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Introduction

Let G =(V, E) be a graph of order n,andτ =(n 1 ,...,n k ) asequenceofpositiveintegers.Thesequence τ is admissible for G if n 1 + ...+ n k = n.S u c ha na d m i s s i b l es e q u e n c eτ is said to be realizable in G if we can partition V into k parts (V 1 ,...,V k ) such that |V i | = n i and the subgraph G[V i ] induced by V i is connected, for every i =1,...,k.N o t et h a ti nf a c tt h eo r d e r i n go fτ is irrelevant, i.e., if τ is realizable in G,thenitisalsorealizableafteranypermutationofitselements. We say that G is arbitrarily partitionable (AP, for short) if every admissible sequence τ for G is realizable in G.F u r t h e r m o r e ,f o rag i v e ni n t e g e r k ∈{ 1,...,n},ag r a p hG is called k-AP if every admissible sequence τ for G of length at most k is † Email: olivier.baudon@labri.fr ‡ Email: julien.bensmail@labri.fr § Email: kalinows@agh.edu.pl.T h er e s e a r c hw a sp a r t i a l l ys u p p o r t e db yt h eP o l i s hM i n i s t r yofScienceandHigherEducation ¶ Email: marczyk@agh.edu.pl.T h er e s e a r c hw a sp a r t i a l l ys u p p o r t e db yt h eP o l i s hM i n i s t r yofScienceandHigherEducation Email: przybylo@wms.mat.agh.edu.pl.T h er e s e a r c hw a sp a r t i a l l ys u p p o r t e db yt h eP o l i s hM i n i s t r yo fS c i e n c ea n d Higher Education * * Email: mwozniak@agh.edu.pl.T h er e s e a r c hw a sp a r t i a l l ys u p p o r t e db yt h eP o l i s hM i n i s t r yofScienceandHigherEducation subm. to DMTCS c by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France realizable in G.N o t et h a te v e r yc o n n e c t e dg r a p hi s1 -A P .A r b i t r a r i l yp a r t i tionable graphs, sometimes also called arbitrarily vertex decomposable,h a v eb e e ni n t e n s i v e l ys t u d i e df o rt e ny e a r s( e x a m p l e so fp a pers are listed in the bibliography).

The notion of AP graphs was introduced by Barth et al. [START_REF] Barth | Network sharing: a polynomial algorithm for tripodes[END_REF] (and independently by M. Horňák and M. Wo źniak [START_REF] Horňák | Arbitrarily vertex decomposable trees are of maximumdegreeatmost six[END_REF]) to model the following problem. Suppose that we own a connected network of n resources, and we want to divide it among several customers. Every customer declares the number of resources that should be attributed to him. These numbers sum up to n.M o r e o v e r ,e a c hc u s t o m e rw a n t st or e c e i v ea connected subnetwork of resources, and every resource must belong to exactly one subnetwork. Hence, we want our network to be partitionable as described, no matter how many subnetworks are requested (this number is at most n)a n dn om a t t e rw h a tt h e i ro r d e r sa r e( b u tt h e ys u mu pt on). Notice that any network with an underlying AP graph has this property.

Consider now an augmented version of this notion. Let τ =( n 1 ,...,n k ) be a sequence admissible for a graph G,l e t(n i1 ,...,n ir ) be a subsequence of length r of τ ,andlet{v 1 ,v 2 ,...,v r } be a set of r vertices of G.T h es e q u e n c eτ is said to be realizable in G under r vertex restrictions (v 1 ,n i1 ),...,(v r ,n ir ) if there exists a realization (V 1 ,...,V k ) of τ in G such that v p belongs to a part V ip for every p =1 ,...,r.Ag r a p hG is called arbitrarily partitionable under r vertex restrictions (AP+r,forshort)if,foreachr ′ <r,everyadmissiblesequenceforG of length at least r ′ is realizable in G under any r ′ vertex restrictions. Naturally, a graph is called k-AP+r if, for each r ′ <r ,e v e r ya d m i s s i b l es e q u e n c eo fl e n g t hl,w i t hr ′ ≤ l ≤ k,i sr e a l i z a b l ei nG under r ′ vertex restrictions.

