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Abstract. This paper is devoted to Poincaré’s work in probability. Though the
subject does not represent a large part of the mathematician’s achievements, it
provides significant insight into the evolution of Poincaré’s thought on several
important matters such as the changes in physics implied by statistical mechan-
ics and molecular theories. After having drawn the general historical context of
this evolution, I focus on several important steps in Poincaré’s texts dealing
with probability theory, and eventually consider how his legacy was developed
by the next generation.

Introduction

In 1906, Poincaré signed one of the most unusual texts of his scientific career [1], a
report written for the Cour de Cassation in order to eventually close the Dreyfus case.
In 1904, ten years after the condemnation and the degradation of the unfortunate
captain and all that had followed, the French government had decided to bring to
an end this lamentable story which had torn French society for years, and obtained
the rehabilitation of the young officer who had been so unjustly martyred. As is
well known, the accusation of 1894 had been proclaimed despite a total absence of
material proofs, during a rushed and unbalanced trial, complacently orchestrated by
the military hierarchy whose aim was to provide a culprit as soon as possible. The
only concrete document was the famous bordereau found in a wastepaper basket
in the German Embassy in Paris and briefly scrutinized by several more or less
competent experts. Among them, Alphonse Bertillon played a specially sinister role
and had become since then Dreyfus’ most obstinate accuser. He built a bizarre edifice
of self-fabrication (autoforgerie) of the bordereau, a theory having a more or less
scientific presentation, in order to prove the guilt of the innocent captain. Bertillon
became trapped by his own conviction, more because of self-confidence and stupidity
than by a real partisan spirit. When the Affair broke out at the end of the 1890s,
and the political plot became obvious and Dreyfus’ innocence apparent, Bertillon
unceasingly complicated his theory proving Dreyfus’ guilt. This frenzy resulted in an
avalanche of troubles for him and came close to ending his career in the Paris Police
department. However, for the trial in the Cour de Cassation, in order to silence the
last dissenting voices which might be raised, it was decided not to ignore Bertillon’s
rantings, but to ask incontestable academic authorities to give their opinion about
the possible value of the self-proclaimed expert’s conclusions. Three mathematicians
were called for that purpose, Paul Appel, Gaston Darboux and Henri Poincaré, who
jointly signed the report for the Cour de Cassation in 1906. Nevertheless, everybody
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knew that only the latter had really worked on the document, a tedious task he
undertook with honesty but also with grumblings. Besides, this was not Poincaré’s
first intervention in the Dreyfus case: in 1899, Painlevé, who came to Rennes to give
evidence at the trial reviewing the 1894 judgement of the court-martial, had read
from the witness box a letter of Poincaré giving his harsh opinion about the lack of
scientific foundation for Bertillon’s work.

This story is well known and has been narrated in detail many times ([51], [52],
[80]) and I shall not dwell on it further. However, one may ask why it was Poincaré
who had been called for this task. A first answer immediately comes to mind: in 1906,
Poincaré, who was fifty-two, was without any doubt the most prominent among
French scientists. He had moreover another characteristic: his name was familiar to
a sizeable audience outside the scientific community. It was well known that he won
the important prize of the Swedish king Oscar II in 1889; the publication of semi-
popular books on the interpretation of science gave him real popularity, and he was
also famous due to several papers which came out in newspapers, for instance during
the International Congress of Mathematicians in Paris in 1900 at which Poincaré
had been the main authority. To call such a person in order to crush the insignificant
but noisy Bertillon was therefore a logical calculation on the part the government.
However, a second and more hidden reason probably played also a part. The report
for the Cour de Cassation [1] opens with a chapter whose title was quite original
in the judicial litterature: Notions on the probability of causes; it contains a brief
exposition of the principles of the Bayesian method. Bertillon had indeed pretended
to build his system on the methods and results of the theory of probability, and
seriously answering him was only possible by confronting the so-called expert with
his own weapons. It was therefore necessary not only to call a scientific star for the
job, but also someone whose authority in these matters could not be challenged. In
1906, Poincaré was unquestionably regarded by everyone as the leading specialist
in the mathematics of randomness in France. He no longer, it is true, held the
Sorbonne chair of the Calculus of Probability and Mathematical Physics, but he
had held it for some ten years (it was in fact the first position he obtained in Paris),
had accomplished an impressive amount of work in mathematical physics during this
period (we shall return at length to this subject later) and had published in 1896,
shortly before leaving the chair, a treatise on the Calculus of Probability which, in
1906, was still the main textbook on the subject in French. Moreover, several texts
had presented his thoughts on the presence of randomness in modern physics to
a large cultivated audience, in particular his Science and Hypothesis ([70]), which
enjoyed a great success. It was therefore as a specialist in the calculus of probability
that Poincaré was called by the judicial authorities and could help them to finally
dispose of the Drefyus case.

If we go back in time fifteen years before this event, one cannot but be struck by a
contrast. Since 1886, although Poincaré held the aforementioned Sorbonne chair, he
had without doubt essentially seen it its name only the words Mathematical Physics.
For instance, he had signed several publications by the qualification Henri Poincaré,
professeur de Physique mathématique. In 1892, he published an important textbook
on Thermodynamics [63] based on the lectures he had read at the Sorbonne several
years before. A Poincaré publication would of course not go unnoticed, and one
attentive reader had been the English physicist Peter Guthrie Tait (1831-1901).
Tait had been very close to Maxwell and was one of the most enthusiastic followers
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of his work. He wrote a review of Poincaré’s book for the journal Nature ([86]); the
review was quite negative despite the obvious talent Tait recognized in his young
French colleague. In Tait’s criticisms of Poincaré’s book, one may recognize a classic
comment by Anglo-Saxon scientists on the works of their French counterparts (who,
whenever possible, did not miss an opportunity to respond in the same way): to put
it briefly, the Anglo-Saxons often think that the French are too formalist and remote
from experiment, or even despise it, and the French think that the Anglo-Saxons are
too obsessed with a practical approach to problems, without reflecting enough on
the tectonic underlying structure. Thus Poincaré, wrote Tait, introduced beautiful
and complex mathematical theories in his textbook but often to the detriment of the
physical meaning of the situations he studied. The most important reproach of the
English physicist was the fact that Poincaré remained absolutely silent about the
statistical theories of thermodynamics, leaving in the shadows the works of Tait’s
friend and master Maxwell. Tait wrote:

‘But the most unsatisfactory part of the whole work is, it seems to us,
the entire ignoration of the true (i.e. the statistical) basis of the Second
Law of Thermodynamics. According to Clerk-Maxwell (Nature, xvii. 278)
“The touch-stone of a treatise on Thermodynamics is what is called the
Second Law.” We need not quote the very clear statement which follows
this, as it is probably accessible to all our readers. It certainly has not
much resemblance to what will be found on the point in M. Poincaré’s
work: so little, indeed, that if we were to judge by these two writings alone
it would appear that, with the exception of the portion treated in the
recent investigations of v. Helmholtz, the science had been retrograding,
certainly not advancing, for the last twenty years.’

Poincaré wrote an answer and sent it to Nature on 24 February 1892. It was
followed, during the first semester of 1892, by six other letters between Tait and
Poincaré; they are rather sharp, each sticking to his position. On March 17th,
Poincaré wrote the following comment about the major criticism made by Tait:

‘I left completely aside a mechanical explanation of the principle of Clau-
sius that M.Tait calls “the true (i.e. statistical) basis of the Second Law of
Thermodynamics.” I did not speak about this explanation, which besides
seems to me rather unsatisfactory, because I desired to remain absolutely
outside all the molecular hypotheses, as ingenious they may be; and in
particular I said nothing about the kinetic theory of gases.’1

One thus observes that Poincaré, in 1892, had a very negative vision of statistical
mechanics where was located the principal emergence of probabilities in the descrip-
tion of matter at the end of 19th century. However, Poincaré would not have been
Poincaré if, once shown a difficulty, he did not take the bull by the horns and to
try to tame it. A first decision was the resolution, during the next academic year
1893, to teach the kinetic theory of gases to his students. And indeed, in the Sor-
bonne syllabus for that year, we see that Poincaré had transformed his lectures into
Thermodynamics and the Kinetic theory of gases.

1‘J’ai laissé complètement de côté une explication mécanique du principe de Clausius que M. Tait appelle “the
true (i.e. statistical) basis of the Second Law of Thermodynamics.” Je n’ai pas parlé de cette explication, qui me
parâıt d’ailleurs assez peu satisfaisante, parce que je désirais rester complètement en dehors de toutes les hypothèses
moléculaires quelque ingénieuses qu’elles puissent être; et en particulier j’ai passé sous silence la théorie cinétique
des gaz’.
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In 1894 Poincaré’s published his first paper on the kinetic theory of gases [66], to
which we shall return later. If one still observes a good deal of skepticism in it, or
at least reservation about these novelties in randomness, a change of attitude was
taking place. This same academic year 1893-1894, Poincaré eventually decided for
the first time to teach a course on the calculus of probability at the Sorbonne, which
was the subsequent basis of his book of 1896, the same year when he exchanged his
chair for the chair of celestial mechanics. Moreover, in the following years, reflections
on the mathematics of randomness became more frequent in his writings, up to the
publication of his more philosophical works, which acknowledged the integration of
the theory of probability among Poincaré’s mathematical tools. By 1906, as already
noted, the transition had been completed, especially as new elements, such as Ein-
stein’s just published theory of Brownian motion, made even more necessary the
increasing presence of probability in scientific theories.

The present paper concerns the probabilistic aspects of Poincaré’s enormous pro-
duction, aspects which remain somewhat limited in size. A non negligible challenge
in dealing with this subject is that probability penetrated Poincaré’s work almost
by force, forcing his hand several times, his main achievement consisting in building
dykes so that the mathematician might venture with a dry foot on these rather soft
lands. We shall see later that his successor Borel had a somewhat different attitude
toward choosing to apply probability theory in many domains, reflecting the fact
that Borel had encountered probability in a more spectacular way than Poincaré.

Despite this limited contribution, Poincaré succeeded in leaving a significant her-
itage which would later prove important. Above all, his most decisive influence may
have been to allow probability theory to regain its prestige in France again, after its
rather miserable position in the French academic world for more than half a century.

The aim of the present paper is therefore threefold and this is reflected in its
three parts. In the first part, we focus on Poincaré’s evolution in the fifteen years
we have just pointed to, in order to define how this progressive taming of the math-
ematics of randomness occurred. In the second section, I examine in detail several
of Poincaré works involving probability considerations in order to give an idea not
only of Poincaré’s style, but also of the intellectual basis for the evolution in his
thinking. And finally, in the last section, I comment on the persons who recovered
the heritage of Poincaré’s in this area, and on how they extended it.

Poincaré’s life and writings made (and for sure will make again) a lot of ink flow.
It will therefore not surprise anyone that many of the topics discussed in the present
paper have already been discussed several times before. In particular, I shall refer
several times to Sheynin’s text ([83]), to von Plato’s publications ([89], [90]) as well
as to several papers by Bru, some published and some not ([20], [23]).
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1 First part: the discovery of probability

In the beginning was the Chair. For, as we are going to see, it was not only by a
fortuitous scientific interest that Poincaré first came to be involved in probability
theory, but there was also a very specific academic situation in which Hermite, the
major mathematical authority in 1880s France, crusaded for the career of his three
mathematical stars: Paul Appel (his nephew), Émile Picard (his son-in-law) and of
course Henri Poincaré, the latter considered by him to be the most brilliant, though
he did not belong to his family (to the great displeasure, so he wrote to Mittag-
Leffler, of Madame Hermite). A remarkable change took place at the Sorbonne at
this time when, in just a few years, almost every holder of the existing chairs in
mathematics and physics died: Liouville and Briot in 1882, Puiseux in 1883, Bouquet
and Desains in 1885, Jamin in 1886, leaving an open field for a spectacular change
in the professorships. At the end of the whirlwind, the average age of the professors
of mathematics and physics at the Sorbonne had been reduced by eighteen years! It
was therefore clear for everyone, and first of all Hermite, that there was a risk that
the situation might become fixed for a long time, and that it was therefore necessary
to act swiftly and resolutely in favor of his protégés. The three of them were, indeed,
appointed in Paris during these years. This episode is narrated in detail in [2] and
I here touch on only the most important aspects insofar as they relate to our story.

