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A Survey of Actor-Critic Reinforcement Learning:
Standard and Natural Policy Gradients

Ivo Grondman, Lucian Buşoniu, Gabriel A.D. Lopes and Robert Babǔska

Abstract—Policy gradient based actor-critic algorithms are
amongst the most popular algorithms in the reinforcement
learning framework. Their advantage of being able to search
for optimal policies using low-variance gradient estimates has
made them useful in several real-life applications, such as
robotics, power control and finance. Although general surveys
on reinforcement learning techniques already exist, no survey
is specifically dedicated to actor-critic algorithms in particular.
This paper therefore describes the state of the art of actor-
critic algorithms, with a focus on methods that can work in
an online setting and use function approximation in order to
deal with continuous state and action spaces. After starting
with a discussion on the concepts of reinforcement learning and
the origins of actor-critic algorithms, this paper describes the
workings of the natural gradient, which has made its way into
many actor-critic algorithms in the past few years. A review of
several standard and natural actor-critic algorithms follows and
the paper concludes with an overview of application areas and
a discussion on open issues.

Index Terms—reinforcement learning, actor-critic, natural gra-
dient, policy gradient

I. I NTRODUCTION

REINFORCEMENT learning is a framework in which an
agent (or controller) optimizes its behavior by interacting

with its environment. After taking an action in some state, the
agent receives a scalar reward from the environment, which
gives the agent an indication of the quality of that action.
The function that indicates the action to take in a certain state
is called thepolicy. The main goal of the agent is to find
a policy that maximizes the total accumulated reward, also
called thereturn. By following a given policy and processing
the rewards, the agent can build estimates of the return. The
function representing this estimated return is known as the
value function. Using this value function allows the agent
to make indirect use of past experiences to decide on future
actions to take in or around a certain state.

Over the course of time, several types of RL algorithms
have been introduced and they can be divided into into three
groups [1]: actor-only, critic-only and actor-critic methods,
where the words actor and critic are synonyms for the policy
and value function, respectively. Actor-only methods typically
work with a parameterized family of policies over which
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ter for Systems and Control, Delft University of Technology,2628 CD
Delft, The Netherlands (email: i.grondman@tudelft.nl; g.a.delgadolopes;
r.babuska@tudelft.nl).
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optimization procedures can be used directly. The benefit ofa
parameterized policy is that a spectrum of continuous actions
can be generated, but the optimization methods used (typically
called policy gradient methods) suffer from high variance in
the estimates of the gradient, leading to slow learning [1]–[5].

Critic-only methods that use temporal difference learning
have a lower variance in the estimates of expected returns [3],
[5], [6]. A straightforward way of deriving a policy in critic-
only methods is by selectinggreedy actions[7]: actions for
which the value function indicates that the expected return
is the highest. However, to do this, one needs to resort
to an optimization procedure in every state encountered to
find the action leading to an optimal value. This can be
computationally intensive, especially if the action spaceis
continuous. Therefore, critic-only methods usually discretize
the continuous action space, after which the optimization over
the action space becomes a matter of enumeration. Obviously,
this approach undermines the ability of using continuous
actions and thus of finding the true optimum.

Actor-critic methods combine the advantages of actor-only
and critic-only methods. While the parameterized actor brings
the advantage of computing continuous actions without the
need for optimization procedures on a value function, the
critic’s merit is that it supplies the actor with low-variance
knowledge of the performance. More specifically, the critic’s
estimate of the expected return allows for the actor to update
with gradients that have lower variance, speeding up the
learning process. The lower variance is traded for a larger
bias at the start of learning when the critic’s estimates are
far from accurate [5]. Actor-critic methods usually have good
convergence properties, in contrast to critic-only methods [1].

These nice properties of actor-critic methods have made
them a preferred reinforcement learning algorithm, also inreal-
life application domains. General surveys on reinforcement
learning already exist [8]–[10], but because of the growing
popularity and recent developments in the field of actor-critic
algorithms, this class of reinforcement algorithms deserves a
survey in its own right. The goal of this paper is to give
an overview of the work on (online) actor-critic algorithms,
giving technical details of some representative algorithms, and
also to provide references to a number of application papers.
Additionally, the algorithms are presented in one unified
notation, which allows for a better technical comparison of
the variants and implementations. Because the discrete-time
variant has been developed to a reasonable level of maturity,
this paper solely discusses algorithms in the discrete-time
setting. Continuous-time variants of actor-critic algorithms,
e.g. [11], [12] and multi-agent actor-critic schemes [13],[14]
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are not considered here.
The focus is put on actor-critic algorithms based on policy

gradients, which constitute the largest part of actor-critic
algorithms. A distinction is made between algorithms that use
a standard (sometimes also called vanilla) gradient and the
natural gradient that became more popular in the course of
the last decade. The remaining part of actor-critic algorithms
consists mainly of algorithms that choose to update the ac-
tor by moving it towards the greedy policy underlying an
approximate state-action value function [10]. In this paper,
these algorithms are regarded as critic-only algorithms asthe
policy is implemented implicitly by the critic. Algorithms
are only categorized as actor-critic here if they implement
two separately parameterized representations for the actor and
the critic. Furthermore, all algorithms make use of function
approximation, which in real-life applications such as robotics
is necessary in order to deal with continuous state and action
spaces.

