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A

Constraint Satisfaction Tractability from Semi-lattice Operations on
Infinite Sets

Manuel Bodirsky, Laboratoire d’Informatique (LIX), CNRS UMR 7161, École Polytechnique
H. Dugald Macpherson, School of Mathematics, University of Leeds
Johan Thapper, Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud 11

A famous result by Jeavons, Cohen, and Gyssens shows that every constraint satisfaction problem (CSP)
where the constraints are preserved by a semi-lattice operation can be solved in polynomial time. This is

one of the basic facts for the so-called universal-algebraic approach to a systematic theory of tractability
and hardness in finite domain constraint satisfaction.

Not surprisingly, the theorem of Jeavons et al. fails for arbitrary infinite domain CSPs. Many CSPs of

practical interest, though, and in particular those CSPs that are motivated by qualitative reasoning calculi
from Artificial Intelligence, can be formulated with constraint languages that are rather well-behaved from

a model-theoretic point of view. In particular, the automorphism group of these constraint languages tends

to be large in the sense that the number of orbits of n-subsets of the automorphism group is bounded by
some function in n.

In this paper we present a generalization of the theorem by Jeavons et al. to infinite domain CSPs where

the number of orbits of n-subsets grows sub-exponentially in n, and prove that preservation under a semi-
lattice operation for such CSPs implies polynomial-time tractability. Unlike the result of Jeavons et al., this

includes CSPs that cannot be solved by Datalog.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Logic and constraint programming; Model theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Computational complexity, constraint satisfaction problems, semi-lattice
operations, ω-categoricity
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1. INTRODUCTION
Constraint satisfaction problems are fundamental computational problems that arise
in many areas of theoretical computer science. In recent years, a considerable amount
of research has been concentrated on the classification of those constraint satisfaction
problems that can be solved in polynomial time, and those that are computationally
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hard. In this paper, we contribute to this line of research and generalize an impor-
tant tractability condition from finite domain constraint satisfaction to a broad class
of infinite domain constraint satisfaction problems.

We work with the following definition of constraint satisfaction problems (CSPs),
which is well-adapted to treat CSPs over infinite as well as finite domains. The defi-
nition is based on the concept of a homomorphism between relational structures, and
equivalent to the standard definition for finite domain CSPs. A (relational) structure A
consists of a (not necessarily finite) domain D(A) (or simply A when no confusion can
arise), and a set of relations on D(A), each of a finite positive arity. Each relation is
named by a relation symbol R; the corresponding relation in A is denoted by RA. The
set of all relation symbols is called the signature of the structure. A homomorphism
from a relational structure A to a relational structure B over the same signature is
a mapping f : D(A) → D(B) such that for each relation symbol R, and tuple t ∈ RA,
it holds that f(t) ∈ RB , where f is applied component-wise to t. The existence of a
homomorphism from A to B is denoted by A → B and in this case A is said to be
homomorphic to B. For a fixed structure, traditionally denoted by Γ, with finite rela-
tional signature τ the constraint satisfaction problem for Γ (denoted by CSP(Γ)) is the
following problem.

CSP(Γ)
INSTANCE: A finite structure A over the signature τ .
QUESTION: Is there a homomorphism from A to Γ?

To give an example, the three-colorability problem can be formulated as CSP(K3),
where K3 is the complete graph with three elements. A basic example of an infinite-
domain CSP is CSP((Q;<)), where (Q;<) is the strict linear ordering of the rationals.

Jeavons et al. [1997] and Bulatov et al. [2005] made the ground-breaking observation
that for finite structures Γ, the complexity of CSP(Γ) is captured by the polymorphisms
of Γ, defined as follows. When f : Dk → D is a k-ary function, and R is an n-ary relation
over D, then we say that f preserves R if for all n-tuples t1, . . . , tk ∈ R, we have

(f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])) ∈ R.
A polymorphism of a relational structure Γ with domain D = D(Γ) is a function from
Dk to D that preserves all relations of Γ. In other words, a polymorphism is a homo-
morphism from Γk to Γ, for some k. The exploitation of polymorphisms for classifying
the complexity of CSPs is sometimes referred to as the universal-algebraic approach.
Indeed, very often tractability of CSP(Γ) is linked to polymorphisms of Γ with certain
‘good properties’. For a finite domain D = D(Γ), it is known that if CSP(Γ) is not NP-
hard, then Γ has for some k ≥ 2 a polymorphism f : Dk → D satisfying

f(x1, x2, . . . , xk) = f(x2, x3, . . . , xk, x1),

for all x1, . . . , xk ∈ D, and it is conjectured that CSP(Γ) can be solved in polynomial-
time whenever Γ has such a polymorphism [Bulatov et al. 2005; Barto and Kozik
2010]1. This conjecture is known to hold in several special cases when f satisfies
stronger identities. We will now look at one such case.

1Barto and Kozik [2010] call f a cyclic term when it satisfies the additional requirement of being idempotent;
f(x, . . . , x) = x for all x ∈ D. They state the conditions for NP-hardness and the conjecture for polynomial-
time tractability in terms of the absence or presence of such cyclic terms among the polymorphisms of
the core of Γ, cf. Section 3.2. The two conditions are equivalent: let ∆ be a finite structure and Γ its core.
If f is a cyclic term of Γ and g : ∆ → Γ a homomorphism, then (x1, . . . , xk) 7→ f(g(x1), . . . , g(xk)) is a
polymorphism of ∆ satisfying the condition in the text. Conversely, if f is such a polymorphism of ∆ and
h : Γ → ∆ a homomorphism, then f ′(x1, . . . , xk) = g(f(h(x1), . . . , h(xk))) is a polymorphism of Γ. Now
α(x) = f ′(x, . . . , x) is an automorphism of Γ, and α−1 ◦ f ′ is a cyclic term of the core of ∆.
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An operation f : D2 → D is called

— idempotent if f(x, x) = x;
— commutative if f(x, y) = f(y, x) for all x, y ∈ D;
— associative if f(x, f(y, z)) = f(f(x, y), z) for all x, y, z ∈ D;
— a semi-lattice operation if it is commutative, associative, and idempotent.

Jeavons, Cohen, and Gyssens [1997] proved that for every finite structure Γ with a
polymorphism that is a semi-lattice operation, the problem CSP(Γ) can be solved in
polynomial time. In this paper, we present a generalization of this result to a large
class of infinite-domain CSPs. All infinite structures considered are assumed to be
countably infinite. To state the result, we need the following definitions.

A bijective homomorphism with an inverse that is also a homomorphism is called an
isomorphism. An automorphism of a relational structure Γ is an isomorphism between
Γ and itself, and the set of all automorphisms of Γ is denoted by Aut(Γ). For a subset S
of the domain of Γ, the orbit of S in Γ is the set

{
{α(s) | s ∈ S} | α ∈ Aut(Γ)

}
. When S

is of cardinality n, then we call the orbit of S in Γ an orbit of n-subsets. If the number
of orbits of n-subsets of Γ is at least cn for some c > 1 and all sufficiently large n, then
we say that Γ has exponential growth. Otherwise, we say that Γ has sub-exponential
growth, or that Γ is a sub-exponential structure. Note that every finite structure is a
sub-exponential structure since for n greater than the domain size, there are no n-
subsets at all, hence zero orbits. But also the structure (Q;<) (and all structures with
domain Q whose relations are first-order definable in (Q;<)) is sub-exponential: it has
only one orbit of n-subsets, for all n (see e.g. [Hodges 1997]). Our main result is the
following.

THEOREM 1.1. Let Γ be a sub-exponential structure with finite relational signature.
If Γ has a semi-lattice polymorphism, then CSP(Γ) can be be solved in polynomial time.

Finite domain structures with a semi-lattice polymorphism can be solved by a stan-
dard technique, known as establishing arc-consistency or 1-consistency (see e.g. [Chen
et al. 2011]). The situation is different for sub-exponential structures with a semi-
lattice polymorphism. Consider for instance the structure (Q; {(x, y, z) | x > y∨x > z}).
It has the same automorphism group as (Q;<) and hence is sub-exponential as well.
This structure has the function (x, y) 7→ min(x, y) on Q as a polymorphism, but it has
been shown that there is no k such that this problem can be solved by establishing
k-consistency [Bodirsky and Kára 2010].

