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Abstract

We present new fagtiscrete Helmholtz-Hodge decomposition (DHHD¢thods to ficiently compute at the order
O(¢) the divergence-free (solenoidal) or curl-free (irratatill) components and their associated potentials of a given
L2(Q) vector field in a bounded domain. The solution algorithmisessuitable penalized boundary-value elliptic
problems involving either thgrad (div) operator in thevector penalty-projection (VPR)r therot (rot) operator

in the rotational penalty-projection (RPPyith adapted right-hand sidesf the same form. Therefore, they are
extremely well-conditioned, fast and cheap avoiding tovesaghe usual Poisson problems for the scalar or vector
potentials. Indeed, each (VPP) or (RPP) problem only reguivo conjugate-gradient iterations whatever the mesh
size, when the penalty parameteis suficiently small. We state optimal error estimates vanishin@@) with a
penalty parameter as small as desired up to machine precision, £:4.10"1*. Some numerical results confirm the
efficiency of the proposed (DHHD) methods, very useful to sohablems in electromagnetism or fluid dynamics.

Keywords: Helmholtz-Hodge decompositions, Rotational penaltyjguiion, Vector penalty-projection, Penalty
method, Error analysis, PDE’s with adapted right-handsside
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1. Introduction

Notations. We use below the usual functionnal setting for the Naviek&s [25, 17, 12] or Maxwell equations
[10]. LetQ c RY (d = 2 or 3 in practice) be an open bounded and connected domairaviitpschitz continuous
boundaryl’ = 9Q andn be the outward unit normal vector &h We assume that eith&ris of classC*! or Q is a
convex domain. To simplify the presentation in this Note tagiding the technical construction of vector potentials
with cuts inside the domain, we assume that simply-connected with a connected boundBrSome results can
be generalized for a multiply-connected dom@irsee [7] and also [16, 14, 17] or [1, 2] for theoretical arguitse

We use bold capital letters to denote spaces of vector-gdluections and.(.)o for the L2(Q) inner product]|.lo
for the L?(Q2)-norm, ||.||s for the SobolevH$(Q)-norm and(., .)r for the duality pairing betweehl‘%(F) and H%(l").
We define below some Hilbert spaces with their usual resgettner product and associated norm:

Han(Q) = {u € L2Q)%; divu e L*(Q)},  Hoan(Q) = {u € Ha(Q), u-nr = 0 on)

Hyot(Q) = {u e L>(Q)%: rotu e LZ(Q)d}, Horot(Q) = {u € Hiot(Q), uAnr = 0 onT’}

Hivroto() = {u € Haiv(2); rotu =0, uAnr = 0 onT}

Hrotaivo(Q) = {u € Hiot(Q); divu =0, u-nr = 0 onT}

H={uel*Q divu=0, u-nr=0o0nT}, LjQ)= {q e LA(Q); fqu: o}
Q

HA(Q) = fu e HY(Q)% u-npr =0}, HE(Q) = {u e HY(Q)% uanr =0}.
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We recall the Helmholtz-Hodge orthogonal decomposition&f2)¢ for a bounded domain [22, 20] and [25,
Theorem 1.5]1.2(Q) = H & G ® Gy, with G = Gy @ G, defined as:

G=H*={uel)Q)% u=gradg¢, ¢ € HY(Q)/R},
Go = {uel?@Q)% u=gradg, ¢ € HI(Q)), Gp=Gj ={uel?(Q)% u=grade, ¢ € H(Q), Ap = 0}.