This paper is organized as follows. Section II introduces
the basic concepts of a Markov decision process, which is the
cornerstone of reinforcement learning. Section III describes
critic-only, actor-only and actor-critic RL algorithms and the
important policy gradient theorem, after which Section IV
surveys actor-critic algorithms that use a standard gradient.
Section V describes the natural gradient and its application
to actor-critic methods, and also surveys several natural actor-
critic algorithms. Section VI briefly reviews the application
areas of these methods. A discussion and future outlook is
provided in Section VII.

II. M ARKOV DECISION PROCESSES

This section introduces the concepts of discrete-time re-
inforcement learning, based on [7], but extended to the use
of continuous state and action spaces and also assuming a
stochastic setting, as covered more extensively in [15], [16].

A reinforcement learning algorithm can be used to solve
problems modelled as Markov decision processes (MDPs). An
MDP is a tuple〈X,U, f, ρ〉, whereX denotes the state space,
U the action space,f : X×U×X 7→ [0,∞) the state transition
probability density function andρ : X×U×X 7→ R the reward
function. In this paper, only stationary MDP’s are considered,
i.e., the elements of the tuple〈X,U, f, ρ〉 do not change over
time.

The stochastic process to be controlled is described by the
state transition probability density functionf . It is important
to note that since state space is continuous, it is only possible
to define a probability of reaching a certain stateregion, since
the probability of reaching a particular state is zero. The
probability of reaching a statexk+1 in the regionXk+1 ⊆ X
from statexk after applying actionuk is

P(xk+1 ∈ Xk+1|xk, uk) =

∫

Xk+1

f(xk, uk, x
′)dx′.

After each transition to a statexk+1, the controller receives
an immediate reward

rk+1 = ρ(xk, uk, xk+1),

which depends on the previous state, the current state and the
action taken. The reward functionρ is assumed to be bounded.
The actionuk taken in a statexk is drawn from a stochastic
policy π : X × U 7→ [0,∞).

The goal of the reinforcement learning agent is to find the
policy π which maximizes the expected value of a certain
function g of the immediate rewards received while following
the policyπ. This expected value is the cost-to-go function

J(π) = E {g(r1, r2, . . .)|π} .

In most cases1, the functiong is either the discounted sum of
rewards or the average reward received, as explained next.

A. Discounted Reward

In the discounted reward setting [18], the cost functionJ is
equal to the expected value of the discounted sum of rewards
when starting from an initial statex0 ∈ X drawn from an
initial state distributionx0 ∼ d0(·), also called the discounted
return

J(π) = E

{
∞∑

k=0

γkrk+1

∣∣∣∣∣ d0, π
}

=

∫

X

dπγ (x)

∫

U

π(x, u)

∫

X

f(x, u, x′)ρ(x, u, x′)dx′dudx,

(1)

where dπγ (x) =
∑∞

k=0 γ
kp(xk = x|d0, π) is the discounted

state distribution under the policyπ [16], [19] andγ ∈ [0, 1)
denotes the reward discount factor. Note thatp(xk = x) is a
probability density function here.

During learning, the agent will have to estimate the cost-to-
go functionJ for a given policyπ. This procedure is called
policy evaluation. The resulting estimate ofJ is called the
value functionand two definitions exist for it. The state value
function

V π(x) = E

{
∞∑

k=0

γkrk+1

∣∣∣∣∣x0 = x, π

}
(2)

only depends on the statex and assumes that the policyπ
is followed starting from this state. The state-action value
function

Qπ(x, u) = E

{
∞∑

k=0

γkrk+1

∣∣∣∣∣x0 = x, u0 = u, π

}
. (3)

also depends on the statex, but makes the actionu chosen
in this state a free variable instead of having it generated
by the policy π. Once the first transition onto a next state
has been made,π governs the rest of the action selection.
The relationship between these two definitions for the value
function is given by

V π(x) = E {Qπ(x, u)|u ∼ π(x, ·)} .

With some manipulation, Equations (2) and (3) can be put
into a recursive form [18]. For the state value function thisis

V π(x) = E {ρ(x, u, x′) + γV π(x′)} , (4)

1Other cost functionals do exist and can be used for actor-critic algorithms,
such as the risk-sensitive cost in [17].
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with u drawn from the probability distribution functionπ(x, ·)
andx′ drawn fromf(x, u, ·). For the state-action value func-
tion the recursive form is

Qπ(x, u) = E {ρ(x, u, x′) + γQπ(x′, u′)} , (5)

with x′ drawn from the probability distribution function
f(x, u, ·) and u′ drawn from the distributionπ(x′, ·). These
recursive relationships are called Bellman equations [7].