The problem of arbitrary partitioning graphs into connecteds u b g r a p h su n d e rv e r t e xr e s t r i c t i o n sw a s already considered in late 70s by Lovász [START_REF] Lovász | A homology theory for spanning trees of a graph[END_REF], and independently by Győri [START_REF] Győri | On division of graphs to connected subgraphs[END_REF]. They both proved the following result.

Theorem 1 [START_REF] Győri | On division of graphs to connected subgraphs[END_REF][START_REF] Lovász | A homology theory for spanning trees of a graph[END_REF] 

A graph G is k-connected if and only if G is k-AP + k.
It is easily seen that each traceable graph is AP, so each condition implying the existence of a Hamiltonian path in a graph also implies that the graph is AP. Therefore, by weakening some known conditions for traceability we can expect to obtain sufficient conditions for being AP. For example, the well-known Ore's theorem states that if G is a graph of order n such that the degree sum of every pair of nonadjacent vertices is at least n -1,t h e nG is traceable. In [START_REF] Horňák | Dense arbitrarily vertex decomposable graphs[END_REF] Horňák et al. showed that a connected graph G of order n ≥ 20 such that the degree sum of every pair of nonadjacent verticesi sa tl e a s tn -5 is AP if and only if it admits a perfect matching or a quasi-perfect matching (i.e., a matching omitting exactly one vertex). This is clearly an improvement of the above-mentioned Ore's condition for being AP.

Recall that given two graphs G and H,t h eCartesian product of G and H,d e n o t e db yG H,i st h e graph whose vertex set is the Cartesian product V (G) × V (H) and whose two vertices (u 1 ,v 1 ) and (u 2 ,v 2 ) are adjacent if and only if either

u 1 = u 2 and v 1 v 2 ∈ E(H),orv 1 = v 2 and u 1 u 2 ∈ E(G).
It is well known that if two graphs G and H are traceable then their Cartesian product G H is also traceable. So one can formulate a conjecture.

Conjecture 2 If G and H are AP graphs, then the Cartesian product G H is also AP.

Here we prove the following.

Theorem 3

The Cartesian product of two AP graphs is also AP, whenever at least one of these graphs is of order at most four.

Conjecture 2 seems to be very hard, so we formulate the following weaker conjecture by assuming traceability of H.

Conjecture 4

Let G be an AP graph, and let H be a traceable graph. Then G H is AP.

We also confirm this conjecture for small orders of H.

Theorem 5 If G is an AP graph, then the Cartesian product G H is AP, whenever H is a traceable graph of order at most four.

It is easy to check that all AP graphs of order at most four are traceable (the smallest nontraceable AP graphs have order five). Hence, Theorem 3 is an immediate consequence of Theorem 5.

We ) and τ 2 =(n σ(r+1) ,...,n σ(k) ),andweusethenotationτ 2 = ττ 1 (here the sequence τ 2 is determined up to the ordering of its elements). One can recursively extend this definition to a partition of τ into several sequences. Clearly, it suffices to prove both Theorem 5 and Theorem 6 for H being a path P l of order l = |H|. Thus, in both proofs, we focus on the Cartesian products of thef o r mG P l .L e tV (P l )={p 1 ,...,p l }. The Cartesian product G {p i },w h e r ei ∈ [1,l] and {p i } is identified with the graph K 1 ,i sc a l l e dt h e i-th layer of G in G P l and denoted by G i .F o re a c hu ∈ V (G),thevertex(u, p i ) ∈ V (G P l ) is called the i-th layer of u in G P l ,a n dw ew i l lw r i t e(u, p i )=u i .S i m i l a r l y ,t h ei-th layer of a vertex subset S ⊆ V (G) in G P l ,denotedbyS i ,isthesetofthei-th layers of all vertices of S.

The following simple lemma justifies the next proposition which is crucial in our proof of Theorem 5.

