of spectral comparison betwesadhsolver (on the right)
and the one which we actually use (on the left). We then isolate the modes it thie chosen
preconditioner is not a good enough approximation in the coarse spaeesaraldirect solve on
these modes. It is however expensive to assemble and to solve (2.ibis Ehwhy in this article
we have chosen to go through only with eigenproblem (2.6) whereeplaced byi*®. For a coarse
space based on Eigenproblem (2.15) the theory goes through to thsaxefinal estimate simply
by replacingi®® by 5 in the proofs.

The following lemma gives a consequence of the stability of the local soléssiery narrowly
related to Lemma 2.6 in [16].

Lemma 2.1qUpper bound for the eigenvalues of the preconditioned operator)
The stability of each of the local solvers which was proved in Lemma 2.8 implies

N
§ (Z Pm,u) <N max <’é> $(u,u) Yu €rangdl — Fy),
i=1

1<i<N i
where\ is the maximal number of neighbours of a subdomain (including itself) in theesens
- L RRT
N = R (#{j: R;R} #0}).

Proof

This is basically the proof of Lemma 2.6 in [16] but where we have chosértaeely on
strengthened Cauchy Schwarz inequalities. Instead we make the numbeigbbaurs of a
subdomain appear explicitly. Lete rangél — 1), then

3(Pyu, Pu) = 3(R; P, R Pyu)
1

Szgi(ﬁiwﬁ’iu) (Lemma 2.8)

= %é(u,RI Pu)  (definition of P; (2.3))
— L, P

= ES u, £5uU).

We use the fact tha®;, = RiTI:’i and the definition of to write

N
$(Pu,u) = s (RiR] P, Rju) = Y s;(R;R] P, Rju).
j=1 {5:R; R #0}
We apply the Cauchy Schwarz inequality first foithen for the Euclidean inner product to this and
inject the previous result (in the last step)

$(Pu,u) < > si(RyR Py, RR] P)Y?si(Ryu, Rju)'/?

{5:R; R #0}
1/2 1/2
S Z Sj(RjRiTpi,RjR;rPi) Z sj(Rju, R]u)
{isR; R #0} {i:R; R #0}

1/2

= §(P,U,PZU)1/2 Z Sj(RjU,RjU)
{5;R; R #0}
! " 1/2
< <’Ci§(u,Piu)> Z sj(Rju, Rju)
{5;R; R #0}
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(d000)
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16 N. SPILLANE, D.J. RIXEN

Raising to the square and simplifying ByP;u, v) yields

1
$(Pu,u) < o Z sj(Rju, Rju)
" [{5RsRT 20}

Finally summing these inequalities oviggives the result. O

2.3. Main theorem: convergence bound for BDD with the GenEO coarsespa

We are now ready to give the estimates for the condition number of BDD with #§mEQ coarse
space.

Theorem 2.11Main theorem for BDD with the GenEO coarse space)
The condition number for BDD solved in rande- P,) with the projected additive operator (2.9)
satisfies

1
K (Pproj) < ng}iagv (ICZ) . (2.16)
As for the condition number of the deflated operator (2.10) with the GenERe&space, it satisfies
(Paes) < LN 1 (2.17)
R def) > INax s 12&%)5\] K:l . .

These bounds depend only on the chosen threstgldgich we use to select eigenvectors for the
coarse space in Definition 2.3 and on the maximal numberf neighbours of a subdomain:

N = max (#{j; R;R] #0}).
Proof

The proof of this theorem is the proof of Theorem 2.13 in [16]. The tlaat the local soIvers§(f
here) are not spd does not play a role in the proof. The idea is to preveltbwing bounds:

$(u,u) < 8(Pproju,u) < N1I§n%}§v <Iél> $(u,u); werangdl — Py), (2.18)
and
5(u,u) < 3(Pgepu,u) < max {I,nglizgv <’él> } S(u,u); uweW. (2.19)

Following Lemma C.1 in the appendix of [16] these bounds imply the bounds éocdhdition
numbers. They are proved using Lemma 2.2 and Lemma 2.10 combined withtttieafae, is an
s-orthogonal projection. O

Remark 2.12
The fact thatC; can be chosen such t Maxi<;< N (%)) < 1in(2.18) is not a contradiction:

in this case the space rarige- F,) is simply empty.

3. FINITE ELEMENT TEARING AND INTERCONNECTING

We use the following references to introduce FETI: the book by TosellVdiadund [16], Tezaur's
dissertation [37] and the article by Klawonn and Widlund [38]. A secondlleas introduced for
FETI in [39], and further developed in [40, 41].
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3.1. The FETI formulation

In the BDD section we built the coarse space for problem (2.1) which we sirepbll here: find
@ € W such thatSa = fr, wherell is the space of functions defined on the interfEctnstead the
FETI formulation of the problem is on the product spaEewith an additional matching constraint
at the interfaces. This constraint is ensured using matrix

B=(B1,Bs,...,By); Bu= Y Bu,VueW, (3.1)
i=1,...,N

which is constructed from entrié@s 1, —1 such that the componenis of a vectoru in the product
space¥ coincide onl” whenBu = 0. More precisely each line iB corresponds to one continuity
constraint for one degree of freedom and two of the subdomains to \tlielongs: each line il
contains ond and one—1 while all other entries are zero. Denoting hythe vector of Lagrange
multipliers which is used to enforce the constraiht = 0 we obtain a saddle point formulation of
the problem: findu, \) € W x U such that

(5% )(3)=(%) 32)

We note that the solutioh of (3.2) is unique only up to an additive element of K&r ) however
the solutionu to our problem does not depend on the choica 6b this is not an issue in practice.
For the theoretical study we introduce the space

U :=rangéB) = Ker(B")*,

and will search fon € U. Given a basis for K&IS) which consists of. - vectors, an important role

is played by the prolongation operat®r, : R"x — W which columns are these basis functions.
The transpos® y is a restriction operator which maps an elemeritirio the coordinates of its-
orthogonal projection onto Kéf) in the same basis. We have used the subsgfipecause KeiS)

is often referred to as thidatural coarse space for FETI. Going back to the system, the solution of
the first equation in (3.2) can be written as

u=ST(fr — BTA)+ Rya, forsome o crangéRy), (3.3)
if the right-hand side associated to the operatds such that
fr—B"A LKer(S) © Ry(fr —B"\) =0, (3.4)
or with notation inspired by the usual FETI notation:
GAiA=TRnyfr, Gy:=BRjy. (3.5)
Injecting (3.3) into the second equation in (3.2) we get
BSTBTA —Gya=BSTfr, forsome a € rangdRy).