Tractability of CSP((Q; {(x, y, z) | x > y ∨ x > z})) is instead a consequence of the
following more general result of Bodirsky and Kára [2009]: every structure Γ with
domain Q that has the same automorphism group as (Q;<) and that is preserved by
the minimum function (or the maximum function) has a polynomial-time tractable
CSP. Our result will be a proper generalization of this result and of the mentioned
result of Jeavons, Cohen, and Gyssens.

Let us remark that for a general infinite structure, a semi-lattice polymorphism does
not suffice to ensure tractability. For an arbitrary subset U of N, let ΓU be the structure
(N; {(x, y) ∈ N2 | x = y+ 1}, {0}, U). Every such structure has min (and max) as a semi-
lattice polymorphism. We claim that CSP(ΓU ) and CSP(ΓV ) are different problems for
distinct subsets U and V of N. Let m be any element in U ∆V , where ∆ denotes the
symmetric difference of the sets, and let Am be the instance on variables {x0, . . . , xm}
containing the constraints x0 = 0, xi = xi−1 + 1 for 1 ≤ i ≤ m, and U(xm). Then Am is a
satisfiable instance for precisely one of the problems CSP(ΓU ) and CSP(ΓV ). It follows
that there are as many pairwise distinct CSPs of this type as there are subsets of N,
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i.e., uncountably many. However, there are no more than countably many algorithms,
hence CSP(ΓU ) is undecidable for some U .

The example of the previous paragraph relies on the fact that all structures ΓU have
an infinite number of orbits of 2-subsets. When the number of orbits of n-subsets of Γ is
finite for all n, then the structure is called ω-categorical in model theory [Hodges 1997].
For ω-categorical structures, polymorphisms still capture the computational complex-
ity of CSP(Γ) [Bodirsky and Nešetřil 2006]. Our main result can thus be seen as a
contribution to the further extension of the universal-algebraic approach from finite to
ω-categorical structures.

Overview
Our paper is structured as follows. In Section 2 we introduce a new algorithmic tech-
nique to solve infinite-domain constraint satisfaction problems, and present a reduc-
tion of CSP(Γ) for structures Γ with a semi-lattice polymorphism to an efficient sam-
pling algorithm for Γ. The basic idea is that when there is such an efficient sampling
algorithm for Γ, then we can use the arc-consistency procedure for finite domain CSPs
to solve CSP(Γ) (we actually use the uniform version of the arc-consistency procedure
where both A and a finite template B are part of the input). In fact, our technique
works under a slightly more general assumption on Γ: instead of requiring the exis-
tence of a semi-lattice polymorphism, we only require that Γ has totally symmetric
polymorphisms of all arities.

The next part of our paper, Section 3, is devoted to the proof that all sub-exponential
structures Γ with totally symmetric polymorphisms of all arities admit such an effi-
cient sampling algorithm. Here, our proof is based on a classification of those struc-
tures Γ. We would like to remark that the general algorithmic technique is applicable
also for many structures with totally symmetric polymorphisms of all arities that are
not sub-exponential, and this will be illustrated by some examples in Section 4. In fact,
we make the conjecture that when Γ is an ω-categorical structure with a semi-lattice
polymorphism, then CSP(Γ) is in P. However, unlike the case of sub-exponential struc-
tures, we cannot provide a classification result like the one in Section 3 for this more
general case, and so this remains an interesting open question.

2. ALGORITHM
One of the basic building blocks of our algorithm will be the arc-consistency procedure.
Arc-consistency is sometimes called hyperarc-consistency when applied to structures
with relations of arity greater than two. We start this section by recalling, in the case
of finite relational structures, the connection between the applicability of this proce-
dure, homomorphisms from the set structure, and the existence of totally symmetric
polymorphisms.

Let B be a finite structure with a finite relational signature, and let A be an instance
of CSP(B). The arc-consistency procedure (AC) applied to the problem (A,B) works by
reducing a set of possible images for each variable in A. If such a set becomes empty
during the procedure, it follows that there can be no homomorphism, so AC rejects.
Otherwise, AC accepts. Algorithm 1 gives the pseudocode for AC. We say that arc-
consistency solves the problem CSP(B) if, for every instance A, the procedure accepts
if and only if A → B. It can be implemented to run in time that is polynomial in
|A|+ |B| – take e.g. AC-3 [Dechter 2003].

The set structure of B, denoted by P(B), has as vertices all non-empty subsets of the
domain of B. For every k-ary relation RB , we have (U1, . . . , Uk) ∈ RP(B) iff for every i
and ui ∈ Ui, there exists u1 ∈ U1, . . . , ui−1 ∈ Ui−1, ui+1 ∈ Ui+1, . . . , uk ∈ Uk such that
(u1, . . . , uk) ∈ RB .
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ALGORITHM 1: AC(A,B), closely following the pseudocode given in [Chen et al. 2011].
Input: Finite relational structures A and B over the same signature.
Output: Returns accept iff A→ P(B).
foreach x ∈ D(A) do

h(x) := D(B)
end
repeat

foreach RA ∈ A do
foreach (x1, . . . , xk) ∈ RA do

foreach i = 1, . . . , k do
h(xi) := πi(R

B ∩ h(x1)× · · · × h(xk));
end

end
end

until h(x) does not change for any x ∈ D(A);
if h(x) = ∅ for some x ∈ D(A) then return reject;
else return accept;

A k-ary function f : Dk → D is called totally symmetric if for all x1, . . . , xk, y1, . . . , yk ∈
D we have

f(x1, . . . , xk) = f(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk}.
We say that a structure B has totally symmetric polymorphisms of all arities if, for
each k ≥ 1, there is a k-ary polymorphism of Γ that is totally symmetric.

The following is well-known, cf. [Dalmau and Pearson 1999; Feder and Vardi 1999].

THEOREM 2.1. Let B be a finite structure with a finite relational signature. The
following are equivalent.

(1) The arc-consistency procedure solves CSP(B).
(2) There is a homomorphism P(B)→ B.
(3) The structure B has totally symmetric polymorphisms of all arities.

It is clear that when Γ has a semi-lattice operation f , then it also has a totally
symmetric polymorphism fn of arity n, for each n ≥ 2:

fn(x1, . . . , xn) := f(x1, f(x2, . . . , f(xn−1, xn) . . . )).

From Theorem 2.1, it thus follows that arc-consistency solves CSP(B) whenever B is
a finite relational structure with a semi-lattice polymorphism. In our arguments, we
only need the weaker condition on totally symmetric polymorphisms of all arities; this
gives us a stronger result.

The other component of our algorithm will be a procedure to efficiently “sample” ap-
propriate finite structures homomorphic to an infinite structure Γ. Formally, we make
the following definition.

Definition 2.2. Let Γ be a structure over a finite relational signature. We say that
an algorithm is a sampling algorithm for Γ if, given a positive integer n, it computes a
finite structure B that is homomorphic to Γ such that A → B if and only if A → Γ, for
every instance A with |A| = n. A sampling algorithm is called efficient if its running
time is bounded by a polynomial in n.

We are now ready to describe Algorithm 2. Let Γ be a sub-exponential structure over
a finite relational signature, and assume that Γ has totally symmetric polymorphisms
of all arities.
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ALGORITHM 2: CSP(Γ)

Input: Finite relational structure A over the same signature as Γ.
Output: Returns accept iff A→ Γ.
B := Sample-Γ (|A|); // Sample-Γ is a sampling algorithm for Γ
return AC(A,B);

The main idea of our algorithm is to reduce CSP(Γ) to an appropriate uniform finite
domain CSP. That is, when given an instance A of CSP(Γ), we reduce to the following
problem: decide whether A maps homomorphically to B, where B is a finite structure
returned by a sampling algorithm for Γ on input |A|, and B is considered as part of the
input. We want to use arc-consistency for deciding whether A maps homomorphically
to B. Hence, for this approach to work, we need to establish the following.

(1) There should be an efficient sampling algorithm which samples some B from Γ.
(2) The arc-consistency procedure applied to (A,B) should accept if and only if A→ B.

The first condition implies that the size of B is polynomial in the size of A, and since
AC can be implemented to run in time that is polynomial in |A|+ |B|, it follows that our
algorithm will be polynomial in |A|. The second condition ensures that the algorithm
gives the correct answer for every instance A of CSP(Γ).

It will be the purpose of Section 3 to prove that an efficient sampling algorithm for
Γ exists. We state this result as follows.

THEOREM 2.3. Let Γ be a sub-exponential structure with a finite relational sig-
nature and totally symmetric polymorphisms of all arities. Then there is an efficient
sampling algorithm for Γ.

