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Abstract: The paper is devoted to the elastostatic calibration of industrial robots, which are used for precise machining of large-dimensional 
parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic 
deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this 
mechanism. To estimate parameters of this model,  an advanced calibration technique is applied that is based on the non-linear experiment 
design theory, which is adopted for this particular application. In contrast to previous works, it is proposed a concept of the user-defined 
test-pose, which is used to evaluate the calibration experiments quality. In the frame of this concept, the related optimization problem is 
defined and numerical routines are developed, which allow to generate optimal set of manipulator configurations and corresponding 
forces/torques for a given number of the calibration experiments. Some specific kinematic constraints are also taken into account, which 
insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator 
and the measurement equipment. The efficiency of the developed technique is illustrated by an application example that deals with 
elastostatic calibration of the serial manipulator used for robot-based machining. 
 
Key words: Industrial robot, elastostatic calibration, experiment design, industry-oriented performance measure, test-pose based approach. 

 

1. Introduction 

In the usual engineering practice, the accuracy of an 
anthropomorphic manipulator depends on many 
factors. In accordance with [1-2], the main sources of 
robot positioning errors can be divided into two main 
groups: geometrical (link lengths, assembling errors, 
errors in the joint zero values et al.) and 
non-geometrical ones (compliant errors, measurement 
errors, environment factors, control errors, friction, 
backlash, wear et al.). For the industrial manipulators, 
the most essential of them are related to the 
manufacturing tolerances leading to the geometrical 
parameters deviation with respect to their nominal 
values (the geometrical errors) as well as to the 
end-effector deflections caused by the applied forces 
and torques (the compliance errors). It is worth 
mentioning that these error sources may be either 
independent or correlated, but, in practice, they are 
usually treated sequentially, assuming that they are 
statistically independent. 
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Usually, for the industrial applications where the 
external forces/torques applied to the end-effector are 
relatively small, the prime source of the manipulator 
inaccuracy is the geometrical errors. As reported by 
several authors [3], they are responsible for about 90% 
of the total position error. These errors are associated 
with the differences between the nominal and actual 
values of the link/joint parameters. Typical examples of 
them are the differences between the nominal and the 
actual length of links, the differences between zero 
values of actuator coordinates in the real robot and the 
mathematical model embedded in the controller (joint 
offsets) [4]. They can be also induced by the 
non-perfect assembling of different links and lead to 
shifting and/or rotation of the frames associated with 
different elements, which are normally assumed to be 
matched and aligned. It is clear that the errors in 
geometrical parameters do not depend on the 
manipulator configuration, while their effect on the 
position accuracy depends on the last one. At present, 
there exists various sophisticated calibration techniques 
that are able to identify the differences between the 
actual and the nominal geometrical parameters [5-9]. 
Consequently, this type of errors can be efficiently 
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compensated either by adjusting the controller input 
(i.e. the target point coordinates) or by straightforward 
modification of the geometrical model parameters used 
in the robot controller. 

In some other cases, the geometrical errors may be 
dominated by non-geometrical ones that may be caused 
by influences of a number of factors [10-11]. However, 
in the regular service conditions, the compliance errors 
are the most significant source of inaccuracy. Their 
influence is particularly important for heavy robots and 
for manipulators with low stiffness. For example, the 
cutting forces/torques from the technological process 
may induce significant deformations, which are not 
negligible in the precise machining. In this case, the 
influence of the compliance errors on the robot position 
accuracy can be even higher than the geometrical ones.  

Generally, the compliance errors depend on two 
main factors: (i) the stiffness of the manipulator and (ii) 
the loading applied to it. Similar to the geometrical 
ones, the compliance errors highly depend on the 
manipulator configuration and essentially differ 
throughout the workspace [12]. So, in order to obtain 
correct prediction of the robot end-effector position, the 
efficient compliance errors compensation should be 
applied [13]. One way to solve this problem is to 
improve the accuracy of the stiffness model by means 
of elastostatic calibration. This procedure allows to 
identify the stiffness parameters from the redundant 
information on the robot end-effector position provided 
by the measurements, where the impacts of associated 
measurement noise on the calibration results have to be 
minimized by proper selection of measurement 
configurations. 

However, currently most of the efforts have been 
made for kinematic calibration, only few works directly 
address the issue of elastostatic calibration and its 
influence on the robot accuracy [14]. In this area, using 
various manipulator configurations for different 
measurements seems to be also attractive and perfectly 
corresponds to some basic ideas of the classical design 
of experiments theory [15] that intends using the factors 
that are differed from each other as much as possible. In 
spite of potential advantages of this approach and 
potential benefits to improve the identification 
accuracy significantly, only few works addressed to the 
issue of the best measurement pose selection [16-19]. 
Hence, the problem of selection of the optimal 
measurement poses for elastostatic parameters 
calibration requires additional efforts. This problem can 
be treated as finding the strategy of determining a set of 
optimal measurement poses within the reachable joint 
space that minimize the effects of measurement noise 

on the estimation of the robot parameters. It should be 
mentioned that the end-effector location as well as its 
deflection under the loading are described by a 
non-linear set of functions. However, the classical 
results of the identification theory are mostly obtained 
for very specific models (such as linear regression). 
Therefore, they can not be applied directly and an 
additional enhancement is required.  