We may again rewrite the problem using a saddle point formulation as
F -Gy A\ [ d
(& ) (a)-(8) e

F:=BS'BT, d:= BS'fr, e:= Ry fr, and agailGy = BR},. (3.7)

In order to homogenize the second equation and bring the problem dowsirtigla equation we
decompose\ into A = A + Ay WhereG}X =0 andG Ay = e. Then we introduce a projection
operatorPy as follows: let@ : U — U be a self-adjoint matrix which is positive definite on
rang€G y ), then define

Py:U—=U; Pyn:=I-QGN(GNQGN)IGY. (3.8)

where
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18 N. SPILLANE, D.J. RIXEN

Remark 3.1

It is straightforward to prove thaPy is a projection operator fron/ onto Ke(G},) and that

its transposeP,, = I — Gn(GLQGN)"'G L Q is aQ-orthogonal projection. It is however less
obvious to prove that the inver$€'\, QG ) ! is well defined. This can be derived from the fact that
Q is positive definite on rang€'y) soG QG n3 = 0 impliesGy3 = 0 < BRYS = 0. In other
words R 3 € Ker(S) nKer(B) and this intersection is zero because the problem is well posed.
Finally 8 = 0 and(GQGx)~! is well defined.

The system which we solve is the projected system into the space
Vy = Ker(G ) = rangéPy). (3.9)

For the choice)y := QGN(GLQGN) "Ry fr (which fulfills the conditionG Ay =€) the
problem is: find\ € Vy anda € rangéR y) such that

FA—Gya=d— F\y. (3.10)
Testing this against elements¥; yields the final form of the problem before preconditioning
PLFA =Pl(d— FAy), (3.11)

whereas testing against function in ratge Py) allows us to define the componentof the
solution completely with respect ta

(I —PH)Gya=(I—-Py)(FA—d+FAy) < a=(GNQGN)'GNQ(FA —d),

where we simply used a multiplication By, QG x)~'G L Q to write the equivalence. Next we
introduce the two usual FETI preconditioners.

3.2. Usual preconditioners for FETI

We first need to introduce diagonal scaling matriées W; — W; for eachi = 1,..., N. These
are the matrix counterparts of the partition of unity operatrsised in the BDD section. Then
Dy 0 ... 0
. . . 0 Dy ... 0
let D: W — W be the diagonal scaling matrik := , on the product
0 0 ... Dy

space. We will consider two different preconditioners for (3.11): tivecblet preconditioner with
the subscriptD and the lumped preconditioner with the subscrip{35]. When scaled, those
preconditioners can be written as the following operator&’¢88J:

MBl _ [D—lBT(BD—lBT)T]T IS [D_lBT(BD_lBT)T] (3_12)
Mgt = [D'BT(BD'BT)T]" K" [D~'BT(BD'BT)I]. (3.13)

We use the subscriptto refer to either of these preconditioners generically dfenotesD then
Mt = My is the Dirichlet preconditioner and #denoted. then M = M; ! is the Lumped
preconditioner. When the diagonal scaling matpiis chosen to be the diagonal of the local operator
matrix K, the scaling in the preconditioners (3.12,3.13) are equivalent to so-calfest-lumped
scaling (orK-scaling) originally proposed in [43].

Remark 3.2
In (3.12,3.13) we have used a pseudo inverse where the usual FETY thes an inverse. This
has no impact on what follows. Indee@3D~'BT)T is defined up to an additive element in

TIn case the global operatdf is singular, a solution exists for the original problenf i in the range of<. In that case
the natural coarse grid becomes singular but the FETI appreachtitl be applied [45].
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Ker(BD~1BT) and we have the inclusion KE8D~'B ") C Ker(B ") since
AeKer(BD™'B")= D 'B"\ € Ker(B) = B' X\ = Dvfor somev € Ker(B),

and Ke(B) = (rangéB"))* sov'BTA=v"Dv=0=v=0= )\ € Ker(B"). The operator
(BD~'BT) is applied to elements in range) = Ker(B')* so this application is well
defined. Moreover the application ¢BD~'BT)" is followed by an application ofB™ so
D~'BT(BD~'BT)" is uniquely defined independently of the choice of the pseudo inverse. This
pseudo inverse can be avoided by defining scaling matrices directly on dlce s Lagrange
multipliers which is done for instance in the redundant Lagrange multiplier sectig38].

For sensible choices both approaches can lead to identical preconditiand in practical
implementations the scaling matrices are actually never computed explicitly as imexrpla[43].

Using the subscript for either D or L, the preconditioned operator is(, 1P, F. Because we
solve the system using a projected conjugate gradient method we requitieetisaarch directions
remain inVy. Therefore we actually solve: finkde V such that

PyMIYPLFN = Py MIIPL(d — FAy). (3.14)

Because of the projection step (3.11) and the choige:= QGn(GLQGN) 'Ry f this
is already a two-level preconditioner where the coarse space iSPkér~ rangéQGy) =
rangé@BR ). The PPCG solver is initialized withy and the entire solution spacels; + Vy.
We will refer toPy as the natural coarse space projector.

The theoretical study of the preconditioner is related to operator

Pp:W = W; Pp:=D'BT(BD'B")B, (3.15)

whereD : W — W is the diagonal scaling matrix already introduced. This is a projection that is
orthogonal in the scalgd inner product: " Dy (z,y € W). The next two lemmas follow essentially
by noticing thatB Ppbu = Bu. They are Lemmas 4.1 and 4.3 in [38]. We give the proofs for sake of
completeness because they are short.

Lemma 3.3
For anyu € U there exists: € rang€ Pp) such thaf, = Ba.