Thus, for all vector fields € L?(Q), there exists a uniqued, vn, V) € Go x Gp x H such that:
V=Vo+Vh+V, Wwith vg=grad¢g, vh=grad¢n andvy,=roty, divg=0 in Q. (1)

Then,v, = Vo + vy = grad¢ € G andvy, = roty € H respectively denote the curl-free (irrotational) and djesce-
free (solenoidal) components of v, having both a null curl and divergence, apd: (¢ + ¢n) € HY(Q)/R denotes
the scalar potential angl € H(Q) the vector potential (fod = 3) or scalar stream-functionl (= 2); see also [17,
Theorem 3.6 - Corollary 3.4] and [1, Theorem 3.17]. This gitlee following bounds with Pythagore and the mean
Poincag inequality sincef, ¢ dx = 0:

Ivgl3 + llgrad ¢li3 = VI3 and  lgllo < co(€) llgrad ¢lio < Co(€2) [IVIlo- )

If v belongs tdH 4 () which gives a sense to the normal traeer in H*%(F), theng (up to an additive constant)
andg are the respective solutions kit(Q) of the following Poisson problems:

A¢p =divvy inQ with grad¢-nr=v-n onI, since f divvdx=(v-n, 1)r
Q
Agg=divv inQ with ¢gqr=0 onT.

In the sequel, we design new discrete Helmholtz-Hodge dpositions (DHHD) within two or three components
which completely get rid of the solution of the Poisson peoh for the scalar or vector potentials; see [21, 11, 24,
17,12, 2, 15, 26, 18]. These decompositions carry out thetisal of penalized boundary-value elliptic problems
involving either thegrad (div) or rot (rot) operators withadapted right-hand sidesf the same form. Hence, the
solution algorithms are extremely well-conditioned, fast cheap. Typically two iterations of a preconditioned
conjugate gradient, whatever the mesh step, are necessgey the machine precision when the penalty parameter
¢ is taken sficiently small as shown in [5, Theorem 1.1 - Corollary 1.3].e$& decompositions can be used as
fundamental ingredients offfecient methods to solve problems in fluid dynamics or elecagnetism where the
vector field solutions must satisfy constraints such thasgribed divergence or curl, see e.g. [4, 6, 8].

2. Approximation of the diver gence-free component v, = rot ¢ with (RPP)

We propose below the so-calledtational penalty-projectionassociated with a non natural normal boundary
conditionvy- nr = (rot¢)-nr = 0, to directly calculate an accurate and divergence-fr@ecagmationvy, = rot y°
of the solenoidal componemy, = roty of v. The method performs an approximate curl-free projectiparforcing
the constraintotv,, = rotv, i.e. rot (v — v,) = 0 with a penalty method [13]. Thus, for amygiven inHq (), we
consider the weakotational penalty-projection (RPR)roblem below for alk > 0:

& (v;,ga)o +(rotvs, rot go)o = (rotv,rotg),, forall ¢ € Hoaivo(Q). (3)

In fact, this method is designed to be a suitable approximmegthod to find, at the limit process when— 0, the
unique solutionvy in H,.(€2) of the exact orthogonal curl-projection problenvodntoH:

rotv, =rotv and diw, =0 in Q with v,-nr=0onT. 4)

The problem (3) is well-posed iAot givo(Q2) as stated in Theorem 2.1 below; see proof in [7].



Theorem 2.1 (Analysis of the weak rotational penalty-projection (3Fr all £ > 0 and anyv € H(Q), there exists
a unique solution/; in Hyotdivo(2) to the weak rotational penalty-projection (3) amg = rot ¢° belongs to the space

HY(Q) N H forall & > 0.
Moreover, we have the following error estimates:

IV = V5l + lIrot (v = v5)llo < (@) IVllo s,  forall &> 0. (5)

For alle > 0 and any, we consider the strongtational penalty-projection (RPR)roblem below for which (3)
may be the weak form:

eVve +rot (rot v"“) =rot (rotv) in Q with (rot (ve —v))An|r =0, v\enr=0onT
7 W v v
(RPRy) { (6)

1 . 1 . .
v, = grot (rot (v—vj/)) =roty®, divvy =0, y* = grot (v-vp), divg® =0 in Q.
We notice that any solutiomfb to (6) writes exactly as a curl, and thus necessarily verifies;, = 0.