The Chair of Calculus of Probability and Mathematical Physics, occupied until
1882 by Briot, had been created some thirty years before, after numerous unsuc-
cessful attempts by Poisson at creating it, but in a form different than the one the
latter had hoped. The joining of mathematical physics to probability had been de-
cided in order to temper the bad reputation of the theory of probability in the 1840s
in France, notably due to some of the work of Laplace and, above all, of Poisson
himself dealing with the application of probability in the judicial domain. The book
of Poisson [78] ignited a dispute in the Academy in 1836, when Dupin and Poinsot
harshly contested Poisson’s conclusions, and the philosophers led by Victor Cousin
made a scene in the name of the sacred rights of liberty against the claims advanced
by the mathematicians in order to explain how events occur in social issues. John
Stuart Mill summed up the thing by qualifying the application of probability to
judicial problems as the scandal of mathematics. This polemical contretemps tarred
the calculus of probability in France, leaving it with a most dubious reputation.

Though Lippmann was nominated in 1885 for the chair, Jamin’s unexpected de-
cease liberated the chair of Research in physics of which Lippmann took hold im-
mediately, leaving a place free for Poincaré. One might be initially surprised by
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this choice. First, because Poincaré was preferred to other candidates, of course less
gifted, but whose area of research was closer to that of the position. One would
rather have expected to see Poincaré in one of the chairs in Analysis, for instance.
In 1882, when Briot died and the great game began, Poincaré had no published work
in physics (let alone the calculus of probability). And yet, among the candidates who
were eliminated, there was for instance Boussinesq who had to his credit significant
contributions in that domain, and who openly stated his intention of revitalizing
the teaching of probability which seemed to him to be in a poor state. Not without
irony, Boussinesq would be later Poincaré’s successor in this same chair when the
latter changed over to the Chair of Celestial Mechanics.

Thus Poincaré was nominated in 1886, without any real title for the position, and
one may think that it had really been chance which led him there. However, as shown
in Atten’s fine analysis [2], a number of indications demonstate that Poincaré had
indeed really desired this particular position. Examining his lectures in 1887-1888
shows that he already had a profound knowledge of physical theories and, moreover,
several passages in his correspondence at this time show his sustained interest in the
questions of physics. This shows that his attitude had not been purely opportunistic
and that the chair pleased him. Also, Hermite, apart from the desire of supporting his
protégé, seems to have made a thoughtful bet in nominating him for this somewhat
unexpected position. Knowing Poincaré’s acute mind, it was not unreasonable to
anticipate spectacular achievements by him in this position. What followed, as we
know, bore out Hermite’s expectation. . .

The theory of probability, as I said, did not seem to concern the new professor
at the beginning of his tenure, and he taught courses on several different physical
theories. In 1892, he published his lectures on Thermodynamics delivered in 1888-
1889 [63], a book, as noted earlier, that was sharply criticized by Tait. Poincaré
therefore decided to look into the questions raised by the kinetic theory of gases,
in particular because he had just read a communication by Lord Kelvin to the
Royal Society containing several fundamental criticisms on Maxwell’s theory [46].
Perhaps Poincaré had been especially eager to read this paper because it might
provide a powerful argument in his controversy with Tait. However, the affair took
another direction, revealing the mathematician’s profound scientific honesty. At the
beginning of the paper [66], published in 1894, though he again expressed some
skepticism, Poincaré, whose conventionalism was formed during these years, seemed
already half convinced of the possible fecundity of Maxwell’s theory.

‘Does this theory deserve the efforts the English devoted to it? One may
sometimes ask the question; I doubt that, right now, it may explain all
the facts we know. But the question is not to know if it is true; this word
does not have any meaning when this kind of theory is concerned. The
question is to know whether its fecundity is exhausted or if it can still
help to make discoveries. And admittedly we cannot forget that it was
useful to M. Crookes in his research on radiant matter and also to the
inventors of the osmotic pressure. One can therefore still make use of the
kinetic hypothesis, as long as one is not fooled by it.’2

2‘Cette théorie mérite-t-elle les efforts que les Anglais y ont consacrés ? On peut quelquefois se le demander; je
doute que, dès à présent, elle puisse rendre compte de tous les faits connus. Mais il ne s’agit pas de savoir si elle est
vraie; ce mot en ce qui concerne une théorie de ce genre n’a aucun sens. Il s’agit de savoir si sa fécondité est épuisée
ou si elle peut encore aider à faire des découvertes. Or, on ne saurait oublier qu’elle a été utile à M. Crookes dans
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We shall come back in the second section to this article of 1894 and to the new
formulation of the ergodic principle it contains, in which Poincaré introduced the
restriction of exceptional initial states. Let us only mention here the following point:
Poincaré seemed to have found this idea in his previous work on the three body
problem for which he had obtained the prize of the King of Sweden in 1889. In
the memoir presented for the prize, he had indeed proved a recurrence theorem
concerning the existence of trajectories such that the system comes back an infinite
number of times in any region of the space, no matter how small. The next year,
for his paper in Acta Mathematica, Poincaré added a probabilistic extension of his
theorem where he showed that the set of initial conditions for which the trajectories
come back only a finite number of times in the selected region has probability zero
([61], p.71-72); this passage was included some years later in his treatise of new
methods for celestial mechanics [64] in a section simply called ‘Probabilities’.

During the academic year 1893-1894, Poincaré prepared his first course of probabil-
ity for his students of mathematical physics ([68]), published in 1896 and transcribed

by Albert Quiquet, a former student of the École Normale Supérieure who entered
the institution in 1883, before becoming an actuary, and who had probably been an
attentive listener of the master’s voice. In the manner of the standard probability
textbooks of the time, it does not present a unified theoretical body but rather a
series of questions that Poincaré tried to answer (the main ones, which occupy the
bulk of the volume, concern the theory of errors of measurement - we shall come
back on that in the next section). The book, in its edition of 1896, is a natural
successor to Bertrand’s textbook [9] which up to then was the usual textbook, see
[21]. Comparing it to Bertrand’s book, Poincaré’s book consolidates the material in
several interesting ways, and this aspect is even more obvious in the second edition
[76], completed by Poincaré some months before his death in 1912.

The mathematician seemed now convinced that it was no longer possible to get rid
of probability altogether in science, so that he decided insteada to make the theory
as acceptable as possible to the scientist. Poincaré decided to devote considerable
effort towards that end, especially by writing several texts lying half-way between
popularization (with the meaning of writing a description of several modern concepts
using as little technical and specialized language as possible) and innovation. Two
of them are of particular importance: the 1899 one ([69]) - reprinted as a chapter
of [70] -and the one in 1907 ([74]) - reprinted again as [75] and then as a Preface
for the second edition of his textbook [76] - two texts marking Poincaré’s desire
for showing off his new probabilistic credo. But one has to realize that Poincaré
wanted to convince himself above all and this leads one to ask the question Jean-
Paul Pier ironically used as the title for his paper [60]: did Poincaré believe or
not in the calculus of probability? Without pretending to give a final answer, one
may however observe that Poincaré had very honestly sought for a demarkation of
the zone where it seemed to him that using probability theory did not create a
major problem. Hence the attempt to tackle some fundamental questions in order
to go beyond the defects that Bertrand had ironically illustrated with his famous
paradoxes: Where is it legitimate to let randomness intervene? Which definition can
be given of probability? Which mathematical techniques can be developed in order
to obtain useful tools for physics, in particular for the kinetic theory of gases? Borel,

ses travaux sur la matière radiante ainsi qu’aux inventeurs de la pression osmotique. On peut donc encore se servir
de l’hypothèse cinétique, pourvu qu’on n’en soit pas dupe.’ ([66], p.513)
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as we shall see in the third section, would afterwards remember Poincaré’s position.
In his 1907 text, Poincaré accurately defined the way in which he considered le-

gitimate to call for the notion of randomness. He saw essentially three origins for
randomness: the ignorance of a very small cause that we cannot know but which
produces a very important effect (such as the so-called Butterfly Effect), the com-
plexity of the causes which prevents us from giving any explanation other than a
statistical one (as in the kinetic theory of gases), the intervention of an unexpected
cause that we have neglected. This was not too far from the Laplacian conception,
which should not surprise us very much as Poincaré, born in 1854, was a child of a
century in which Laplace had been a tutelary figure. However, Poincaré knew well
the accusations accumulated against Laplace’s theory and he proposed several ways
to adjust it: randomness, even if is connected to our ignorance to a certain extent,
is not only that, and it is important to define the nature of the connection between
randomness and ignorance. The conventionalist posture on which we have already
commented naturally made things easier, but Poincaré did not look for easiness. As
he wrote in 1899

‘How shall we know that two possible cases are equally probable? Will it
be by virtue of a convention? If we state an explicit convention at the be-
ginning of each problem, everything will be all right; we must only apply
the rules of arithmetic and algebra and we go until the end of the compu-
tation and our result does not leave any place to doubt. But, if we want
to use it for any application, we need to prove that our convention was
legitimate, and we shall face the difficulty we thought to have avoided.’3

In a remarkable creative achievement, Poincaré forged a method allowing the ob-
jectification of some probabilities. Using it, if one considers for instance a casino
roulette with alternate black and red sectors, even without having the slightest idea
of how it is put into motion, one may show it reasonable to suppose that after a
large number of turns, the probability that the ball stops in a red zone (or a black
one) is equal to 1/2. There are thus situations where one can go beyond the hazy
Laplacian principle of (in)sufficient reason as a necessary convention to fix the value
of the probability. The profound method of arbitrary functions, which is based on the
hypothesis that at the initial time the distribution of the place where the ball stops
is arbitrary and shows that this distribution reaches an asymptotic equilibrium and
tends towards the uniform distribution, was certainly Poincaré’s most important
invention in the domain of probability and we shall see later the spectacular course
it took.

To conclude this survey, let us mention that in 1906, when Poincaré was completing
his report for the Cour de Cassation in the Dreyfus case, despite his place as the
pre-eminent French authority in the theory of probability, he was, as far as his
scientific thought was concerned, somewhat in the middle of the ford between a
completely deterministic description of the world and our modern conceptions where
randomness enter as a fundamental ingredient. Poincaré kept this uncomfortable
position until the end of his life. It is besides noticeable that at the precise moment

3‘Comment saurons nous que deux cas possibles sont également probables? Sera-ce par une convention? Si nous
plaçons au début de chaque problème une convention explicite, tout ira bien; nous n’aurons plus qu’à appliquer les
règles de l’arithmétique et de l’algèbre et nous irons jusqu’au bout du calcul sans que notre résultat puisse laisser
place au doute. Mais, si nous voulons en faire la moindre application, il faudra démontrer que notre convention était
légitime, et nous nous retrouverons en face de la difficulté que nous avions cru éluder.’ ([69], p.262)
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when Borel - so strikingly ! - was, so to speak, taking over, Poincaré did not seem to
have been particularly interested in the enterprise of his young follower. No more,
besides, that he had been interested by the fortunate experiments of the unfortunate
Bachelier: he had written, it is true, a benevolent report on his thesis [3] and had
sometimes helped him to obtain grants, but the two men had been in no scientific
contact afterwards [29]. Even more suprising, Poincaré seems to have thoroughly
ignored the Russian school’s works (Chebyshev, Markov, Lyapounov. . . ) and this
explains why he became never conscious of some connections with his own works.
Poincaré’s probabilistic studies leave therefore a feeling of incompleteness, partly due
probably to his premature death at the age of 58, but also to the singular situation
of this last giant of the Newtonian-Laplacian science who remained on the threshold
of the upheavals which came after his departure.