Proof
By definition of U there exists: € W such thaju = Bu. Now takea = Ppu, Bu = Bu=pu. [

Lemma 3.4
Letu € W, then
Ppu=u— Epu, (3.16)

where Epu: W — W is an averaging operator defined by its components (&5;u); =
R; > R] Dju;.

Proof
We start by noticing thaB(u — Ppu) = 0. This means that — Ppu matches at the interfaces and
thus its weighted average satisfiés (v — Ppu) = u — Ppu. A sufficient condition to ensure that
the result holds is now'p Ppu = 0.

By definition of Ep, EpPpu is a D-weighted average of the values Bf,u which correspond
to the same global dof. One way to compute the averaged value for gldbalslito first compute
DPpu = BT (BD~'BT)'Bu and then sum the contributions from the different subdomains for
which k is a degree of freedom. This is the same as computing, acalar product between
BT(BD~'BT) Bu and the functiore, € W which is zero everywhere except at the degrees of
freedom which correspond to global dafBy definition Be,, = 0. The orthogonality of KeiB) and
rangéB ") allows us to conclude thaBe,, BT (BD~'B")'Bu) = 0 and thusEp Ppu = 0. [
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This last lemma allows us to prove that two suitable choiceg)for the projection operataP,
areMp;' and Mt

Lemma 3.5

Both preconditionera/ ;' and M ! defined by (3.12) and (3.13) are self adjointiérand positive
definite on rang@~ ). Consequently they are possible choices for m&prix the natural projection
operator defined by (3.8).

Proof

We will only prove positive definiteness. Anye rangéG y ) writes A = Bz for somez € Ker(S).
Moreover, according to Lemma 1.8,c Ker(M ') implies A € Ker(M ;') so whether denotes
D or L we get\ = Bz € Ker(M ). Using the definitions oM ' and P, as well as Lemma 3.4

0= (Mp'Bz,Bz) = (SPpz, Ppz) = (S(z — Epz), 2 — Epz).

Now we havez € Ker(S) andz — Epz € Ker(S) so necessarilypz € Ker(S). By definition
Epz € Ker(B) (it is the D-weighted average of). The problem is well posed so K& N
Ker(B) = 0. Finally z = 0 and M ! is positive definite on rangé&'y ). O

We have just given two possible choices which complete the definition of theahetarse space
projector and thus the definitions of the spatgsandVy,. The main result which we prove holds
for these particular choices. Fedenoting eithelD or L, we introduce the notation:

Py =1 MIGN(GEAMIIGN) TGy (3.17)

and
Vin =rangdP. n), Viy= rangQPIN). (3.18)

The next lemma states a crucial property for the preconditioners whichtishibya are positive
definite.

Lemma 3.6
The preconditioner®, y M ! : VI x — Vi n are symmetric positive definite ferdenoting either
DorlL.

Proof

Again, we only prove positive definiteness. Consider ang V/ , with (P, y M, p) =
(M7tu, ) = 0. By Lemma 3.3,u = Ba for somea € rangé Pp). OperatorPp is a projection
so Ppu = @, and we obtain

D'BT(BD'BT){Baz = |Ppil%=|a3if+=D
0= (M;'Bu, Bu) = 1D~ _ 5 S S
< ) { D' BT(BD-'BTY Bil%y, = |Ppilu = [0 if * = L.

According to Lemma 1.6|a|%.,, = 0 implies |a|% = 0 so, whether« denotesD or L, we get
that @ € Ker(S). By definition of Ry, Ker(S) =rangéR ) and in turn M;'Bi = M ' €
rangé M, Gy ).

The definition ofV/ y; rewrites

V) y =rangeP, y) = Ker(GyM; ') = rangéM; 'Gn) ",

which together with: € V/ y and M ' u € rangé M ' G ) implies:

0= {u, M pa).
Finally, & € rangéR ;) implies 1 € rangéG ) and M ! is positive definite on rangé'y) so
w=0. [
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3.3. Two level FETI preconditioner with the GenEO coarse space

The proof of an upper bound for the spectrum of the preconditioned B¥stem usually relies
on strong assumptions on the set of equations at hand and the coeffistebutdon. Once again
we build a coarse space which allows us to waive all of these assumptibasobrse space is
defined next along with the two-level FETI preconditioners (projected afidtdd). We use again
the subscrip0 to refer to the coarse space. In order to avoid confusion with the BD®wasuse
calligraphic notation for the projection operaf®y .

Definition 3.7(GenEO coarse spaces for FETI)
Let x denote eitheD (for Dirichlet) or L (for Lumped). For each subdomair- 1, ..., N, find the
eigenpairdq¥, A¥) € W; x R* of the generalized eigenvalue problem:

Siai = A} (B M'By)qf. (3.19)

where M ! is the preconditioner defined either by (3.12) or (3.13). Next, given ahiotd/C; > 0
for each subdomain, define the coarse space as

Uso =spaf{M ' BigF; 0 < A¥ < K;,i=1,...,N}). (3.20)

Let the interpolation operataf. , be the matrix whose columns are the coarse basis functions
{M1BigF;0 <A¥ < K;,i=1,...,N}. Let the coarse solver be the exact solvelon:

Foo =G (P, yFP. N)G.po,
and letP, o be the(P,INFP*,N)-orthogonal projection operator defined by
Poo =1 =G oF] (G (P FP. n). (3.21)
Then the two-level preconditioners (respectively projected and deffaed are
PnPeoMIPL Pl and P NP oMIIP Py + PunGaoFl  GL Pl . (3.22)

The operato(7. ( is a mapping between the coordinates of a vector ftom in the set of coarse
basis functions and its representatioriinlts transposeﬂ'lO iS a restriction operator which maps
an element i to the coordinates of its projection ontdV. , in the set of coarse basis functions.
The main difference with the coarse space for BDD is that we have leftheutero eigenvalues
which correspond to the kernel 6fbecause they are already taken care of by the natural coarse
space througi®y .