Proposition 2.2 (Strong solution to (RPP problem.) For v € H2(Q), if we assume that the weak solutigjito (3)
also belongs tH2(Q), thenv; is the strong solution to the problem (6). Moreover, we camostey® € H(Q) such
that: rot (v — vj/) = gy and we havey® in {u € H%(Q); divu = 0} satisfying the Gauge condition di¥ = 0 with
¥°Anr = 0 and the error estimateliyy — ¥°||1 < c(Q) ||vllo € for all € > 0.

Besides, the adapted boundary conditi@ot vfb)/\nm = (rotv)Anr onT in (6) holds inH%(F). Indeed, by
imposing this adapted boundary conditionionwe really take advantage of tlaglapted right-hand sidehich allows
us to include the desired normal conditiup nr = 0in the functional space.

Remarkl (Approximation of both potentiaig and¢.). The (RPP) method yields approximations of or@és) of v,
andy with vy, = roty* in H. However, the curl ofv —v;)) is only asO(e), which prevents us from writing it exactly as
a gradient and thus from directly computing an approximatid the scalar potentiap. This can be performed with
the (VPP) method presented in Section 3.2. Then, the célonlaf both the approximate potentigJ§ and ¢ of a
DHHD requires the solution of the (RPP) and (VPP) problemgebrespectively the couplés; = roty*, y*) and

(V5 = grad ¢°, ¢°).

3. Approximation of the curl-free componentsv, = grad ¢ and vo = grad ¢o with (VPP)

3.1. Vector Penalty-Projection (VRPfor vo = grad ¢g
Here, the key idea is to introduce the so-calllee vector penalty-projectiorassociated with a non natural tan-
gential boundary conditiomAn = (grad ¢o)Anr = 0O, to directly calculate an accurate and curl-free appraiom
vg = grad ¢f of the irrotational componen, = grad ¢o of v. The method performs an approximate divergence-free
projection by enforcing the constraint diy = div v, i.e. div (v —Vp) = 0 with a penalty method. Thus, for amgiven
in Hgiv(Q), we consider the weakector penalty-projection (VPR)roblem below for alk > 0:
e (V6. <p>o + (div vg, div ¢)O = (divv,dive),, forall ¢ € Hgivron(Q). (7)
In fact, this method is designed to give a suitable approtérsaquence to find, at the limit process whken 0, the
unique solutiorvg in Hg;,(Q) of the exact orthogonal projection problemwdnto Gg:
divvo=divy and rotvg=0in Q@ with vgAnr=0 onT. (8)
The problem (7) is well-posed if 4ivo10(2) as stated in Theorem 3.1; see proof in [7].

Theorem 3.1 (Analysis of the weak vector penalty-projection (7)Epr anyv € Hgi (Q2) and alle > 0, there exists
a unique solutiornvg in Hivroto(©2) to the weak vector penalty-projection (7) awgl= grad ¢ belongs to the space

{u € HL(Q); rotu =0, uAny = 0} c Go for all & > 0.
Moreover, we have the following error estimates:

Vo = Vgllz + lldiv(v = v§)llo < c(Q) lIVIo e, forall &> 0. 9)
If divv = O with j_v- nds= 0, thenvi = 0 and¢j = Ofor all £ > 0.
3



For alle > 0 and any, we consider the strongector penalty-projection (VPR)roblem below for which (7) may
be the weak form:

evg—grad divvg) =—grad (divv) in @  with div(vi-V)r=0, VviAnr=0 onT

(VPFR,) { (20)

VG = ggrad (div (vg — v)) =gradgg, rotvg =0, ¢f = %div (vg—Vv) in Q.

We notice that any solutiovf to (10) writes exactly as a gradient, and thus necessatrilfeger ot v§ = 0.

Proposition 3.2 (Strong solution to (VPP problem.) For v € H(Q), if we assume that the weak solutiofto
(7) also belongs t#1%(Q2), thenvs is the strong solution to the problem (10). Moreover, we damoseg such that
div (V5 — v) = £ ¢5 which givess; in H3(€2) and the error estimateligo — ¢l < c(Q) [IVllo &

Besides, the adapted boundary condit{divvg)r = (divv)r onT in (10) holds in H (T). Indeed, by imposing
this adapted boundary condition di we really take advantage of ttaglapted right-hand sidehich enables us to
include the desired tangential conditiegAn;- = 0 in the functional space.