2 Second part: construction of a probabilistic approach

In this second part, I would like to present some steps which have marked the
progressive entry of questions on probability in Poincaré’s works. Even if it is not
possible to see a perfect continuity in the chain of his research, a kind of genealogy
can be traced which allows one to better understand how the mathematician grad-
ually adopted a probabilistic point of view in several situations. I feel necessary to
mention that my aim in this section is to describe what Poincaré has done and not
necessarily to statuate about the originality of his work (was he or not the first to
do it). A particular problem with our hero is that he practically never quotes his
sources so that it is difficult to be sure of what he had read or not. I have tried as
much as was possible to make each subsection of this part independent of the others,
which may sometimes result in brief repetition.

2.1 The recurrence theorem and its ‘probabilistic’ extension

In anticipation of the sixtieth birthday of King Oscar II of Sweden in 1889, a math-
ematical competition was organized by Mittag-Leffler. The subject concerned the
three-body problem: Was the system Earth-Moon-Sun stable? Periodic? Organized
so that it will remain forever in a finite zone of space? Many of these were funda-
mental questions which had challenged Newtonian mechanics from the 18th century.
Poincaré submitted in 1888 an impressive memoir, immediately selected by a jury
including Weierstrass, Mittag-Leffler and Hermite. While correcting the proofs of
the paper for Acta Mathematica, Phragmen located a mistake, leading Poincaré to
make numerous amendments before resubmitting a lengthy paper the following year,
published in volume 13 of Acta Mathematica.

This story, well known and well documented (see in particular [7]), is of interest
for us only as far as one difference between the version submitted for the prize and
the published version in 1890 is the appearance of the word probability, certainly for
the first time in the French mathematician’s works. I shall closely follow Bru’s nice
investigation [23] on the way in which countable operations gradually established
themselves in the mathematics of randomness.

In the first part of the memoir submitted for the competition, Poincaré studied
the implications of the existence of integral invariants on the behavior of dynamical
systems. A simple example of this situation is given by the case of an incompressible
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flow for which the shape of the set of molecules changes, but not its volume which
remains constant on time. However, Poincaré had in view a much more genreral
situation. He showed in fact on p.46 and seq. of [61] that with a good choices of
coordinates in the phase space of positions and speeds, the general situation of a
stable mechanical system may be expressed by such an integral invariant. Poincaré
then expounded an initial version of his recurrence theorem in the following form:
let E be a bounded portion of the space, composed of mobile points following the
equations of mechanics, so that the total volume remains invariant in time. Let us
suppose, writes Poincaré, that the mobile points remain always in E. Then, if one
considers r0 a region of E, no matter however small it may be, there will be some
trajectories which will enter it an infinite number of times.

Poincaré’s proof is a model of ingenuity and simplicity. One discretizes time with
a step of amplitude τ . Let us call with Poincaré

r1, r2, . . . , rn, . . .

the “consequents” of r0, that is to say, the successive positions of the different points
of the region r0 at times

τ, 2τ, . . . , nτ, . . .

In the same way, the “antecedent” of a region is the region of which it is the imme-
diate consequent. Each region ri has the same volume; as they remain by hypothesis
inside a bounded zone, some of them necessarily intersect. Let two such regions be
rp and rq with p < q, with intersection the region s1 having nonzero volume: a point
starting in s1 will be back in s1 at time (q − p)τ . Going back in time, let us call
r1

0 the sub-region of r0 whose p-th consequent is s1. A particle starting from r1
0 will

again enter this region at time (q−p)τ . We now start again the process by replacing
r0 by r1

0, and thus build a decreasing sequence (rn0 ) of sub-regions of r0 such that
each point starting from rn0 comes back n times at least. Considering a point in the
intersection of the rn0 (whose non-vacuousness is taken for granted by Poincaré), a
trajectory starting from such a point will pass an infinite number of time through
r0.

In this form, as it is seen, the theorem is therefore completely deterministic. What
then got into Poincaré which made him think it necessary, in the new version pub-
lished in 1890, to rewrite his result in a probabilistic setting ([61], pp.71-72)? At first
glance indeed, the appearance of the word probability in these pages may seem sur-
prising in the framework of the mechanics of Newton, Laplace and Hamilton which
Poincaré used in his paper. In fact, as Bru remarks ([23]), one must not be misled
by this use of probability by Poincaré, viewing it as a sudden revelation of the pres-
ence of randomness having the ontic value we spontaneously give it today. Poincaré
himself wrote: je me propose maintenant d’expliquer pourquoi [les trajectoires non
récurrentes] peuvent être regardées comme exceptionnelles. What Poincaré was thus
looking for was a convenient way of expressing the rarity, the thinness of a set. He
was writing before the decisive creation of the measure theoretic tools and particu-
larly of Borel’s thesis which would, four years later, prove that a countable set has a
measure equal to zero. For a long time, astronomers in particular had been used to
employ the concept of probability with the meaning of practical rarity and certainly
one should not seek for a more sophisticated explanation to justify the presence of
the word coming from Poincaré’s pen. It was a convenient way of speaking, whose
aim was almost entirely to hide the obscure instinct mentioned by Poincaré in his
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1899 paper ([69], p.262), almost as an apology, because we cannot do without it if
we want to do a scientific work.

Poincaré begins by expounding the following ‘definition’: if one calls p0 the prob-
ability that the considered mobile point starts from a region r0 with volume v0 and
p′0 the probability that it starts from another region r′0 with volume v′0, then

p0

p′0
=
v0

v′0
.

In particular, if r0 is a region with volume v, used as a reference, the probability
that the mobile point starting from r0 starts from a sub-region σ0 with volume w

is given by
w

rv
. Equipped with this notion, the mathematician wants to prove that

the initial conditions in r0 such that the trajectory does not reenter r0 more than k
times form a set with probability zero, no matter how large the integer k.

Earlier in his paper, Poincaré had proved that if r0, . . . , rn−1 were n regions with
the same volume v included in a common region with volume V , and if nv > kV ,
then it was necessary that there were at least k + 1 regions whose intersection was
nonempty. Indeed, if one supposes that all the intersections taken k + 1 by k + 1

were empty, one may write (in modern notation) that
n−1∑
i=0

1Iri ≤ k, hence nv ≤ kV

by integrating over the volume V .
Let us still suppose valid the hypothesis of the previous theorem which asserts

that the mobile point remains in a bounded region, in a portion of the space with
volume V , and let us take again the discrete step τ in time. Let us next choose

n sufficiently large so that n >
kV

v
. One may then find, among the n successive

consequents of a region r0 with volume v, k + 1 ones, denoted

rα0 , rα1 , . . . , rαk

with α1 < α2 < · · · < αk, having a nonempty intersection denoted by sαk
. Let us

now call s0 the αk-th antecedent of sαk
and sp, the p-th consequent of s0. If a mobile

point starts from s0, it will enter the regions

s0, sαk−αk−1
, sαk−αk−2

, . . . , sαk−α2 , sαk−α1 , sαk−α0

which, by construction, are all included in r0 (as for each 0 ≤ i ≤ k, the αi-th
consequent of sαk−αi

is in sαk
and therefore in rαi

) . One has therefore shown that
there are, in the considered region r0, initial conditions of trajectories which pass at
least k + 1 times through r0.

Let us eventually fix a region r0 with volume v. Let us consider, writes Poincaré,
σ0 the subset of r0 such that the trajectories issued from σ0 do not pass through r0

at least k + 1 times between time 0 and time (n − 1)τ ; denote by w the volume of
σ0. The probability pk of the set of such trajectories is therefore w/v.

By hypothesis a trajectory starting from σ0 does not pass k + 1 times through
r0 , and hence not through σ0. From the previous result, one has necessarily that
nw < kV and so that

pk <
kV

nv
.

No matter how large k may be, one may chose n large so that this probability can be
made as small as wanted. Poincaré, tacitly using the continuity of probability along
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a non increasing sequence of events, concludes that the probability of the trajectories
issued from r0 which do not pass through r0 more than k times between times 0 and
∞ is zero.

2.2 Kinetic theory of gases

As we have seen in the introduction, Poincaré in 1892 was not favorably disposed
towards the statistical description of thermodynamics. His polemics with Tait, from
which I quoted several passages, was closely tied to the mechanist spirit in which
Poincaré had been educated. Statistical mechanics, and in particular the kinetic the-
ory of gases, could not therefore pretend to be more than an ingenious construction
without an explanatory value. An important text revealing Poincaré’s thoughts on
the subject was published immediately afterwards, in 1893, in one of the first issues
of the Revue de Métaphysique et de Morale [65]. With a great honesty, Poincaré men-
tioned there the classical mechanical conception of the universe after Newton and
Laplace but also the numerous problems it encounters when it tries to explain numer-
ous practical situations of irreversibility as it is the case in the molecular agitation
of thermodynamics. Poincaré mentioned that the kinetic theory of gases proposed
by the English is the attempt la plus sérieuse de conciliation entre le mécanisme
et l’expérience ([65], p.536). Nevertheless, he stated that numerous difficulties still
remained, in particular for reconciling the recurrence of mechanical systems (un
théorème facile à établir (sic) wrote the author who may have adopted a humouris-
tic posture) and the experimental observation of convergence towards a stable state.
The manner in which the kinetic theory of gases pretends to evacuate the problem by
invoking that what is called a stable equilibrium is in fact a transitory state in which
the system remains an enormous time did not seem to convince our hero. However,
at least, the tonality adopted in [65] is obviously calmer than in the exchanges with
Tait. Another point which can be observed is that, as in other Poincaré’s works we
shall comment on, Boltzmann was the great absent, never mentioned by Poincaré.
This absence, difficult to imagine unvoluntary, remains unexplained, including for
Von Plato in [89], p.84.

In 1892, Lord Kelvin presented a note [46] to the Royal Society (of which he
was then the president) with an unambiguous title. The note presented an ad hoc
example demonstrating, in a supposedly decisive way, the failure of the equipartition
of the kinetic energy following Maxwell and Boltzmann’s theory. The two physicists
had indeed deduced the equipartition of kinetic energy as a basic principle of their
theory: the average kinetic energies of several independent parts of a system are in
the same ratio as the ratio of the number of degrees of freedom they have. This
result was fundamental in order to establish a relation between kinetic energy and
temperature.

In his short paper, Kelvin imagined a mechanical system including three points
A,B,C, which are in motion in this order on a line KL, such that B remains almost
motionless and only reacts to the shocks produced by A and C on one side and
the other, whereas the mechanical situation on both sides is different because of a
repulsive force F acting on A and pushing it towards B (in the zone KH of the
scheme) while C can move freely.

The total energy of C is balanced by the energy of A, but, as the latter includes a
non negative potential energy term due to the repulsive force, Kelvin triumphantly
concluded that the average kinetic energy of A and C cannot be equal, as they
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Figure 1: Kelvin’s construction in [46].

should have been following Maxwell’s theory as the two points have each one degree
of freedom. Kelvin commented

‘It is in truth only for an approximately “perfect” gas, that is to say, an
assemblage of molecules in which each molecule moves for comparatively
long times in lines very approximately straight, and experiences changes of
velocity and direction in comparatively very short times of collision, and
it is only for the kinetic energy of the translatory motions of the molecules
of the “perfect gas” that the temperature is equal to the average kinetic
energy per molecule.’ ([46], p.399)

Reading this note encouraged Poincaré, as he himself noted, to reflect on the ki-
netic theory of gases, to understand whether Kelvin’s objection was well founded
and to draw his own conclusions on the subject. At this precise moment when he
had been attacked by Tait, the title of the note by such an authority as Kelvin had
impressed him and he may have thought he would find there a decisive argument
confirming his own skepticism. And so in 1894 Poincaré published his first paper on
the kinetic theory of gases [66]. Poincaré began by presenting a long general expo-
sition of the fundamental bases of Maxwell’s theory. This survey seemed necessary
in the first place because the kinetic theory of gases had been much less studied by
French physicists than by English physicists4. These bases were firstly the ergodic
principle, called the postulate of Maxwell by Poincaré, which asserts that, whatever
may be the initial situation of the system, it will always pass an infinity of times as

4‘[. . . ] a été beaucoup moins cultivée par les physiciens français que par les anglais.’ ([66], p.513)
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close as desired to any position compatible with the integrals of the motion; from
this postulate Maxwell drew a theorem whose main consequence was precisely the
point contested by Kelvin: in a system for which the only integral is the conservation
of the kinetic energy, if the system is made up of two independent parts, the long
run mean values of the kinetic energy of these two parts are in the same ratio as
their numbers of degrees of freedom.