One of the key issues in the experiment design theory 
is the comparison of different plans  of experiment (i.e. 
sets of configurations and corresponding loadings). In 
the literature, in order to define the optimal plans of 
experiments, numerous quantitative performance 
measures have been proposed. They allow to define an 
optimization problem (either multiobjective or 
single-objective), whose solution yields the desired set 
of measurement poses [20-24]. However, all the 
existing performance measures have their limitations 
that affect the calibration accuracy in different 
manners. As a result, they do not entirely correspond to 
the industrial requirements.  

In this paper, the problem of optimal design of the 
elastostatic calibration experiments is studied for the 
case of serial anthropomorphic manipulator, which 
obviously does not cover all architectures used in 
practice. Nevertheless, it allows us to derive very useful 
analytical expressions and to obtain some simple 
practical rules defining optimal configurations with 
respect to the calibration accuracy. In contrast to other 
works, a new criterion is proposed that evaluates the 
quality of compliance errors compensation based on the 
concept of manipulator test-pose. The proposed 
criterion has a clear physical meaning and is directly 
related to the robot accuracy under the task load. So, it 
aims at improving the efficiency of compliance errors 
compensation via proper selection of measurement 
poses. 

The remainder of this paper is organized as follows. 
Section 2 addresses to the problem of elastostatic 
calibration, formulates basic assumptions and defines 
the research problem. Section 3 focuses on the 
influence of measurement errors on the identification 
accuracy. Section 4 proposes new test-pose based 
approach. In Section 5 the proposed approach is 
illustrated on the example of experiment design for the 
industrial robot. Finally, Section 6 summarizes the 
main results and contributions. 

2. Problem of elastostatic calibration 

The elastostatic properties of a serial robotic 
manipulator [12] are usually defined by the Cartesian 
stiffness matrix , which is computed as  CK
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  (1) 1
C θ

TK J K J

T

where  is the Jacobian matrix with respect to the 
joint angles q , and θK  is a diagonal matrix that 
aggregates the joint stiffness values. In order to 
describe the linear relation between the end-effector 
displacement and the external force, the stiffness model 
of this manipulator can be rewritten as follows   

J

  (2) θ
T t J k J W

where  is the robot end-effector 
displacement (position and orientation ) caused 
by the external loading , which includes the force  
and torque T  applied to the robot end-effector; θk  is 
the joints compliance matrix that is treated as an 
unknown below and should be identified from the 
calibration experiments. 

( , )T T   t p φ
p
W

φ
F

In the scope of this paper, the following assumptions 
concerning the manipulator model and the 
measurement equipment limitations are accepted: 

A1: It is assumed that the geometric parameters are 
well calibrated. So, for the unloaded mode ( 0W

g W

), 
the vector q  is equal to the nominal value of the joint 
angles 0q . However, for the case when the loading is 
not equal to zero , the joint angles include 
deflections, i.e. 0 , where  is the vector 
of joint displacements due to the external loadin

0W
 q q q  q

.  

}

}

A2: It is assumed that each calibration experiment 
produces three vectors { , , which define the 
displacements of the robot end-effector, the 
corresponding joint angles and the external wrenches 
respectively, where i  is the experiment number. So, 
the calibration procedure may be treated as the best 
fitting of the experimental data { ,  by using 
the stiffness model (2) that can be solved using the 
standard least-square technique. 

,i i ip q W

 ,i i ip q W

A3: In practice, the calibration includes 
measurements of the end-effector Cartesian 
coordinates with some errors, which are assumed to be 
i.i.d (independent identically distributed) random 
values with zero expectation and standard deviation  . 
Because of these errors, the desired values of k  are 
always identified approximately.   

Using these assumptions and the above defined 
notation, the problem of interest can be defined as: 

Problem: To propose a technique for selecting the 
set of joint variables iq  and corresponding external 
wrench  for the elastostatic calibration of industrial 
robot that leads to the accuracy improvement for the 
given technological process. 

iW

Usually, the performance measures that evaluate the 
quality of the calibration plans are based on the analysis 

of the covariance matrix of the identified parameters, 
all elements of which should be as small as possible. 
However, in robotics, the stiffness parameters 
( 21 ) have different influences on the end-effector 
displacements; moreover, their influence varies 
throughout the workspace. To overcome this difficulty, 
it is assumed that: 

, ,...k k

A4: the "calibration quality" is evaluated for the 
so-called test configuration 0 0{ , , which is given 
by a user and for which it is required to have the best 
positioning accuracy under the external loading. 

}q W

To obtain the optimal calibration plan of experiment 
for a typical industrial manipulator, two sub-problems 
should be considered: (i) to propose a performance 
measure for comparing different plans of experiments 
that are adopted to the elastostatic parameters 
calibration and are related to the robot accuracy under 
the task loading; (ii) to find optimal configurations of 
the manipulator for the elastostatic parameters 
calibration that provide the best compliance error 
compensation.  