Lemma 7

Let l ≥ 2 be an integer, and τ =( n 1 ,...,n k ) be a sequence of positive integers such that τ ≡0( m o dl).I fk>l ,t h e nτ can be partitioned into two nonempty subsequences τ 1 and τ 2 such that τ 1 ≡0(modl) and τ 2 ≡0(modl).

Proof: If τ contains an element n i such that n i ≡ 0( m odl),thenifsuf ficestoconsiderτ 1 =( n i ) and

τ 2 = τ -(n i ).S u p p o s et h e nt h a tn i ≡ 0(modl),foreveryi ∈ [1,k].
For every j ∈ [1,k],lets j = j i=1 n i be the sum of the first j elements of τ .I ft h e r ee x i s tt w oi n d i c e s r and t with r<t ,s u c ht h a ts r ≡ s t (mod l),t h e ni ti se a s yt os e et h a tτ 1 =( n r+1 ,...,n t ) and τ 2 = ττ 1 satisfy our conditions. Since the number k of elements of the sequence s =( s 1 ,...,s k ) is greater than l,thenumberofdistinctresiduesmodulol,theremuste xisttw oelementsofs congruent modulo l.T h i se n d st h ep r o o f . 2

Proposition 8 Let l ≥ 2 be a fixed integer such that for every connected graph H,theCartesianproduct H P l is l-AP. Then G P l is AP for every AP graph G.

Proof: Let G be an AP graph and τ asequenceadmissibleforG P l .I ftau has length at most l, then tau is realizable in GsquareP l according to our assumption since G is connected. Let us now suppose that tau has length at least l+1. By repeatedly applying Lemma 7, the sequence τ can be partitioned into subsequences τ 1 ,...,τ r such that τ i ≡0(modl) and |τ i |≤l for every i ∈ [1,r].

For every i ∈ [1,r],letα i = τ i l .A s τ i ≡0( m o dl),itfollo wsthatforeachi,thenumberα i is an integer. Clearly, the sequence α =(α 1 ,...,α r ) sums up to the order of G and hence, because G is AP, admits a realization (V 1 ,...,V r ) in G.P u tU i = V (G[V i ] P l ) for i =1 ,...,r.H e n c e(U 1 ,...,U r ) is a partititon of the vertex set of G P l ,a n de a c hU i has exactly α i l = τ i vertices. Since each subgraph G[V i ] is connected, we infer by assumptions that each subgraph induced by U i admits a realization of τ i within it. To obtain a global realization of τ in G P l ,wetakerealizationsofallthesequencesτ 1 ,...,τ r . 2

In view of Proposition 8, to prove Conjecture 4 it suffices to show the following.

Conjecture 9 If G is a connected graph, then G P l is l-AP for every integer l ≥ 1.
In what follows, we prove that the assumptions of Proposition8h o l df o re v e r yl ∈ [START_REF] Barth | A degree bound on decomposable trees[END_REF][START_REF] Baudon | Partitioning powers of traceable or Hamiltonian graphs[END_REF].W ew i l l assume in this section that every sequence τ =(n 1 ,...,n k ) is nonincreasing, i.e., n 1 ≥•••≥n k .

Proposition 10 If G is a connected graph and l ≥ 2,thenG P l is 2-AP.

Proof: If G is connected, then clearly G P l is 2-connected. The conclusion follows from Theorem 1. 2 Consequently, to prove that the Cartesian product of a connected graph G and a path P l of order l>2 is l-AP, it suffices to consider sequences admissible for G P l which are of length greater than two.

Proposition 11 If G is a connected graph, then G P 3 is 3-AP.

Proof: Suppose that the sequence τ =( n 1 ,n 2 ,n 3 ) is admissible for G P 3 ,w i t hn 1 >n= |G| and n 3 <n(otherwise n 1 = n 2 = n 3 = n and (V (G 1 ),V(G 2 ),V(G 3 )) is an obvious realization of τ in G P 3 ). We distinguish two cases depending on the value of n 2 .