Remark 3.8

One common point with the BDD GenEO eigenvalue problem is that one of thatopeiS;) is

a non assembled operator on the local sgagavhereas the otherd M B;) is an assembled
operator restricted to the local spaidg. This time the words assembled and restricted are to be
understood in the FETI context and rely on the mappiBigbetween the degrees of freedoniif

and the Lagrange multipliers ii. In the same way as for BDD, the role of the GenEO eigenvalue
problem for FETI can be interpreted as finding the modes necessarysiiliirg the discrepancy
between the interface behavior as seen from a single domain (left hanafs{@.19)), and the
assembled interface operatbr!, approximated byVi ! (right hand side of (3.19)). The idea is
then to introduce those differences, which will not be well accounteblyfdhe preconditioner, into
the coarse space.

Once again in proving our estimate for the condition number we will take adyardithe
orthogonality type properties which result from the generalized eigeayahblem.

Lemma 3.9
Let * denote eitherD or L. For a given subdomain=1,..., N, the eigenpairdqF, A¥) of

K2
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the generalized eigenproblem (3.19) can be chosen so that tHe’get of eigenvectors is an
orthonormal basis ofi’; with respect to the inner product induced By M ! B;. This writes

(M'BigF, Big¥) =1; and <M:1B¢qf,Biqf/> =0, k#k.
An orthogonality type property with respect$o (which is not necessarily coercive) also holds:
(Siaf,af') =0,k # K.

Proof

We proved in Lemma 3.5 that ! is spd on range v) = Ker(P,;). We also proved in Lemma 3.6
that M ! is spd onV}, = rangéP};). SoM; ! is spd on KefP,,) @ rangéP,;) = U. Finally by
definition of B;, B;u; = 0 impliesu; = 0 so B,” M1 B; is symmetric positive definite oW; and
the result is well known. O

In the next lemma we give some useful properties of the projections.

Lemma 3.10
(i) rangeP, P, ) C rangdP, ).

(if) P»IOP*T,N = pINPyIOP;r,N
(i) P]yP]y andP, nP. o are projections.

Proof

(i) By definition of P, o (3.21):P] Py = Py (I — FP. nGoFjG{).
(ii) It follows from (i) and the fact thaP  is a projection thaP, ;P\ = PP P .
(i) ThenP/, is also a projection sB,, P,y = P, P] P P/ 5.
O

For two spd matrices\/; and M, of same size, the spectrum @f; M, is identical to the
spectrum ofM, M, . Following this idea we decide to look at the problem in revelséd? a good
preconditioner forM_1? The reason why we do this is that then we recognize an abstract Schwarz
type preconditionef’ = Zf;l BiSjBZ.T. In this framework, the local subspaces arelifieand the
local solvers are the pseudo invers\:ésof the local bilinear formsS;. The prolongation operators
are theB; : W; — U and the restriction operators are tBé : U — W,. Taking advantage of the
abstract Schwarz framework, in Lemmas 3.11 and 3.13 we will prove the sstimeates as in
the BDD subsection foF viewed as the preconditioner arid ;' viewed as the matrix problem.
In the proof of our final theorem it will become apparent that these estinafites to prove the
condition number of FETI with the two-level preconditioners given by (3.82jhe next Lemma,
applying the exact same strategy as in Lemma 2.2 we give an estimate related & bdowd for
the eigenvalues of the preconditioned oper@t®. yP. oM *. This bound does not depend on the
choice of the coarse space.

Lemma 3.1XStable splitting — Lower bound for the eigenvalues of the preconditionechtmoe
For anyu € V/  there exists a stable splittirg;, ... ,on) € Wi x - x Wy of iu:

N
i = Bivi +...Byuy; v; € W; and Z<S{Ui,11,‘> < <M;1M,/L>. (3.23)

i=1
This implies

(M s 1) < (FPu NPuo M 11, Pa nPro M ) for anyp € rangdP, o P ).
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Proof
Lety € V/ v andlety; = D; ' B (BD~'BT)fufor eachi = 1,..., N. This provides a splitting of
75
N N
SN B = B:D; B (BD'BT) = (BD'BT)(BD BT u =y,
i=1 i=1
sinceu € rangé BD~'B") = rangé B) = U. Moreover, the splitting is stable:

N N

> (Sivi,vi) =Y (8D BN (BDT'BT)p, D7 Bl (BDT'BT) )
=1 =1
=(SD'B"(BD'B") 'y, D'BT(BD'B")Tp)
= (Mp'u, ),
< (M, ),

by Lemma 1.6. This is exactly (3.23). Now lgt € rangéP P/ ), then (M 1y, u) =
(P NPioM; 1, ). Moreover, the fact that the provide a splitting implies

N
(M i) = (PunPe oM 1Y Bivy)

i=1

(PunPeoMp, Bi(SZSi>Ui>

M-

s
Il
—

(Sivi, SI B Pu NProMI ).

o

s
Il
-

Then we apply the Cauchy Schwarz inequality twice, first inghaner product and then in the
inner product and finish by using (3.23)

N
(M ) < Z [<Sivi7'Ui>1/2<SiS;B;r,P*,NP*,OM;1Ma SJB;P*,NP*,OMI1M>1/2}

i=1

N 1/2
[Z<Sivi; Uﬁ]

i=1

N 1/2
> (SiSIBI P nPuo M, SIBT P*,NP*,OM:W]

i=1

IN

N
(M, 1) 2 (Pe NPaoMT 1, Y BiSIB P nPuo M )2

i=1

IN

The result follows by raising to the square, simplifying b1, 'u, 1) and recognizingF =
Zi\;l BngBz‘T- O

The next lemma is the FETI counterpart of lemma 2.8 and the proof follows tlue sxme steps.
We prove a crucial result which relies very strongly on the choice of tagse space. In fact the
coarse space was chosen specifically to ensure that this estimate holds.