Optimality for both the state value functionV π and the
state-action value functionQπ is governed by the Bellman
optimality equation. Denoting the optimal state value function
with V ∗(x) and the optimal state-action value withQ∗(x, u),
the corresponding Bellman optimality equations for the dis-
counted reward setting are

V ∗(x) = max
u

E {ρ(x, u, x′) + γV ∗(x′)} (6a)

Q∗(x, u) = E
{
ρ(x, u, x′) + γmax

u′

Q∗(x′, u′)
}
. (6b)

B. Average Reward

As an alternative to the discounted reward setting, there is
also the approach of using theaveragereturn [18]. In this
setting a starting statex0 does not need to be chosen, under
the assumption that the process is ergodic [7] and thus that
J does not depend on the starting state. Instead, the value
functions for a policyπ are defined relative to the average
expected reward per time step under the policy, turning the
cost-to-go function into

J(π) = lim
n→∞

1

n
E

{
n−1∑

k=0

rk+1

∣∣∣∣∣π
}

=

∫

X

dπ(x)

∫

U

π(x, u)

∫

X

f(x, u, x′)ρ(x, u, x′)dx′dudx.

(7)

Equation (7) is very similar to Equation (1), except that
the definition for the state distribution changed todπ(x) =
limk→∞ p(xk = x, π). For a given policyπ, the state value
function V π(x) and state-action value functionQπ(x, u) are
then defined as

V π(x) = E

{
∞∑

k=0

(rk+1 − J(π))

∣∣∣∣∣x0 = x, π

}

Qπ(x, u) = E

{
∞∑

k=0

(rk+1 − J(π))

∣∣∣∣∣x0 = x, u0 = u, π

}
.

The Bellman equations for the average reward — in this case
also called the Poisson equations [20] — are

V π(x) + J(π) = E {ρ(x, u, x′) + V π(x′)} , (8)

with u and x′ drawn from the appropriate distributions as
before and

Qπ(x, u) + J(π) = E {ρ(x, u, x′) +Qπ(x′, u′)} , (9)

again withx′ andu′ drawn from the appropriate distributions.
Note that Equations (8) and (9) both require the valueJ(π),
which is unknown and hence needs to be estimated in some

way. Bellman optimality equations, describing an optimum for
the average reward case, are

V ∗(x) + J∗ = max
u

E {ρ(x, u, x′) + V ∗(x′)} (10a)

Q∗(x, u) + J∗ = E
{
ρ(x, u, x′) + max

u′

Q∗(x′, u′)
}

(10b)

whereJ∗ is the optimal average reward as defined by (7) when
an optimal policyπ∗ is used.

III. A CTOR-CRITIC IN THE CONTEXT OF RL

As discussed in the introduction, the vast majority of
reinforcement learning methods can be divided into three
groups [1]: critic-only, actor-only and actor-critic methods.
This section will give an explanation on all three groups,
starting with critic-only methods. The part on actor-only
methods introduces the concept of a policy gradient, which
provides the basis for actor-critic algorithms. The final part of
this section explains the policy gradient theorem, an important
result that is now widely used in many implementations of
actor-critic algorithms.

In real-life applications, such as robotics, processes usually
have continuous state and action spaces, making it impossible
to store exact value functions or policies for each separate
state or state-action pair. Any RL algorithm used in practice
will have to make use of function approximators for the value
function and/or the policy in order to cover the full range of
states and actions. Therefore, this section assumes the useof
such function approximators.

A. Critic-only Methods

Critic-only methods, such as Q-learning [21]–[23] and
SARSA [24], use a state-action value function and no explicit
function for the policy. For continuous state and action spaces,
this will be an approximate state-action value function. These
methods learn the optimal value function by finding online an
approximate solution to the Bellman equation (6b) or (10b).
A deterministic policy, denoted byπ : X 7→ U is calculated
by using an optimization procedure over the value function

π(x) = argmax
u

Q(x, u). (11)

There is no reliable guarantee on the near-optimality of the
resulting policy for just any approximated value function when
learning in an online setting. For example, Q-learning and
SARSA with specific function approximators have been shown
not to converge even for simple MDPs [25]–[27]. However,
the counterexamples used to show divergence were further
analyzed in [28] (with an extension to the stochastic setting
in [29]) and it was shown that convergence can be assured for
linear-in-parameters function approximators if trajectories are
sampled according to their on-policy distribution. The work
in [28] also provides a bound on the approximation error
between the true value function and the approximation learned
by online temporal difference learning. An analysis of more
approximate policy evaluation methods is provided by [30],
mentioning conditions for convergence and bounds on the
approximation error for each method. Nevertheless, for most
choices of basis functions an approximated value function
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learned by temporal difference learning will be biased. This
is reflected by the state-of-the-art bounds on the least-squares
temporal difference (LSTD) solution quality [31], which al-
ways include a term depending on the distance between the
true value function and its projection on the approximation
space. For a particularly bad choice of basis functions, this
bias can grow very large.

B. Actor-only Methods and the Policy Gradient

Policy gradient methods (see, for instance, the SRV [32]
and Williams’ REINFORCE algorithms [33]) are principally
actor-only and do not use any form of a stored value function.
Instead, the majority of actor-only algorithms work with a
parameterized family of policies and optimize the cost defined
by (1) or (7) directly over the parameter space of the policy.
Although not explicitly considered here, work on nonpara-
metric policy gradients does exist, see e.g. [34], [35]. A major
advantage of actor-only methods over critic-only methods is
that they allow the policy to generate actions in the complete
continuous action space.