3.2. Vector Penalty-Projection (VRPfor v, = grad ¢

For what follows in this Section, the hypothe§isimply-connected is not necessary.
The key idea of thevector penalty-projection methagmounts to directly calculate an accurate and curl-free ap-
proximationv; = grad¢® of the irrotational component, = grad ¢ of v. The method performs an approximate
divergence-free projection by enforcing the constraimtvgli= divv, i.e. div(v — v,;) = 0 with a penalty method.
Here, we actually enforce the divergence condition usiegicient splitting proposed in [5] which yields adapted
right-hand sideof the same form of the limieft-hand side operatorThis produces an extremely well-conditioned,
fast and cheap method. Thus, for angiven inHg,(€2), we consider the so-callaedctor penalty-projection (VPP)
problem for alle > O:

£Vy —grad divvj) =—grad (divv) in Q  with Vinr=v-nonTl, Ve>0

. 1 _ (11)
v = —grad (div(v; - v)) = grad¢®, rotvs =0, ¢° = =div(v; - V) in Q.
& &

(VPRy) {

We notice that any solutiovr; to (11) writes exactly as a gradient and necessarily velriﬁtasg = 0. Indeed, this
method can be viewed as a suitable approximate method taafitioe limit process whea — 0, the unique solution
Vv, in Hgiy(Q) of the exact orthogonal projection problemobdnto G:

divv, =divy and rotv,=0in Q with vgenr=v-n onT. (12)
The problem Y PPR,) is well-posed irHg;(Q) as stated in Theorem 3.3 below; see proof in [7].

Theorem 3.3 (Analysis of the vector penalty-projection (VRB. For anyv € Hqg(Q2) and alle > O, there exists
a unique solution/; in Haiv(€2) to the vector penalty-projection (11). Moreovey is curl-free: rotvg = 0, v =
grad¢® € G and div(v; - v) € HY(Q) N L3(Q) for all £ > 0. Then, we can choos# € HY(Q) N L3(Q) such that
div(v; - Vv) = e¢°.

Besides, we have the following error estimates:

Vg = Vgl + ll¢ = ¢°ll2 + [Idiv (v — vg)ll. < c(Q) IV,  forall &> 0. (13)

A discrete scalar potentiaf can be also reconstructed directly from its gradggiad ¢° = Vi with a fast algorithm
performing a circulation along a suitable path joining tleégmtial nodes in the unstructured mesh, as presented in
[4]. Let us also notice that (11) corresponds to the vectarection step performed at each time step in the proposed
(VPP,) method [4, 6] to solve the Navier-Stokes equations, wierea —V is calculated by a prediction step which
does not take into account the divergence-free constraint.

Remark2 (Approximation of the harmonic vectey = grad ¢n.). The fieldv; = grad ¢; and¢; can be calculated
by: vp = Vi — Vo which is exactly a gradient ang: = ¢° — ¢f (up to an additive constant). Doing this, we have
lldivvillo = O(e) whereasot v; is exactly zero whatever the penalty parameter
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Remark3 (Order of approximation.)The (VPP) method yields approximations of or@¥t) of v, and ¢ with v; =
grad ¢° in G. However, the divergence of — v;) is not exactly zero, onlg(e), which prevents us from representing
it exactly as a curl and thus from directly computing an apgmeation of the vector potentigt. This is performed
with the (RPP) method presented in Section 2. Thereforetwbeapproximate componentg = roty® € H and

v; = grad ¢° € G are always rigourously orthogonal ib?(Q), whatever the penalty parameter