• If n>n 2 ≥ n 3 ,letT 1 ,T 2 ⊂ V (G) be subsets of vertices such that G[T 1 ] is a tree of order n 2 ,and G[T 2 ] is a tree of order n 3 .O b s e r v et h e nt h a tt h ep a r t i t i o n(V (G P 3 ) (T 1 1 ∪ T 3 2 ),T 1 1 ,T 3 2 ) is a correct realization of τ in G P 3 .I n d e e d ,G P 3 -(T 1 1 ∪ T 3 2 ) is connected since every vertex from V (G 1 ) ∪ V (G 3 ) (T 1 1 ∪ T 3 2 ) has a neighbour in V (G 2 ).

• If 2n>n 2 ≥ n,t h e n(V (G 1 ) ∪ S 1 ,V(G 3 ) ∪ S 2 ,T 2 ) is a realization of τ ,w h e r eT ⊂ V (G) is chosen is such a way that G[T ] is a tree of order n 3 ,a n dS 

2 Proposition 12

 212 [START_REF] Barth | Network sharing: a polynomial algorithm for tripodes[END_REF] and S 2 are subsets of vertices from V (G 2 ) T 2 chosen arbitrarily with|S 1 | = n 1n and |S 2 | = n 2n.N o t i c et h a te a c hv e r t e xo f S 1 or S 2 has a neighbour both in V (G 1 ) and V (G 3 ),sothesubgraphs(G P 3 )[V (G 1 ) ∪ S 1 ] and (G P 3 )[V (G 3 ) ∪ S 2 ] are connected. If G is a connected graph, then G P 4 is 4-AP.

  finally totally prove an AP+1 version of Conjecture 2. If G is an AP+1 graph and H is traceable, then the Cartesian product G H is AP+1.

	Theorem 6 2 Proof of Theorem 5

If a and b are integers with a<b ,then[a, b] will denote the set of integers {a, a +1,...,b-1,b}.L e t τ =(n 1 ,...,n k ) be any sequence. We will denote by τ the sum n 1 + ... + n k and by |τ | the length k of τ .L e tσ be a permutation of the set [1,k],andletr ∈ [1,k-1].T h e nw es a yt h a tτ is partitioned into two sequences τ 1 =(n σ(1) ,...,n σ(r)

Proof:

Suppose τ =(n 1 ,n 2 ,n 3 ) and τ =4n.W ed i s t i n g u i s ht h r e ec a s e s .

• If n>n 2 ≥ n 3 ,then,forthesamereasonsasinProposition11,(V (G P 4 ) (T 1 1 ∪ T 4 2 ),T 1 1 ,T 4 2 ) is a realization of τ ,whereT 1 ,T 2 ⊂ V (G) are chosen in such a way that they induce trees of orders n 2 and n 3 ,respectively .

• If 2n>n 2 ≥ n>n 3 ,t h e nw ec a nd e d u c ear e a l i z a t i o n(V 1 ,V 2 ,V 3 ) of (n 1 ,n 2n, n 3 ) in (G P 4 )[V (G 2 ) ∪ V (G 3 ) ∪ V (G 4 )] using Proposition 11. Observe then that it can be extended to arealizationofτ in G P 4 by simply considering (V 1 ,V 2 ∪ V (G 1 ),V 3 ).

• 2n>n 2 ≥ n 3 ≥ n.N o t i c et h a t2n ≥ n 1 .L e tT 2 ⊆ T 1 ⊂ V (G) be subsets of vertices such that G[T 1 ] and G[T 2 ] are trees of orders n 2n and n 3n,respectively .Considernowasequence

)) of subsets of V (G P 4 ).Noticethatthese three subsets induce connected subgraphs with the desired orders since every vertex of

2 is adjacent to a vertex in V (G 4 ),andT 2 1 and T 3 2 have some adjacent vertices. Thus,

)) is a trivial realization of τ in G P 4 ). Depending on the values of n 2 and n 3 ,weclaimthatarealizationofτ in G P 4 can always be found.

2 is adjacent to a vertex of V (G 3 ) T 3 3 ,and,finally ,everyvertexof V (G 3 ) T 3 3 has a neighbour in V (G 4 ).

