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A graph G of order n is called arbitrarily partitionable (AP, for short) if, for every sequence τ = (n1, . . . , nk)
of positive integers that sum up to n, there exists a partition (V1, . . . , Vk) of the vertex set V (G) such that each
set Vi induces a connected subgraph of order ni. A graph G is called AP+1 if, given a vertex u ∈ V (G) and
an index q ∈ {1, . . . , k}, such a partition exists with u ∈ Vq . We consider the Cartesian product of AP graphs.

We prove that if G is AP+1 and H is traceable, then the Cartesian product G!H is AP+1. We also prove that

G!H is AP, whenever G andH are AP and the order of one of them is not greater than four.

Keywords: partitions of graphs, Cartesian product of graphs, traceable graphs

1 Introduction

LetG = (V,E) be a graph of order n, and τ = (n1, . . . , nk) a sequence of positive integers. The sequence
τ is admissible for G if n1 + . . .+ nk = n. Such an admissible sequence τ is said to be realizable in G if

we can partition V into k parts (V1, . . . , Vk) such that |Vi| = ni and the subgraph G[Vi] induced by Vi is

connected, for every i = 1, . . . , k. Note that in fact the ordering of τ is irrelevant, i.e., if τ is realizable in
G, then it is also realizable after any permutation of its elements. We say thatG is arbitrarily partitionable

(AP, for short) if every admissible sequence τ for G is realizable in G. Furthermore, for a given integer

k ∈ {1, . . . , n}, a graph G is called k-AP if every admissible sequence τ for G of length at most k is
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realizable inG. Note that every connected graph is 1-AP. Arbitrarily partitionable graphs, sometimes also

called arbitrarily vertex decomposable, have been intensively studied for ten years (examples of papers

are listed in the bibliography).

The notion of AP graphs was introduced by Barth et al. [1] (and independently by M. Horňák and M.

Woźniak [10]) to model the following problem. Suppose that we own a connected network of n resources,

and we want to divide it among several customers. Every customer declares the number of resources that

should be attributed to him. These numbers sum up to n. Moreover, each customer wants to receive a

connected subnetwork of resources, and every resource must belong to exactly one subnetwork. Hence,

we want our network to be partitionable as described, no matter how many subnetworks are requested

(this number is at most n) and no matter what their orders are (but they sum up to n). Notice that any

network with an underlying AP graph has this property.

Consider now an augmented version of this notion.

Let τ = (n1, ..., nk) be a sequence admissible for a graph G, let (ni1 , ..., nir ) be a subsequence of
length r of τ , and let {v1, v2, . . . , vr} be a set of r vertices of G. The sequence τ is said to be realizable
in G under r vertex restrictions (v1, ni1), . . . , (vr, nir ) if there exists a realization (V1, . . . , Vk) of τ in G
such that vp belongs to a part Vip for every p = 1, . . . , r. A graph G is called arbitrarily partitionable

under r vertex restrictions (AP+r, for short) if, for each r′ < r, every admissible sequence forG of length

at least r′ is realizable in G under any r′ vertex restrictions. Naturally, a graph is called k-AP+r if, for

each r′ < r, every admissible sequence of length l, with r′ ≤ l ≤ k, is realizable in G under r′ vertex

restrictions.

The problem of arbitrary partitioning graphs into connected subgraphs under vertex restrictions was

already considered in late 70s by Lovász [13], and independently by Győri [7]. They both proved the

following result.

Theorem 1 [7, 13] A graph G is k-connected if and only if G is k-AP + k.

It is easily seen that each traceable graph is AP, so each condition implying the existence of a Hamil-

tonian path in a graph also implies that the graph is AP. Therefore, by weakening some known conditions

for traceability we can expect to obtain sufficient conditions for being AP. For example, the well-known

Ore’s theorem states that if G is a graph of order n such that the degree sum of every pair of nonadjacent

vertices is at least n − 1, then G is traceable. In [8] Horňák et al. showed that a connected graph G of

order n ≥ 20 such that the degree sum of every pair of nonadjacent vertices is at least n − 5 is AP if
and only if it admits a perfect matching or a quasi-perfect matching (i.e., a matching omitting exactly one

vertex). This is clearly an improvement of the above-mentioned Ore’s condition for being AP.