3. Influence of measurement errors 

For computational convenience, the linear relation 
(2) where the desired parameters are arranged in the 
diagonal matrix θ  should be 
rewritten in the following form 

1 2( , ,...)diag k kk

  (3) i i t A k

where the vector k  collects the joint compliances 
that are extracted from matrix k . Here, the matrix i  
is defined by the columns of Jacobian J  and the 
external force F  and is expressed as 

A

1 1 ,... 1, ), (T T
i i i i ni ni i i m   WA WJ J J J 

min

T 

 (4) 

where ni  is the n-th column vector of the Jacobian 
matrix for the i-th experiment, m  is the number of 
experiments. Using the identification theory, the joint 
compliances can be obtained from Eq. (3) using the 
least square method, which minimizes the residuals for 
all experimental data. The corresponding optimization 
problem  

J

,
1

( ) ( )
i i

m
T

i i i i
i

    
q F

A k t A k t  (5) 

provides the estimate of the desired parameters, 
which can be presented as 

1

1 1

ˆ ·
m m

T
i i i i

i i



 

  
   
  
 k A A A t 


 (6) 

However in practice, only translational deflections 
are measured directly. So, in order to reduce 
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computational efforts, it is reasonable to eliminate 
equations that correspond to the rotational deflections 
from expression (3) and to rewrite it as 

  (7) ( )p
i i p A k

where the matrix ( )p
iA  corresponds to the position 

deflections only. For comparison, the original matrix 
from expression (3) includes an additional block ( )

i
A  

corresponding to the rotational deflections: 

  (8) 
( )

3
6 ( )

3

p
i n

i n

i n







 
  
  

A
A

A

So, expression (6) should be rewritten in the 
following form 

1

( ) ( ) ( )

1 1

ˆ ·
T

m m
p p p

i i i i
i i



 

  
   
  
 k A A A p

T 
 



i

 (9) 

It is obvious that errors cannot be avoided in the 
calibration experiments. These errors mainly caused by 
the accuracy of the positioning measurement system 
while measuring the end-effector position can be 
expressed as  

  (10) ( )
0

p
i ip A k ε

where 0k  is the true value of the unknown parameter 
and i  is the measurement errors in the i-th 
experiment. Usually the errors are assumed to be 
independent identically distributed (i.i.d.) with zero 
expectation  and the variance 

ε

E( )i ε 0 2E( )T
i i ε ε .  

Using expression (10) the estimate of the compliance 
vector  can be presented as k̂

  (11) 
1

( ) ( ) ( )
0

1 1

ˆ T
m m

p p p
i i i i

i i



 

      
  
 k k A A A ε

T 



where the first term corresponds to the expectation 
 (it means that the estimate (9) is unbiased).  ˆE( )k

It can be also proved that the covariance matrix of 
compliance parameters  that defines the 
identification accuracy can be expressed as 

k̂

 

1

( ) ( ) ( ) ( )

1 1

1

( ) ( )

1

ˆcov( ) E
T T

T

m m
p p p T p

i i i i i i
i i

m
p p

i i
i



 





     
  

   
 

 



k A A A ε ε A

A A





 (12) 

and, taking into account that   2E T
i i ε ε , it can be 

simplified to 

, where 

  (13) 
1

2 ( ) ( )

1

ˆcov( )
T

m
p p

i i
i







 

 
k A A




  is the s.t.d. of the measurement errors. So, 
for the considered problem, the impact of the 

measurement errors is defined by the matrix sum 

1

( ) ( )Tm p p
i i A A

i
 that is also called the information 

matrix. 
Obviously, in order to have the smallest dispersion of 

the identification errors, it is required to have the 
covariance matrix elements as small as possible. It is a 
multiobjective optimization problem, but the 
minimization of one element may increase others. In 
the literature, in order to reduce this problem to a 
monobjective one, numerous scalar criteria have been 
proposed. It should be mentioned that all these criteria 
provide rather different optimal solutions. Hence, it is 
quite important to select a proper optimization criterion 
that ensures the best position accuracy of the 
manipulator under the loading. For this reason, in the 
next section a new test-pose based approach that 
ensures the best end-effector accuracy under external 
loading is proposed. 

4. Test-pose-based approach  

The main idea of the calibration experiment planning 
is to select proper configurations and corresponding 
external loadings (which will be called as plan of 
experiments) that ensure the best identification 
accuracy for the desired parameters. To develop this 
idea, let us introduce several definitions that are 
referred below to as D1, D2 and D3. 

D1: Plan of experiments is a set of robot 
configurations and corresponding external loadings that 
are used for the measurements of the end-effector 
displacements and further identification of the 
elastostatic parameters.  