• n 2 ≥ n>n 3 .N o t i c et h a t3n>n 1 + n 3 ≥ 2n and n<n 2 + n 4 ≤ 2n.L e tT 1 ,T 2 ⊂ V (G) be subsets inducing subtrees of G of orders n 3 and n 4 ,r e s p e c t i v e l y . C o n s i d e ras e q u e n c e(V (G

2 ),wherethesubsetsS 1 and S 2 are chosen arbitrarily from V (G 3 ) T 3 2 in such a way that

Observe that this is a realization of τ in G P 4 since every vertex of (V (G 1 ) T 1 1 ) ∪ (S 1 ∪ S 2 ) has aneighbourinV (G 2 ) and all vertices of S 2 are adjacent to some vertices of V (G 4 ).

w h e r eS 1 and S 2 are obtained in the following way. We start by putting u 1 and u 2 into S 1 ,andwestartbuildingasubtreeofV (G 2 ) rooted in u 2 iteratively, that is we take an arbitrary vertex s 2 joined to V (G 2 ) S 1 and add it to S 1 .I fs 3 does not belong to W 3 ,thens 3 is added to S 2 .T h ep r o c e d u r eg o e so nu n t i l|S

that once the procedure is over, we can only have

In any case, the four subgraphs induced by the realization areconnectedsince

As a consequence of Propositions 8, 10, 11 and 12, we can state the following corollary, which in turn immediately implies Theorems 3 and 5.

Corollary 13

If a graph G is AP, and l ≤ 4,thenG P l is AP.

3 Proof of Theorem 6

In this section, we also use the terminology and notation on the Cartesian product G P l which have we introduced in the initial paragraphs of Section 2. Clearly, it suffices to prove that G P l is AP+1, with l = |H|.

Let τ =( n 1 ,...,n k ) be a sequence which sums up to nl,theorderofG P l .L e t(u j 0 ,n q ) be a vertex restriction. Without loss of generality, we may assume that q =1 .I nw h a tf o l l o w s ,w ee x p l a i nh o wt o find a realization of τ in G P l such that the j-th layer of a vertex u 0 in G P l belongs to a part of order n 1 in this realization.

Note that if l =1,thenG P 1 is isomorphic to G,andthusitisAP+1,byassumption.Hence,suppose that l ≥ 2.W ed i s t i n g u i s ht w oc a s e sd e p e n d i n go nt h ec a r d i n a l i t yo fn 1 .I ne a c hc a s e ,t h ep r o o fg o e si n two stages. Roughly, we first modify the sequence τ by dividing some of its terms n i into two or more addends, so as τ could be partitioned into l sequences τ 1 ,...,τ l such that usually

Next, for all i,weconstructarealizationofτ i in the i-th layer G i of G P l in such a way that parts whose sizes result from the splitting of a same element of tau yield a connected graph when glued together. Case 1: n 1 <n.

Consider the sequence τ ′ =(n 2 ,...,n k ).F o re a c hi ∈ [1,l],wedefineacapacity ϕ(i) of the i-th layer G i of G P l as follows:

Now, we will recursively define l sequences τ 1 ,...,τ l such that every τ i sums up to ϕ(i),a sf o l l o w s . I f there exists p ∈ [2,k] such that p i=2 n i = ϕ(1),thenwesetτ 1 =( n 2 ,...,n p ), τ ′′ =( n p+1 ,...,n k ), and α(1) = 0 (for each i ∈ [1,l-1],thenumberα(i) will indicate whether the last term of τ i originated from dividing a term of τ ). Otherwise, let p ∈ [2,k] be such that p-1 i=2 n i <ϕ (1) and

We repeat this procedure with the sequence τ ′′ instead of τ ′ for the graph G P l-1 ,whereP l-1 denotes the path p 2 ...p l ,i no r d e rt oo b t a i nas e q u e n c eτ 2 and the number α(2),a n ds oo n . A f t e rl repetitions of this procedure, we obtain the desired sequences τ 1 ,...,τ l such that τ i = ϕ(i) for i ∈ [1,l].D e n o t e τ i =(n i 1 ,...,n i ki ),i∈ [1,l]. We begin our construction of a realization of τ by choosing a realization

W ec a nc h o o s ei ts i n c et h i ss e q u e n c es u m su pt on,a n d G j is AP+1.