Poincaré began by observing, as he had already done in [65], that the recurrence
theorem of [61] contradicted Maxwell’s postulate along the recurrent solutions. It
was therefore at least necessary to add that the postulate was true except for some
initial conditions. 5 As von Plato comments [89] (p.84), we have here the formulation
usually given today for the ergodic principle, in order to take into account the
possibility of exceptional initial conditions. Once again, although this idea was also
present in Boltzmann’s works, the Austrian scientist was nowhere mentioned.

But it was above all the objection contained in Kelvin’s paper that Poincaré desired
to analyze in detail in order to check whether it contradicted Maxwell’s results or
not. From the situation of the system A, C, Poincaré built a representative geometric
model: a point M in a phase space with three dimensions whose first coordinate is
the speed of A, the second the speed of C and the third the abscissa of A. Using
Kelvin’s system conditions, he could define S, a solid of revolution, from which M
cannot exit in the course of time. Naturally, two small regions included in S with the
same volume can be entered a different number of times with the same total sojourn
time because the speed in these volumes could be different. Poincaré introduced the
notion of the density of the trajectory in a small element in S with volume v as the

quotient
t

v
, where t is the total time spent by the trajectory in v ([66], p.519). Using

this representation, Poincaré could define the average value of the kinetic energy for
A as the moment of inertia of S with respect to the plane yz, for C as the moment
of inertia with respect to xz, the ‘masses’ in S being distributed by the previously
defined density. The solid S being one of revolution, these moments of inertia are
equal: the fine analysis made by Poincaré therefore shows that one can recover the
equipartition result by taking the average of the kinetic energies not uniformly over
time but taking into account the phases of the motion and their duration.

Poincaré concluded his paper with a commentary that may seem paradoxical in
the light of the result he had just obtained. While disputing the decisive character
of Kelvin’s arguments, Poincaré insisted that he nevertheless shared his colleague’s
skepticism. To give weight to his comment, he slightly transformed Kelvin’s example
in order to produce an ad hoc situation for which there really is a problem. In fact,
some lines earlier, Poincaré had emphasized what was for him the fundamental point:

‘I believe that Maxwell’s theorem is really a necessary consequence of his
postulate, as soon as one admits the existence of a mean state; but the
postulate itself should include many exceptions.’6

For Poincaré, it was therefore the good definition of the average states which could
create a problem, and it was on the search for a satisfactory definition that the efforts
of those who wished to consolidate the bases of statistical mechanics must focus.

5‘[. . . ] sauf pour certaines conditions initiales exceptionnelles’ ([66], p.518)
6‘Je crois que le théorème de Maxwell est bien une conséquence nécessaire de son postulat, du moment qu’on

admet l’existence d’un état moyen; mais le postulat lui-même doit comporter de nombreuses exceptions.’ ([66],
p.521)
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We shall see later that it was indeed in this direction that Poincaré, and later Borel,
were going to focus their attention.

2.3 Limit theorems

The textbook [68] published in 1896 constitutes the first of Poincaré’s publications
dealing explicitly with the theory of probabilities. It was, as already mentioned, the
transcription of lectures read by Poincaré during the academic year 1893-94 at the
Sorbonne, written by a former student of the École Normale Supérieure, who became
an actuary and who probably wished to learn with the master; it was published by
Georges Carré. This first edition does not have a preface, and presents itself as a
succession of 22 lectures, more or less connected to each other, probably reflecting
Poincaré’s delivered lectures. It is 274 pages long, compared to the 341 pages of the
second edition of 1912 [76], giving an idea of the non negligible complements Poincaré
had added. In its initial form, Poincaré’s book appears as a successor to Bertrand’s
treatise [9], the framework of which it follows. Nevertheless, these textbooks really
have different spirits, and we must leave it at that for the moment. However, as
Poincaré’s textbook has been discussed in several papers in detail, especially in [83]
and [25], I shall restrict myself to just a few remarks. Let us note that the authors
just mentioned focused on the 1912 second edition, which naturally benefited from
reflections of Poincaré after that very important period of the mid-1890s, when he
was beginning to investigate the mathematics of randomness, so that this may not
accurately reflect the mathematician’s earlier state of mind in 1896. I choose here,
in contrast, to focus on the original 1896 version.

An important part of Poincaré’s textbook is devoted to the use of probability the-
ory as model of measurement error in the experimental sciences. In his commentary
on his own works ([77], p.121), Poincaré indeed wrote

‘The Mathematical Physics Chair has for its official title: Calculus of Prob-
ability and Mathematical Physics. This connexion can be justified by the
applications that may use this calculus in all the experiments of physics;
or by those it had found in the kinetic theory of gases. Anyway, I dealt
with probability during one semester and my lectures had been published.
The theory of errors was naturally my main aim. I needed to make explicit
reservations about the generality of the ‘law of errors’; but I tried to justify
it, in the case it remained legitimate, by new considerations.’7

In [68], the analysis of the law of errors begins on page 147 and occupies most part
of the following chapters. Poincaré gives some comments on the manner in which
the Gaussian character of the error had been obtained until then:

‘[This distribution] cannot be obtained by rigorous deductions; many a
proof one had wanted to give it is rough, among others the one based
on the statement that the probability of the gaps is proportional to the
gaps. Everyone believes it, however, as M. Lippmann told me one day,

7‘La Chaire de Physique Mathématique a pour titre officiel : Calcul des Probabilités et Physique Mathématique.
Ce rattachement peut se justifier par les applications que peut avoir ce calcul dans toutes les expériences de Physique;
ou par celles qu’il a trouvées dans la théorie cinétique des gaz. Quoi qu’il en soit, je me suis occupé des probabilités
pendant un semestre et mes leçons ont été publiées. La théorie des erreurs était naturellement mon principal but.
J’ai dû faire d’expresses réserves sur la généralité de la “loi des erreurs”; mais j’ai cherché à la justifier, dans les cas
où elle reste légitime, par des considérations nouvelles.’
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because the experimenters imagine it is a mathematical theorem, and the
mathematicians that it is an experimental fact.’8

Much of Poincaré’s treatment of the law of errors, in particular the convergence
to a Gaussian distribution of a Bayesian approach of the measurement process , was
in fact already contained in Laplace, at least under a sketchy form. Once again, it
is not really possible to precise what Poincaré exactly knew. For complements on
what is today known as the Bernstein-von Mises theorem see [87] (p.140 et seq. and
the references).

Let us consider observations of a phenomenon denoted by x1, x2, . . . , xn. The true
measure of the phenomenon under study being z, the a priori probability that each
of these n observations belong to the interval [xi, xi + dxi] is taken under the form

ϕ(x1, z)ϕ(x2, z) . . . ϕ(xn, z)dx1dx2 . . . dxn

Let finally ψ(z)dz be the a priori probability so that the true value belongs to the
interval [z, z + dz[.

Supposing that ψ is constant and that ϕ(xi, z) can be written under the form
ϕ(z − xi), Gauss had obtained the Gaussian distribution by looking for the ϕ such
that the most probable value was the empirical mean

x =
x1 + · · ·+ xn

n
.

Poincaré recalled ([68], p.152) Bertrand’s objections to Gauss’ result; Bertrand had
in particular disputed the requirement that the mean be the most probable value
while the natural condition would have been to require it to be the probable value
(which is to say the expectation).

Poincaré thus considered the possibility of suppressing the different Gauss’ condi-
tions. Keeping firstly the hypothesis that the empirical mean be the most probable
value ([68], p.155 - see also more details in [83], p.149 et seq.), he obtained as the
form of the error function

ϕ(x1, z) = θ(x1)eA(z)x1+B(z),

where θ and A are two arbitrary functions, B being such that the following differ-
ential equation is satisfied A′(z)z +B′(z) = 0.

Considering next Bertrand’s objection, Poincaré looked next at the problem that
arises when one replaces the requirement most probable value by probable value. At
this place ([68], p.158) he gives a theorem he would use subsequently a number of
times: if ϕ1 and ϕ2 are two continuous functions, the quotient∫

ϕ1(z)Φp(z)dz∫
ϕ2(z)Φp(z)dz

tends, when p→ +∞, towards
ϕ1(z0)

ϕ2(z0)
,

8‘[Cette loi] ne s’obtient pas par des déductions rigoureuses; plus d’une démonstration qu’on a voulu en donner
est grossière, entre autres celle qui s’appuie sur l’affirmation que la probabilité des écarts est proportionnelle aux
écarts. Tout le monde y croit cependant, me disait un jour M. Lippmann, car les expérimentateurs s’imaginent que
c’est un théorème de mathématiques, et les mathématiciens que c’est un fait expérimental.’([68], p.149)
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where z0 is a point in which Φ attains its unique maximum. Following his custom,
which caused Mittag-Leffler to dispair, Poincaré’s writing was somewhat laconic; he
did not give any precise hypothesis, or a real proof, presenting the result only as an
extrapolation of the discrete case.

In any case, considering next

Φ(x1, . . . , xn; z) = ϕ(x1, z)ϕ(x2, z) . . . ϕ(xn, z),

Poincaré made the hypothesis that p observations resulted in the value x1, p resulted
in x2, . . . , p resulted in xn, where p is a fixed and very large integer ([68], p.157).

The condition requiring the mean to be equal to the expectation can therefore be
written as ∫ +∞

+∞ zψ(z)Φp(x1, . . . , xn; z)dz∫ +∞
+∞ ψ(z)Φp(x1, . . . , xn; z)dz

=
x1 + · · ·+ xn

n
.

Applying the previous theorem, under the hypothesis that Φ has a unique maximum
in z0, one has z0 as the limit of the left-hand side, which must therefore be equal to
the arithmetic mean x. One thus is brought back to the previous question under the
hypothesis that Φ should be maximal at x. Under the hypothesis that ϕ depends
only on the discrepancies z − xi Poincaré obtained again the Gaussian distribution.
It is remarkable that the form of the a priori probability of the phenomenon ψ is
not present in the result. This lack of dependence on the initial hypothesis might
perhaps have been the inspiration for his method of arbitrary functions, described
later.

Poincaré examined next the general problem by suppressing the constraint that ϕ
depends only on the discrepancies, and obtains the following form for ϕ

ϕ(x1, z) = θ(x1)e−
∫
ψ(z)(z−x1)dz

where
∫
ψ(z)(z − x1)dz is the primitive of ψ(z)(z − x1) equal to 0 in x1.

He argued ([68], p.165) that the only reasonable hypothesis was to take ψ = 1 as
there was no reason to believe that the function ϕ, which depends on the observer’s
skillfulness, would depend on ψ the a priori probability for the value of the measured
quantity. For θ on the contrary, there was no real good reason to suppose it constant
(in which case the Gaussian distribution would be again obtained). Poincaré took the
example of the meridian observations in astronomy where a decimal error had been
detected in practice: the observers show a kind of predilection for certain decimals
in the approximations.

Poincaré gave a somewhat intricate justification for focusing on the mean because
it satisfies a practical aspect: as the errors are small, to estimate f(z) by the mean
of the f(xi) was the same as estimating z by the mean of the xi, as immediately
seen by replacing f(x) by its finite Taylor expansion in z,

f(z) + (x− z)f ′(z).