We next prove one part of a generalization of the equivalence between the second
and third item of Theorem 2.1 to infinite domains. This result has a converse for all
ω-categorical structures, cf. Section 5.

LEMMA 2.4. Let Γ be a structure over a finite relational signature. If Γ has totally
symmetric polymorphisms of all arities, then P(S)→ Γ for all finite structures S → Γ.

PROOF. Let S be a finite structure, let h : S → Γ be a homomorphism, and let f
be an m-ary totally symmetric polymorphism of Γ, where m = kmax|S| and kmax is the
maximum arity of any relation in Γ. Let f ′ : P(S)→ Γ be the function defined on a non-
empty set X = {x1, . . . , xi} ⊆ S by f ′(X) = f(h(x1), . . . , h(xi), h(xi), . . . , h(xi)), where
the list of arguments of f is padded to lengthm by elements already occurring inX. We
claim that f ′ is a homomorphism P(S) → Γ. We must show that (f ′(U1), . . . , f ′(Uk)) ∈
RΓ for an arbitrary relation R, and tuples (U1, . . . , Uk) ∈ RP(S). For each 1 ≤ i ≤ k, let
Ti ⊆ RS ∩ (U1 × · · · × Uk) be a set of k-tuples such that {t[i] | t ∈ Ti} = Ui. Note that
{t[i] | t ∈ Tj , 1 ≤ j ≤ k} = Ui, and that we can choose Ti to have size l(i) := |Ui| ≤ |S|,
for each i. Let ui1, . . . , uil(i) be an enumeration of Ui and ti1, . . . , t

i
l(i) be an enumeration

of Ti. We then have

f ′(Ui) = f ′({ui1, . . . uil(i)})

= f(h(t11[i]), . . . , h(t1l(1)[i]), . . . , h(tk1 [i]), . . . , h(tkl(k)[i]), h(tkl(k)[i]), . . . , h(tkl(k)[i])),

for all 1 ≤ i ≤ k. Since f is a polymorphism of Γ, and h(tij) ∈ RΓ for all i and j, it follows
that (f ′(U1), . . . , f ′(Uk)) ∈ RΓ.

The correctness and efficiency of our algorithm now follows from the previous lemma
in conjunction with the existence of an efficient sampling algorithm for Γ.
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THEOREM 2.5. Let Γ be a structure over a finite relational signature with totally
symmetric polymorphisms of all arities. If there exists an efficient sampling algorithm
for Γ, then Algorithm 2 correctly solves CSP(Γ) in polynomial time.

PROOF. Let A be the input structure and let B be the structure returned by the
sampling algorithm for Γ on input |A|. The sampling algorithm runs in polynomial time
in |A|, so the size of B will be polynomial in |A|. Since AC(A,B) can be implemented
to run in time polynomial in |A| + |B|, it follows that the entire algorithm runs in
polynomial time.

To show correctness, note that if AC(A,B) rejects, then A 6→ B which is equivalent
to A 6→ Γ since B was produced by the sampling algorithm for Γ on input |A|. We may
therefore safely reject. Otherwise, AC(A,B) terminates with a non-empty list h(x) ⊆ B
for each x ∈ A. Furthermore, for each k-ary relation RA, tuple (x1, . . . , xk) ∈ RA, in-
dex i, and element d ∈ h(xi), we know that RB ∩ h(x1) × · · · × h(xk) contains a tuple
(d1, . . . , dk) with di = d. In other words (h(x1), . . . , h(xk)) ∈ RP(B), so the function
h : A → P(B) is a homomorphism. By assumption, Γ has totally symmetric poly-
morphisms of all arities, so Lemma 2.4 implies the existence of a homomorphism
g : P(B)→ Γ. In conclusion, we have a homomorphism g ◦ h : A→ Γ.

As a direct corollary of Theorem 2.3 and Theorem 2.5, we get the following result,
which also implies our main result, Theorem 1.1.

THEOREM 2.6. Let Γ be a sub-exponential structure with a finite relational signa-
ture. If Γ has totally symmetric polymorphisms of all arities, then CSP(Γ) is solvable in
polynomial time.

3. CLASSIFICATION
The purpose of this section is to prove Theorem 2.3, showing that every sub-
exponential structure has an efficient sampling algorithm. Our approach is based on a
classification of sub-exponential structures with totally symmetric polymorphisms of
all arities. The general outline of this classification is as follows. We first present an ar-
gument that reduces the classification task to those sub-exponential structures Γ that
are model-complete cores and have totally symmetric polymorphisms of all arities (Sec-
tion 3.2). From there on, the classification follows a decomposition of the automorphism
group of Γ. The next step is the reduction to those structures Γ having a transitive au-
tomorphism group (Section 3.3). We then use the fact that the automorphism group of
Γ has only finitely many congruence relations to further reduce the classification task
to the case that the automorphism group of Γ is primitive. Combining the central theo-
rem from [Macpherson 1985] on primitive permutation groups with a sub-exponential
number of orbits of n-subsets with Cameron’s theorem on highly set-transitive permu-
tation groups [Cameron 1976] we finish the classification in Section 3.4. Our main clas-
sification, Theorem 3.10, shows that every sub-exponential model-complete core that
has totally symmetric polymorphisms of all arities has an interpretation in (Q;<).

We find it instructive to give a ‘top-down’ presentation of the classification proof,
rather than starting from special cases and assembling more general sub-exponential
structures from specific ones. We thus take a decomposition approach, and show first
how to describe the most general case in terms of its components. This sometimes leads
to forward references of results, but we believe that the reader will be compensated by
a more accessible presentation.

3.1. Preliminaries
Before we start, we recall a basic fact which will frequently be used in the following
arguments, and which explains the interaction between permutation group theory and
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logic for ω-categorical structures. Let Γ be a relational structure. In this paper, we say
that a relationR over the domain of Γ is first-order definable in Γ if there is a first-order
formula φ(x̄) such that φ(ā) is true in (Γ, ā) if and only if ā ∈ R. We say that a relational
structure Γ′ is first-order definable in Γ if Γ′ and Γ have the same domain and every
relation R in Γ′ is first-order definable in Γ. We say that two relational structures are
first-order interdefinable if one of them is first-order definable in the other, and vice
versa. The following is a consequence of the theorem of Ryll-Nardzewski, Engeler, and
Svenonius.

THEOREM 3.1 (SEE SECTION 6.3 [HODGES 1997]). Let Γ be ω-categorical. Then a
relation R is preserved by all automorphisms of Γ if and only if R has a first-order
definition in Γ. In particular, two ω-categorical structures are first-order interdefinable
if and only if they have the same automorphism group.

This theorem makes possible a translation of terminology between logic and permu-
tation groups. We illustrate its use with the following, which will be needed later on. A
congruence of a permutation group is an equivalence relation that is preserved by all
permutations in the group. A permutation group is called primitive if the only congru-
ences are the equivalence relation with just one equivalence class, and the equivalence
relation where all equivalence classes are of size one; it is called imprimitive otherwise.
By Theorem 3.1, the congruences of the automorphism group of an ω-categorical struc-
ture Γ are precisely the first-order definable equivalence relations of Γ. We will say
that Γ is primitive if its automorphism group is primitive.

A permutation group G on a countable set X is called closed if and only if it is the
automorphism group of a relational structure with domain X. The topological explana-
tions for this terminology can be found in [Gao 2008], Theorem 2.4.4. The correspond-
ing topology is called the topology of pointwise convergence on Sym(X), where Sym(X)
denotes the set of all permutations of X. In this topology, the open sets are unions of
sets of the form {α ∈ Sym(X) | α(x̄) = ȳ}, for n-tuples x̄, ȳ of elements of X. A subset
H of G ⊆ Sym(X) is dense (in G) if G is the closure of H with respect to this topology.

3.2. Model-Complete Cores
An endomorphism of a relational structure Γ is a homomorphism from Γ to Γ; we
denote the set of all endomorphisms of Γ by End(Γ). A relational structure is called a
core if every endomorphism of Γ is an embedding2. For a relational structure ∆, a core
of ∆ is a core structure Γ that is homomorphically equivalent to ∆, that is, there is a
homomorphism from Γ to ∆ and vice versa. A first-order formula is called primitive
positive if it is of the form

∃x1, . . . , xn(ψ1 ∧ · · · ∧ ψn),

where ψ1, . . . , ψn are atomic formulas. The importance of primitive positive definitions
in this paper comes from the fact that relations with a primitive positive definition in
a relational structure Γ are preserved by the polymorphisms of Γ.