A policy gradient method is generally obtained by parame-
terizing the policyπ by the parameter vectorϑ ∈ Rp. Consid-
ering that both (1) and (7) are functions of the parameterized
policy πϑ, they are in fact functions ofϑ. Assuming that
the parameterization is differentiable with respect toϑ, the
gradient of the cost function with respect toϑ is described by

∇ϑJ =
∂J

∂πϑ

∂πϑ
∂ϑ

. (12)

Then, by using standard optimization techniques, a locally
optimal solution of the costJ can be found. The gradient
∇ϑJ is estimated per time step and the parameters are then
updated in the direction of this gradient. For example, a simple
gradient ascent method would yield the policy gradient update
equation

ϑk+1 = ϑk + αa,k∇ϑJk, (13)

whereαa,k > 0 is a small enough learning rate for the actor,
by which it is obtained that2 J(ϑk+1) ≥ J(ϑk).

Several methods exists to estimate the gradient, e.g. by
using infinitesimal perturbation analysis (IPA) or likelihood-
ratio methods [36], [37]. For a broader discussion on these
methods, see [4], [38]. Approaches to model-based gradient
methods are given in [39]–[41] and in the more recent work
of Deisenroth [42].

The main advantage of actor-only methods is their strong
convergence property, which is naturally inherited from gradi-
ent descent methods. Convergence is obtained if the estimated
gradients are unbiased and the learning ratesαa,k satisfy [7],
[38]

∞∑

k=0

αa,k = ∞
∞∑

k=0

α2
a,k <∞

A drawback of the actor-only approach is that the estimated
gradient may have a large variance [19], [43]. Also, every

2One could also define the costJ such that it should be minimized. In that
case, the plus sign in Equation (13) is replaced with a minus sign, resulting
in J(ϑk+1) ≤ J(ϑk).

Actor

Critic

Process

Rewardr

xx u

Fig. 1. Schematic overview of an actor-critic algorithm. The dashed line
indicates that the critic is responsible for updating the actor and itself.

gradient is calculated without using any knowledge of past
estimates [1], [44].

C. Actor-Critic Algorithms

Actor-critic methods [45], [46] aim to combine the ad-
vantages of actor-only and critic-only methods. Like actor-
only methods, actor-critic methods are capable of producing
continuous actions, while the large variance in the policy
gradients of actor-only methods is countered by adding a critic.
The role of the critic is to evaluate the current policy prescribed
by the actor. In principle, this evaluation can be done by any
policy evaluation method commonly used, such as TD(λ) [6],
[18], LSTD [3], [18], [47] or residual gradients [25]. The critic
approximates and updates the value function using samples.
The value function is then used to update the actor’s policy pa-
rameters in the direction of performance improvement. These
methods usually preserve the desirable convergence properties
of policy gradient methods, in contrast to critic-only methods.
In actor-critic methods, the policy is not directly inferred from
the value function by using (11). Instead, the policy is updated
in the policy gradient direction using only a small step sizeαa,
meaning that a change in the value function will only result in
a small change in the policy, leading to less or no oscillatory
behavior in the policy as described in [48].

Fig. 1 shows the schematic structure of an actor-critic
algorithm. The learning agent has been split into two separate
entities: the actor (policy) and the critic (value function). The
actor is only responsible for generating a control inputu, given
the current statex. The critic is responsible for processing the
rewards it receives, i.e. evaluating the quality of the current
policy by adapting the value function estimate. After a number
of policy evaluation steps by the critic, the actor is updated
by using information from the critic.

A unified notation for the actor-critic algorithms described
in this paper allows for an easier comparison between them.
Also, most algorithms can be fitted to a generaltemplateof
standard update rules. Therefore, two actor-critic algorithm
templates are introduced: one for the discounted reward setting
and one for the average reward setting. Once these templates
are established, specific actor-critic algorithms can be dis-
cussed by only looking at how they fit into the general template
or in what way they differ from it.

For both reward settings, the value function is parameterized
by the parameter vectorθ ∈ Rq. This will be denoted
with Vθ(x) or Qθ(x, u). If the parameterization is linear, the
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features (basis functions) will be denoted withφ, i.e.

Vθ(x) = θ⊤φ(x) or Qθ(x, u) = θ⊤φ(x, u). (14)

The stochastic policyπ is parameterized byϑ ∈ Rp and will be
denoted withπϑ(x, u). If the policy is denoted withπϑ(x), it
is deterministic and no longer represents a probability density
function, but the direct mapping from states to actionsu =
πϑ(x).

The goal in actor-critic algorithms — or any other RL
algorithm for that matter — is to find the best policy possible,
given some stationary MDP. A prerequisite for this is that
the critic is able to accurately evaluate a given policy. In
other words, the goal of the critic is to find an approximate
solution to the Bellman equation for that policy. The difference
between the right-hand and left-hand side of the Bellman
equation, whether it is the one for the discounted reward
setting (4) or the average reward setting (8), is called the
temporal difference (TD) error and is used to update the critic.
Using the function approximation for the critic and a transition
sample(xk, uk, rk+1, xk+1), the TD error is estimated as

δk = rk+1 + γVθk(xk+1)− Vθk(xk). (15)

Perhaps the most standard way of updating the critic, is to
exploit this TD error for use in a gradient descent update [7]

θk+1 = θk + αc,kδk∇θVθk(xk), (16)

where αc,k > 0 is the learning rate of the critic. For
the linearly parameterized function approximator (14), this
reduces to

θk+1 = θk + αc,kδkφ(xk). (17)

This temporal difference method is also known as TD(0)
learning, as no eligibility traces are used. The extension to
the use of eligibility traces, resulting in TD(λ) methods, is
straightforward and is explained next.