In any case, the major justification was given in the following chapter (Qua-
torzième leçon, [68], p.167) where the consistency of the estimator x was studied
using an arbitrary law for the error, based on the law of large numbers. After having
recalled the computation of the moments for the Gaussian distribution, Poincaré
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implemented the method of moments in the following way. Suppose that y, with
distribution ϕ, admits the same moments as the Gaussian distribution. One then
computes the probable value of e−n(y0−y)2 , where n is a given integer. Decomposing

e−n(y0−y)2 =
∞∑
p=0

Apy
2p,

one obtains ∫ +∞

−∞

√
h/πe−hy

2

e−n(y0−y)2dy =
∞∑
p=0

Ap E(y2p),

letting E(y2p) denote the expectation of y2p (the odd moments are naturally equal
to zero) and h a positive constant. The same decomposition is valid by hypothesis
if ϕ replaces the Gaussian distribution in the integral. One has therefore∫ +∞

−∞

√
h/πe−hy

2
e−n(y0−y)2dy∫ +∞

−∞ ϕ(y)e−n(y0−y)2dy
= 1,

and, using again his theorem on the limits, Poincaré could obtain, letting n tend to
infinity, √

h/πe−hy
2
0 = ϕ(y0).

Now, let us consider again that n measures

x1, . . . , xn

of a quantity z were effectuated, and let us denote by yi = z − xi the individual
error of the i-th measure. Let us suppose that the distribution of an individual error
is arbitrary.

Poincaré began by justifying the fact of considering the mean

y1 + · · ·+ yn
n

of the n individual errors as error. Indeed, he explained that the mean becomes more
and more probable as the probable value of its square is

1

n
E(y2

1),

and so, when n becomes large, the probable value of(
y1 + · · ·+ yn

n

)2

tends towards 0 in the sense that the expectation

E[(z − x)2]

tends towards 0 (this is the L2 version of the law of large numbers). As Sheynin
observes ([83], p. 151), Poincaré made a mistake when he attributed to Gauss this
observation as the latter had never been interested in the asymptotic study of the
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error. Poincaré anyway then used his method of moments in order to prove that the
distribution of the mean is Gaussian when the individual errors are centered and do
not have a significant effect on it.

In the second 1912 edition [76], Poincaré significantly added a section ([76], n◦144
pp. 206-208) devoted to a proof of the central limit theorem and obtaining a justifi-
cation a posteriori de la loi de Gauss fondée sur le théorème de Bernoulli. Poincaré
introduced the characteristic function as

f(α) =
∑
x

pxe
αx

in the finite discrete case, and

f(α) =

∫
ϕ(x)eαxdx

in the case of a continuous density. In his mind, α was a real or a complex number
and neither the bounds of the sum or the integral, nor the issue of convergence were
mentioned. Poincaré’s considerations on the Fourier and Laplace transforms can in
fact already be largely found in Laplace, though the denomination characteristic
function is Poincaré’s. Fourier inversion formula was used by Poincaré since his lec-
tures on analytical theory of heat [67] (see in particular the Chapter 6, p.97). As
usual, there is not any mention of Laplace in Poincaré’s text. It is reliable to believe
that Laplace had introduced the characteristic functions for probability distribu-
tions after having studied Fourier’s treaty (see [22]). In the absence of proof that
Poincaré knew Laplace’s method, one may speculate that he had had the same kind
of illumination as his predecessor.

Thanks to Fourier’s inversion formula, Poincaré stated that the characteristic func-
tion determined the distribution. He could thus obtain simply that a sum of inde-
pendent Gaussian variables followed a Gaussian distribution and, by means of a
heuristic and again quite laconic proof, that the error resulting from a large number
of very small and independent partial errors9 was Gaussian. It seems difficult to
award the status of a proof of the central limit theorem to these few lines, a proof
for which one had to await, as is well known, some ten years with the works of Linde-
berg and Lévy ([50], [49]). Besides, in this intriguing but rather hasty complement,
Poincaré showed his complete ignorance of the Russian research on limit theorems
(Čebyčev, Markov et Lyapunov) which already gave some well established versions
of the theorem.

In the sixteenth chapter of [68], (n◦147 of the second edition [76] p.211), Poincaré
the physicist still had reservations about what would be an indiscriminate use of
the theories he had just described, which depended so heavily on a mathematical
idealization (the absence of systematic errors, too smooth hypotheses. . . ). He wrote,
not without irony: ‘I pled the best I could in favor of the Gaussian distribution.’10

He then focused on the study of exceptional cases and completed his textbook by
a detailed examination of the least square method; on these subjects, I refer the
interested reader to the already quoted paper by Sheynin ([83]).

9‘[. . . ] résultante d’un très grand nombre d’erreurs partielles très petites et indépendantes.’ ([76], p.208)
10‘J’ai plaidé de mon mieux jusqu’ici en faveur de la loi de Gauss.’
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2.4 The great invention: the method of arbitrary functions

Although he is considered, and rightly so, as the father of conventionalism in the sci-
entific method, it would be simplistic to think that this position covers all Poincaré’s
philosophy of research. Admittedly, from the very beginning, the latter had repeated
that any use of probability must be based on the choice of a convention one had
to justify. Thus, if one throws a dice, one is generally led to take as a convention
the attribution of a probability of 1/6 for each face to appear. However all the ar-
guments used to justify this convention do not have the same value, and choosing
well among them is also part of sound scientific process. We cannot indeed be satis-
fied with common sense: Bertrand amused himself, when he constructed his famous
paradoxes about the choice of a chord in a circle, to show that the result depended so
closely on the chosen convention that it lost meaning and the calculus of probability
in such situations was reduced to more or less ingenious arithmetic. The risk was to
condemn the calculus of probability altogether as a vain science and conclude that
our instinct obscur had deceived us ([69], p.262).

And yet, wrote Poincaré, without this obscure instinct science would be impossible.
How can one reconcile the irreconcilable?

Until then the common practice was to cite Laplace and use the principle of
insufficient reason as a supporting argument. A dubious one in fact as in practice
it amounts to assign a value to the probability only by supposing that the different
possible cases are equally probable since we do not have any reason to assert the
contrary. How could a scientist such as Poincaré, who was looking for a reasonably
sound basis for using the mathematics of randomness, be satisfied with such a vicious
circle?

Let us observe in passing that he was far from being the first to deal with such
a question. And besides, we have already seen that after Laplace’s death, several
weaknesses of his approach had been underlined: the vicious circle of the definition
of probability by possibility, the absence of an answer to the general question of the
nature of the probabilities of causes when applying Bayes’s principle, let alone the
confusions in ill-considered applications, in particular the judicial ones that we have
already mentioned. . . A substitute was sought for Laplace’s theory. This problem of
defining the natural value of probabilities had in particular obsessed German psy-
chologists and physiologists throughout the second half of the 19th century ([45]).
Von Kries in particular succeeded, a good ten years before Poincaré, in constructing
the foundations of a method allowing one to justify the attribution of equal proba-
bilities to the different outcomes of a random experiment repeated a large number
of times ([44]). Poincaré, without question completely ignored these works, all the
more because they did not belong stricto sensu to the sphere of mathematics.

The question thus for Poincaré was to show that in some important cases, one
may consider that the equiprobability of the issues in a random experiment was the
result not only of common sense but also of mathematical reasoning, and thereby
avoid the criticism of Laplace’s principle.

The idea developed by Poincaré, as earlier by von Kries, was that the repetition of
the experience a large number of times ends in a kind of asymptotic equilibrium, in
a compensation, so that the hypothesis of equiprobability becomes reasonable even
if one absolutely ignores what had been the situation at the beginning.

As soon as in the 1780s, Laplace had already observed that in many cases the initial
distribution asymptotically vanishes when one repetedly applies Bayes method. For
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complements, the interested reader may consult Stigler’s translation of Laplace and
comments ([85]) and also [20], p.144. At the end of his paper [62], Poincaré had
briefly mentioned that the convention he had adapted to define the probability in
the study of the stability of the three-body problem was by no mean necessary :
the result (a probability equal to zero for non recurrent trajectories) remains true
whatever the choice of this convention. Poincaré’s aim in subsequent papers was to
show that in more general situations, the knowledge of the probability distribution
at the origin of time is not needed, as this distribution is not present in the final
result. Two examples serve repetedly as illustration in the various texts ([69], [74]
specially) in which he discussed his method : the uniform distribution of the so-
called small planets on the Zodiac and the probabilities for the red and black cells
of a roulette wheel. In
citePoincare1899, p. 266, Poincaré observed the proximity of these two situations.
The systematic exposition of arbitrary functions as a fundamental method of the
theory of probability seems due to Borel ([15], p.114) but the expression méthode
des fonctions arbitraires was later generally used in the context of Markov chains
(see in particular [35]).

Let us first follow Poincaré’s comments on the second, and simpler case of roulette
([69], p.267). The ball, thrown with force, stops after having turned many times
around the face of a roulette wheel regularly divided into black and red sectors.
How can we estimate the probability that it stops in a red sector?

Poincaré’s idea is that, when the ball goes for a large number of turns before
stopping, any infinitesimal variation in the initial impulsion can produce a change
in the color of the sector where the ball stops. Therefore, the situation becomes
the same as considering that the face of the game is divided into a large number
of red and black sectors. I make, said Poincaré, the convention that the probability
for this angle to be fall between θ and θ + dθ equals ϕ(θ)dθ, where ϕ is a function
about which I do not know anything (as it depends on the way the ball had been
moved at the origin of time, an arbitrary function). Poincaré nevertheless asserts,
without any real justification, that we are naturally led to suppose ϕ is continuous.
The probability that the ball stops in a red sector is the integral of ϕ estimated on
the red sectors.

Let us denote by ε the length of a sector on the circumference, and let us consider
a double interval with length 2ε containing a red and a black sector. Let then M and
m be respectively the maximum and the minimum of ϕ on the considered double
interval. As we can suppose that ε is very small, the difference M −m is very small.
And as the difference between the integral on the red sectors and the integral on the
black sectors is dominated by

π/ε∑
k=1

(Mk −mk)ε,

(where Mk and mk are respectively the maximum and the minimum on each double
interval k of the subdivision of the face with length 2ε), this difference is small and
it it thus reasonable to suppose that both integrals, whose sum equals 1, are equal
to 1/2.

Once again, Poincaré’s writing is somewhat sloppy. He emphasized the importance
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of the fact that ε was small with respect to the total angle swept,11 but without
giving much detail on how interpreting this fact. His brevity probably comes from
the parallel with the other example we shall now present - but was studied earlier
in the text by him.

The expression small planets designates the asteröıd belt present between Mars
and Jupiter which had been gradually discovered until the end of the 19th century.
The first appearance of questions of a statistical type about these planets seems to go
back to the twelfth chapter of the 1896 textbook ([68], p. 142), where Poincaré asked
how one can estimagte the probable value of their number N . For that purpose, he
implemented a Bayesian method using the a priori probability for an existing small
planet to have been observed, this probability being supposed to have a density f .
It allowed him to carry out the computation of the a posteriori expectation of N .

In [69], Poincaré was interested in a remarkable phenomenon: the almost uni-
form distribution of the small planets in the different directions of the Zodiac.
Poincaré looked for arguments justifying this fact ([69], p. 265 et seq.). We know,
said Poincaré, that the small planets follow Kepler’s laws, but on the contrary we
absolutely ignore what was their initial distribution.

Let then b be the longitude of a small planet at the initial time, and a its mean
motion. At time t, its longitude is therefore at+b. As already said, one does not know
anything about the initial distribution and we suppose it is given by an arbitrary
function ϕ(a, b), once more assumed regular in some way: Poincaré wrote continuous
but in the sequel used it as a function of class C∞.

The mean value of sin(at+ b) is given by∫ ∫
ϕ(a, b) sin(at+ b)dadb.

When t becomes large, this integral becomes close to 0. Poincaré used in fact succes-
sive integrations by part using the derivatives of ϕ, whereas he could have used only
continuity and Riemann-Lebesgue’s lemma, but, as we have already seen, Poincaré
did not regard the refinement of his hypotheses as a major concern. A fortiori, for
every non zero integer n, the integrals∫ ∫

ϕ(a, b) sinn(at+ b) dadb, and

∫ ∫
ϕ(a, b) cosn(at+ b) dadb

are also very small for a large fixed t. Therefore, if one denotes by ψ the probability
density of the longitude at time t, one has for every n ≥ 1,∫

[0,2π[

ψ(u) sinnu du, and

∫
[0,2π[

ψ(u) cosnu du

very close to 0. The Fourier expansion of ψ leads to the conclusion that ψ is almost
constant, that is to say, that the longitude of a small planet is roughly uniformly
distributed on the Zodiac.