As follows from previous works (mainly devoted to 
the geometrical calibration), proper selection of the 
plan of experiments allows us to achieve an essential 
reduction of the measurement error impact. However, 
there is an open question here that is related to the 
numerical evaluation of this impact. Corresponding 
expression can be treated as the objective function in 
the optimization problem, which produces the desired 
plan of experiments. It should be mentioned that for 
linear models this problem has been already carefully 
studied. In particular, in classical regression analysis, 
there are several conventional optimality criteria that 
operate with the trace and/or determinant of the 
covariance matrix or its inverse (so called information 
matrix). The most commonly used among them are 
presented in Table 1 and in conventional design of 
experiments [20-24] they are known as A-, D-, E-, 
G-optimality criteria.  

In addition, in robot geometrical calibration that 
operates with non-linear models, some specific 
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performance measures are used, which are based on the 
singular value decomposition of the kinematic 
Jacobian. This approach can be also adopted for the 
elastostatic calibration, where the SVD should be 
applied to the matrix ( )pA , which contains both the 
kinematic Jacobian and the external loading vector. 
More details concerning these performance measures 
are presented in the second part of Table 1. 
 

Table 1 Objective function for existing approaches in 
calibration experiment design 

Approach Objective function 

Application: Linear Regression 

A-optimality 
,

trace(cov( )) min
i i


q W

k  

D-optimality 1det(cov( ) ) max 
,i iq W

1in{eig(cov( ) )} m 
k  

E-optimality 
,

m ax
i iq W

max{diag( )} mink

k  

G-optimality 
,i iq W

 

Application: Robot Calibration 

Product of singular values  1O 1
,

... max
i i

s
s  

q W
 

Condition number  2O 1 ,
min

i i
s  

q W
 

Minimum singular value  3O
,

min
i i

s 
q W

 

Noise amplification index  4O 2 max  1
,i i

s
q W

 

Inverse sum of singular values  5O
,

1 m
i i

ii
  in

q W
 

1 , s  maximum and minimum singular values 
 

It should be mentioned that all optimization criteria, 
which are presented in Table 1, do not evaluate directly 
the measurement error impact on the robot accuracy in 
the technological application studied here. For this 
reason, in order to address the industrial requirements 
directly, it is proposed to estimate the quality of 
calibration experiment via the accuracy of the 
compliance error compensation. From statistical point 
of view, this approach can be treated as minimization of 
the prediction error. More strictly, an adopted 
performance measure is defined as follows: 

D2: The accuracy of the compliance error 
compensation   is the distance between the desired 
end-effector location 0t  and its real location under 
external loading Ft  achieved after application of the 
compliance error compensation technique. 

Here, it is assumed that the desired end-effector 
location 0  is given or can be computed for given 
configuration 0  using manipulator direct geometrical 
model  as 0 . Since the external loading 

 causes the end-effector deflection with respect to 
the desired location, the compliance error 
compensation algorithm provides the modified values 
of the actuated coordinates  that allow us 

to locate the end-effector at the given location 0t . The 
letter can be expressed by the following equation 

t

...
q

g  0 gt q
W

0  q q q

  (14) 1
0 0 C( )g   qt q K W

where C  is the Cartesian stiffness matrix 
computed for the configuration 0q . Using linear 
approximation (assuming that the deflections are small 
enough), assuming that the Jacobian matrix is not 
singular the compliance error compensation algorithm 
can be presented as 

K

  (15) 0
1

0 C
1   Jq q K W

where  is the kinematic Jacobian computed for the 

same configuration . Geometrical interpretation of 

this algorithm is presented in Fig. 1, where three 
manipulator configurations are presented (the desired 
one as well as the configurations under the loading with 
and without compensation). In the case when the 
deflections are significant, the non-liner compliance 
error compensation technique should be applied [12].  

0J

0q

 

Target Point

Before compensation

After compensation

Desired
configuration

1
C
 t K W

W

min 

x

y

tF

 0 0gt q

W

 
Fig. 1 Geometrical interpretation of the compliance 

error compensation technique 
 

It should be noted that the compliance error 
compensation algorithm (15) includes the compliance 
matrix 1

C
K

iε
, which is the function of the stochastic 

variables  describing the measurement errors. For 
this reason, the desired compensation can be achieved 
"on average" only, while each particular case may 
produce some difference between the desired and 
compensated end-point locations (see Fig. 1).  

Using notations from the previous section, the 
distance between the target and achieved locations  may 
be computed as the Euclidean norm of ( )p · p A k , 
where 0

ˆ  k k k  is the difference between the 
estimated and true values of the robot stiffness 
parameters. It can be easily proved that the above 
presented algorithm (15) provides an unbiased 
compensation, i.e.  
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  E  p 0  (16) 

and the standard deviation of the compensation error 
2 E( )T   p p  can be expressed as 

  2 ( ) (E
TT p p)  k A A k  (17) 

Taking into account geometrical meaning of  , this 
value can be used as a numerical measure of the 
compliance error compensation quality (and also as a 
quality measure of the related plan of calibration 
experiments).  