The motivation of these definitions for constraint satisfaction with finite templates
∆ comes from the following facts.

— Every finite relational structure ∆ has a core Γ, and Γ is unique up to isomorphism.
— When Γ is a core of ∆, then Γ and ∆ have the same CSP.
— In a finite core structure Γ, every orbit of n-tuples3 is primitive positive definable.

2An embedding of a relational structure Γ into a relational structure ∆ is an isomorphism between Γ and
an induced substructure of ∆.
3When (t1, . . . , tn) is an n-tuple of elements of Γ, then the orbit of t (in Γ) is the set {(α(t1), . . . , α(tn)) | α ∈
Aut(Γ)}.
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These properties have been generalized to ω-categorical structures. A structure Γ
is model-complete if every embedding of Γ into itself preserves all first-order formulas.
We later need the following result which follows by combining Theorem 18 in [Bodirsky
2007] and Lemma 10 in [Bodirsky and Pinsker ].

LEMMA 3.2. An ω-categorical relational structure ∆ is a model-complete core if and
only if the group of automorphisms of ∆ is dense in the endomorphism monoid of ∆,
that is, for every endomorphism f and finite subset U ofD(∆), there is an automorphism
g of ∆ agreeing with f on U .

The following appears as Theorem 16 in [Bodirsky 2007]; see also [Bodirsky et al.
2012].

THEOREM 3.3. Let ∆ be an ω-categorical relational structure. Then

(1) ∆ is homomorphically equivalent to a model-complete core Γ;
(2) the structure Γ is unique up to isomorphism, and ω-categorical or finite;
(3) in Γ, every orbit of n-tuples is primitive positive definable.

For our classification project (and our algorithmic result), it therefore suffices to
study the CSPs for model-complete cores of sub-exponential structures. Let us first
show that the model-complete core of a sub-exponential structure is again sub-
exponential. This follows from the following more general result.

PROPOSITION 3.4. Let ∆ be an ω-categorical relational structure, and let Γ be its
model-complete core. Then for every n, the number of orbits of n-subsets in Γ is at most
the number of orbits of n-subsets in ∆.

PROOF. Let f be a homomorphism from ∆ to Γ, and g be a homomorphism from Γ to
∆. Since Γ is a core, it follows that f ◦g is an embedding, so g is injective. It now suffices
to show that when two n-subsets t1, t2 of Γ are mapped by g to two n-subsets s1, s2 in
the same orbit of n-subsets in ∆, then t1 and t2 lie in the same orbit of n-subsets in
Γ. Let t̄1 be an n-tuple listing all the elements in t1, let α be an automorphism of ∆
that maps s1 to s2, and let s̄2 = α(g(t̄1)). Since s̄2 lists all the elements of s2, we can
arrange the elements of t2 into an n-tuple t̄2 such that g(t̄2) = s̄2. By Theorem 3.3(3),
there are primitive positive definitions φ1 and φ2 of the orbits of t̄1 and t̄2. Since g, α,
and f preserve primitive positive formulas, the tuple t̄3 := f(α(g(t̄1))) satisfies φ1. But
f(α(g(t̄1))) = f(g(t̄2)), and hence t̄3 also satisfies φ2. Therefore, φ1 and φ2 define the
same orbit of n-tuples, and so t̄1 and t̄2 are in the same orbit. This implies that t1 and
t2 are in the same orbit of n-subsets.

In general it might not be true that the model-complete core of a sub-exponential
structure with a semi-lattice polymorphism has again a semi-lattice polymorphism. A
finite example of this situation can be derived from Proposition 5.2 in [Larose and
Zádori 2004]. This example shows a finite poset with a semi-lattice polymorphism
which retracts to a poset without a semi-lattice polymorphism. By introducing con-
stants, the latter structure can be turned into a core of the former. However, we always
have the following.

PROPOSITION 3.5. Let ∆ be a finite or ω-categorical relational structure with an n-
ary totally symmetric polymorphism. Then the model-complete core of ∆ also has an
n-ary totally symmetric polymorphism.

PROOF. Let Γ be the model-complete core of ∆, and let g : ∆ → Γ and h : Γ → ∆
be homomorphisms. When f is an n-ary totally symmetric polymorphism of ∆, then
f ′ : D(Γ)n → D(Γ) defined by (x1, . . . , xn) 7→ g(f(h(x1), . . . , h(xn))) is totally symmetric,
and a polymorphism of Γ.
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The reason that this proof does not show that the core of a structure with a semi-
lattice polymorphism f has again a semi-lattice polymorphism is that f ′ need not be
associative.

Note that a sampling algorithm for the core Γ of a structure ∆ is also a sampling
algorithm for ∆, since A → Γ if and only if A → ∆ for all structures A. It therefore
suffices to show Theorem 2.3 for the special case of sub-exponential structures that
are model-complete cores and have totally symmetric polymorphisms of all arities.

3.3. Reduction to the Transitive Case
Let Γ be a sub-exponential model-complete core. Since Γ is sub-exponential, it has in
particular a finite number of orbits of 1-subsets, called orbits for short. A structure is
called transitive if it has only one orbit.

PROPOSITION 3.6. Let Γ be an ω-categorical model-complete core, and let Γ′ be the
expansion of Γ by all primitive positive definable relations. Let U be an orbit of Γ, and
∆′ be the restriction of Γ′ to U . Then ∆′ is a transitive model-complete core.

PROOF. First observe that every automorphism α of Γ is also an automorphism of
Γ′ and preserves U , and hence α|U is an endomorphism of ∆′. Since the same also
applies to the inverse of α, we have that also α|U has an inverse in End(∆′), and there-
fore is an automorphism of ∆′. So, the restriction of an automorphism of Γ to U is an
automorphism of ∆′, and therefore ∆′ is transitive.

To show that ∆′ is a model-complete core, let e be an endomorphism of ∆′, and let
t be a k-tuple of elements from U . Then any primitive positive formula that holds
on t in Γ also holds on e(t), since ∆′ is the restriction of an expansion of Γ by all
primitive positive definable relations. Since Γ is a model-complete core, the orbits of
k-tuples are primitive positive definable in Γ by Theorem 3.3(3), and hence there is
an automorphism α of Γ that maps t to e(t). Then α|U is an automorphism of ∆′. This
shows that Aut(∆′) is dense in End(∆′), and the statement follows from Lemma 3.2.

The following result is proved in Section 3.4.

THEOREM 3.7. Let ∆ be a transitive sub-exponential model-complete core with to-
tally symmetric polymorphisms of all arities. Then ∆ is either a structure of size 1, or it
is isomorphic to a structure which is first-order interdefinable with (Q;<).

We now analyze how the automorphism group G of Γ is built from its transitive
constituents, that is, from the permutation groups of the form

{
α|U | α ∈ Aut(Γ)

}
on

U where U is an orbit of Γ. In general, we only know that G is a subdirect product of
its transitive constituents (see, e.g., [Cameron 1999]). In our case, we can make this
decomposition more precise, since we have a good knowledge of the group Aut((Q;<)).

LEMMA 3.8. Let Γ be a sub-exponential structure with an Aut(Γ)-invariant linear
order < defined on the union of two orbits U and V . Then U and V are convex with
respect to <.

PROOF. Assume to the contrary that there are elements u1, u2 ∈ U , v1 ∈ V such
that u1 < v1 < u2. Since u1 and u2 lie in the same orbit, there is an automorphism α
of Γ such that α(u1) = u2. Let vi+1 = α(vi) for i = 1, . . . ,m − 1, and let ui+1 = α(ui)
for i = 2, . . . ,m − 1. Since α preserves the order <, we have u2 = α(u1) < α(v1) = v2,
and v2 < α(u2) = u3. By repeated application of α, we obtain ui < vi < ui+1 for all i =
1, . . . ,m−1, and finally um < vm. Hence, we can encode sequences s ∈ {0, 1}m in subsets
S ⊆ Γ of size m by letting ui ∈ S iff si = 0 and vi ∈ S iff si = 1. Different sequences
of length m then correspond to different orbits of m-subsets in Γ. This contradicts the
assumption that Γ is sub-exponential.
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Let G and H be permutation groups on the sets X and Y , respectively. By an isomor-
phism between G and H (and in particular between automorphism groups of relational
structures), we will always mean a group isomorphism induced by a bijection between
X and Y . That is, G and H are isomorphic as permutation groups.

