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Abstract. The paper focuses on the accuracy improvement of geometric and elasto-static calibration of 

industrial robots. It proposes industry-oriented performance measures for the calibration experiment 

design. They are based on the concept of manipulator test-pose and referred to the end-effector location 

accuracy after application of the error compensation algorithm, which implements the identified para-

meters. This approach allows the users to define optimal measurement configurations for robot calibra-

tion for given work piece location and machining forces/torques. These performance measures are suit-

able for comparing the calibration plans for both simple and complex trajectories to be performed. The 

advantages of the developed techniques are illustrated by an example that deals with machining using 

robotic manipulator.  

Key words: robot calibration, experiment design, performance measures, geometric calibration, elasto-
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1 Introduction 

Since most of the existing industrial robots employ the close-loop control on 

the level of the joint coordinates only, the robot accuracy highly depends on the 

validity of the mathematical expression used for computation of the end-effector 

position and orientation. These expressions include a number of parameters (geo-

metric and elasto-static) that should be precisely identified using the data obtained 

from calibration experiments. However, existing methods of the optimal pose se-

lection for calibration experiments do not take into account the particularities of 

many industrial applications, where the robot accuracy becomes a key factor. 

In robotics, most of the previous studies concentrate on geometric calibration, 

which consider the effects of joint offsets and link dimensional errors [1]. Only 

very limited number of works address elasto-static calibration [2]. For both cases, 

one of the important issues is the selection of optimal measurement poses, which 

allow to minimize the measurement noise impact on identification accuracy. To 

select the optimal measurement poses, most of the authors used performance 

measures directly related to the covariance matrix, which should be obviously as 

small as possible. In particular, Khalil et al. used the condition number of the ki-

nematic Jacobian [3]. Daney et al. applied the observability indices that are based 
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on singular values of the covariance matrix [4, 5]. Nevertheless, these approaches, 

which are based on rather abstract performance measures, do not ensure the best 

accuracy that can be achieved after applying relevant compensation algorithm in 

the open-loop control of the end-effector location. 

Related problem has been also studied in classical experiment design theory, 

which operates mainly with the linear regression models. Here, for optimal expe-

riment design, different norms of the covariance matrix are usually formalized in 

T-, A-, D-optimality principles [6]. However, they are obviously not related to the 

primary objective of the robot calibration, its accuracy.  

2 Problem Statement  

The calibration procedure may be treated as the best fitting of the experimental da-

ta (given input variables and measured output variables) by using the geometric 

and/or elasto-static models. It is usually solved using the standard least-square 

technique, assuming that the calibration includes measurement of Cartesian coor-

dinates that accommodate errors  . These errors are assumed to be i.i.d. (inde-

pendent identically distributed) random values with zero expectation and standard 

deviation  . Consequently, the estimates of the identified parameters differ from 

their actual values. So the problem of interest is to find the measurement poses of 

the robotic manipulator, which ensure the lowest impact of the measurement er-

rors (assuming that the number of poses is limited). The set of these measurement 

poses is defined by the corresponding joint coordinates 
i

q , let us denote them as 

  1
, ...,

m
Q q q  (1) 

where m  is the number of experiments. 

For the geometric calibration, each experiment produces two vectors  ,
i i

p q , 

which define the end-effector displacements and the corresponding joint angles. 

The linear relation between them can be written as 

  =  ( )
i i

 p J q Π  (2) 

where ( )
i

J q  is the Jacobian matrix that depends on manipulator configuration 
i

q  

and vector Π  collects the unknown parameters to be identified. 

For the elasto-static calibration, each experiment produces three vectors 

 , ,
i i i

p q F , where 
i

F  defines the applied force and torque. In accordance 

with [7], the corresponding mapping can be expressed as 

  =  ( ) ( )
T

i i i i
p J q k J q F  (3) 

where 


k is a matrix that aggregates the unknown compliance parameters 

 1
, ...,

n
k k to be identified. 