It is obvious that because of non-homogeneity of the 
manipulator properties within the workspace, the 
accuracy of the compliance error compensation highly 
depends on the target point  location 0  and the applied 
external loading W . For this reason, it cannot be 
evaluated in general for the whole robot workspace and 
variety of external loadings. To overcome this 
difficulty, it is proposed here to assess the compliance 
error compensation accuracy for some given 
manipulator configuration and typical external loading. 
This idea is formalized in the notion of the "test pose" 
defined below: 

t

D3: The test-pose is the set of the robot configuration 

0  and corresponding external loading 0W  for which 
it is required to achieve the best compliance error 
compensation (i.e. ).  

q

2
0 min 

Below, the test pose will be defined via the matrix 
( )
0

pA , which is computed using expression (4). In 
practice, the values of 0q  and 0  are provided by the 
user and usually correspond to a typical robot posture 
and cutting force for considered technological 
application. From this point of view, 0

W

  is treated as a 
measure of the robot accuracy in the machining 
process. 

In the frame of the adopted notations, the proposed 
performance measure 2

0  that evaluates the efficiency 
to compensate the compliance errors for the given test 
pose can be expressed as 

 2 (
0 0

) ( )
0 E

TT p p   k A A k , (18) 

where 0  is the elastostatic parameters 
estimation error caused by the measurement noise. This 
expression can be simplified by presenting the term 

ˆ  k k k

T p p  as the trace of the matrix T p p , which yields  

   2 ( )
0

)
0

(trace Ep T   A k k A0
p

0

T

T

 (19) 

Further, taking into account that E(  is the 
covariance matrix of desired parameters estimates , 
the proposed performance measure (18) can be 
presented in the final form as  

)T k k
k̂

  (20) 
1

2 2 ( ) ( ) ( ) (
0 0

)

1

trace
T

m
p p p p

i i
i

 




        
A A A A

As follows from this expression, the proposed 
performance measure 2

0  can be treated as the 
weighted trace of the covariance matrix , where 
the weighting coefficients are obtained using the test 
pose. It has obvious advantages compared to previous 
approaches, which operate with "pure" trace of the 
covariance matrix (see Table 1) and involve 
straightforward summing of the covariance matrix 
diagonal elements, which may be of different units 
(corresponding to rotational and translational 
compliances, for instance). It should be noted that for 
the geometrical calibration, a similar approach has been 
used in [25].   

ˆcov( )k

Based on this performance measure, the calibration 
experiment design can be reduced to the following 
optimization problem  

  (21) 
1

( ) ( )
0 0 { , }

1

trace min
T

i i

m
p T p

i i
i





        


q F
A A A A 

subject to 

 max , 1..i F i F m  (22) 

whose solution gives a set of the desired manipulator 
configurations and corresponding external loadings. It 
is evident that its analytical solution can hardly be 
obtained and a numerical approach is the only 
reasonable one.  

Hence, the proposed above test-pose-based approach 
and related optimization problem ensure low values of 
the covariance matrix elements and allows to combine 
multiple objectives with different units in a single 
scalar objective. An application of this approach for the 
design of the calibration experiments is illustrated in 
the next section.  

5. Calibration experiment design for 6 d.o.f. 
manipulator: KUKA KR-270 

Now let us consider the example that deals with 
calibration experiments design for the industrial robot 
KUKA KR-270 (Fig. 2). This robot has six actuated 
joints, which are assumed to be flexible. The links of 
the robot are quite stiff and are considered as rigid.   

For such a manipulator (where the first joint defines 
the robot orientation in the xy-plane), it is reasonable to 
decompose the elastostatic calibration into two 
independent steps. The first step includes calibration of 
stiffness coefficients for joints 2...6 with vertical 
loading only. The second step includes the stiffness 
parameter calibration for the joint 1. It is obvious that 
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the second step is quite easy from the experiment 
design point of view. In this case the optimization 
problem has only one variable for each configuration 
and the classical experiment design theory can be 
applied directly. In contrast, the first step is non trivial 
and requires intensive computations (corresponding 
results are presented below). 
 

 
Fig. 2 Machining configuration for the robot Kuka 

KR-270 (Test pose) 
 

In more details, the geometrical model and 
parameters of the robot are presented in Fig. 3 and 
Table 2, which also contains definition of the test pose 
that is presented in Fig. 2) [26].  

It should be noted that for the machining process and 
for the elastostatic calibration different tools are used 
(see CAD models presented in Fig. 4). For this reason, 
computation of the matrices ( )

0
pA  and ( )p

iA  involves 
different geometrical transformations "Tool". For given 
test configuration, the first of these matrices is defined 
as follows  

  (23) ( )
0

  -73.4   -177.4   -106.1  102.4    0 

        0           0     197.2    19.3    0 

 -363.6    -98.3   -167.1   -42.2    0 

p

 
   
  

A

 

Table 2 Initial data for robotic-based milling 

Test configuration, [deg] 

q1 q2 q3 q4 q5 q6 

75 -56.9 89.3 45.1 76 57.2 

Machining force, [N] and torque [N m] 