Recall that given two graphs G and H , the Cartesian product of G and H , denoted by G!H , is the

graph whose vertex set is the Cartesian product V (G) × V (H) and whose two vertices (u1, v1) and
(u2, v2) are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G).
It is well known that if two graphs G and H are traceable then their Cartesian product G!H is also

traceable. So one can formulate a conjecture.

Conjecture 2 If G and H are AP graphs, then the Cartesian product G!H is also AP.

Here we prove the following.

Theorem 3 The Cartesian product of two AP graphs is also AP, whenever at least one of these graphs is

of order at most four.
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Conjecture 2 seems to be very hard, so we formulate the following weaker conjecture by assuming

traceability of H .

Conjecture 4 Let G be an AP graph, and let H be a traceable graph. Then G!H is AP.

We also confirm this conjecture for small orders ofH .

Theorem 5 If G is an AP graph, then the Cartesian product G!H is AP, whenever H is a traceable

graph of order at most four.

It is easy to check that all AP graphs of order at most four are traceable (the smallest nontraceable AP

graphs have order five). Hence, Theorem 3 is an immediate consequence of Theorem 5.

We finally totally prove an AP+1 version of Conjecture 2.

Theorem 6 If G is an AP+1 graph and H is traceable, then the Cartesian product G!H is AP+1.

2 Proof of Theorem 5

If a and b are integers with a < b, then [a, b] will denote the set of integers {a, a + 1, . . . , b − 1, b}. Let
τ = (n1, ..., nk) be any sequence. We will denote by ‖τ‖ the sum n1 + ...+nk and by |τ | the length k of
τ . Let σ be a permutation of the set [1, k], and let r ∈ [1, k−1]. Then we say that τ is partitioned into two
sequences τ1 = (n

σ(1), . . . , nσ(r)) and τ
2 = (n

σ(r+1), . . . , nσ(k)), and we use the notation τ
2 = τ − τ

1

(here the sequence τ2 is determined up to the ordering of its elements). One can recursively extend this

definition to a partition of τ into several sequences.

Clearly, it suffices to prove both Theorem 5 and Theorem 6 for H being a path Pl of order l = |H|.
Thus, in both proofs, we focus on the Cartesian products of the form G!Pl. Let V (Pl) = {p1, ..., pl}.
The Cartesian product G!{pi}, where i ∈ [1, l] and {pi} is identified with the graph K1, is called the

i-th layer of G in G!Pl and denoted by G
i. For each u ∈ V (G), the vertex (u, pi) ∈ V (G!Pl) is called

the i-th layer of u in G!Pl, and we will write (u, pi) = ui. Similarly, the i-th layer of a vertex subset

S ⊆ V (G) in G!Pl, denoted by S
i, is the set of the i-th layers of all vertices of S.

The following simple lemma justifies the next proposition which is crucial in our proof of Theorem 5.

Lemma 7 Let l ≥ 2 be an integer, and τ = (n1, ..., nk) be a sequence of positive integers such that
‖τ‖ ≡ 0 (mod l). If k > l, then τ can be partitioned into two nonempty subsequences τ1 and τ

2 such

that ‖τ1‖ ≡ 0 (mod l) and ‖τ2‖ ≡ 0 (mod l).

Proof: If τ contains an element ni such that ni ≡ 0 (mod l), then if suffices to consider τ1 = (ni) and
τ
2 = τ − (ni). Suppose then that ni *≡ 0 (mod l), for every i ∈ [1, k].

For every j ∈ [1, k], let sj =
∑j

i=1 ni be the sum of the first j elements of τ . If there exist two indices

r and t with r < t, such that sr ≡ st (mod l), then it is easy to see that τ1 = (nr+1, . . . , nt) and
τ
2 = τ − τ

1 satisfy our conditions. Since the number k of elements of the sequence s = (s1, . . . , sk)
is greater than l, the number of distinct residues modulo l, there must exist two elements of s congruent

modulo l. This ends the proof.

!

Proposition 8 Let l ≥ 2 be a fixed integer such that for every connected graphH , the Cartesian product

H!Pl is l-AP. Then G!Pl is AP for every AP graph G.
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Proof: Let G be an AP graph and τ a sequence admissible for G!Pl. If tau has length at most l, then

tau is realizable in GsquarePl according to our assumption since G is connected. Let us now suppose

that tau has length at least l+1. By repeatedly applying Lemma 7, the sequence τ can be partitioned into

subsequences τ1, ..., τ r such that ‖τ i‖ ≡ 0 (mod l) and |τ i| ≤ l for every i ∈ [1, r].