In the case when both geometric and elasto-static parameters should be cali-

brated simultaneously, the mapping between input and output data can be ex-

pressed as 
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 ( ) ( ) ( )
T

i i i i i
   p J q Π J q k J q F  (4) 

From the identification theory, the unknown parameters  ,


  X Π k  can be 

obtained using the least square method, which minimizes the residuals for all ex-

perimental data. Corresponding optimization problem is formulated as 

  
2

,
1

( , ) m in

m

i i

i

f




   
Π k

p q X  (5) 

where ( , )
i

f q X is defined by the right hand side of the expressions (2), (3) 

or (4). 

In most of the related works, the calibration accuracy is evaluated with respect 

to statistical properties of the unknown parameter estimates obtained from Eq.(5). 

It can be easily proved that, under the above assumptions, the expectation of X  

is equal to the true values (i.e. the estimates are non-biased) and corresponding 

covariance matrix can be expressed as 

 

1

2

1

cov( ) ( ) ( )

m

T

i i

i







 
   

 
X B q B q  (6) 

where ( )
i

B q is the transformation matrix, which can be derived from expressions 

(2)-(4) (required details are presented in the next section). Using this matrix, a 

number of approaches for design of calibration experiment were proposed (A-, T-, 

D-optimality). All of them are looking at minimization of the covariance matrix 

norm, which is equivalent to achieve the highest accuracy of the parameters. 

However, from practical point of view, it is necessary to achieve the best accuracy 

in the robot end-effector location, assuming the control is based on the obtained 

model. It can be proved that these two objectives are not equivalent. So, some re-

visions of the existing approaches in this area are required. 

The goal of this work is to develop a new performance measure that ensures the 

highest accuracy of the robot end-effector location after error compensation. It is 

based on the concept of manipulator test pose (desired machining configuration), 

and allows essentially improving the robot accuracy at the given configuration via 

proper selection of measurement poses in the calibration experiments. Taking into 

account different application areas of the robot-based machining, the problem of 

defining the performance measures can be treated in accordance with two cases: 

(i) the robot end-effector operates without significant changes in the manipulator 

configuration; (ii) the robot performs machining of long and/or complex trajecto-

ries. These two cases will be address sequentially in the following sections.  

3 Performance Measure Based on a Single Test Pose 

The concept of the manipulator test pose [8] is introduced in this section for the 

case when the machining configuration does not have significant changes (in pick 

and place application and machining of small trajectories, for instance). In this 
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particular case, it is assumed that the quality of the calibration is evaluated for the 

so-called test configuration. This configuration is defined by either  0
q or 

 0 0
,q F for geometric and elasto-static calibration respectively, which are given 

by the user. For this configuration, the influence of measurement errors in the ca-

libration experiments should be minimized in order to achieve the best end-

effector location accuracy. It is defined by the mean square error of the end-

effector displacements E( )
T

 p p , which evaluates the accuracy of errors com-

pensation for the given test pose.  

For computational convenience, the models of linear mapping that are pre-

sented in the previous section can be expressed in the following general form  

     p B X  (7)   

where B  is the transformation matrix and X  collects the parameters to be iden-

tified. They vary with different cases, which are listed in Table 1. 

Table 1.  Transformation matrix and desired parameters for different cases of calibration 

Parameters to be identified Transformation matrix B Desired parameters X  

(i) Geometric J  Π  

(ii) Elasto-static A  k  

(iii) Geometric and elasto-static  J A   
T

Π k  

 

For instance, for the case of elasto-static calibration, expression (3) is rewritten 

using the general form (7) as  

   p A k   (8) 

where the 1n    vector k collects the desired parameters  1
, ...,

n
k k , which are ar-

ranged in the n n compliance matrix 


k  in Eq.(3). Here, matrix A  is defined by 

the columns of Jacobian and the external force and can be expressed as 

 1 1
, ...,     

T n nT
 
 

A J J F J J F  (9) 

where n
J  is the th

n  column vector of the Jacobian matrix. Similarly, expres-

sion (4) can be rewritten as  

      p J Π A k .  (10) 