Fx Fy Fz Tx Ty Tz 

0 280 -180 0 0 0 

Geometrical parameters, [mm] 

d1 d2 d3 d4 d5 d6 

350 750 1250 -55 1100 0 
 

2d1d

3d
4d

5d

6d

x

y

z

1q

2q

3q 4q

6q
5q

 
Fig. 3 Geometrical model of Kuka KR-270  

 

 
Fig. 4 Tools used for machining and elastostatic 

calibration 
 

For the considered application example, there is a 
number of very specific constraints that are usually not 
considered in pure theoretical studies. In particular, 
there is a number of obstacles in the robot workspace 
(Fig. 5) that do not allow to achieve some 
configurations and to apply forces in some directions 
(vertical payload is obviously preferable). These 
constraints are summarized in Table 3. In addition, it is 
necessary to take into account usual constraints of the 
range of the joint variables ("joint limits"). 
 



zp

yp
xp

r

 
Fig. 5 Workspace parameters included in the 

constraints for the elastostatic calibration  
 

Table 3 Geometrical constraints for the elastostatic 
calibration 

zp  r    

800mm  600mm  / 6  
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Table 4 Measurement configurations for the elastostatic 
calibration 

Measurement configurations, [deg] 
iq  

q2 q3 q4 q5 q6 

2 calibration experiments 

1q  -99.9 114.3 -48.5 28.1 -180 

2q  -67.8 -94.0 137.5 -111.9 76.9 

3 calibration experiments 

1q  -93.5 125.0 -118.7 -62.4 -168.9 

2q  -103.4 93.4 -147.9 105.8 93.2 

3q  -98.9 113.8 50.6 -38.6 16.8 

4 calibration experiments 

1q  -81.1 64.9 -55.4 42.2 149.7 

2q  -96.6 15.4 112.1 -19.7 178.4 

3q  -111.2 -69.0 133.5 113.9 -118.8 

4q  -108.1 93.5 -34.2 -108.9 73.3 

6 calibration experiments 

1q  -84.0 126.9 -119.4 -61.2 -172.9 

2q  -105.5 98.6 -148.2 99.7 94.7 

3q  -106.0 106.8 49.4 -38.5 22.2 

4q  -89.2 132.3 -119.2 -61.4 -173.9 

5q  -96.7 86.6 -147.1 102.3 96.0 

6q  -99.4 108.8 51.8 -39.1 17.6 

12 calibration experiments 

1q  -83.8 127.6 -120.0 -60.9 -173.8 

2q  -105.9 99.1 -148.5 100.1 94.7 

3q  -105.7 107.1 49.4 -39.1 22.1 

4q  -89.4 131.6 -119.0 -61.4 -172.8 

5q  -97.1 85.8 -146.8 101.5 96.1 

6q  -99.4 107.8 52.8 -39.9 17.6 

7q  -83.3 126.1 -118.9 -60.3 -171.9 

8q  -106.2 98.1 -148.0 99.7 95.1 

9q  -106.1 106.5 49.6 -38.1 21.6 

10q  -89.8 133.4 -119.0 -60.8 -174.0 

11q  -97.6 85.9 -146.3 102.7 96.3 

12q  -98.9 109.6 52.6 -39.5 18.2 
 

Table 5 Elastostatic parameters estimation error 

Estimation error, [rad/ N m×10-9] Number 

of exp. 
2k  3k  4k  5k  6k  

2 exp. 6.55 6.88 24.0 34.5 71.9 

3 exp. 5.74 6.87 19.2 26.4 74.9 

4 exp. 3.72 6.96 16.9 21.2 66.9 

6 exp. 3.93 4.82 13.8 16.4 55.2 

12 exp. 2.78 3.41 9.75 11.6 38.8 

 
Fig. 6 FARO laser tracker 

 

For this setting, it was solved the optimization 
problem (21) which produced the calibration 
experiment plans for  2,3,4,6,12m . While solving 
this problem, it was assumed that the end-effector 
position was estimated using the FARO laser tracker 
(Fig. 6) [27], for which the measurement errors can be 
presented as unbiased random values with s.t.d. 

0.03mm  . It is also assumed that the applied 
loading is the same for all calibration experiments and 
is equal to i . The letter allows 
us to reduce the number of design variables by the 
factor of two. For the computations the workstation 
Dell Precision T7500 with two processors Intel® 
Xeon® X5690 (Six Core, 3.46GHz, 12MB Cache12) 
and 48 GB 1333MHz DDR3 ECC RDIMM was used. 
Since the optimisation problem (21) is quite sensitive to 
the starting point, parallel computing with huge number 
of the initial points were used.  

[0, 0, 2500,0,0,0]T F

The obtained results are summarized in Tables 4, 5 
and 6. They include the identification errors for the 
elastostatic parameters, the accuracy of the error 
compensation 0  for different plans of experiments 
and detailed descriptions of the measurement 
configurations. Table 6 also includes some additional 
results obtained by multiplication of the measurement 
configurations, which show that it is not reasonable to 
solve optimization problem for 12 configurations (that 
produce 60 design variables). However, almost the 
same accuracy of the compliance error compensation 
can be achieved by carrying out 12 measurements in 3 
different configurations only (4 measurements in each 
configuration). This conclusion is in good agreement 
with the results presented in the previous section for 3 
d.o.f. manipulator.  