4. Numerical resultswith Discrete Operator Calculus methods

The discretization method with Discrete Operator Calcigdas extension of the MAC (Marker And Cell) method
with staggered grids [19] to unstructured meshes. The mdathsimilar to Discrete Exterior Calculus (DEC) based
on differential geometry [23]. The scheme is based on a node-ceppeoach avoiding interpolations, where the
scalar or vector components unknowns are distributed oas)ddces and edges of the mesh stencils; see more details
in [10, 26, 7]. The primal and dual meshes enable to expresdiagt, divergence, curl operators as well as Green,
Gauss and Stokes theorems in such a way that the 2-D or 3-E2glisiperators satisfy, as in the continuum case, the
following properties whatever the mesh stejp Q: div(rot h¢) = 0 androt n(grad ,,¢) = 0 up to machine precision.
Indeed, this is verified by our discretization as shown irufégl and it is in agreement with the calculation given in
[26, Appendix C].

The discretization is shown to locally and globally congemp to machine precision, mass, kinetic energy and
vorticity in the absence of viscosity; see [9]. We have expented that the spatial accuracy is of second-order on a
structured or unstructured mesh both in 2-D or 3-D, inclgdifghly irregular meshes, as for MAC grids in [19].

We consider below the vector fielde L2(Q) given in the square domaid =] — 0.5, 0.5[x] — 0.5, 0.5[:

Vv = (sin(m(x +Y)) + 1) ex+ (sin(z(y — X)) + 0.5) g,.

It is provided from the Helmholtz-Hodge orthogonal decosiponv = vo + Vi + Vv, = V4 + V,, With v, = vg + v and
the following curl-free or divergence-free components:

Vo = grad ¢g = sin(rx) cosgy) e, + cosfrx) sin(ry) e, with do = —% cosrx) cosfry)
Vh=grad¢n =1e+ 056 with ¢n =X+ 0.5y

Vy = roty = cosgx) sin(ry) e, — sin(rx) cosy) ey with Y-e = —% cosfrX) cosfy).

These components and related scalar or vector potentatsoanputed with the (RPP) and (VPP) discrete problems
on a 64x 64 uniform mesh (for the mesh stap= 1/64) with the penalty parameter= 10714, The diferent fields are
represented in Figure 3. We observe that the errors on aktfields vary a®(h?) in theL2-norms, like in [6], since
the penalization error i0(¢) is always negligible with respect to the discretizatioroerMoreover, the orthogonality
properties are verified up to machine precision.

Another key point is the very fast convergence of the preitimmetd conjugate gradient solvers: typically only
two iterations are necessary to reach the machine precigiatever the mesh size, as shown in Figure 2, which is
incredibly gfective. This is in perfect agreement with [5, Theorem 1.1@arbllary 1.3], the very good conditioning
property with adapted right-hand sides being addressef, i€¢rollary 1.2], and the results in [3, 6] obtained for
(VPP) discrete problems. These theoretical results carppked as well for (RPP) discrete problems by using the
following equality which holds for any vector fieldin 2-D or 3-D:

—Av =rot (rotv) —grad (divv).
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Figure 1: Discrete Exterior Calculus identities on a randdbelaunay mesh for a typical analytic scalar fieldor vector fieldy. Lerr:
roth(grad¢) = +1.710°1%in Q — Rigut: divp(rot p) = +1.410°%in Q.
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Figure 2: Convergence of BiCGstab2-1LU(0) for (RPP) or (YPRblems withe = 1014 normalized residual (by initial residual) versus number
of iterations for diferent mesh sizes 3232 (red), 128« 128 (green), 51% 512 (blue) and 204& 2048 (black); solvers started with zero initial
guess — krr: Rotational Penalty-Projection (RPP)GRr: Vector Penalty-Projection (VPP).
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Figure 3: DHHD extracted fields with (RPP) and (VPP) methodssfe: 10714 and mesh size: 64 x 64 — Tor Lerr: potentialg. Top RIGHT:
potentialy- e, MibpLe Lert: potentialgg. MipbLe Rigat: harmonic potentiapn. Borrom Lert: horizontal component of the reconstructed field
Borrom Rigut: vertical component of the reconstructed field