2.5 Cards shuffling

If the example of the small planets illustrates the sensitiveness to the initial condi-
tions, the example of the kinetic theory of gases is connected with the complexity of

11‘[. . . ] par rapport à l’angle total parcouru.’
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causes. The number of the molecules is so large, and they collide in so many ways,
that it is impossible to consider the system they form as simply describable by
classical mechanics. In 1902 the first textbook was published expounding the basic
principles of statistical mechanics, written by Gibbs ([36]). It developed two main ap-
plications for the new theory: in addition to the kinetic theory of gases, it introduced
the situation of mixing of two liquids (a drop of ink put in a glass of water) in order
to present the evolution of a system towards equilibrium. Hadamard, in 1906, had
written a review of Gibb’s book for the Bulletin des sciences mathématiques ([37]).
In order to illustrate this mixing situation, he invented the ingenious metaphor of
the shuffling of a pack of cards by a gambler evolving towards an equal distribution
of the possible permutations of the cards. Hadamard however did not propose any
mathematical treatment of the question and it was Poincaré, in the paper he pub-
lished in 1907 in Borel’s journal ([74] published again later in [75] and [76]), which
first analzyed the problem. He restricted himself in fact to the simplest case, that
of two cards. Let us suppose, said Poincaré, that one has a probability p that after
one permutation, the cards are still in the same order as before the permutation,
and q = 1 − p that their order is reversed. Let us consider there are n successive
permutations and that the gambler who shuffles the card earns a payoff S equal to
1 franc if the order after these n permutations is unchanged, and -1 franc if it is
reversed. A direct computation of the expectation shows that

E(S) = (p− q)n,

as, in a modern formulation, S can be written as

n∏
i=1

Xi

with the Xi = ±1 independent with distribution (p, q) representing the fact that the
i-th permutation has changed or not the order of the cards. Hence, except in the
trivial cases p = 0 or 1, E(S)→ 0 when n tends towards infinity, which amounts to
saying that the two states +1 and -1, and therefore the two possible orders, tend to
become equiprobable. It is interesting that Poincaré, for the recursive computation
of the expectation without first looking for the distribution of S, had been inspired
by several computations of expectations he found in Chapter III of Bertrand’s book
[9].

As mentioned by Poincaré, the tendency to uniformity remained true whatever the
number of cards but the démonstration serait compliquée. One may suppose that
Poincaré had already in 1907 the idea of the proof for the general case of n cards but
he wrote it only for the second edition of his textbook of probability in 1912, in the
first section of a chapter added to the book, entitled Questions diverses. Curiously,
Poincaré’s method of proof, contrary to what he had done in the case of two cards,
was not inspired by probabilistic reasoning but was connected to the theory of
groups. Though the Perron-Frobenius theory was already available (but probably
unknown to Poincaré), Poincaré refers to older works by Frobenius published in the
Sitzungsberichte of Berlin Academy between 1896 and 1901 and by Elie Cartan [24]
he had himself extended in his paper [71] (consult [82] and [25] for details). We shall
see in the next part that this non probabilistic aspect did not escape Borel, who
proposed an alternative approach. As for card shuffling, it enjoyed a spectacular
renewed interest in the 1920s.
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3 Third part: an uneven heritage

We now tackle the heritage of Poincaré’s ideas about randomness and probability.
This is an intricate question. Indeed, Poincaré cannot be considered as a full prob-
abilist in the way the word can be applied to mathematicians of later generations
such as Paul Lévy and Andrei Nikolaevich Kolmogorov. As we have already men-
tioned, these studies on probability constitute only a very small island in the ocean
of the mathematician’s production. Moreover, it is rather difficult to locate a very
precise result, a theorem, concerning the theory of probability which can be specif-
ically credited to Poincaré. His primary goal was to refine already existing results
or to explore new aspects and new questions while not feeling compelled to give
them a complete structure. We should again repeat here that in this domain more
than any other, it was Poincaré whom Poincaré wanted to convince, and therefore
his works dealing with probability, including his philosophical texts, often take on
a rambling tone, written following his train of thoughts, often slightly talkative, il-
lustrating Picard’s opinion (as reported by K. Popoff): he did not know the adage
pauca sed matura12. As Bru notes ([20], p. 155), everyone at that time had read
Poincaré. But one has the impression that concerning his works on probability, few
people understood what he wrote.

3.1 Borelian path

Émile Borel was unquestionably the main exception. Not only he had read and
understood, but he was about to make the subject his own in a spectacular way, so
much so that he may be regarded as the first French probabilist of the twentieth
century. We shall examine how this passing of the baton took place between the
master and his young disciple.

It must firstly be said that this probabilistic turn of Émile Borel was one of the
most singular change one could observe in a mathematician around 1900. After he
initiated a profound transformation of the methods in the theory of functions, Borel
became a star of mathematical analysis in France. Nothing seemed to predispose him
to take the plunge and to devote important efforts to study, refine and popularize the
calculus of probability whose dubious reputation in the mathematical community
- on which we commented above - might have led to rebuke. The context of this
Borel’s turn since 1905, the date of publication of his first work in the domain, had
been studied in detail several times, for instance in the papers [32] and [58]. The
main difference which can be found between the discovery of probability by Poincaré
and by Borel is that, for the latter, it arose from reflections within the mathematical
field and more specifically by considerations on the status of mathematical objects
- in particular about real numbers -. In Borel, during the years just preceding 1900,
we note indeed a greater and greater distance from Cantorian romanticism and its
absolutist attitude, as emphasized by Anne-Marie Décaillot in her beautiful book on
Cantor and France ([31], p. 159). Borel gradually replaced this idealistic vision, which
no longer satisfied him, by a realism colored with a healthy dose of pragmatism: the
probabilistic approach appeared then to Borel as an adequate mean to confront
with various forms of reality: mathematical reality first and then physical reality
and practical reality. . .

12‘Il ne connaissait pas l’adage pauca sed matura.’ ([79], p. 89)



Poincaré, 1912-2012, Vol. XVI, 2012 Poincaré’s Odds 197

The best synthesis summing up Borel’s spirit about the quantification of random-
ness can be found in Cavaillès’ text [27] published in the Revue de Métaphysique et
de Morale; it should be seen, at least in part, as a commentary on Borel’s fascicle
about the interpretation of probabilities [18] that completed the great enterprise
of the Traité du Calcul des Probabilités et de ses Applications begun in 1922. As
Cavaillès lyrically put it ([27], p.154), probabilities appear to be the only privileged
access to the path of the future in a world which is no longere equipped with the
sharp edges of certitude, but presents itself instead as the hazy realm of approxima-
tions. Borel, at the moment of his probabilistic turn thirty years earlier, expressed
himself similarly when he asserted that a coefficient of probability constituted the
clearest answer to many questions, an answer which corresponded to an absolutely
tangible reality, and when he was ironic about the minds who showed reluctance,
telling that they preferred certitude and would prefer maybe that 2 plus 2 were 5.
13

I refer the reader to the aforementioned studies for precise details on these ques-
tions. What I would like to consider here is how Borel had combined his research
on calculus of probability with the considerations of his predecessor. From his very
first paper, Borel announced that he adopted the conventionalism of Poincaré ([13],
p.123 ). But his aim was to illustrate the role that the (then novel) Lebesgue integral
and measure theory could play, after he discovered with amazement their use in [94]
by the Swedish mathematician Anders Wiman (on this subject, see [32]).

‘The methods adopted by Mr. Lebesgue allow us to examine [. . . ] questions
of probability that appear inaccessible to the classical methods of integra-
tion. Moreover, in the simpler cases, it is sufficient to use the theory of
those sets I called ‘measurable’, and which Mr. Lebesgue had later named
‘measurable (B)’; the use of this theory of measurable sets for the calcu-
lation of probability was first made, to my knowledge, by Mr. Wiman.’14

I shall not deal here with the radical transformations the Lebesgue integral brought
to analysis at the beginning of the twentieth century. For a broad overview, one
consult [40]. Nevertheless, for the sake of completeness, let us say at least a few
words about Borel’s role in the elaboration of this theory.

In his thesis dealing with questions of the extension of analytic functions, Borel
invented a new concept of analytic extension, more general than that of Weierstrass,
using a great deal of geometric imagination. In the course of his proof, he proved
that a countable subset of an interval can be covered by a sequence of intervals
with total length as small as one wants. This was probably the first appearance of
a σ-additivity argument for the linear measure of sets. In subsequent years, Borel
considerably fleshed out his construction, in particular in his work [12], by intro-
ducing the notion of measurable set and of measure based on σ-additivity. These
concepts had however a limited extension with Borel as he considered only explicit
sets obtained by countable unions and complementary sets, forcing him to make the
shaky suggestion that one should attribute a measure inferior to α to any subset of
a measurable set with measure α.

13‘[. . . ] peut-être aussi que 2 et 2 fissent 5.’
14‘Les méthodes de M. Lebesgue permettent d’étudier [...] des questions de probabilités qui paraissent inaccessibles

par les procédés d’intégration classique. D’ailleurs, dans les cas particuliers les plus simples, il suffira de se servir de
la théorie des ensembles que j’avais appelés mesurables et auxquels M. Lebesgue a donné le nom de mesurables (B);
l’application de cette théorie des ensembles mesurables au calcul des probabilités a été, à ma connaissance, faite
pour la première fois par M. Wiman.’ ([13], p. 126)
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One had to wait for Lebesgue’s thesis and the publication of his Note [48], in which
he introduced a new conception for integration, for the notion of measurable set to
reach its complete power, on which is based the remarkable flexibility of the integral
exploited by Borel in his paper [13]. He showed in particular there how the use of
Lebesgue’s integral can allow one to give a meaning to some questions formulated in
a probabilistic way; one of the most simple is for example assigning zero probability
to the choice of a rational number when drawing a real number at random from
the interval [0,1]. Let us insist on the fact that for Borel, the critical aspect was
more that the Lebesgue integral allowed to give a meaning to the question than
that it gave the answer. We see there Borel being absolutely in line with Poincaré’s
conventionalism, but the choice of the convention (identifying the probability with
the measure of a subset of [0,1]) is based on mathematical consideration.

However it is above all in his long paper of 1906 on the kinetic theory of gases
([14]) that Borel would fit in Poincaré’s heritage, at the same time introducing new
considerations showing that he was also striking out on his own. He himself insisted
himself in a number of places on the difference in his approach from that of Poincaré’s
([14], p.11, note 2).

Borel’s aim was to provide a genuine mathematical model for Maxwell’s theory in
order to satisfy mathematicians.

‘I would like to address all those who shared Bertrand’s opinion about
the kinetic theory of gases, that the problems of probability are similar to
the problem of finding the captain’s age when you know the height of the
mainmast. If their scruples are partly justified because you cannot blame
a mathematician for his love of rigor, it nevertheless does not seem to me
impossible to satisfy them. This is the aim of the following pages: they
do not bring any real advance in the theory from the physical point of
view; but perhaps they will result in convincing several mathematicians of
its interest, and, by increasing the number of researchers, will indirectly
contribute to its development. If this is the case, they will not have been
useless, independently of the aesthetic interest connected with any logical
construction.’ 15

Thus a reason for Borel’s agenda was that he regarded the various considerations of
Poincaré on the kinetic theory as being insufficient to convince the mathematicians.
Let us observe in passing that Poincaré, that same year 1906, wrote a new paper
for the Journal de Physique, where he studied the notion of entropy in the kinetic
theory of gases ([73]); there was probably no direct link between Poincaré’s and
Borel’s publications which treat different questions.

Borel began his paper by returning to one of the major themes of Poincaré, the
distribution of the small planets, but he approached it from a new angle (see below).
Then, he applied the results he obtained to the construction of a mathematical model
from which Maxwell’s law for the distribution of the speeds can be deduced. The

15‘Je voudrais m’adresser à tous ceux qui, au sujet de la théorie cinétique des gaz, partagent l’opinion de Bertrand
que les problèmes de probabilité sont semblables au problème de trouver l’âge du capitaine quand on connâıt la
hauteur du grand mât. Si leurs scrupules sont justifiés jusqu’à un certain point parce qu’on ne peut reprocher à un
mathématicien son amour de la rigueur, il ne me semble cependant pas impossible de les contenter.’