Using (16) to update the critic results in a one-step backup,
whereas the reward received is often the result of a series of
steps. Eligibility traces offer a better way of assigning credit
to states or state-action pairs visited several steps earlier. The
eligibility trace vector for allq features at time instantk is
denoted withzk ∈ Rq and its update equation is [1], [7]

zk = λγzk−1 +∇θVθk(xk).

It decays with time by a factorλγ, with λ ∈ [0, 1) the trace
decay rate. This makes the recently used features more eligible
for receiving credit. The use of eligibility traces speeds up the
learning considerably. Using the eligibility trace vectorzk, the
update (16) of the critic becomes

θk+1 = θk + αc,kδkzk. (18)

With the use of eligibility traces, the actor-critic template
for the discounted return setting becomes

δk = rk+1 + γVθk(xk+1)− Vθk(xk) (19a)

zk = λγzk−1 +∇θVθk(xk) (19b)

θk+1 = θk + αc,kδkzk (19c)

ϑk+1 = ϑk + αa,k∇ϑJk. (19d)

Although not commonly seen, eligibility traces may be in-
troduced for the actor as well. As with actor-only methods,
several ways exist to estimate∇ϑJk.

For the average reward case, the critic can be updated using
the average-cost TD method [49]. Then, Bellman equation (8)
is considered, turning the TD error into

δk = rk+1 − Ĵk + Vθk(xk+1)− Vθk(xk),

with Ĵk an estimate of the average cost at timek. Obviously,
this requires an update equation for the estimateĴ as well,
which usually is [1]

Ĵk = Ĵk−1 + αJ,k(rk+1 − Ĵk−1),

whereαJ,k ∈ (0, 1] is another learning rate. The critic still
updates with Equation (18). The update of the eligibility trace
also needs to be adjusted, as the discount rateγ is no longer
present. The template for actor-critic algorithms in the average
return setting then is

Ĵk = Ĵk−1 + αJ,k(rk+1 − Ĵk−1) (20a)

δk = rk+1 − Ĵk + Vθk(xk+1)− Vθk(xk) (20b)

zk = λzk−1 +∇θVθk(xk) (20c)

θk+1 = θk + αc,kδkzk (20d)

ϑk+1 = ϑk + αa,k∇ϑJk. (20e)

For the actor-critic algorithm to converge, it is necessarythat
the critic’s estimate is at least asymptotically accurate.This is
the case if the step sizesαa,k andαc,k are deterministic, non-
increasing and satisfy [1]

∑

k

αa,k = ∞
∑

k

αc,k = ∞ (21)

∑

k

α2
a,k <∞

∑

k

α2
c,k <∞

∑

k

(
αa,k

αc,k

)d

<∞ (22)

for somed ≥ 0. The learning rateαJ,k is usually set equal to
αc,k. Note that such assumptions on learning rates are typical
for all RL algorithms. They ensure that learning will slow
down, but never stops and also that the update of the actor
operates on a slower time-scale than the critic, to ensure that
the critic has enough time to evaluate the current policy.

Although TD(λ) learning is used quite commonly, other
ways of determining the critic parameterθ do exist and some
are even known to be superior in terms of convergence rate
in both discounted and average reward settings [50], such as
least-squares temporal difference learning (LSTD) [3], [47].
LSTD uses samples collected along a trajectory generated by
a policyπ to set up a system of temporal difference equations
derived from or similar to (19a) or (20b). As LSTD requires
an approximation of the value function which is linear in its
parameters, i.e.Vθ(x) = θ⊤φ(x), this system is linear and can
easily be solved forθ by a least-squares method. Regardless
of how the critic approximates the value function, the actor
update is always centered around Equation (13), using some
way to estimate∇ϑJk.

For actor-critic algorithms, the question arises how the critic
influences the gradient update of the actor. This is explained
in the next subsection about the policy gradient theorem.
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D. Policy Gradient Theorem

Many actor-critic algorithms now rely on the policy gradient
theorem, a result obtained simultaneously in [1] and [19],
proving that an unbiased estimate of the gradient (12) can be
obtained from experience using an approximate value function
satisfying certain properties. The basic idea, given by [1], is
that since the number of parameters that the actor has to update
is relatively small compared to the (usually infinite) number of
states, it is not useful to have the critic attempting to compute
the exact value function, which is also a high-dimensional
object. Instead, it should compute a projection of the value
function onto a low-dimensional subspace spanned by a set
of basis functions, which are completely determined by the
parameterization of the actor.

In the case of an approximated stochastic policy, but exact
state-action value functionQπ, the policy gradient theorem is
as follows.

Theorem 1 (Policy Gradient):For any MDP, in either the
average reward or discounted reward setting, the policy gradi-
ent is given by

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x, u)Q
π(x, u)dudx,

with dπ(x) defined for the appropriate reward setting.
Proof: See [19].

This clearly shows the relationship between the policy gradient
∇ϑJ and the critic functionQπ(x, u) and ties together the
update equations of the actor and critic in the templates (19)
and (20).