Next, for i = j -1,j -2,...,1,w ep r o c e e da sf o l l o w s . I fα(i)=0 ,t h e nw et a k ea n yr e a l i z a t i o n (V i 1 ,...,V i ki ) of τ i in G i .O t h e r w i s e ,w h e nα(i)=1 ,w ec h o o s ea n yv e r t e xu i+1 ∈ V i+1 1 and take a realization of τ i in G i such that u i ∈ V i ki .T h i si sp o s s i b l es i n c eG is AP+1. Note that the subgraph induced by

in G P l is connected due to the edge u i u i+1 of the Cartesian product. Naturally, if j =1,thenweomitthisstepandgodirectlytothestepdiscribedbelow.

For every i = j +1,...,l,i fα(i -1) = 0,t h e nw et a k ea n yr e a l i z a t i o n

of the sequence (n 1 ,n 1 1 ,...,n 1 k1 ,n 2 1 ,...,n l k l ).S u p p o s et h a ti nt h ep r o c e d u r eo fd e fi n i n gt h es e q u e n c e s τ 1 ,...,τ l ,ac e r t a i nt e r mn ν of τ has been divided into s ≥ 2 addends n i ki ,...,n i+r-1

.B yo u rc o n s t r u c t i o n , the subgraph (G P l )[V ν ] is connected. We then replace the subsequence V i ki ,V i+1 1 ,...,V i+s-1 1 in R by V ν .I fw ed ot h es a m ef o ra l ld i v i d e dt e r m so fτ ,thenweobtainarealizationofτ in G P l satisfying the vertex restriction (u j 0 ,n 1 ). Case 2: n 1 ≥ n.

Let d = ⌊ n1 n-1 ⌋ and r ≡ n 1 (mod (n -1)).I no r d e rt om a k eo u rd e s c r i p t i o nm o r el e g i b l e ,w e distinguish two subcases. Subcase 2.1: d<j. We define the capacity function ϕ for each i-th layer G i :

otherwise.

Then we consider the sequence τ ′ =( n 2 ,...,n k ),a n dw ed e fi n et h es e q u e n c e sτ 1 ,...,τ l ,a sw e l la s numbers α(1),...,α(l),accordingtothefunctionϕ exactly in the same way as in Case 1. Now, we start to construct a realization (V 1 ,...,V k ) of the sequence τ with choosing a vertex x ∈ V (G) \{u 0 },anddefiningthesetV 1 of n 1 vertices as

where W is a set of r vertices of G j-d . When r =0 ,w em a ya d d i t i o n a l l yr e q u i r e ,a sG is AP+1, that (W, V

Then, we consecutively produce realizations of τ j-d-2 ,τ j-d-3 ...,τ 1 ,followingthesamerulesasin Case 1. That is, for every i = jd -2,...,1,w h e nα(i)=1 ,wechooseav erte xu i+1 ∈ V i+1 1 ,and using the fact that G is AP+1, we find a realization of

we take {x i } as a realization of the sequence τ i =(1).N e x t ,f o ri = j +1,...,l,weproceedexactlyin the same way as in Case 1.

The same arguments as in Case 1 show that we can glue corresponding elements of the realization (V 1 ,V 1 1 ,...,V 1 k1 ,V 2 1 ,...,V l k l ) of the sequence (n 1 ,n 1 1 ,...,n 1 k1 ,n 2 1 ,...,n l k l ) to obtain a realization (V 1 ,...,V k ) of τ . Subcase 2.2: d ≥ j. If n 1 = nl,thenk =1and τ =( nl) is trivially realizable in G P l .F o rk ≥ 2,we fix any vertex x ∈ V (G) \{u 0 } and define

Clearly, u j 0 ∈ V 1 .T h e nw ec o n s i d e rt h ec a p a c i t yf u n c t i o n

and we define sequences τ r+1 ,...,τ l and their realizations according to the same rules as in Case 1. It is easy to see that we can obtain a required realization (V 1 ,...,V k ) of τ in the same way as previously. 2