We now describe the automorphism groups of sub-exponential structures where the
closures of the transitive constituents G1, . . . , Gk for all orbits U1, . . . , Uk of G are iso-
morphic to Aut((Q;<)): the following theorem shows that in this case G is precisely
what Cameron [1990] calls the intransitive action of the direct product G1 × · · · × Gk
on U1 ∪ · · · ∪ Uk. We will say that a permutation group G ⊆ Sym(X) is transitive on a
subset Y ⊆ X if for all x, y ∈ Y , there exists a permutation α ∈ G such that α(x) = y.
Otherwise, we say that G is intransitive on Y .

LEMMA 3.9. Let Γ be a sub-exponential structure with automorphism group G and
orbits U1, . . . , Uk, and for 1 ≤ i ≤ k letGi be the transitive constituent ofG on Ui. Assume
that for each i ≤ k either Ui is of size one or the closure of Gi in Sym(Ui) is isomorphic
to Aut((Q;<)). Then α ∈ G if and only if α|Ui

∈ Gi for each 1 ≤ i ≤ k.

PROOF. Since the closure of Gi is isomorphic to Aut((Q;<)) for each i, there is a
Gi-invariant dense linear order <i on each orbit Ui. The result is trivial for k = 1, so
assume that k > 1. Let G′ be the intransitive action of G1 × · · · × Gk on U1 ∪ · · · ∪ Uk.
It suffices to show that G is dense in G′: since G is closed, they must then be equal.
Assume for the sake of contradiction that G is not dense in G′. Then, there are finite
sequences (ū, u′) and (v̄, v′) in Γ, and an automorphism α ∈ G′ such that α(ū, u′) =
(v̄, v′), but γ(ū, u′) 6= (v̄, v′) for all γ ∈ G. Furthermore we can choose (ū, u′) and (v̄, v′)
so that β(ū) = v̄ for some β ∈ G. By applying β−1 to (v̄, v′) and α, we may then assume
that v̄ = ū and α(ū) = ū. By a ū-interval, we will mean an inclusion-maximal convex
subset of Ui \ ū, for some i, where convexity is evaluated with respect to <i. Now u′

lies in some ū-interval I, and since α(u′) = v′ and α(ū) = ū, we have v′ ∈ I as well.
By assumption we have γ(u′) 6= v′ for all γ ∈ Aut((Γ, ū)), so Aut((Γ, ū)) is intransitive
on I. On the other hand, if we let w̄ := ū ∩ U , where U is the orbit of Γ containing I,
then Aut((Γ, w̄)) is clearly transitive on each w̄-interval contained in U : each w̄-interval
contained in U is an orbit, and its corresponding transitive constituent of Aut((Γ, w̄)) is
isomorphic to a dense subgroup of Aut((Q;<)). In particular, Aut((Γ, w̄)) is transitive
on I. It therefore follows that we can find a subsequence ā of ū containing w̄, and an
element b 6∈ U such that Aut((Γ, ā)) is transitive on I but Aut((Γ, ā, b)) is not.

Let fm(Γ) denote the number of orbits of Aut(Γ) on m-sets and let d be an element
of the domain of Γ. Then fm((Γ, d)) ≤ mfm(Γ) + (m + 1)fm+1(Γ) (for there are at most
mfm(Γ) orbits of Aut((Γ, d)) on m-sets containing d, and at most (m+ 1)fm+1(Γ) orbits
on m-sets omitting d). Since Γ is sub-exponential and ā and b are fixed, it follows that
(Γ, ā, b) is sub-exponential. Let V1 and V2 be any two orbits of Aut((Γ, ā, b)) contained in
I ⊆ U . Then the order <i on U , restricted to V1∪V2, is an Aut((Γ, ā, b))-invariant linear
order on V1 ∪ V2. By Lemma 3.8, it follows that every orbit of Aut((Γ, ā, b)) contained
in I is convex. Since Aut((Γ, ā, b)) is intransitive on I, it follows that there is an initial
segment I(b) ( I first-order definable in (Γ, ā, b). Let x ∈ I(b), y ∈ I \ I(b), and pick an
automorphism α ∈ Aut((Γ, ā)) such that α(x) = y. Now α(I(b)) ⊇ I(b) and α(I(b)) is
first-order definable in (Γ, ā, α(b)). Let b1 = b and for i ≥ 1, let bi+1 = α(bi). By repeating
this procedure, we get an increasing sequence of sets I(b1) ( I(b2) ( · · · ( I(bm) which
are all definable in (Γ, ā, b̄), where b̄ = (b1, . . . , bm). For i ≥ 1, pick ci ∈ I(bi+1) \ I(bi),
so that each of the elements ci lies in a different orbit of (Γ, ā, b̄). We now encode a set
S ⊆ {1, . . . ,m} as the subset T of Γ consisting of the elements in ā, b̄, and {ci | i ∈ S}.
Let S′ ⊆ {1, . . . ,m} be another set with encoding T ′, and let α ∈ G be an automorphism
such that α(T ) = T ′. Then α has to fix ā and b̄, i.e., α must be an automorphism of
(Γ, ā, b̄). Therefore α cannot map ci to cj for i 6= j, so S must be equal to S′. The set
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T has size at most 2m + |ā|, and since we can fix the size of ā, we conclude that the
number of distinct orbits of m-subsets of Γ is at least Ω(2m/2). This contradicts the
sub-exponentiality of Γ, so G must be dense in G′, and the result follows.

We also need the concept of interpretations from model theory, which we briefly recall
in the following. Let σ and τ be relational signatures, ∆ a σ-structure, and Γ a τ -
structure. For an m-ary σ-formula ψ, we let ψ(D(∆)m) denote the set of tuples ā ∈
D(∆)m such that ∆ |= ψ(ā). A d-dimensional (first-order) interpretation I of Γ in ∆
consists of (cf. [Hodges 1997])

(i) a σ-formula ∂I(x1, . . . , xd);
(ii) a surjective map fI : ∂I(D(∆)d)→ Γ (the coordinate map), and

(iii) for each atomic τ -formula φ(y1, . . . , ym), a σ-formula φI(x̄1, . . . , x̄m), where
x̄1, . . . , x̄m are disjoint d-tuples of distinct variables,

such that for all atomic τ -formulas φ and all āi ∈ ∂I(D(∆)d)

Γ |= φ(fI(ā1), . . . , fI(ām)) if and only if ∆ |= φI(ā1, . . . , ām) . (1)

THEOREM 3.10. Let Γ be a sub-exponential model-complete core with totally sym-
metric polymorphisms of all arities. Then Γ has a first-order interpretation in (Q;<).

PROOF. Let U1, . . . , Uk be the orbits of Γ. Let Γ′ be the expansion of Γ by all prim-
itive positive definable relations, and let Γ′1, . . . ,Γ

′
k be the structures induced in Γ′ by

U1, . . . , Uk. Since Γ is a model-complete core, those orbits are primitive positive de-
finable in Γ by Theorem 3.3, and in particular preserved by the totally symmetric
polymorphisms of Γ. By Proposition 3.6, Γ′i is a transitive model-complete core, for
all i ≤ k. Since Γ′i also has totally symmetric polymorphisms of all arities (obtained
as the restrictions of the totally symmetric polymorphisms of Γ to Ui), we can apply
Theorem 3.7, and conclude that each of the structures Γ′i either has size 1, or is iso-
morphic to a structure which is first-order interdefinable with (Q;<). We write <i for
the respective linear order that is first-order definable in Γ′i.

Let Gi be the transitive constituent of Aut(Γ) for orbit Ui. We claim that either Ui
has size one, or the closure of Gi equals Aut(Γ′i). Clearly, every permutation from Gi
and its closure preserve all the relations of Γ′i. For the converse, let α be an automor-
phism of Γ′i. It suffices to show that for every finite tuple t of elements from Ui there is a
permutation β ∈ Gi such that α(t) = β(t). Otherwise, t and α(t) would have been in dif-
ferent orbits of tuples in Aut(Γ). Since orbits of tuples are primitive positive definable
in model-complete cores, Γ′ has a relation R such that t ∈ R and α(t) /∈ R. Since Γ′i is an
induced substructure of Γ′, this contradicts the assumption that α is an automorphism
of Γ′i. We conclude that for each i ≤ k where Ui has more than one element, the closure
of Gi is isomorphic to Aut((Q;<)). We can apply Lemma 3.9, and deduce that the auto-
morphism groupG of Γ equals {α ∈ Sym(U1∪· · ·∪Uk) | for all i ≤ k we have α|Ui ∈ Gi}.