It can be proved that after application of the relevant compensation algorithm, 

the influence of the errors in the identified parameters  X  and the error in the 

end-effector location  p  can be evaluated using expression   p B X . Besides, 

corresponding value of the mean square error of the robot end-effector location 

E( )
T

 p p  can be computed as trace( )
T

 p p , which leads to 

 0 0
E( ) trace(E( ))

T T T
   p p B X X B  (11) 
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where the subscript ''0'' denotes the test configuration. Since E( )
T

 X X is the 

covariance matrix (6) of the identified parameters, the generalized performance 

measure can be expressed as  

 2 0 1 0

1

trace( ( ) )

m

p T T

i i

i

 




  B B B B   (12) 

where p
  is the expected mean square errors in the end-effector location, sub-

script  '' i '' indicates the experiment number and m  is the number of experiments. 

In more details, for different case studies described above, these performance 

measures are presented in Table 2. 

 Table 2.  Performance measures for different parameters to be identified (single test pose) 

Parameters to be 

identified 
Performance measures 

(i) Geometric  
2 0 1 0

1

trace( ( ) )

m

p T T

G i i

i

 




  J J J J  

(ii) Elasto-static  
2 0 1 0

1

trace( ( ) )

m

p T T

E i i

i

 




  A A A A  

(iii) Geometric and 

elasto-static 
   

2 0 0 1 0 0

1

trace( ,  ( ,  ,  ) ,  )

m
TTp

B i i i i

i

 




    
   J A J A J A J A  

 

However, it should be stressed that the proposed test-pose based approach is 

limited for the accuracy estimation in a single configuration. The next section 

deals with a more general case where changes in the manipulator configurations 

are significant during machining. 

4 Performance Measure Based on a Set of Test Poses  

In practice, it is often necessary to perform machining along rather long and 

complex trajectories (It is common for aerospace and ship building industries). 

This type of motions may require significant changes in the manipulator configu-

ration and a good accuracy should be achieved for the whole machining trajectory. 

For this reason, it is proposed to extend the application area of the performance 

measure proposed in Section 3 and to minimize the maximum end-effector loca-

tion errors after compensation along the trajectory. In this case, it is reasonable to 

apply the trajectory segmentation technique and adopt the proposed test-pose 

based approach for each node point. In the frame of this paper, we are not consi-

dering the problem of specifying the node points. Here, it is assumed that these 

points are already defined and the corresponding manipulator configurations as 

well as the applied forces are given. These data allow us to define a set of test pos-
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es 0 0
{ , 1, }

j j
j sq F  (for geometric calibration 0

j
F 0 ), where s  is the number of 

node points.  

For each test pose that corresponds to the node point of the trajectory, the end-

effector displacement error can be computed as  

 0

j j
 p B X  (14) 

where 0

j
B  is the transformation matrix for the configuration that is associated with 

the th
j  node-point. Using the technique developed in Section 3, the generalized 

performance measure that is based on the maximum end-effector displacement er-

rors after compensation for all node points can be expressed as  

 
2 0 1 0

1

m ax { trace( ( ) )}

m

t T T

j i i j
j

i

 




  B B B B  (15) 

where 
i

B  defines the transformation matrix for the th
i  calibration experiment. In 

order to increase the identification accuracy, the performance measure t
  should 

be minimized. Hence, it is required to solve the min-max problem. In more details, 

for different case studies described above, these performance measures are pre-

sented in Table 3. 

Table 3. Performance measures for different parameters to be identified (multiple test poses) 

Parameters to be 

identified 
Performance measures 

(i) Geometric 
2 0 1 0

1

m ax { trace( ( ) )}

m

t T T

G j i i j
j

i

 




  J J J J  

(ii) Elasto-static 
2 0 1 0

1

m ax { trace( ( ) )}

m

t T T

E j i i j
j

i

 




  A A A A  

(iii) Geometric 

and elasto-static 
   

2 0 0 1 0 0

1

m ax{ trace( , ( , , ) , )}

m
TTt

B j j i i i i j j
j

i

 




   
   J A J A J A J A  

 

Hence, The proposed performance measures can be used both for comparing 

different calibration plans and as optimization functions for the experiment design. 