Lemma 3.1ZStability of the local solvers)
Let « denote eitheiD or L. For eachi = 1,..., N, let the pseudo invers@iT be chosen such that

rangésS!) = spar{¢¥; A¥ > 0}. Then the following estimate for the local solver holds

1
(M Biug, Biu;) < E(&Wﬂi), Vu; € rangdS! B M'P] P y), (3.24)

where thek; are the thresholds that were used to select eigenvectors for the cpase in
Definition 3.7.
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Proof
First we prove that rangé] B M, 'P P ) C sparqf; A¥ > K;}. We will use the following
linear algebra identity

Ker(P. nP.oM; ' B;) & rangd B M P P ) =W, (3.25)

where the symbal refers to thé, orthogonality between both spaces ancheans that the sum is
direct. According to item (ii) in Lemma 3.1®, P,/ y = P, yP. P, y. This impliesP. xP. o =
P NPioPi n. SOKe(P, ) C Ker(P, nPs o). Itis also obvious that KéP, o) C Ker(P, nPio)-
Using the definitions of these projections ((3.17) and (3.21)) this rewrites
Ker(P. nPso) D (Ker(P. n) UKer(P. o)) D (rangQG*,o) U range{M;lGN)) .
By definition of G, andGy, in particular, foreacli=1,..., N,
spar{ M ' Big¥; AF < K;} C Ker(Pu nPio),

SO
spar{¢¥; AF < K;} € Ker(P. yPuoM1By). (3.26)

Following the same procedure as to prove (2.14) in Lemma 2.8, the first orthliiygoroperty in
Lemma 3.9 implies that

spar{g;; A} < K;} @ spar{ B M ' Bigf; A} > K} = W (3.27)
Putting (3.25), (3.26) and (3.27) together tells us that
rangeéB; M;'P P, ) C spai B, M, BigF; AY > K;}.
Next the definition of eigenproblem (3.1%); ¢* = A¥ (B M ' B;) ¢%, yields
rangéB;' M 1P P y) C spadSi¢f; AF > K}
Finally for the specific choice of the pseudo inveﬂgeit is obvious that
rangéS] B M 'P] P ) C spar{gf; AF > K}

Now it is easy to prove (3.24) using the orthogonality type properties in Lemma 3
and the definition of the eigenproblem. ArmerangéSjB]M;lPIOP;fN) writes u; =
> tharsiy @ b for some coefficients) € R, so:

(M Bowg, Baw) =) of (M Bigk, Bidl)
(AF> K}

1 2 )
= Y EOK? (Sigf, qt)
{ksAb >Ryt

1 2
s < > al (St
kAR > K}

%i (Sius, u;)

O

The next lemma is a direct consequence. It is the FETI counterpart of L&rfitBaand gives
an estimate related to an upper bound for the eigenvalues of the precoeditperator. The
relationship will become apparent in the proof of the final theorem.
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Lemma 3.13Upper bound for the eigenvalues of the preconditioned operator)
The following estimate holds

(FMIIA M) < N1I<I1‘a<)§v (Ié) (MTA,N) for any X € rangeP, (P, v), (3.28)
where\ is the maximal number of neighbours of a subdomain (including itself) in theesens

N = max (#{j; B/ B; #0}).

1<i<N

Proof
In order to simplify notation lets writeP, ; := SIBJ M;' and P, := BiP.,. Let A ¢
rangéP, P ), then

(M7Pid Paid) = (M BiP N, BiP, i)

< %<Si75*,i)\7 P.:\)  (Lemma 3.12)
= %(M*_IA, B;P.;\) (definition of P, ;)

Taking a close look at the definition of the preconditioners in (3.12) and 8@ 3otice that they
can be written as a sum of local contributions:

*,77

N
M'=Y" M ML= (DBl (BD'BT)T] ' S; [D;'B] (BD'BT)T],
j=1

-1 . . T . .
and(M*,j Bu;,u;) # 0 if and only if B; B; # 0. A consequence of this is that

(MNP = (MINBPA) = Y (MO BP.A).
{j;B; B #0}

We apply the Cauchy Schwarz inequality fM;j and then for the Euclidean inner product to this
and inject the previous result

MINPA) < Y (MO ZMIIPA, Pad)
{5:B; B #0}
_ —-1/2 1/2

S MO S MIPLA PN
L{4:B; B #0} i {j;B,; BT #0}
r ~11/2
= STOIMIAN| (MO PN
L{s;B; B #0} i
r 11/2 ) o
< > IMIIAN L@W* A,P*,i»} (from (3.29))
| {5:B,; B #0}

IN

Raising to the square and simplifying k1, '\, P. ;)\) yields

1
(MINPaid) < = > IMIIAN).
' {4;B; B #0}

Finally summing these inequalities oveand noticing thaEiN:1 P... = FM; ! ends the proof. (I
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We are now ready to prove the main theorem for the GenEO FETI algorithnhvgh&milar to
Theorem 2.11.

Theorem 3.14Main theorem for FETI with the GenEO coarse space)
Let x denote eithell. for Lumped orD for Dirichlet. The condition number for FETI solved in
rangéP. nP. o) with the projected additive operator satisfies

1<i<N \ K;

As for the two-level preconditioner based on deflating the GenEO copesm sand solving in
rang€P, n), it satisfies

1
K (P nPeoM PPV F) < N max () (3.30)

1
K (P*,NP*,OM,:lP,IOP:NF + P*yNG*,OFI,oGI,OPINF) < max {1,N max () } .

1<i<N \ IC;
(3.31)
These bounds depend only on the chosen thresiglege use to select eigenvectors for the coarse
space in Definition 3.7 and on the maximal numpérnf neighbours of a subdomain (including
itself):
N = max (#{j;BjTBi #+ O})

1<i<N

Proof
From Lemma C.1 in the appendix of [16], in order to prove (3.30), it is suffidieshow that, for
any A € rang€ P, nPs. ), the following holds:

1
(PenProMI PPN TIAN) < (FAN) <N max () (PenProMI PP V) TIAN).

1<i<N \ I;
(3.32)
Lemma 3.6 tells us that the inverse is well defined. First of all note that the fackthean be
chosen such tha(t/\/maxlgiSN (%)) < 11in (3.32) is not a contradiction: in this case the space
rang€P. nPx.0) is simply empty. Next we prove (3.32): lgte rangeiP;foP,IN), Lemma 3.11 tells
us that
(M, 1) < (FPu N Pa oML, Pa nPoo M o).