Our interpretation I of Γ in (Q;<) is (k + 1)-dimensional; the domain formula
∂I(x0, x1, . . . , xk) is

∧
1≤i<j≤k xi 6= xj ∧

∨
1≤i≤k x0 = xi. The coordinate map fI sends

ā ∈ ∂I(Qk+1) to Ui if a0 = ai. We choose fI to be surjective, and if Ui is infinite we
choose fI such that for all ā, b̄ ∈ ∂I(Qk+1) with fI(ā), fI(b̄) ∈ Ui we have fI(ā) <i fI(b̄)
if and only if a0 < b0. In particular, if fI(ā), fI(b̄) ∈ U , we have fI(ā) = fI(b̄) if and
only if a0 = b0. Now let φ(x1, . . . , xm) be an atomic τ -formula. We will show that the
m(k + 1)-ary relation

R = {(a1
0, . . . , a

m
k ) | Γ |= φ(fI(a

1
0, . . . , a

1
k), . . . , fI(a

m
0 , . . . , a

m
k ))}
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is preserved by all automorphisms of (Q;<), and so by Theorem 3.1 has a first-order
definition over (Q;<). This first-order definition becomes the formula φI of our inter-
pretation I.

Let α ∈ Aut((Q;<)) be arbitrary. Write β for the mapping that sends an element b
of Γ with pre-image c0, . . . , ck under fI to fI(α(c0), . . . , α(ck)). To see that this mapping
is well-defined, let d0, . . . , dk be another pre-image of b under fI . We have to show
that fI(α(d0), . . . , α(dk)) = β(b). Since fI(c̄) = fI(d̄) implies c0 = d0, we also have
α(c0) = α(d0) and therefore β(b) = fI(α(c̄)) = fI(α(d̄)). It is straightforward to verify
that β preserves the relations Ui, and the relations <i. Hence, by Lemma 3.9 we have
that β is an automorphism of Γ.

To show that R is preserved by α, let ā ∈ R be arbitrary. We have to show that α(ā) ∈
R, which is the case if and only if Γ |= φ(fI(α(a1

0), . . . , α(a1
k)), . . . , fI(α(am0 ), . . . , α(amk ))).

But (
fI(α(a1

0), . . . , α(a1
k)), . . . , fI(α(am0 ), . . . , α(amk ))

)
=
(
β(fI(a

1
0, . . . , a

1
k)), . . . , β(fI(a

m
0 , . . . , a

m
k ))
)

satisfies φ if and only if
(
fI(a

1
0, . . . , a

1
k)), . . . , fI(a

m
0 , . . . , a

m
k ))
)

satisfies φ since β ∈
Aut(Γ). And Γ |= φ(fI(a

1
0, . . . , a

1
k)), . . . , fI(a

m
0 , . . . , a

m
k )) since ā ∈ R, which concludes

the proof.
To verify that I satisfies the condition (1) from the definition of interpretations, let

ā1, . . . , ām ∈ ∂I(Q(k+1)).

Γ |= φ(fI(ā1), . . . , fI(ām)) ⇔ (ā1, . . . , ām) ∈ R
⇔ (Q;<) |= φI(ā1, . . . , ām)

A relational structure Γ is homogeneous (or ultrahomogeneous) if every isomorphism
between finite induced substructures of Γ can be extended to an automorphism of Γ.
The structure (Q;<) is a well-known example of a homogeneous structure. A structure
Γ with signature τ admits quantifier-elimination if every first-order τ -formula is over
Γ equivalent to a quantifier-free τ -formula. A homogeneous structure with finite re-
lational signature admits quantifier-elimination [Hodges 1997]. It follows that all the
formulas that appear in the interpretation given in Theorem 3.10 can be assumed to
be quantifier-free.

Our interest in interpretations also stems from the following result, which together
with the remarks of Section 3.2, implies Theorem 2.3.

LEMMA 3.11. Every structure Γ with a finite relational signature τ and a d-
dimensional interpretation in (Q;<) has an efficient sampling algorithm. On input n,
the output of the algorithm is a structure of size at most (dn)d.

PROOF. Let I be a d-dimensional interpretation of Γ in (Q;<). On input n, we com-
pute a finite τ -structure B which is the induced substructure of Γ on the domain
fI(∂I([dn]d)). For an m-ary R ∈ τ , we do the following. Let φI be the interpretation in
(Q;<) of the atomic formula R(y1, . . . , ym), with φI given in quantifier-free conjunctive
normal form. We now evaluate φI on each sequence of d-tuples, ā1, . . . , ām ∈ ∂I([dn]d).
The tuple (fI(ā1), . . . , fI(ām)) is in RB iff the formula φI(ā1, . . . , ām) is true. Since φ is
of constant size in n, it follows that we can compute the relation RB in O((dn)dm) time.
The signature τ is finite, so there is a relation of highest arity, independent of n, which
provides the upper bound on the time complexity of the algorithm.

Next, let A be a finite τ -structure with n elements, and assume that s : A → Γ is a
homomorphism. This implies A → B as well: the image of A under s has at most n
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elements, b1, . . . , bn ∈ Γ. Let ā1, . . . , ān be tuples in ∂I(Qd) such that fI(āi) = bi, and
let g : s(A) → ∂I(Qd) be the function such that g(bi) = āi for all i. Note that ā1, . . . , ān
contains at most dn distinct values of Q. By homogeneity of (Q;<), it follows that
there is an automorphism α of (Q;<) such that α(aij) ∈ [dn] for each i and j, where
āi = (ai1, . . . , aid). Now for each relation symbol R ∈ τ , we have (x1, . . . , xm) ∈ RΓ iff
φI(g(x1), . . . , g(xm)) holds in (Q;<) iff φI(α(g(x1)), . . . , α(g(xm))) holds in (Q;<), and
this in turn is true if and only if (fI(α(g(x1))), . . . , fI(α(g(xm)))) ∈ RB . It follows that
fI ◦ α ◦ g ◦ s is a homomorphism from A to B.

We are left with the task to prove Theorem 3.7.

Remark. It follows from Lemma 3.11 that all ω-stable ω-categorical structures with
finite signature and indiscernible strictly minimal sets in Meq (for definitions of those
concepts, see e.g. [Hodges 1997]) have an efficient sampling algorithm, since Lachlan
(Theorem 3.1 in [Lachlan 1987]) showed that all those structure have a first-order
interpretation in (Q;<).

3.4. The Transitive Case
In this section, we prove Theorem 3.7 using known results about primitive sub-
exponential structures. A permutation group G is highly set-transitive if it has exactly
one orbit of n-subsets, for every n > 0.

THEOREM 3.12 ([MACPHERSON 1985]). Let G be a primitive but not highly set-
transitive permutation group on an infinite setX. If c is a real number with 1 < c < 21/5,
then G has more than cn orbits of n-subsets of X, for all sufficiently large n.

THEOREM 3.13 (SEE SECTION 3.4 IN [CAMERON 1990]). A permutation group G
on a countably infinite set is highly set-transitive iff its closure is isomorphic to a per-
mutation group that contains Aut((Q;<)).

To prove Theorem 3.7, we first show that when Γ is a transitive sub-exponential
model-complete core with totally symmetric polymorphisms of all arities, then it is also
primitive. We will need two more lemmas. Let R and S be two binary relations. An al-
ternating closed walk onR and S of length 2n is a sequence of elements (x0, x1, . . . , x2n),
with x2n = x0, and such that (x2i, x2i+1) ∈ R and (x2i+1, x2i+2) ∈ S, for 0 ≤ i < n.

LEMMA 3.14. Let R and S be two binary relations that are preserved by a totally
symmetric function fn of arity n ≥ 1. If there is an alternating closed walk on R and S
of length 2n, then R ∩ S−1 6= ∅.

PROOF. Since (x2i, x2i+1) ∈ R for 0 ≤ i < n, we have (y, z) ∈ R, for y =
fn(x0, x2, . . . , x2n−2) and z = fn(x1, x3, . . . , x2n−1). Similarly, since (x2i+1, x2i+2) ∈ S
for 0 ≤ i < n, we have (z, z′) ∈ S, for z′ = fn(x2, x4, . . . , x2n). Note that

y = fn(x0, x2, . . . , x2n−2) = fn(x2, x4, . . . , x2n = x0) = z′.

Therefore, (y, z) ∈ R and (z, y) ∈ S, hence (y, z) ∈ R ∩ S−1.