In contrast to the existing ones, the developed performance measures are directly 

related to the end-effector location accuracy after error compensation, which is the 

primary factor for industry. 

5. Illustrative Example 

Let us highlight the advantages of the proposed performance measure by an ex-

ample of a 2-link planar manipulator with rigid links (
1

600m m ,l 
2

 400m ml  ) 

and compliant joints. It is assumed that the geometric parameters are well cali-

brated, while the elasto-static parameters should be identified. The robot should 
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realize a machining operation along a straight line trajectory from the point A(-

600, 400) to the point B(600, 400) with a constant cutting force  
0

0 100 NF . 

This trajectory includes a set of node points that define the test poses. It is also as-

sumed that the main source of inaccuracy is due to the measurement system used 

in the calibration experiments and the errors are i.i.d. (independent identically dis-

tributed) with the zero expectation and the standard deviation 0.1m m  . For 

comparison purposes, two cases are considered: one and five calibration experi-

ments (it should be mentioned that usually the elasto-static parameters cannot be 

identified by one experiment, but for the considered manipulator, it gives enough 

data). The optimal configurations have been found both for proposed and existing 

performance measures (D-optimality [6] and SVD based approach (minimum sin-

gular value) [4]). For the considered cases, the deviations of the mean square er-

rors from the target trajectory have been computed using (12) for all node points. 

 Relevant results are summarized in Fig. 1 and Table 4. As it shown, for the 

case of one experiment, the test-pose based approach ensures the accuracy of 

about 43% better than using SVD based approach and about 20% better compar-

ing to the results obtained using the D-optimality. The maximum error along the 

whole trajectory does not overcome 0.14mm. In the case of five experiments, the 

test-pose based approach achieves the best accuracy of the error compensation that 

is 55% and 20% better comparing to the results obtained using SVD based ap-

proach and D-optimality respectively. It should be mentioned that increasing the 

number of experiments from one to five allowed us to improve the accuracy by a 

factor of 2.5 (at the same time, repeating experiments in one configuration im-

proves the accuracy by the factor of 5 2.2 only). As a result, the maximum er-

ror has been reduced to 0.055mm. Hence, the proposed performance measure that 

is referred to the manipulator end-effector position accuracy provides essential ad-

vantages. So, it is reasonable to use it for calibration of robot used in industrial 

applications.   

-600 -400 -200 0 200 400 600
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-600 -400 -200 0 200 400 600
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
(mm)p

E

Test-pose approach

D-optimality
SVD approach

(mm)x

(mm)p

E

(mm)x

Test-pose approach

SVD approach

D-optimality

Target trajectory

Target trajectory

0.055

0.121

0.069
0.137 0.170

0.240

(a) case of one calibration experiment (b) case of five calibration experiments

 

Figure 1 Accuracy of the compliance errors compensation using different calibration plans 
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Table 4.  Maximum deviation of square root position errors p

E
  (mm)   

Performance measure Single experiment 5 experiments 

SVD based approach 0.240 0.121 

D-optimality 0.170 0.069 

Test-pose based approach 0.137 0.055 

 

5 Conclusions  

This paper deals with the evaluation of existing approaches in the area of the 

calibration experiment design for robotic manipulators, taking into account parti-

cularities of some industrial applications. Particular attention is given to the identi-

fication of geometric and elasto-static parameters, whose accuracy directly influ-

ences on the quality of the robot-based machining. For this type of applications, it 

is proposed a new performance measure (directly related to the robot accuracy af-

ter error compensation based on the obtained parameters), which should be used 

for optimal design of the calibration experiments. It is shown that, for the consi-

dered case study, the proposed approach allows to improve the robot accuracy by 

about 20%.  
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