For most applications, the state-action space is contin-
uous and thus infinite, which means that it is necessary
to approximate the state(-action) value function. The result
in [1], [19] shows thatQπ(x, u) can be approximated with3

hw : X × U 7→ R, parameterized byw, without affecting the
unbiasedness of the policy gradient estimate.

In order to find the closest approximation ofQπ by hw, one
can try to find thew that minimizes the quadratic error

Eπ
w(x, u) =

1

2
[Qπ(x, u)− hw(x, u)]

2
.

The gradient of this quadratic error with respect tow is

∇wE
π
w(x, u) = [Qπ(x, u)− hw(x, u)]∇whw(x, u) (23)

and this can be used in a gradient descent algorithm to find
the optimalw. If the estimator ofQπ(x, u) is unbiased, the
expected value of Equation (23) is zero for the optimalw i.e.

∫

X

dπ(x)

∫

U

π(x, u)∇wE
π
w(x, u)dudx = 0. (24)

The policy gradient theorem with function approximation is
based on the equality in (24).

Theorem 2 (Policy Gradient with Function Approximation):
If hw satisfies Equation (24) and

∇whw(x, u) = ∇ϑlnπϑ(x, u), (25)

3This approximation ofQπ(x, u) is not denoted with an accentedQ as it
is not actually the value functionQ that it is approximating, as shown later
in this section.
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(a) Value functionQ∗(x, u)

x

u

−5 0 5
−5

0

5

(b) Advantage functionA∗(x, u)

Fig. 2. The optimal value and advantage function for the example MDP
in [16]. The system isxk+1 = xk + uk, using the optimal policyπ∗(x) =
−Kx with K the state feedback solution based on the reward functionrk =
−x2

k
− 0.1u2

k
. The advantage function nicely shows the zero contour line of

the optimal actionu = −Kx.

where πϑ(x, u) denotes the stochastic policy, parameterized
by ϑ, then

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x, u)hw(x, u)dudx. (26)

Proof: See [19].
An extra assumption in [1] is that in (25),h actually

needs to be an approximator that is linear with respect to
some parameterw and featuresψ, i.e. hw = w⊤ψ(x, u),
transforming condition (25) into

ψ(x, u) = ∇ϑlnπϑ(x, u). (27)

Featuresψ that satisfy Equation (27) are known ascompatible
features [1], [19], [51]. In the remainder of the paper, these will
always be denoted byψ and their corresponding parameters
with w.

A technical issue, discussed in detail in [16], [19], is
that using the compatible function approximationhw =
w⊤∇ϑlnπϑ(x, u) gives

∫

U

π(x, u)hw(x, u)du = w⊤∇ϑ

∫

U

πϑ(x, u)du
︸ ︷︷ ︸

=1

= 0.

This shows that the expected value ofhw(x, u) under the
policy πϑ is zero for each state, from which can be concluded
thathw is generally better thought of as theadvantage function
Aπ(x, u) = Qπ(x, u) − V π(x). In essence, this means that
using only compatible features for the value function results
in an approximator that can only represent the relative value of
an actionu in some statex correctly, but not the absolute value
Q(x, u). An example showing how different the value function
Q(x, u) and the corresponding advantage functionA(x, u)
can look is shown in Figure 2. Because of this difference,
the policy gradient estimate produced by just the compatible
approximation will still have a high variance. To lower the
variance, extra features have to be added on top of the com-
patible features, which take the role of modeling the difference
between the advantage functionAπ(x, u) and the state-action
value functionQπ(x, u), i.e. the value functionV π(x). These
extra features are therefore only state-dependent, as depen-
dence on the action would introduce a bias into the gradient
estimate. The state-dependent offset that is created by these
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additional features is often referred to as a (reinforcement)
baseline. The policy gradient theorem actually generalizes to
the case where a state-dependent baseline function is taken
into account. Equation (26) would then read

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x, u) [hw(x, u) + b(x)] dudx.

(28)
whereb(x) is the baseline function that can be chosen arbitrar-
ily. Adding a baseline will not affect the unbiasedness of the
gradient estimate, but can improve the accuracy of the critic’s
approximation and prevent an ill-conditioned projection of the
value function on the compatible featuresψ [1]. In that respect,
this paper treatsw as a subset ofθ, andψ as a subset ofφ. In
practice, the optimal baseline, i.e. the baseline that minimizes
the variance in the gradient estimate for the policyπ, is the
value functionV π(x) [19], [20]. In [52], it is noted that, in
light of the policy gradient theorem that was only published
many years later, Gullapalli’s earlier idea in [32] of using
the temporal differenceδ in the gradient used to update the
policy weights can be shown to yield the true policy gradient
∇ϑJ(ϑ), and hence corresponds to the policy gradient theorem
with respect to Equation (28).

Theorem 2 yields a major benefit. Once a good parame-
terization for a policy has been found, a parameterization for
the value function automatically follows and also guarantees
convergence. Further on in this paper, many actor-critic algo-
rithms make use of this theorem.