For comparison purposes, Fig. 7 presents simulation 
results obtained for different types of calibration 
experiments. As follows from them, any optimal plan 
(obtained for the case of two, three, four, six or twelve 
calibration experiments) improves the accuracy of the 
compliance error compensation in the given test pose 
by about 60% comparing to the random plan. Also, it is 
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illustrated that repeating experiments with optimal 
plans obtained for the lower number of experiments 
provides almost the same accuracy as 
"full-dimensional" optimal plan. Obviously, the 
reduction of the measurement pose number is very 
attractive for the engineering practice.   

6. Conclusions 

The paper presents a new approach for the design of 
the elastostatic calibration experiments for robotic 
manipulators that allows essentially reducing the 
identification errors due to proper selection of the 
manipulator configurations and corresponding 
loadings, which are used for the measurements. In 
contrast to other works, the quality of the plan of 
experiments is estimated using a new performance 

measure that evaluates the efficiency of the compliance 
error compensation in the given test-pose. This 
approach allows to combine multiple objectives with 
different units in a single performance measure and 
ensures the best position accuracy for the given test 
configuration under the task loading. The proposed 
criterion can be treated as the weighted trace of the 
covariance matrix, where the weighting coefficients are 
derived using the test pose parameters.   

The advantages of the developed technique are 
illustrated by an examples that deal with the calibration 
experiment design for 6 d.o.f. manipulator. It shows the 
benefits of the proposed approach, which is expressed 
via the position accuracy under the task loading. 

 

Table 6 The accuracy of the error compensation 0  for different plans of experiments, [mm×10-3] 

Number of different configuration Number  

of exp. 2 conf. 3 conf. 4 conf. 6 conf. 12 conf. 

2 exp. 5.989 
 

 
   

3 exp. --- 4.676 
 

 
  

4 exp. 
4.235 

(4.72%) 
--- 4.044   

6 exp. 
3.458 

(7.13%) 

3.306 

(2.42%) 
--- 3.228  

12 exp. 
2.445 

(7.14%) 

2.338 

(2.45%) 

2.335 

(2.32%) 

2.283 

(<0.01%) 
2.282 

 

0,(1) rand

0, 2(2 ) opta 

0, 3(2 ) optb 

0, 4(2 ) optc 

0,(3) rand

0, 2(4 ) opta 

0, 3(4 ) optb 

0, 4(4 ) optc 

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5
x 10

-3

 

 

0, 6(2 ) optd 

0, 12(2 ) opte 

0, 6(4 ) optd 

0, 12(4 ) opte 

0

 
Fig. 7 The accuracy of the compliance error compensation for different plans of calibration experiments for Kuka KR-270 

manipulator for 0.03mm : (1) random plan 0, rand   ; (2a) six experiments for optimal plan obtained for two calibration 
experiment 0, 2opt , (2b) four experiments for optimal plan obtained for three calibration experiment 0, 3opt , (2c) three experiments 

for optimal plan obtained for four calibration experiment, 0, 4opt , (2d) two experiments for optimal plan obtained for six 
calibration experiment, 0, 6opt , (2e) experiments for optimal plan obtained for twelve calibration experiment 0, 12opt ;  

(3) expectation for plan (1) 3
0, rand mm  ; (4a) expectation for plan (2a) 3.43·10  3

0, 2 ·10opt mm ; (4b) expectation for plan 
(2b) 

2.15 
3

0, 3 2.09·10opt mm ; (4c) expectation for plan (2c) 3
0, 4 0opt mm ; (4d) expectation for plan (2d) 2.13·1  3

0, 6 2.17·10opt mm ; 
(4e) expectation for plan (2e) 3 ;  0, 12 2.16·10opt mm



 

Besides, the results show that the combination of the 
low-dimension optimal plans gives almost the same 
accuracy as a full-dimensional plan. This conclusion 
allows the user to reduce essentially the computational 
complexity required for the calibration experiment 
design.   

In future, the proposed approach will be extended for 
the case of simultaneous calibration of geometrical and 
elastostatic parameters. Another problem, which 
requires additional investigation is the experiment 
design for the set of the test poses (or for a long 
machining trajectory).  

Acknowledgements   

The work presented in this paper was partially 
funded by the ANR, France (Project 
ANR-2010-SEGI-003-02-COROUSSO). 

References: 

[1] W. Khalil, S. Besnard, Geometric Calibration of Robots 
with Flexible Joints and Links, Journal of Intelligent and 
Robotic Systems, vol. 34. 2002, pp. 357–379. 

[2] F.T. Paziani, B.D. Giacomo, R.H. Tsunaki, Robot 
measuring form, Robotics and Computer-Integrated 
Manufacturing, vol. 25, 2009, pp. 168-177. 