Then, using the fact tha, xP. oM P P, i = P. nPs oM, this is equivalent to
(PenProMI PPl N) T P v P oML 10, Pa NP oM 1) < (FPo nPo oML 11, Pa N Po oM ).
In turn, rangéP. nP. oM, P P y) = rangdP. nP. o) implies

(PenPuoMIPLPI)TINA) < (FAN), VA € rangéP. nP.o),
which is the lower bound in (3.32).

For the upper bound we use the result from Lemma 3.13 which is that

(FMZ 3, M) <N ma (1) (M), ¥ € rangePT Pl y).

1<i<N \ K;
We know thatM i = P, y M ' and projectiorP, g is (P, y FP. n)-orthogonal so
(FPuNProM: 11, PunPaoM ) < (FMT i, M ),
and in turn

1<i<N \ K;

In the same way as for the lower bound we may then show the upper bous\@2).(This ends the
proof for the condition number of the projected preconditioned operat80). The proof for the
deflated operator (3.31) is similar to the BDD case, it relies simply on the factht@atrojection
operatorp, g is (P,INFP*yN)—orthogonal. O

1
(FPunPuoM 1, P NPuoM ) <N max <> (M, ).
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Figure 1. Decomposition of the unit square into 64 reguladsuiains (left) -Decomposition of the unit
square into 64 subdomains using Metis (middle) — Checkedoozefficient distribution (right)

4. NUMERICAL RESULTS FOR TWO DIMENSIONAL ELASTICITY (FETI)

We give here a few numerical results to confirm the estimate for the conditioberin the FETI

case. The system of equations which we solve is related to two dimensioraaldiiasticity where
the domain is clamped on the left hand side and subject to gravity. An impodantré of the

methods which we presented is that, given a FETI code, they do not dent@raf enplementation

work: all the mathematical objects which are used to build the coarse spaaéyabppear in the
algorithms.

All the results that follow were obtained using Freefem++ [46] to build the probieatrices
and visualize solutions and Matlab for the solving procedure. The tebtgong we present here
are only small tests which we use to validate our theoretical results. Ofe;aurfslll validation
of the efficiency of the method would require larger scale tests with an optimiaee. ¢-ull
reorthogonalization at each iteration is used in PPCG. The meshes are retalguadrilateral
elements and the finite element discretization of the two dimensional elasticity equatsn
standardP; (linear) functions. There are two parameters in the linear elasticity systequations:
Young’s modulusE’ and Poisson’s ratie. Each time an iteration count is given, the stopping
criterion is that the relative primal residual at the final iterafiaeach10—*:

IS RIS:D Bl (BD'BT)'P] Pl (d— FAy)
| frll2

The fact that this is indeed the primal residual is explained in [47] andepréw instance in [48].

I <1074

4.1. Checkerboard coefficient distribution
We discretize a square of sizex 1 using81 x 81 nodes. We use two different decompositions
of this unit square: a regular decomposition iste 8 regular subdomains (Figure 1 — left) and a
decomposition into 64 subdomains obtained using Metis [1] (Figure 1 — middledughout this
subsection, the scaling matrices are chosen to bé&tsealing matrices [43, 38], meaning that in
the definitions of the preconditioners (3.12) and (3.13) we set
The criterion for selecting which modes are used to build the coarse sp=etdas

K;=01; Yi=1,...,N,

so the condition number should satisfy< 10 x N whereN is the maximal number of neighbours.
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Table II. Checkerboard (64 regular subdomainsgondition number#Uy: size of the GenEO coarse space;
«t: number of iterations — For the Dirichlet preconditioner @enEO coarse space is empty so FETI-GenEO
and FETI-1 are identical

Dirichlet Lumped
FETI-GenEO FETI-1
Coefficients K | #Uo | it K #Uy | it Kk | it
Constant 9.5 0 15 11.1| 15 [ 17/ 86| 24
Checkerboard| 6.3 0 13 ] 9.7 49 |19 93] 25

4.1.1. The partition resolves the heterogeneitieis well known by now that in the case of a regular
decomposition into subdomains which resolves the jumps in the coefficients aridiritielet
preconditioner, the use of the-scaling matrices (4.1) is sufficient to ensure good convergence. We
check here that in these cases the (automatic) GenEO strategy is to do sp#tia) which is to say
that no extra modes are selected to build the additional coarse Epacable Il gives the results

for the regular partition (Figure 1 — left) into subdomains and a constanti@eat distribution
(E;v) = (107;0.4) as well as aheckerboarctoefficient distribution (Figure 1 — right) where the
coefficients take the valué®’;; 1) = (107;0.4) and(FE»; v2) = (10'2;0.3). We have solved each of
these problems with the Dirichlet preconditioner and the Lumped preconditidtieand without

the GenEO coarse space (we refer to these cases as FETI-GenEOTa+idrE&pectively). For each
test we give the condition numberof the preconditioned operator, the size of the GenEO coarse
space#U, (if there is one) and the numbeér of iterations needed to reach convergence. The first
thing that we notice is that in all four cases where the GenEO coarse ispsed the estimate for
the condition number is satisfied. In the Dirichlet preconditioner case, noswaldiere selected to
build the coarse space which is what we expected sinc& thealing alone is known to be efficient.
With the Lumped preconditioner case only few modes were selected (lessrtegqer subdomain).
This test indicates that the GenEO coarse grid circumvents the fact thahtpedupreconditioner
does not properly predict the corrections needed on the interfachéakerboard problems.

4.1.2. The patrtition does not resolve the heterogeneilfieis time we use the automatic partition
into 64 subdomains obtained using METIS [1] (Figure 1 — middle). The coefficientilalision

is still the checkerboard distribution shown on the right hand side of Figw® the subdomain
interfaces do not coincide with the jumps in the coefficients. The coefficieais ixed(E1; 1) =
(107;0.4) and a variablg Ey; 1) one. Table Il gives the results for different values(ék; v»).