An orbital of Γ is an orbit of Aut(Γ) acting component-wise on ordered pairs of ele-
ments of Γ. Every transitive structure always has the trivial orbital {(x, x) | x ∈ Γ}.

LEMMA 3.15. Let Γ be a model-complete core with finitely many orbitals and a
totally symmetric polymorphism fn of arity n for all n ≥ 1. LetX be an equivalence class
of a first-order definable equivalence relation on Γ. If αm(X) = X for some α ∈ Aut(Γ)
and m > 0, then α(X) = X.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Constraint Satisfaction Tractability from Semi-lattice Operations on Infinite Sets A:15

PROOF. By assumption, there exists a smallest integer r ≥ 1 such that αr(X) = X.
Let x ∈ X, and for k ∈ Z, let O(k) be the orbital of Γ containing the tuple (x, αk(x)).
Then, we have the inclusion {(αn(x), αn+k(x)) | n ∈ Z} ⊆ O(k).

Since Γ has finitely many orbitals, we can find integers 0 < l < k such that
O(k) = O(l). In fact, we can do this while ensuring that l ≡ r − 1 (mod r). Note that
(αi(x), αi+l+1(x)) ∈ O(l + 1), and that (αi+1+l(x), αi+1(x)) ∈ O(−l), for all i. In particu-
lar, the following sequence is an alternating closed walk on O(l+1) and O(−l) = O(l)−1

of length 2(k − l).

(x, αl+1(x), α1(x), αl+2(x), α2(x), . . . , αk−l−1(x), αk(x), x)

As Γ is a model-complete core, each orbital is primitive positive definable in Γ, and
hence preserved by fn for each n ≥ 1. From Lemma 3.14, it now follows that the
orbitals O(l + 1) and O(l) intersect, and therefore they must be equal. This implies
that the tuples (x, αl+1(x)) and (x, αl(x)) are in the same orbital, so there exists an
automorphism β of Γ which fixes x and maps αl+1(x) to αl(x). Since β fixes x, we have
β(X) = X, and from the choice of l, we have αl+1(X) = X. It follows that αl(x) =
β(αl+1(x)) ∈ X, so αl(X) = X, and hence αr−1(X) = X as well. Due to the choice of r,
this is only possible if r = 1, so we conclude that α preserves X.

PROPOSITION 3.16. Let Γ be a transitive sub-exponential model-complete core with
totally symmetric polymorphisms of all arities. Then Γ has size 1, or it is infinite and
primitive.

PROOF. Assume that Γ has size at least 2. Let E0 and E1 denote the congruence
of Aut(Γ) with equivalence classes of size 1, and the congruence with a single equiv-
alence class, respectively. Let E be an inclusion-maximal congruence from the set of
all congruences different from E1. Existence of E follows from the existence of E0, and
Γ having finitely many first-order definable equivalence relations. This follows from
Theorem 3.1, since each first-order definable binary relation over Γ consists of a union
of orbitals, and there are finitely many such orbitals since Γ is sub-exponential. We
want to show that E must in fact be E0 from which it follows that Aut(Γ) is primitive.

Let D = D(Γ). By D/E we will denote the set of equivalence classes of E. For x ∈ D,
let x[E] denote the equivalence class of E containing x, and for α ∈ Aut(Γ), let αE
denote the function on D/E which maps x[E] to α(x)[E] for each equivalence class x[E]
of E. (It follows from E being a congruence that αE is well-defined.) We then have that
Aut(Γ)/E := {αE | α ∈ Aut(Γ)} is a permutation group on D/E.

Let H = Aut(Γ)/E. For any n-subsets {X1, . . . , Xn} and {Y1, . . . , Yn} of D/E, pick
xi ∈ Xi and yi ∈ Yi for each i. If α ∈ Aut(Γ) satisfies α({x1, . . . , xn}) = {y1, . . . , yn})
then αE({X1, . . . , Xn}) = {Y1, . . . , Yn}. Hence the number of orbits on n-subsets of H is
sub-exponential whenever Γ is sub-exponential.

Assume that H is finite. Pick two distinct equivalence classes X and Y of E. Since
Γ is transitive, we can find α ∈ Aut(Γ) such that α(X) = Y . But if H is finite, then
αm(X) = X for some m > 0, so α(X) = X by Lemma 3.15, a contradiction. Therefore
H must be infinite. Congruences of H are in one-to-one correspondence with the con-
gruences of Aut(Γ) containing E. As the latter are precisely E and E1, it follows that
H is primitive.

It now follows from Theorem 3.12 that H is highly set-transitive, and so from The-
orem 3.13 that the closure of H is isomorphic to a closed permutation group H ′ that
contains Aut((Q;<)). The group H ′ either has one or two non-trivial orbitals. If it only
has one non-trivial orbital, then so does H, hence for any two distinct equivalence
classes X and Y of E, there is an automorphism α of Γ such that α(X) = Y and
α(Y ) = X. Again by Lemma 3.15, it follows that α(X) = X, a contradiction. So H ′

has two non-trivial orbitals, one of which is the order < on Q. Via the isomorphism, H
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thus has a non-trivial orbital < which is a linear order on the equivalence classes of
E. Let R be a binary relation on Γ defined by R(x, y) iff x[E] < y[E]. For α ∈ Aut(Γ),
we have that αE preserves <, so α preserves R. Assume now that the equivalence
classes of E have size greater than 1. We can then encode a sequence in {0, 1}n as a set
{x1, y1, . . . , xn, yn} ⊆ Γ: choose xi, yi so that R(yi, xi+1) for 1 ≤ i < n, encode a value 0
in position i by enforcing E(xi, yi), xi 6= yi, and encode a value 1 by enforcing R(xi, yi).
The relations E, 6=, and R are all preserved by Aut(Γ), so if two 2n-subsets encodes dis-
tinct sequences, then they must be contained in distinct orbits of 2n-subsets. Hence,
the number of orbits of 2n-subsets is greater than or equal to 2n, which contradicts Γ
being sub-exponential. So the equivalence classes of E are of size 1, i.e., E = E0, and Γ
is primitive.

PROOF OF THEOREM 3.7. Let Γ be a transitive sub-exponential model-complete
core with totally symmetric polymorphisms of all arities. If Γ is of size greater than
1, then it is infinite and primitive (Proposition 3.16), so has a highly set-transitive
automorphism group G (Theorem 3.12). Hence, the closed group G is isomorphic to a
group that contains Aut((Q;<)) (Theorem 3.13). Via this isomorphism, we identify the
domain of G and the domain of Γ with Q in the following. By Theorem 3.1, all relations
of Γ are first-order definable in (Q;<).

If the binary relation < is an orbital of Γ, then < is first-order definable in Γ by
Theorem 3.1, and interdefinability with (Q;<) follows. Otherwise, the smallest orbital
of Γ that contains < also contains a pair (x, y) such that x > y. It follows that Γ has an
automorphism α such that α(x) = y and α(y) = x, i.e., α2(x) = x. Since Γ has totally
symmetric polymorphisms of all arities, we can apply Lemma 3.15 to deduce α(x) = x,
a contradiction.

4. BEYOND SUB-EXPONENTIAL GROWTH: EXAMPLES
In this section we illustrate the possibility of extending our tractability result beyond
sub-exponential structures by providing a number of examples of structures with ex-
ponential growth that are interpretable in (Q;<), and have semi-lattice operations.
The tractability of these examples then follows from Theorem 2.5 and Lemma 3.11.

Example 4.1. Let ‘<’, ‘=’, and ‘>’ denote the usual inequality and equality rela-
tions on Q. Let Γ1 be the relational structure over Q2 with binary relations Rρ,σ for
ρ, σ ∈ {<,=, >}, where Rρ,σ((x1, y1), (x2, y2)) is defined by ρ(x1, x2) ∧ σ(y1, y2). This
structure is exponential. To obtain a lower bound on the growth rate of Γ1, pick an
n-subset A = {a1, . . . , an} ⊆ Q2, and assume that the projection of A on the second
component contains exactly k distinct values. For 1 ≤ i ≤ k, let Ai denote the number
of elements that have the ith largest second component value. Then, A1 + · · ·+Ak = n
determines a composition of n, i.e., an expression for n as an ordered sum of positive
integers. Two sets A,B ⊆ Q2 which determine different compositions must be in dif-
ferent orbits. Thus, the number of orbits of n-subsets of Q2 is at least 2n−1, the number
of compositions of n.