Part of this paper is dedicated to giving some examples of
relevant actor-critic algorithms in both the standard gradient
and natural gradient setting. As it is not possible to describe
all existing actor-critic algorithms in this survey in detail, the
algorithms addressed in this paper are chosen based on their
originality: either they were the first to use a certain technique,
extended an existing method significantly or the containing
paper provided an essential analysis. In Section II a distinction
between the discounted and average reward setting was already
made. The reward setting is the first major axis along which
the algorithms in this paper are organized. The second major
axis is the gradient type, which will be either the standard
gradient or the natural gradient. This results in a total of four
categories to which the algorithms can (uniquely) belong, see
Table I. References in bold are discussed from an algorith-
mic perspective. Section IV describes actor-critic algorithms
that use a standard gradient. Section V first introduces the
concept of a natural gradient, after which natural actor-critic
algorithms are discussed. References in italic are discussed in
the Section VI on applications.

IV. STANDARD GRADIENT ACTOR-CRITIC ALGORITHMS

Many papers refer to Barto et al. [46] as the starting
point of actor-critic algorithms, although there the actorand
critic were called the associative search element and adaptive
critic element, respectively. That paper itself mentions that the
implemented strategy is closely related to [45], [69]. Either
way, it is true that [46] defined the actor-critic structure that
resembles the recently proposed actor-critic algorithms the

TABLE I
ACTOR-CRITIC METHODS, CATEGORIZED ALONG TWO AXES: GRADIENT

TYPE AND REWARD SETTING.

Standard gradient Natural gradient

Discounted
return

Barto et al. [46],
FACRLN [53], [54],
CACM [55],
Bhatnagar [56], Chun-Gui
et al. [57], Kimura et
al. [58], Raju et al. [59]

(e)NAC [16], [52], Park et
al. [60], Girgin and
Preux [61],
Kimura [62] ,Richter et
al. [2], Kim et al. [63],
Nakamura et al. [64],
El-Fakdi et al. [65]

Average
return

Konda and Tsitsiklis [1],
Paschalidis et al. [50],
ACFRL [5], [66],
Bhatnagar et al. I [20],
ACSMDP [67]

Bhatnagar et al.
II–IV [20], gNAC [68]

most. Therefore, the discussion on standard actor-critic algo-
rithms starts with this work, after which other algorithms in the
discounted return setting are discussed. As many algorithms
based on the average return also exist, they are dealt with in
a separate section.

A. Discounted return setting

Barto et al. [46] use simple parameterizations

Vθ(x) = θ⊤φ(x) πϑ(x) = ϑ⊤φ(x)

with the same featuresφ(x) for the actor and critic. They
chose binary features, i.e. for some statex only one feature
φi(x) has a non-zero value, in this caseφi(x) = 1. For ease
of notation, the statex was taken to be a vector of zeros with
only one element equal to1, indicating the activated feature.
This allowed the parameterization to be written as

Vθ(x) = θ⊤x πϑ(x) = ϑ⊤x.

Then, they were able to learn a solution to the well-known
cart-pole problem using the update equations

δk = rk+1 + γVθk(xk+1)− Vθk(xk) (29a)

zc,k = λczc,k−1 + (1− λc)xk (29b)

za,k = λaza,k−1 + (1− λa)ukxk (29c)

θk+1 = θk + αcδkzc,k (29d)

ϑk+1 = ϑk + αaδkza,k (29e)

with
uk = τ (πϑk

(xk) + nk) ,

whereτ is a threshold, sigmoid or identity function,nk is noise
which accounts for exploration andzc, za are eligibility traces
for the critic and actor, respectively. Note that these update
equations are similar to the ones in template (19), considering
the representation in binary features. The productδkza,k in
Equation (29e) can then be interpreted as the gradient of the
performance with respect to the policy parameter.

Although no use was made of advanced function approxima-
tion techniques, good results were obtained. A mere division
of the state space into boxes meant that there was no gen-
eralization among the states, indicating that learning speeds
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could definitely be improved upon. Nevertheless, the actor-
critic structure itself remained and later work largely focused
on better representations for the actor and the calculationof
the critic.

Based on earlier work in [53], Wang et al. [54], intro-
duced the Fuzzy Actor-Critic Reinforcement Learning Net-
work (FACRLN), which uses only one fuzzy neural network
based on radial basis functions for both the actor and the critic.
That is, they both use the same input and hidden layers, but
differ in their output by using different weights. This is based
on the idea that both actor and critic have the same input and
also depend on the same system dynamics. Apart from the
regular updates to the actor and critic based on the temporal
difference error, the algorithm not only updates the parameters
of the radial basis functions in the neural network, but also
adaptively adds and merges fuzzy rules. Whenever the TD
error or the squared TD error is too high and the so-calledǫ-
completeness property [70] is violated, a new rule, established
by a new radial basis function, is added to the network.
A closeness measure of the radial basis functions decides
whether two (or more) rules should be merged into one. For
example, when using Gaussian functions in the network, if two
rules have their centers and their widths close enough to each
other, they will be merged into one. FACRLN is benchmarked
against several other (fuzzy) actor-critic algorithms, including
the original work in [46], and turns out to outperform them
all in terms of the number of trials needed, without increasing
the number of basis functions significantly.