The middle line shows a case where the coefficients are constant thrautjeosubdomain
((E2;v2) = (E1;1v1)). Once again we observe that in all cases the condition number satisfies the
estimate and that it hardly varies with the jumps in the coefficients. In the wossetlea number

of modes used to build the coarse spac87s (less than 6 modes per subdomain on average).
Because of bad numerical conditioning there are a few cases whereEtfiel Fresidual never
reachesl0~*, instead it stagnates. In this case we report the iteration count beforgatieau
and the corresponding residual. Figure 2 shows a comparison betweeonvergence curves
with and without the additional GenEO coarse space where this phenontanope observed.
Figure 3 shows the spectrum of the preconditioned operators with and witteoadditional coarse
space. The spectrum is represented in the complex plane but the imaganary always almost
zero (imaginary parts result from numerical errors in the eigensolVeg.zeros in the spectrum
correspond to the coarse modes (either natural or GenEO) as wellradltbpace ofB ". Whether

the GenEO coarse space is used or not, the first non zero eigenvaleepoétionditioned operator

is 1 which is what is expected.

4.2. Discontinuities along the interfaces

In this subsection we focus only on the GenEO coarse space for the |Binreconditioner and

we conduct a more extensive study. We use a partitionitegular subdomains of a rectangle of
size N x b whereb is the aspect ratio of each subdomain (see Figure 4). The discretizatiantof e
subdomain is:.; x n.; rectangular elements so that each element has the same aspect ratio as the
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Table Ill. Checkerboard (64 Metis subdomaiiig) ; v1) = (107;0.4); « : condition number#Uy: size of
the GenEO coarse spaci¢; number of iterations. WhefiEs; 1) = (107;0.4) there are no jumps in the

coefficients.
Dirichlet Preconditioner Lumped Preconditioner
FETI-GenEO FETI-1 FETI-GenEO FETI-1
(E2;12) K #U, | it K it K #Uo | it K it
(10'%,0.3) || 10.4] 126 | 18 || 1.5-10° | 142D [ 11.7 | 186 | 19 || 6.2-10° | 154
(107;0.4) || 105 26 | 18 447 31 122 99 |23 21-10° | 58
(10%;0.49) || 12.2] 182 [ 21 || 5.3-10° | 170% | 16.3] 370 | 23 ][ 4.0-107 | 198

) the relative residual reaches a platean ati0—* after 142 iterations.
(2) the relative residual reaches a platead atL0—* after 154 iterations.
(3) the relative residual reaches a platean atl0—? after170 iterations.
(1) the relative residual reaches a plateaw atl0— 2 after 198 iterations.

Primal residual
35,
Primal residual

. . . . . \ . . . . . .
o 5 10 15 El 2 5 0 50 00 150 200 250 200 250 400
Iteration court Iteration court

Figure 2. Checkerboard coefficient distribution — Conveogecurve: primal residual versus iteration count
— Left: with GenEO, Right : without GenEO — Lumped precorudigr for the Metis decomposition into 64

subdomains £E; v1) = (107;0.4) and(Ey; v2) = (10'2;0.3).

<107 Speatrum for FETI-1
%107 Spectrum for the projected GenED praconditioner 25 " "
15 T T T T T +
+
AN 4
,L 15F B
+ 1 + h
o5f- : 0s i
0 - + + + g
0 +
-05 B
: + i
-D51 -1
+ _1sk 4
b L 1
¥
55 . . . . . . .
+ 11 ] 0 1 2 3 4 5
15 ! . . . . .
% 0 B 4 5 8 10 4 7x10

Figure 3. Checkerboard coefficient distribution — Spectminthe preconditioned operator — Left: with
GenEO, Right : without GenEO — Lumped preconditioner forNtetis decomposition into 64 subdomains
—(E1;v1) = (107;0.4) and(E2; v2) = (10'2;0.3).

subdomain to which it belongs. The coefficient distribution consists of aa&ongaluer = 0.3 of
Poisson’s ratio and 7 layers &f (4 soft layers, 3 hard layers, see again Figure 4). Throughout this
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a=1

L L

Figure 4. Discontinuities along the interfaces

subsection we use again théscaling matrices (4.1) which is in fact, for this case, equivalent to
choosing multiplicity scaling since the coefficient jumps are only along the intssfac

The parameters argi =1 (aspect ratio),n,; = 21 (number of elements per direction per
subdomain) and’; / E, = 10~° (jump in the coefficient). The spectrum is shown in Figure 5 along
with the first11 generalized eigenvectors and corresponding eigenvalues. Wevelibat there
is a gap in the spectrum of the generalized eigenproblem afte$-thegeneralized eigenvalue
since\? = 0.11 and \1% = 0.98. For this reason a judicious choice of the threshold for selecting
eigenvectors which are put into the coarse space is for instance

K; = 0.15,

we will use this in all following numerical tests. With this criteria, the GenEO eigaslpm for a
floating subdomain will provide 9 modes: the first three are rigid body modegdiedlun the usual
FETI natural coarse space, and 6 deformation modes that are included3etizO coarse grid. As
can be seen in Figure 5 those deformation modes represents the behdkimisobdomain when
the hard layers deform the soft ones. The 9 modes can be seen ds #ldescribe the nearly
rigid motion of the hard layers (3 modes for each of the 3 layers, amountingrod@s) and the
basis spanned by those modes represent the behavior of the domaineakardhayers were its
backbones. In some sense the GenEO coarse space can be interptieiedase as akeletonof
the overall problem describing the dominant behavior of the structuredingdo its hard layers.
Next we actually solve the problem for different numbers of subdomdifierent aspect ratios
and different discretizations. The results are shown in Table IV. Theléwal method with the
GenEO coarse space is robust throughout all of these tests: the conditider varies between 1.34
and 4.51 only, which is indeed lower than the upper bound given by thegbég¢x; = 20, A being
equal to three in this simple decomposition. Further the following observatienmsoéeworthy:

e When the number of domains increases, the classical FETI-1 method seesnit@mof
iteration increase significantly, whereas equipped with the GenEO cqzase,ghe number
of iteration remains small. The dimension of the GenEO coarse spaces is rpugytional
to the number of domains in this case.

e The classical FETI method convergences very slowly when the heighe afdimain is large
compared to its widthh(= 5). For that case the GenEO strategy generates only a small number
of modes (43 in total) and converges very fast.