For every i ∈ [1, r], let αi =
‖τ i‖
l
. As ‖τ i‖ ≡ 0 (mod l), it follows that for each i, the number αi is

an integer. Clearly, the sequence α = (α1, ...,αr) sums up to the order of G and hence, because G is AP,

admits a realization (V1, ..., Vr) in G. Put Ui = V (G[Vi]!Pl) for i = 1, . . . , r. Hence (U1, . . . , Ur) is a
partititon of the vertex set of G!Pl, and each Ui has exactly αil = ‖τ i‖ vertices. Since each subgraph
G[Vi] is connected, we infer by assumptions that each subgraph induced by Ui admits a realization of τ

i

within it. To obtain a global realization of τ inG!Pl, we take realizations of all the sequences τ
1, . . . , τ r.

!

In view of Proposition 8, to prove Conjecture 4 it suffices to show the following.

Conjecture 9 If G is a connected graph, then G!Pl is l-AP for every integer l ≥ 1.

In what follows, we prove that the assumptions of Proposition 8 hold for every l ∈ [2, 4]. We will
assume in this section that every sequence τ = (n1, . . . , nk) is nonincreasing, i.e., n1 ≥ · · · ≥ nk.

Proposition 10 If G is a connected graph and l ≥ 2, then G!Pl is 2-AP.

Proof: If G is connected, then clearly G!Pl is 2-connected. The conclusion follows from Theorem 1. !

Consequently, to prove that the Cartesian product of a connected graph G and a path Pl of order l > 2
is l-AP, it suffices to consider sequences admissible for G!Pl which are of length greater than two.

Proposition 11 If G is a connected graph, then G!P3 is 3-AP.

Proof: Suppose that the sequence τ = (n1, n2, n3) is admissible for G!P3, with n1 > n = |G| and
n3 < n (otherwise n1 = n2 = n3 = n and (V (G1), V (G2), V (G3)) is an obvious realization of τ in
G!P3). We distinguish two cases depending on the value of n2.

• If n > n2 ≥ n3, let T1, T2 ⊂ V (G) be subsets of vertices such that G[T1] is a tree of order n2, and

G[T2] is a tree of order n3. Observe then that the partition (V (G!P3) ! (T 1
1 ∪ T 3

2 ), T
1
1 , T

3
2 ) is a

correct realization of τ in G!P3. Indeed, G!P3 − (T 1
1 ∪ T 3

2 ) is connected since every vertex from
V (G1) ∪ V (G3)! (T 1

1 ∪ T 3
2 ) has a neighbour in V (G2).

• If 2n > n2 ≥ n, then (V (G1) ∪ S1, V (G3) ∪ S2, T
2) is a realization of τ , where T ⊂ V (G) is

chosen is such a way that G[T ] is a tree of order n3, and S1 and S2 are subsets of vertices from

V (G2)! T 2 chosen arbitrarily with |S1| = n1 − n and |S2| = n2 − n. Notice that each vertex of

S1 or S2 has a neighbour both in V (G1) and V (G3), so the subgraphs (G!P3)[V (G1) ∪ S1] and
(G!P3)[V (G3) ∪ S2] are connected.

!

Proposition 12 If G is a connected graph, then G!P4 is 4-AP.
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Proof:

Suppose τ = (n1, n2, n3) and ‖τ‖ = 4n. We distinguish three cases.

• If n > n2 ≥ n3, then, for the same reasons as in Proposition 11, (V (G!P4)! (T 1
1 ∪ T 4

2 ), T
1
1 , T

4
2 )

is a realization of τ , where T1, T2 ⊂ V (G) are chosen in such a way that they induce trees of orders
n2 and n3, respectively.

• If 2n > n2 ≥ n > n3, then we can deduce a realization (V1, V2, V3) of (n1, n2 − n, n3) in
(G!P4)[V (G2) ∪ V (G3) ∪ V (G4)] using Proposition 11. Observe then that it can be extended to
a realization of τ in G!P4 by simply considering (V1, V2 ∪ V (G1), V3).