‘C’est le but des pages qui suivent : elles ne font faire aucun progrès réel à la théorie du point de vue physique;
mais elles arriveront peut être à convaincre plusieurs mathématiciens de son intérêt, et, en augmentant le nombre
de chercheurs, contribueront indirectement à son développement. Si c’est le cas, elles n’auront pas été inutiles,
indépendamment de l’intérêt esthétique présent dans toute construction logique.’ ([14], p. 10)
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fundamental idea of Borel is that in the phase space whose coordinates are the speeds
of n molecules, the sum of the squares of these speeds at a given time t is equal (or,
more exactly, proportional) to n times the mean kinetic energy, so that the point
representing the system of the speeds belongs to a sphere with a radius proportional
to
√
n. Borel went on with an asymptotic study of the uniform measure on the ball

with radius
√
n in dimension n. I refer the interested reader to [89], [90] et [56] for

details on that subject, and shall restrict myself to some comments on the first part
of [14], dealing with the small planets.

Considering a circle on which there are points representing the longitudinal po-
sition of the small planets, Borel starts from the following question: What is the
probability for all the small planets to be situated on the same half-circle fixed in
advance? As Borel noted, if one had a perfect knowledge of the positions of the
planets, there would be no reason to invoke probabilities as one could directly as-
sert whether the event was realized or not. He argued it was necessary to restate
the question so that it may get some well-defined probabilistic meaning in accord-
ing to a selected convention. The simplest convention would be to assume that the
probability for each planet to be on the chosen half-circle C1 be equal to the prob-
ability of being on the complementary half (and therefore equal to 1/2), and that
the different planets be situated independently with respect to each other. In which
case, naturally, if there are n planets, the desired result is 1/2n. However, if this
independence was more or less tacitly considered by Poincaré, Borel challenged it
as being questionable, the planets having clearly mutual influences ([14], p. 12), and
so he desired to drop this hypothesis. Progressively enlarging his initial problem, he
arrived to the following asymptotic formulation ([14], p. 15):

Problem C. - Knowing the mean motions of the n small planets to within
ε and knowing their initial positions, one denotes by ω the probability
so that, at a time t chosen at random in an interval a, b, each point P
corresponding be on C1. What is the limit towards which tends ω when
the interval a, b grows indefinitely?16

Borel could then implement a method of arbitrary functions in dimension n, with-
out supposing the initial independence of the motions of the planets, and prove that
asymptotically the desired probability was 1/2n, a type of ergodic theorem which
showed an asymptotic independence he would also show in the case of his model for
the kinetic theory of gases having Gaussian distributions as limits. A rather curious
detail is that the result given by Borel, proving the convergence of the uniform dis-
tribution on a sphere with radius

√
n in n dimensional space towards independent

Gaussian variables is today called Poincaré’s Lemma, even though it is entirely ab-
sent from the works of Poincaré (for complements about this strange fact, see [56]
and the references therein).

I had not been able to make out clearly whether Poincaré was ever interested in
the research and the work of his successor in the field of probability. The only sign
which might indicate at least a passing interest in them is the fact that he agreed to
write for the Revue du Mois the article “Le hasard” ([74]) on which we have already
touched more than once. But, to my best knowledge, there is no commentary on

16‘Problème C. - Connaissant à ε près les moyens mouvements des n petites planètes et connaissant exactement
leurs positions initiales, on désigne par ω la probabilité pour qu’à une époque t choisie arbitrairement dans un
intervalle a, b tous les points P correspondants soient sur C1. Quelle est la limite vers laquelle tend ω lorsque
l’intervalle a, b augmente indéfiniment?’ ([14], p. 15)
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Borel’s works appearing under Poincaré’s hand, and still more surprising if one
remembers Poincaré’s work at the beginning of the 1890s, no sign of the slightest
interest in measure theory as applied to the mathematics of randomness. Poincaré,
here also, remained on, but did not cross, the threshold of a domain he had helped
to create.

3.2 Markovian descent

In order to complete this outline about Poincaré’s probabilistic heritage, let us fi-
nally consider what may have been the most amazing consequence of his works: the
dazzling development, since the end of the 1920s, of the theory of Markov chains
and Markov processes. This story has already been set out in several texts and I
shall again restrict myself to comment on only its most salient points and to refer
the reader to elsewhere for more information.

We have already evoked Poincaré’s investigations of card shuffling and the fact
that in his proof of the convergence towards the uniform distribution in [76], he
used an algebraic method with limited exploitation of the probabilistic structure of
the model. Borel, an attentive reader, immediately realized this and wrote a note,
asking Poincaré to present it to the Academy for the Comptes-Rendus de l’Académie
des Sciences (the only letter from Borel placed online on the website of the Archives
Poincaré 17).

Borel wrote to his colleague on 29 December 1911:

‘I have just read the book you kindly sent to me; I do not need to tell you
how much the new parts interested me, in particular your theory of card
shuffling. I tried to make it accessible to those who are not familiar with
complex numbers, and it seems to me that I obtained thus a slightly more
general proposition. If it is new, and if you find it interesting, I would like
you to communicate the note I send with this letter.18

Poincaré acted immediately and the note was presented on 3 January 1912. Borel’s
method in [16] was in fact an extension of the elementary one used by Poincaré to
treat the case of two cards, where one looks at the evolution of the successive means
in the course of time in a way which would become standard to prove the exponential
convergence of an irreducible finite Markov chain towards its stationary distribution
(see for instance [10], p.131). Here the stationary distribution is uniform due to
the reversible character of the chain. Borel even gave himself the satisfaction of
introducing a dependence on time (the chain becoming inhomogeneous).

He considered the regular case where there exists an ε such that, at every moment,
the transition probabilities of one permutation to another at a subsequent time are
all greater than some ε. In Borel’s notation, let pj,n be the probability of the j-th
possible permutation of the cards before the n-th operation. Denoting by αj,h,n the

17http://www.univ-nancy2.fr/poincare/chp/
18‘Je viens de lire le livre que vous avez eu l’amabilité de me faire envoyer; je n’ai pas besoin de vous dire combien

les parties neuves m’ont intéressé, en particulier votre théorie du battage. J’ai essayé de la mettre à la portée de
ceux qui ne sont pas familiers avec les nombres complexes, et il m’a semblé que j’obtenais ainsi une proposition un
peu plus générale. Si elle est nouvelle, et si elle vous parâıt intéressante, je vous demanderai de communiquer la note
ci-jointe.’
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probability for Ah to be replaced by Aj during the n-th operation, one has

pj,n+1 =
h=k∑
h=1

αj,h,nph,n

with the constraint
∑k

h=1 αj,h,n = 1 where k denotes the number of possible permu-
tations. Let us immediately observe that Pn and pn, the largest and the smallest of
the pj,n, form two sequences, respectively nonincreasing and nondecreasing. Let P
and p denote their limits. For a given η > 0, one may choose n for which Pn ≤ P +η,
and therefore the pj,n are inferior to P + η. After N operations one can write

pj,n+N =
h=k∑
h=1

βj,h,nph,n ,
h=k∑
h=1

βj,h,n = 1

where the β. are the transition probabilities between time n and time n + N , each
being greater than ε by hypothesis.

Let us consider the smallest of the ph,n, ph0,n so that pn = ph0,n ≤ p. For the sake
of simplicity, let us denote by β its coefficient βj,h0,n; by hypothesis, β ≥ ε. Let us

observe that
∑h=k

h=1,h6=h0 βj,h,n = 1− β. Therefore, one can write, by choosing j such
that pj,n+N is superior or equal to P ,

P ≤ pj,n+N ≤ βp+ (1− β)(P + η) = P + (1− β)η − β(P − p)

and hence

P − p ≤ 1− β
β

η ≤ 1− ε
ε

η.

η being arbitrary small, one concludes that P = p and therefore that asymptotically
the pj,n become all equal to 1/k. Let us observe in passing that in these blessed years
when it was permitted to publish mistakes, Borel erred in writing his inequality,
considering ε instead of the number we called β, a fact which naturally did not
change anything in the final result.

Nobody seemed to have payed attention to Borel’s note: when these results were
rediscovered by Lévy and then Hadamard in the 1920s, neither of them had the
slightest idea of its existence (on this subject see the letters from Lévy to Fréchet
[6], pp.137 to 141) .

We must next skip five years and cover several hundreds of kilometers east in
order to see a new protagonist coming on stage, the Czech mathematician Bohuslav
Hostinský. Moreover, as if it were not enough that we must invoke an unknown
mathematician, we must first say a few words about an unknown philosopher. Indeed
the man who may have been, together with Borel, the most attentive contempora-
neous reader of Poincaré’s texts on probability was another Czech, the philosopher
Karel Vorovka (1879-1929) whose influence on Hostinský was decisive.

It is not possible here to discuss this singular figure in detail and I shall therefore
restrict myself to giving some elements explaining how he had got involved in this
melting pot. An interesting and very complete study on Vorovka was published in
Czech some years ago [59] and hopefully it will become more accessible in a more
widely known language. Some complements can also be found in [55] and in the
references therein. Two reasons explain this general ignorance of Vorovka: the fact
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that his works, mostly in Czech, were never translated, and also that having died
quite young, he had no time to collect his ideas in a large scale work. Placing himself
in the tradition of Bernhard Bolzano (1771-1848), the major figure of the philosoph-
ical scene in Prague during the 19th century, Vorovka looked for his own way in
an approach combining both his strong mathematical education and a rather strict
religious philosophy, an original syncretism of empiricism and idealism which had
close links with the way of thinking of the hero of the Czechoslovak independence,
T.G. Masaryk, and with the American pragmatist philosophy in which he had much
been interested.

The discovery of Poincaré’s philosophical writings at the beginning of the 20th
century was a real revelation for Vorovka: he drew from them the conviction that
the great shake-up of the scientific discoveries at the end of the 19th century, es-
pecially in physics, imposed to reconsider the question of man’s free-will on a new
basis. Vorovka showed a real originality in that he did not content himself with
principles, but closely studied the mathematical problems raised by the theory of
probability. He was a diligent reader of Bertrand’s textbook, of Borel’s texts, but
also of Markov’s works, publishing several works inspired by papers of the Russian
mathematician (see [53], [91], [92], [93]). At the time when he was granted tenure
at the Czech University in Prague, around the year 1910, Vorovka met the math-
ematician Bohuslav Hostinský, who had just returned to Bohemia after a research
period in Paris. In Hostinský’s own words (see [43]), it is through the discussions he
had with Vorovka that he learned about Poincaré’s works and he began to reflect
upon the calculus of probability, a domain somewhat remote from his original field
of research (differential geometry).

Following Jǐŕı Beránek, who was one of the last assistants to Hostinský after the
Second World War at the University of Brno, another source of the latter’s interest
in the calculus of probability is found in his reading of the 1911 paper by Paul and
Tanya Ehrenfest on Statistical Mechanics for the Encyklopädie der Mathematischen
Wissenschaften, translated and completed by Borel for the French version of the
Encyclopédie des Sciences Mathématiques [33].