e For this layered structure, the preconditioned interface problem of EEY¥ds a condition
number that barely depends on the number of elements per domain, and thermfmb
iterations is nearly invariant with respect to the discretization step. Whappspiwith the
GenEO coarse space, a small number of modes is included in the coareg3d5enEO
modes, independent of the discretization step), and the number of iteratieny ismall

It is thus remarkable that the GenEO coarse space can handle automaboakly & proper
thresholdk has been chosen) the difficult cases of bad aspect ratios and hetimgealong the
interface.
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GenEO eigenvalue

++++++

Eigenvalues of the GenEO eigenproblem (floating domain)
T T T T T T T T

++++++++++++++
++++++++++++++++
******
+++++++

o
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Al=—-1.1-10"1
(rigid body mode)

. \
3 . 40 50 60
Eigenvalue number

A2 =21-10"13
(rigid body mode)

4
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(rigid body mode)

@
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Figure 5. Eigenvalues and eigenmodes of the GenEO gereztaigenproblem for the geometry given in

Figure 4 — dark or pink: hard material, light or yellow: sofatarial —

The first eigenmodes (rigid body

modes) are part of the natural coarse grid, and the next Glreted for the GenEO coarse space.

4.3. Discontinuities along and across interfaces

In this subsection we consider the case of Figure 6 where the only difeneith the previous
subsection is that we have added jumps across the interfaces in subd@naaids$ by inverting
Copyright@© 0000 John Wiley & Sons, Ltd.
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Table IV. Three tests for the geometry in Figure 4 ~condition number#Uj: size of the GenEO coarse
space;t: number of iterations

Various number of subdomaing/{, fixed aspect ratiob(= 1), fixed discretizations{.; = 21),fixed jump in
coefficients 1 /E> = 10~), the problem size increases with

FETI-GenEO FETI-1
N subdomains|| x #Uyp | it K it
4 3 14 [ 5] 1.4-103| 20
8 134| 38 | 5 1.9-10° | 39
16 134 8 | 4| 21-10®| 75
32 135| 182 | 4 || 2.2-10° | 137
64 135| 374 | 4 || 2.2-10° | 190

Various aspect ratios), fixed number of subdomain®V( = 8), fixed discretizations{.; = 21),fixed jump in
coefficients €1 /FE> = 107°)

FETI-GenEO FETI-1
aspect ratid K #Uy | it K it
5 233 43 | 6 || 1.7-10° | 47
2 142| 40 | 5 | 1.0-10* | 43
1 1.34| 38 | 5 | 1.9-10° | 40
1/2 451| 27 | 9 446 33
1/5 407 14 | 11 70 22

() the relative residual reaches a platean atl 0~ after 47 iterations.

Various discretizationsi(.;), fixed aspect ratios(= 1), fixed number of subdomain®(= 8), fixed jump in
coefficients £ /F» = 10™°), the problem size increases with;.

FETI-GenEO FETI-1
ne; elements|| « #Uy | it K it
21 134 38 | 5 1.92-10% | 39
42 142 | 38 | 5| 1.93-10° | 40
70 146 | 38 | 5| 1.94-10° | 40
84 1.47| 38 | 5| 1.94-10% | 40

the soft and hard layers. The parameters are as folloys= 21 elements in each direction and
each subdomainy = 8 subdomainsy = 0.3 for Poisson’s ratioF; / B, = 10~° for the magnitude

of the jump in the coefficient) = 1 for the aspect ratio of the subdomains afig= 0.15 for

the threshold on the GenEO eigenvalues. This is a known hard probleREfreven with the
Dirichlet preconditioner (which we use here again). In this case we @ndable V that with the
K-scaling matrices (4.1) the number lodd eigenmodes is largely reduced compared to the case
where multiplicity scaling is used (here multiplicity scaling reduces to setting all ergfieachD;

to 1/2). Indeed withK-scaling we have selected 46 modes which is only 8 more than for the same
case but without the extra jumps across the interfaces (see Table IV Atgp3-subdomains). With

the multiplicity scaling the GenEO strategy selects 173 modes. In fact Avidhaling fewer modes
are necessary because jumps across the interfaces are alreaatyteddor in the preconditioner.
The additional modes are needed to take into account the jumps acrosstiaeéster his confirms
that GenEO compensates for the discrepancy between the preconditimhtte actual inverse of

F: when inadequate weighting is used the preconditioner is less effectidecaite a larger coarse
space is needed. The condition numbers for both types of scaling are alpuas when the GenEO
coarse space is introduced, which confirms the theory.

5. CONCLUSION

We have constructed a two-level BDD method and two two-level FETI methadw/iiich the
convergence rates depend only on a chosen parameter and the maximat nimdighbours of a
subdomain. The choice of this parameter is key in dimensioning the coarse §patimizing the
choice of the parameter with respect to efficiency and the size of the cqzase is crucial. Here
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a=1

JE; HME:
Figure 6. Discontinuities across and along interfaces (@uiaihs 3 and 6)

Table V. Geometry given in Figure 6 (discontinuities acrard along the interfaces),; = 21, N = 8,
E\/Ey = 10~° — k : condition number#Uy: size of the GenEO coarse spattenumber of iterations

FETI-GenEO FETI-1
scaling ©;) K it | #Uo K it
K-scaling || 3.71] 9 | 46 [ 7.0-10% 55
multiplicity || 3.89 | 7 | 173 || 4.5.10* | 189*
(*

) the relative residual reaches a plateau.at- 103 after 189 iterations.

it has been set heuristically. For FETI the result holds for the full préitiomer based on solving
Dirichlet problems in the subdomains and also on the lumped version which isesdatxpensive
to implement. Compared to the Schwarz-GenEO algorithm these methods have dhtagdvof

being non overlapping methods which means that they do not carry thecestraf computations
in the overlap.

In this paper the fundamental ideas and proofs underlying the GenE®ecspace have been
explained and the numerical efficiency has been illustrated on problemsotsolye with classical
FETI approaches. Future research will investigate the computational costed by the GenEO
coarse space (computation of the GenEO modes per domain, building amdjshbr coarse grid)
in order to assess the overall computational efficiency of the FETI-GenteD applied to realistic
engineering problems.
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