• 2n > n2 ≥ n3 ≥ n. Notice that 2n ≥ n1. Let T2 ⊆ T1 ⊂ V (G) be subsets of vertices such
that G[T1] and G[T2] are trees of orders n2 − n and n3 − n, respectively. Consider now a sequence

(V (G1)∪(V (G2)!T 2
1 ), T

2
1∪T

3
2 , V (G4)∪(V (G3)!T 3

2 )) of subsets of V (G!P4). Notice that these
three subsets induce connected subgraphs with the desired orders since every vertex of V (G2)!T 2

1

has a neighbour in V (G1), every one from V (G3)!T 3
2 is adjacent to a vertex in V (G4), and T 2

1 and

T 3
2 have some adjacent vertices. Thus, (V (G1)∪ (V (G2)!T 2

1 ), T
2
1 ∪T 3

2 , V (G4)∪ (V (G3)!T 3
2 ))

is a realization of τ .

Now, consider the case where τ = (n1, n2, n3, n4), with n1 > n and n4 < n (otherwise n1 = n2 =
n3 = n4 = n, and (V (G1), V (G2), V (G3), V (G4)) is a trivial realization of τ in G!P4). Depending on

the values of n2 and n3, we claim that a realization of τ in G!P4 can always be found.

• n > n2 ≥ n3. Thus, n1 ≥ n. Let T3 ⊆ T2 ⊆ T1 ⊂ V (G) be subsets inducing subtrees ofG having
orders n4, n3, and n2, respectively. Notice then that (V (G!P4)! (T 1

1 ∪ T 2
2 ∪ T 3

3 ), T
1
1 , T

2
2 , T

3
3 ) is

a realization of τ in G!P4 since every vertex from V (G1) ! T 1
1 has a neighbour in V (G2) ! T 2

2 ,

every vertex from V (G2)! T 2
2 is adjacent to a vertex of V (G3)! T 3

3 , and, finally, every vertex of

V (G3)! T 3
3 has a neighbour in V (G4).

• n2 ≥ n > n3. Notice that 3n > n1 + n3 ≥ 2n and n < n2 + n4 ≤ 2n. Let T1, T2 ⊂ V (G) be
subsets inducing subtrees of G of orders n3 and n4, respectively. Consider a sequence (V (G2) ∪
(V (G1)!T 1

1 )∪S1, V (G4)∪S2, T
1
1 , T

3
2 ), where the subsets S1 and S2 are chosen arbitrarily from

V (G3)!T 3
2 in such a way that S1∩S2 = ∅, |S1| = n1+n3−2n and |S2| = n−|S1|−n4 = n2−n.

Observe that this is a realization of τ inG!P4 since every vertex of (V (G1)!T 1
1 )∪ (S1 ∪S2) has

a neighbour in V (G2) and all vertices of S2 are adjacent to some vertices of V (G4).

• If n2 ≥ n3 ≥ n, let T ⊂ V (G) be a subset of vertices inducing a subtree of G with order n4,

W ⊆ (V (G) ! T ) be n3 − n arbitrary vertices of G, and u ∈ V (G) be a vertex of G which is

not an cut vertex. Consider now the realization (V (G1) ∪ V (G2) ∪ V (G3)) ! (S1 ∪ S2 ∪ T 3 ∪
W 3), S1 ∪ S2, V (G4) ∪ W 3, T 3) of τ in G!P4, where S1 and S2 are obtained in the following

way. We start by putting u1 and u2 into S1, and we start building a subtree of V (G2) rooted in u2

iteratively, that is we take an arbitrary vertex s2 joined to V (G2) ! S1 and add it to S1. If s
3 does

not belong toW 3, then s3 is added to S2. The procedure goes on until |S1| + |S2| ≥ n2. Observe

that once the procedure is over, we can only have |S1| + |S2| ∈ {n2, n2 + 1}. In the case where
|S1|+ |S2| = n2+1, we can remove the vertex u1 from S1 so that S1 ∪S2 is a subset with size n2.

In any case, the four subgraphs induced by the realization are connected since (G!P4)[S1] induces
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a tree, every vertex from S2 has a neighbour in S1, and any vertex from V (G3)! (S2 ∪ T 3 ∪W 3)
is adjacent to one in V (G2)! S2 which is itself adjacent to one in V (G1).