[3] A.Y. Elatta, L.P. Gen, F.L. Zhi, Yu Daoyuan and L. Fei, An 
Overview of Robot Calibration, Information Technology 
Journal, vol. 3, 2004, pp. 74-78. 

[4] W.K. Veitchegger, and C.H. Wu, Robot accuracy analysis 
based on kinematics. IEEE Journal of Robotics and 
Automation, vol 2, 1986, pp. 171-179. 

[5] Z. Roth, B. Mooring, B. Ravani, An overview of robot 
calibration, IEEE Journal of Robotics and Automation, vol. 
3, 1987, pp. 377-385. 

[6] D.J. Bennett, J.M. Hollerbach, D. Geiger, "Autonomous 
robot calibration for hand-eye coordination," International 
Journal of Robotics Research, vol. 10, 1991, pp. 550-559. 

[7] W. Khalil, E. Dombre, Modeling, identification and 
control of robots, Hermes Penton, London, 2002. 

[8] D. Daney, N. Andreff, G. Chabert, Y. Papegay, Interval 
method for calibration of parallel robots: Vision-based 
experiments, Mechanism and Machine Theory, vol. 41, 
2006, pp. 929-944. 

[9] J. Hollerbach, W. Khalil, M. Gautier, Springer Handbook 
of robotics, Springer, 2008, "Chapter: Model 
identification," pp. 321-344. 

[10] Ch. Gong, J. Yuan, J. Ni, Nongeometric error identification 
and compensation for robotic system by inverse calibration, 
International Journal of Machine Tools & Manufacture, 
vol. 40, 2000, pp. 2119–2137 

[11] I.C. Bogdan, G. Abba, Identification of the 
servomechanism used for micro-displacement, IEEE 
International Conference on Intelligent Robots and Systems 
(IROS) , 2009, pp. 1986-1991 

[12] A. Pashkevich, A. Klimchik, D. Chablat, Enhanced 
stiffness modeling of manipulators with passive joints, 
Mechanism and Machine Theory, vol. 46, 2011, pp. 
662-679 

[13] R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation 
in machine tools - a review: Part I: geometric, cutting-force 
induced and fixture-dependent errors, International Journal 
of Machine Tools and Manufacture, vol. 40, 2000, pp. 
1235-1256 

[14] M. Meggiolaro, S. Dubowsky, C. Mavroidis, Geometric 
and elastic error calibration of a high accuracy patient 
positioning system, Mechanism and Machine Theory, vol. 
40, 2005, pp. 415–427 

[15] A. Atkinson, A. Donev , Optimum Experiment Designs. 
Oxford University Press, 1992 

[16] D. Daney, Optimal measurement configurations for Gough 
platform calibration. IEEE International Conference on 
Robotics and Automation (ICRA), 2002, pp. 147-152. 

[17] D. Daney, Y. Papegay, B. Madeline, Choosing 
measurement poses for robot calibration with the local 
convergence method and Tabu search. The International 
Journal of Robotics Research, vol. 24, 2005, pp. 501-518. 

[18] A. Klimchik, Y. Wu, S. Caro, A. Pashkevich, Design of 
experiments for calibration of planar anthropomorphic 
manipulators, IEEE/ASME International Conference on 
Advanced Intelligent Mechatronics (AIM), 2011, pp. 
576-581.   

[19] H. Zhuang, K. Wang, Z.S. Roth, Optimal selection of 
measurement configurations for robot calibration using 
simulated annealing, IEEE International Conference on 
Robotics and Automation (ICRA), 1994, pp. 393-398. 

[20] W. Khalil, M. Gautier, Ch. Enguehard, Identifiable 
parameters and optimum configurations for robots 
calibration. Robotica, vol. 9, 1991, pp. 63-70. 

[21] M.R. Driels1, U.S. Pathre, Significance of observation 
strategy on the design of robot calibration experiments. 
Journal of Robotic Systems, vol. 7, 1990, pp. 197–223. 

[22] Yu Sun and J.M. Hollerbach, Observability index selection 
for robot calibration. IEEE International Conference on 
Robotics and Automation (ICRA), 2008, pp. 831-836.  

[23] A. Nahvi, J.M. Hollerbach, The noise amplification index 
for optimal pose selection in robot calibration. IEEE 
International Conference on Robotics and Automation 
(ICRA), 1996, pp. 647-654. 

[24] J.H. Borm, C.H. Menq, Determination of optimal 
measurement configurations for robot calibration based on 
observability measure. Journal of Robotic Systems, vol. 10, 
1991, pp. 51-63. 

[25] J. Imoto, Y. Takeda, H. Saito, K. Ichiryu, Optimal 
kinematic calibration of robots based on maximum 
positioning-error estimation (Theory and application to a 
parallel-mechanism pipe bender), Proceedings of the 5th 
Int. Workshop on Computational Kinematics, 2009, pp. 
133-140. 

[26] http://www.kuka.com/ 
[27] http://www.faro.com/lasertracker/. 

 