Beránek wrote ([8]) that this paper, whose impact had been considerable,

‘put the emphasis on statistical methods in physics, next to geometrical
methods, mainly in connection with the works of L. Boltzmann on the ki-
netic theory of gases. On these were pursued discussions and controversies
about the exactness and legitimacy of the mathematical methods used.
Hostinský, as he himself mentioned later, began to study Boltzmann’s
works since 1915 and to be interested in the efforts made to provide pre-
cise mathematical bases to the kinetic theory. The central point of these
efforts was a new examination of some fundamental questions of the the-
ory of probability. Hostinský was especially impressed by the fundamental
works of H. Poincaré on the bases of probability calculus which opened the
way to new methods, necessary for the improvement of kinetic theory. For
this reason, around 1917, Hostinský began to seriously study questions on
the calculus of probability. . . ’19

19‘[. . . ] mettait l’accent sur les méthodes statistiques en physique, à côté des méthodes géométriques, princi-
palement en relation avec les travaux de L. Boltzmann sur la théorie cinétique des gaz. Sur ceux-ci furent menées
discussions et controverses, au sujet de l’exactitude et de la légitimité des méthodes mathématiques employées.
Hostinský, comme il l’a lui même mentionné, commença à partir de 1915 à étudier les travaux de Boltzmann et à
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The fact that Hostinský began to deal seriously with probability in 1917 is attested
by his own diary, kept in the archives of Masaryk’s university in Brno. Until 1917,
this diary does not contain anything outside comments on differential geometry. On
10 January 1917, Hostinský made some observations on the study of card shuffling
by Poincaré after [76] and on January 18th about problems of lottery. A first pa-
per appeared some months later in the Rozpravy České Akademie dealing with the
problem of Buffon’s needle [42].

The problem of Buffon’s needle is a classic of the calculus of probability and
Hostinský began by expounding it:

‘A cylindrical needle is thrown on an horizontal floor, on which are traced
equidistant parallels; the distance 2a between two successive parallels is
supposed larger that the length 2b of the needle. What is the probability
that the needle meets one of the parallels?’20

Buffon had proposed a solution whose numerical result 2b
πa

, in which π was present,
was a source of numerous propositions for an ‘experimental’ calculation of π. But, in
fact, Buffon’s proof was based on the hypothesis that the place where the center of
the needle was could be located anywhere on the plane, and Hostinský, in a second
critical part of his paper mentioned the dubious nature of such an hypothesis, just
as Carvallo had done before him in 1912. An experimental device could only take
the form of a limited size table, and it is then clear that, depending on the choice of
a small square C1 at the center of the table or another square C2 on the edge of the
table with the same area, the probability p1 that the centre of the needle belongs
to C1 and the probability p2 that it belongs to C2 cannot be the same: indeed, C2

is strongly subjected to the constraint that the needle does not fall from the table,
but C1 is very weakly so, so that intuitively one should have p1 >> p2.

Hostinský therefore considered it indispensable to suppose unknown the a priori
distribution of the localization of the needle. It is an unknown distribution (with
density) f(x, y)dxdy. But, mentioned Hostinský, Poincaré also, in the resolution of
several problems of probability, allowed the use of such an arbitrary density and
observed that in some situations this function would not be present in the final
result. Hostinský proposed to prove that if a domain A of the space is segmented in
m elementary domains with the same volume ε, and containing each a white part
with volume λε and a black part with volume (1 − λ)ε (where 0 < λ < 1), then
for any sufficiently regular function ϕ(x, y, z), the integral on the white parts will
asymptotically (when m tends to infinity) be equal to λ times the integral of ϕ on
A.

Hostinský then applied this result in order to propose a new solution to the problem
of the needle. Instead of Buffon’s unrealistic hypothesis, he supposed that the center
of the needle is compelled to fall in a square with side 2na, n ∈ N, with a density of
probability given by an unknown function ϕ (which he supposed to have bounded

s’intéresser aux efforts qui étaient faits pour donner à la théorie cinétique des bases mathématiques précises. Le point
central de ceux-ci nécessitait un nouvel examen de certaines questions fondamentales de la théorie des probabilités.
Hostinský fut particulièrement impressionné à ce sujet par les travaux fondamentaux de H. Poincaré sur les fonde-
ments du calcul des probabilités qui ouvraient la voie à de nouvelles méthodes nécessaires pour le perfectionnement
de la théorie cinétique. Pour cette raison, vers 1917, Hostinský commença à s’occuper sérieusement de questions de
calcul des probabilités. . . ’

20‘On lance une aiguille cylindrique sur un plan horizontal, où sont tracées des parallèles équidistantes; la distance
2a de deux parallèles voisines est supposée plus grande que la longueur 2b de l’aiguille. Quelle est la probabilité pour
que l’aiguille rencontre l’une des parallèles?’
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derivatives) and kept on the other hand the second hypothesis concerning the uni-
form distribution of the angle ω of the needle with respect to the parallels. This being
set out, dividing the domain of integration 0 < x < 2na, 0 < y < 2na, 0 < ω < π

2
in

n2 subdomains (by partitioning the values of x and y with respect to the multiples
of a), each small domain is itself divided into two parts (corresponding to the fact
that the needle intersects [white part] or does not intersect [black part] the corre-
sponding parallel). The ratio of their respective volumes to the total volume of the
subdomain is constant and equal, for the white part, to 2b

πa
. An application of the

previous theorem then allows one to assert that we obtain the desired probability,
at least asymptotically when n tends towards infinity.

In the Spring of 1920, seeking to benefit from the sympathy of French public
opinion towards the young Czechoslovakia, Hostinský had sent to Émile Picard the
translation of his paper and Picard proposed immediately (18 April 1920) to include
it in the Mélanges of the Bulletin des Sciences Mathématiques. This slightly revised
version of the paper of 1917 was published at the end of 1920 and Maurice Fréchet,
who had just arrived in Strasbourg and considered himself as a missionary [84] read
it with attention, as he mentioned in a subsequent letter to Hostinský, dated 7
November 1920, in which he congratulated him on having obtained such a positive
result.

As we have just explained, following Poincaré’s example, Hostinský required that
the function ϕ admit a uniformly bounded derivative in the domain A in order to
obtain an upper bound for the difference between the maximum and the minimum of
ϕ on each of the small domains. But Fréchet, when he read the paper, realized, and
rightly, that as only an estimation of the integrals of ϕ on these domains was needed,
the simultaneous convergence of the superior and inferior Darboux sums towards the
integral of ϕ allowed one to obtain the desired result with ϕ Riemann-integrable.
This is what he wrote, together with the proof, to Hostinský on 7 November 1920.

It seems that the former letter constituted the first research work of Fréchet on
probabilistic questions. It was subsequently published in a short note in 1921 ([34]).
Hostinský answered on 22 December 1920, agreeing with Fréchet that the integra-
tion hypothesis was sufficient. He also mentioned that Borel had already evoked
that Poincaré’s hypothesis could be weakened, supposing only the function to be
continuous. In his textbook of probability published in 1909 by Hermann [15], in
which Borel had devoted the whole Chapter VIII to the introduction of arbitrary
functions by considering both Poincaré’s examples of the roulette wheel and of the
small planets on the Zodiac, Borel noted that the hypothesis of continuity was suf-
ficient to apply Poincaré’s method. Fréchet was to include Hostinský’s observation
in his note in 1921 [34] (where he emphasized that it had been inspired by the latter
after having read his paper on Buffon’s needle). In [34], he mentioned also Borel to
emphasize immediately that both hypotheses of continuity (Borel) and derivability
(Poincaré) were useless and that Riemann-integrability was sufficient.

His good relationship with Fréchet encouraged Hostinský to continue his proba-
bilistic studies, and this leads us eventually to the last step of this long journey,
introducing Jacques Hadamard (1865-1963). The presence of this name in our story
may seem quite strange, and, in fact, Hadamard was interested in probabilities only
during one semester of the academic year 1927-1928. He had never considered them
before, and would never after, showing even some irritation towards Lévy, one of
the disciples he was most fond of, when he ‘wasted’ his mathematical talent in the
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1920s and left the royal path of functional analysis for the calculus of probability.
Following Poincaré’s example, Hadamard, had always kept in mind physical theo-

ries from which he intended to extract new mathematical problems. It was from this
perspective that he had written the aforementioned review of Gibbs’ book in 1906.

When, in the years 1920, Hadamard began the writing of his course of analysis
for the École Polytechnique (published by Hermann in two volumes in 1926 and
1930), he had to prepare in 1927 some lectures on probability theory and took again
Poincaré’s example of card shuffling. At this occasion, he recovered Borel’s method of
successive means and published in 1927 a note to the Comptes-Rendus de l’Académie
des Sciences de Paris [38]. Soon after that, Hostinský discovered Hadamard’s note
and sent an extension of it also as another note to the Comptes-Rendus [41], which
was published in the first weeks of 1928. There, for the first time, before everyone -
except Bachelier, but, alas, who had ever read Bachelier among the mathematicians I
write about ! - and especially before Kolmogorov, Hostinský introduced a Markovian
model in continuous time. At the Bologna congress in September 1928, it was realized
that Poincaré’s shuffling of cards studies were in fact a special case of the model
of variables in chain introduced by Markov in 1906 and developed in several of his
posterior publications as well as by Bernstein in 1926 but which were largely ignored
outisde Russia. The attention this drew, in particular at the Congress in Bologna in
1928, inaugurated intense activity on these questions which continued throughout
the 1930s, a story brilliantly recounted in [20] to which I refer the interested reader.
This unexpected crowning of Poincaré’s efforts seems to be a perfect moment to
take leave of the master.

Conclusion

Poincaré had lived during that very specific moment in the history of science when
randomness, in a more and more insistent way, challenged the beautiful deterministic
edifice of Newton and Laplace’s cosmology which had dominated scientific thinking
for centuries. A conference by Paul Langevin in 1913 [47] shows the extent of this
challenge, paralleling the introduction of probabilities and a drastic change in our
comprehension of the structural laws of matter. Such a penetrating mind as Poincaré
could not have lived this irruption otherwise than as a traumatic one, that he had
to face with the means he had at his disposal. These means, as we saw, had not yet
reached the degree of power necessary to deal with many problems raised by modern
physics. Let us recall one of the master’s apothegms:

‘Physics does not only give to us an occasion to solve problems: it helps
to find the means for that purpose, and in two different ways. It makes us
foresee the solution; it suggests reasonings to us.’21

And the new physical theories with which Poincaré was confronted suggested de-
veloping the theory of probability in the first place - a suggestion which can be also
found, but in a slightly different perspective, among Hilbert’s problems expounded
in the Paris Congress of 1900. Therein lies the apparent paradox which puzzled the
mathematician at the turn of the century: the hesitation and reluctance in the face

21‘La physique ne nous donne pas seulement l’occasion de résoudre des problèmes; elle nous aide à en trouver les
moyens, et cela de deux manières. Elle nous fait pressentir la solution; elle nous suggère des raisonnements.’([72], p.
152)
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of the problems raised by statistical mechanics, the somewhat uncertain attempts to
give solid bases to the theory of probability, the seemingly little taste for new mathe-
matical techniques, in particular measure theory and Lebesgue’s integration, though
they could have provided decisive tools to tackle numerous problems. Poincaré, as
we said, remained a man of the 19th century, maybe in the same way as Klein
had mischievously presented Gauss as a scientist of the 18th century. Naturally, in
Gauss’ case, the irony came from the fact that he had lived two thirds of his life in
the 19th century, whereas death surprised Poincaré at the beginning of the new. But
we may speculate - we shall not do that! - on the manner in which our hero would
have adapted to the transformations in the scientific picture of the world which
followed. Anyway, following the example of his glorious predecessor, Poincaré had
sowed widely and the spectacular blossoming of many of his ideas would give work
to countless researchers after his departure. As for probabilities, I think one can sum
up the measure of his influence as follows: to have begun to extract the domain from
the grey zone where it was confined by almost all the French mathematicians, to
have initiated methods which would flourish when they could rely on more powerful
mathematical theories, to have convinced Borel of the importance of some questions
to the study of which the latter would soon devote an enormous amount of energy.
For a rather marginal subject in Poincaré’s works, such an assessment appears far
from negligible.

References

[1] Appel, Paul, Darboux, Gaston, Poincaré, Henri: Examen critique des divers
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tifiques de l’École Normale Supérieure 3, 12, 9–55 (1895).
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Laurent (1873), Electronic Journal for History of Probability and Statistics
(www.jehps.net) 8 (2012).
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[63] Poincaré, Henri: Thermodynamique. Georges Carré, Paris, 1892.
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[67] Poincaré, Henri: Théorie analytique de la propagation de la chaleur, Georges
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[74] Poincaré, Henri: Le hasard. Revue du mois 3, 257–276 (1907).
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