!

As a consequence of Propositions 8, 10, 11 and 12, we can state the following corollary, which in turn

immediately implies Theorems 3 and 5.

Corollary 13 If a graph G is AP, and l ≤ 4, then G!Pl is AP.

!

3 Proof of Theorem 6

In this section, we also use the terminology and notation on the Cartesian product G!Pl which have we

introduced in the initial paragraphs of Section 2. Clearly, it suffices to prove that G!Pl is AP+1, with

l = |H|.
Let τ = (n1, ..., nk) be a sequence which sums up to nl, the order of G!Pl. Let (u

j
0, nq) be a vertex

restriction. Without loss of generality, we may assume that q = 1. In what follows, we explain how to
find a realization of τ in G!Pl such that the j-th layer of a vertex u0 in G!Pl belongs to a part of order

n1 in this realization.

Note that if l = 1, then G!P1 is isomorphic to G, and thus it is AP+1, by assumption. Hence, suppose

that l ≥ 2. We distinguish two cases depending on the cardinality of n1. In each case, the proof goes in

two stages. Roughly, we first modify the sequence τ by dividing some of its terms ni into two or more

addends, so as τ could be partitioned into l sequences τ1, . . . , τ l such that usually ‖τ i‖ = n, i ∈ [1, l].
Next, for all i, we construct a realization of τ i in the i-th layerGi ofG!Pl in such a way that parts whose

sizes result from the splitting of a same element of tau yield a connected graph when glued together.

Case 1: n1 < n.

Consider the sequence τ ′ = (n2, . . . , nk). For each i ∈ [1, l], we define a capacity ϕ(i) of the i-th layer
Gi of G!Pl as follows:

ϕ(i) =

{

n− n1 if i = j,

n otherwise.

Now, we will recursively define l sequences τ1, ..., τ l such that every τ i sums up to ϕ(i), as follows. If
there exists p ∈ [2, k] such that

∑p

i=2 ni = ϕ(1), then we set τ1 = (n2, . . . , np), τ
′′ = (np+1, . . . , nk),

and α(1) = 0 (for each i ∈ [1, l− 1], the number α(i) will indicate whether the last term of τ i originated

from dividing a term of τ ). Otherwise, let p ∈ [2, k] be such that
∑p−1

i=2 ni < ϕ(1) and
∑p

i=2 ni >

ϕ(1). Let η1 = ϕ(1) −
∑p−1

i=2 ni and η
′
2 = np − η1. We then set τ

1 = (n2, . . . , np−1, η1), τ
′′ =

(η′2, np+1, . . . , nk), and α(1) = 1.
We repeat this procedure with the sequence τ ′′ instead of τ ′ for the graphG!Pl−1, where Pl−1 denotes

the path p2 . . . pl, in order to obtain a sequence τ
2 and the number α(2), and so on. After l repetitions

of this procedure, we obtain the desired sequences τ1, ..., τ l such that ‖τ i‖ = ϕ(i) for i ∈ [1, l]. Denote
τ
i = (ni

1, . . . , n
i
ki
), i ∈ [1, l].

We begin our construction of a realization of τ by choosing a realization (V1, V
j
1 , . . . , V

j
kj
) inGj of the

sequence (n1, n
j
1, . . . , n

j
kj
) such that uj

0 ∈ V1. We can choose it since this sequence sums up to n, and

Gj is AP+1.
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Next, for i = j − 1, j − 2, . . . , 1, we proceed as follows. If α(i) = 0, then we take any realization
(V i

1 , . . . , V
i
ki
) of τ i in Gi. Otherwise, when α(i) = 1, we choose any vertex ui+1 ∈ V i+1

1 and take a

realization of τ i in Gi such that ui ∈ V i
ki
. This is possible since G is AP+1. Note that the subgraph

induced by V i
ki
∪ V i+1

1 in G!Pl is connected due to the edge u
iui+1 of the Cartesian product. Naturally,

if j = 1, then we omit this step and go directly to the step discribed below.
For every i = j + 1, . . . , l, if α(i − 1) = 0, then we take any realization (V i

1 , . . . , V
i
ki
) of τ i in Gi.