Hence, Theorem 2.6 does not apply to Γ1. Instead, tractability can be inferred as fol-
lows. The structure Γ1 has a two-dimensional interpretation I in (Q;<). The formula
∂I is always true, fI is the identity on Q2, and the interpretations of Rρ,σ are as given
above. Furthermore, it is easy to verify that Γ1 is invariant under the semi-lattice op-
erations given by (component-wise) min and max. Tractability of CSP(Γ1) now follows
from Theorem 2.5 and Lemma 3.11.

For any d > 2, this example can be generalized to a structure with 3d relations
of arity d, and with a d-dimensional interpretation in (Q;<). The CSP of each such
structure is polynomial-time solvable.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Constraint Satisfaction Tractability from Semi-lattice Operations on Infinite Sets A:17

T1 T2 T3 T4

Fig. 1. Four relational structures with signature (R,S); the relations R and S are given by the solid and
dashed arrows, respectively.

Example 4.2. The age of a structure Γ is defined as the class of all finite structures
isomorphic to a substructure of Γ. Let (R,S) be a signature with two binary relation
symbols, and let T = {T1, T2, T3, T4} be the set of structures in Fig. 4, where the tuples
of R (S) are given by the solid (dashed) arrows. Let C be the class of all finite structures
with signature (R,S) for which every three-element substructure is isomorphic to a
structure in T . It can be shown that C is an amalgamation class so that its Fraı̈ssé
limit exists (cf. Theorem 6.1.2 in [Hodges 1997]). This is the up to isomorphism unique
countable homogeneous structure with age C.

The following describes a relational structure Γ2 with age C which can be veri-
fied to be homogeneous. It follows that Γ2 is isomorphic to the Fraı̈ssé limit of C.
Let Γ2 = (Q2;R,S), where R((x1, y1), (x2, y2)) is the relation x1 = x2 ∧ y1 < y2, and
S((x1, y1), (x2, y2)) is the relation x1 < x2. The growth rate of Γ2 can be bounded as in
the previous example, and here it turns out that the number of orbits of n-subsets is
precisely 2n−1. The structure Γ2 also has a two-dimensional interpretation in (Q;<)
and semi-lattice polymorphisms given by (component-wise) min and max, so tractabil-
ity follows once again from Theorem 2.5 and Lemma 3.11.

Example 4.3. Let Γ3 := (U ∪ V ;M,<) be the following relational structure. The
domain U ∪ V is the disjoint union of two copies of Q. The binary relation M defines
a perfect matching between the elements of U and the elements of V , and the binary
relation < defines a dense linear order on U ∪ V such that u < v for all u ∈ U and
v ∈ V , and for v1, v2 ∈ V , we have v1 < v2 iff u1 < u2 for the elements u1, u2 ∈ U with
(u1, v1), (u2, v2) ∈M .

The structure Γ3 is invariant under the semi-lattice operations given by min and
max defined with respect to the order < on U ∪ V . It has two orbits and Aut(Γ3) is
isomorphic (as an abstract group) to Aut((Q;<)). By Lemma 3.9, this implies that Γ3

does not have sub-exponential growth. But Γ3 has a 2-dimensional interpretation I in
(Q;<), so CSP(Γ3) is polynomial-time solvable: let ∂I(x, y) be the formula x 6= y, and
let fI(x, y) be the copy of x in U if x < y and the copy of x in V if x > y. The matching M
on (x1, y1) and (x2, y2) is interpreted by the formula x1 = x2 ∧ x1 < y1 ∧ x2 > y2 and the
order < on (x1, y1) and (x2, y2) is interpreted by the formula (x1 < y1 ∧ x2 > y2)∨ (x1 <
y1 ∧ x2 < y2 ∧ x1 < x2) ∨ (x1 > y1 ∧ x2 > y2 ∧ x1 < x2).

5. CONCLUDING REMARKS
In this article we prove that constraint satisfaction problems for templates Γ where the
number of orbits of n-subsets of Γ grows sub-exponentially in n can be solved in poly-
nomial time when Γ has a semi-lattice polymorphism. In fact, we showed the stronger
result which only requires the existence of totally symmetric polymorphisms of all
arities, instead of requiring the existence of a semi-lattice polymorphism. This algo-
rithmic result can be showed in two stages:
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(1) In the first stage, we reduce CSP(Γ), for structures Γ with totally symmetric poly-
morphisms of all arities, to solving certain uniform finite domain CSPs, and to the
task to find an efficient sampling algorithm for Γ.

(2) In the second stage, we classify sub-exponential structures Γ with totally sym-
metric polymorphisms of all arities, and use the classification to verify that there
always exists an efficient sampling algorithm for Γ.

The reduction presented in the first stage crucially relies on the fact that when Γ has
totally symmetric polymorphisms of all arities, then for all finite induced substructures
S of Γ the set structure of S homomorphically maps to Γ (Lemma 2.4). We want to
remark that this connection has a converse when Γ is ω-categorical.

LEMMA 5.1. Let Γ be an ω-categorical structure over a finite relational signature.
Then Γ has totally symmetric polymorphisms of all arities if and only if P(S) → Γ for
all finite structures S with S → Γ.

PROOF. The forward direction was proved in Lemma 2.4. The remaining direc-
tion can be proved using a common technique for constructing homomorphisms to
ω-categorical structures. Given an arbitrary positive integer n, we want to produce
an n-ary totally symmetric polymorphism f of Γ. The idea of the proof is as follows:
let l1, l2, . . . be an enumeration of the elements of D = D(Γ), and let Lk = {l1, . . . , lk}.
For each k ≥ 1, let Fk be the set of homomorphisms from P(Γ[Lk]) to Γ. Introduce an
equivalence relation ∼ on Fk by defining f ∼ g iff f = α ◦ g for some automorphism α
of Γ. Let F̃k denote the set of equivalence classes of Fk under ∼.

Arrange the elements of
⋃
k≥1 F̃k into a forest containing at least one infinite tree:

each f̃1 ∈ F̃1 is defined to be the root of a separate tree, and for each k > 1, and fk ∈ Fk,
define the parent of f̃k ∈ F̃k to be the equivalence class containing the restriction of
fk to the non-empty subsets of Lk−1. This definition is independent of the choice of
representative in f̃k, so each equivalence class in F̃k, k > 1, has precisely one parent.
Since Γ is ω-categorical, it follows that there are finitely many equivalence classes for
a fixed k. Hence, there are finitely many trees and each tree is finitely branching in
each node. By assumption, F̃k is non-empty for each k ≥ 1, so some tree has unbounded
height. Now, König’s tree lemma implies the existence of an infinite path f̃1, f̃2, . . . in
some tree. Assume that there are representatives f1 ∈ f̃1, f2 ∈ f̃2, . . . , fk ∈ f̃k, such
that fk−1 is the restriction of fk to the non-empty subsets of Lk−1. We show that this
path can be extended indefinitely: choose gk+1 ∈ f̃k+1 arbitrarily and let gk be its
restriction to the non-empty subsets of Lk. Then, there exists an automorphism α such
that fk = α ◦ gk. It follows that fk is the restriction of α ◦ gk+1 to the non-empty subsets
of Lk, hence we can define fk+1 := α ◦ gk+1.

Now, for any n-tuple (x1, . . . , xn) over D, define f(x1, . . . , xn) = fm({x1, . . . , xn}),
where m is an any integer such that {x1, . . . , xn} ⊆ Lm. By the construction of the se-
quence f1, f2, . . . , the function f is a well-defined totally symmetric n-ary function on
D. To verify that f is a polymorphism of Γ, let RΓ be an r-ary relation, and t1, . . . , tn ∈
RΓ. Let Ui = {t1[i], . . . , tn[i]}, for 1 ≤ i ≤ r. Assume without loss of generality that m
has been chosen large enough so that

⋃r
i=1 Ui ⊆ Lm. Then f(t1[i], . . . , tn[i]) = fm(Ui)

for all i. By definition of the set structure, we have (U1, . . . , Ur) ∈ RP(Γ[Lm]). Since
fm is a homomorphism, we conclude that (fm(U1), . . . , fm(Ur)) ∈ RΓ, so f is indeed a
polymorphism.

Because of the general applicability of the algorithmic approach in Section 2, and
because many structures of exponential growth that have totally symmetric polymor-
phisms seem to be well-behaved (see Section 4), we make the following conjecture.
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CONJECTURE 5.2. Let Γ be an ω-categorical structure with finite relational signa-
ture and totally symmetric polymorphisms of all arities. Then CSP(Γ) can be solved in
polynomial time.
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