Otherwise, when α(i− 1) = 1, we choose a vertex ui−1 ∈ V i−1
ki−1

, and take any realization of τ i such that

ui ∈ V i
1 . Again, this is possible since G is AP+1. Also the subgraph (G!Pl)[V

i−1
ki−1

∪ V i
1 ] is connected.

Thus, we obtained a realization

R = (V1, V
1
1 , . . . , V

1
k1
, V 2

1 , . . . , V
l
kl
)

of the sequence (n1, n
1
1, . . . , n

1
k1
, n2

1, . . . , n
l
kl
). Suppose that in the procedure of defining the sequences

τ
1, ..., τ l, a certain term nν of τ has been divided into s ≥ 2 addends ni

ki
, . . . , ni+r−1

1 . If s ≥ 3, then

of course, ki+1 = . . . = ki+s−2 = 1. Denote Vν = V i
ki

∪ V i+1
1 ∪ . . . ∪ V i+s−1

1 . By our construction,

the subgraph (G!Pl)[Vν ] is connected. We then replace the subsequence V
i
ki
, V i+1

1 , . . . , V i+s−1
1 inR by

Vν . If we do the same for all divided terms of τ , then we obtain a realization of τ in G!Pl satisfying the

vertex restriction (uj
0, n1).

Case 2: n1 ≥ n.

Let d = ⌊ n1

n−1⌋ and r ≡ n1 (mod (n − 1)). In order to make our description more legible, we
distinguish two subcases.

Subcase 2.1: d < j. We define the capacity function ϕ for each i-th layer Gi:

ϕ(i) =







1 if i ∈ [j − d+ 1, j],
n− r if i = j − d,

n otherwise.

Then we consider the sequence τ ′ = (n2, . . . , nk), and we define the sequences τ
1, . . . , τ l, as well as

numbers α(1), . . . ,α(l), according to the function ϕ exactly in the same way as in Case 1.
Now, we start to construct a realization (V1, . . . , Vk) of the sequence τ with choosing a vertex x ∈

V (G) \ {u0}, and defining the set V1 of n1 vertices as

V1 =

j
⋃

i=j−d+1

(V (Gi) \ {xi}) ∪ W,

where W is a set of r vertices of Gj−d. When r *= 0, we may additionally require, as G is AP+1,

that (W,V
j−d
1 , . . . , V

j−d
kj−d

) is a realization of the sequence (r, nj−d
1 , . . . , n

j−d
kj−d

) satisfying the vertex re-

striction (xj−d, n
j−d
kj−d

). When r = 0, we consider any realization (V j−d
1 , . . . , V

j−d
kj−d

) of τ j−d, such that

xj−d ∈ V
j−d
kj−d

if α(j − d− 1) = 1.

Then, we consecutively produce realizations of τ j−d−2, τ j−d−3 . . . , τ1, following the same rules as in

Case 1. That is, for every i = j − d − 2, . . . , 1, when α(i) = 1, we choose a vertex ui+1 ∈ V i+1
1 , and

using the fact that G is AP+1, we find a realization of τ i in Gi such that ui ∈ V i
ki
. For i ∈ [j − d+ 1, j],

we take {xi} as a realization of the sequence τ i = (1). Next, for i = j + 1, . . . , l, we proceed exactly in
the same way as in Case 1.
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The same arguments as in Case 1 show that we can glue corresponding elements of the realiza-

tion (V1, V
1
1 , . . . , V

1
k1
, V 2

1 , . . . , V
l
kl
) of the sequence (n1, n

1
1, . . . , n

1
k1
, n2

1, . . . , n
l
kl
) to obtain a realization

(V1, . . . , Vk) of τ .
Subcase 2.2: d ≥ j. If n1 = nl, then k = 1 and τ = (nl) is trivially realizable in G!Pl. For k ≥ 2, we
fix any vertex x ∈ V (G) \ {u0} and define

V1 =

r
⋃

i=1

V (Gi) ∪
d
⋃

i=r+1

(V (Gi) \ {xi}).

Clearly, u
j
0 ∈ V1. Then we consider the capacity function

ϕ(i) =

{

1 if i ∈ [r + 1, d],
n if i ∈ [d+ 1, n],

and we define sequences τ r+1, . . . , τ l and their realizations according to the same rules as in Case 1. It is

easy to see that we can obtain a required realization (V1, . . . , Vk) of τ in the same way as previously.
!
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