At about the same time, Niedzwiedz et al. [55] also claimed,
like with FACRLN, that there is redundancy in learning
separate networks for the actor and critic and developed their
Consolidated Actor-Critic Model (CACM) based on that same
principle. They too set up a single neural network, using
sigmoid functions instead of fuzzy rules, and use it for both
the actor and the critic. The biggest difference is that here, the
size of the neural network is fixed, i.e. there is no adaptive
insertion/removal of sigmoid functions.

More recently, work by Bhatnagar on the use of actor-critic
algorithms using function approximation for discounted cost
MDP’s under multiple inequality constraints appeared in [56].
The constraints considered are bounds on the expected values
of discounted sums of single-stage cost functionsρn, i.e.

Sn(π) =
∑

x∈X

d0(x)W
π
n (x) ≤ sn, n = 1 . . . N

with

Wπ
n (x) = E

{
∞∑

k=0

γkρn(xk, uk)

∣∣∣∣∣x0 = x, π

}

andd0 a given initial distribution over the states. The approach
is, as in usual constrained optimization problems, to extend the
discounted cost functionJ(π) to a Lagrangian cost function

L(π, µ̄) = J(π) +
N∑

n=1

µkGn(π)

whereµ̄ = (µ1, . . . , µN )⊤ is the vector of Lagrange multipli-
ers andGn(π) = Sn(π) − sn the functions representing the
inequality constraints.

The algorithm generates an estimate of the policy gradi-
ent using simultaneous perturbation stochastic approximation
(SPSA) [71], which has been found to be efficient even
in high-dimensional parameter spaces. The SPSA gradient
requires the introduction of two critics instead of one. The
first critic, parameterized byθ⊤φ(x), evaluates a policy
parameterized byϑk. The second critic, parameterized by
θ′⊤φ(x) evaluates a slightly perturbed policy parameterized
by ϑk + ǫ∆k with a small ǫ > 0. The element-wise policy
parameter update is then given by4

ϑi,k+1 = Γi

[
ϑk + αa

∑

x∈X

d0(x)

(
(θk − θ′k)

⊤φ(x)

ǫ∆i(k)

)]
(30)

whereΓi is a truncation operator. The Lagrange parametersµ
also have an update rule of their own (further details in [56]),
which introduces a third learning rateαL,k into the algorithm
for which the regular conditions

∑

k

αL,k = ∞
∑

k

α2
L,k <∞

must be satisfied and another constraint relatingαL,k to the
actor step sizeαa,k

lim
k→∞

αL,k

αa,k

= 0

must also hold, indicating that the learning rate for the
Lagrange multipliers should decrease quicker than the actor’s
learning rate. Under these conditions, the authors prove the
almost sure convergence to a locally optimal policy.

B. Average reward setting

In [1], together with the presentation of the novel ideas
of compatible features, discussed in Section III-D, two actor-
critic algorithms were introduced, differing only in the way
they update the critic. The general update equations for these
algorithms are

Ĵk = Ĵk−1 + αc,k(rk+1 − Ĵk−1) (31a)

δk = rk+1 − Ĵk +Qθk(xk+1, uk+1)−Qθk(xk, uk)
(31b)

θk+1 = θk + αc,kδkzk (31c)

ϑk+1 = ϑk + αa,kΓ(θk)Qθk(xk, uk)ψ(xk, uk), (31d)

whereψ is the vector of compatible features as defined in (27),
and the parameterizationQθ also contains these compatible
features. The first and the second equation depict the standard
update rules for the estimate of the average cost and the
temporal difference error. The third equation is the updateof
the critic. Here, the vectorzk represents an eligibility trace [7]
and it is exactly this what distinguishes the two different
algorithms described in the paper. The first algorithm uses
a TD(1) critic, basically taking an eligibility trace with decay
rateλ = 1. The eligibility trace is updated as

zk =

{
zk−1 + φk(xk, uk) if xk 6= xS

φk(xk, uk) otherwise

4This requires two simultaneous simulations of the constrained MDP.
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where xS is a special reset state for which it is assumed
that the probability of reaching it from any initial statex
within a finite number of transitions is bounded away from
zero for any sequence of randomized stationary policies. Here,
the eligibility trace is reset when encountering a state that
meets this assumption. The second algorithm is a TD(λ) critic,
simply updating the eligibility trace as

zk = λzk−1 + φk(xk, uk).

The update of the actor in Equation (31d) uses the policy
gradient estimate from Theorem 2. It leaves out the state
distributiondπ(x) earlier seen in Equation (26) of the policy
gradient theorem, as the expected value of∇J(ϑk) is equal
to that of ∇ϑπ(x, u)Q̂

π
w(x, u) and puts the critic’s current

estimate in place of̂Qπ
w(x, u). Finally, Γ(θk) is a truncation

term to control the step size of the actor, taking into account
the current estimate of the critic. For this particular algorithm,
some further assumptions on the truncation operatorΓ must
hold, which are not listed here.

It is known that using least-squares TD methods for policy
evaluation is superior to using regular TD methods in terms
of convergence rate as they are more data efficient [3], [47].
Inevitably, this resulted in work on actor-critic methods using
an LSTD critic [52], [72]. However, Paschalidis et al. [50]
showed that it is not straightforward to use LSTD without
modification, as it undermines the assumptions on the step
sizes (21)-(22). As a result of the basics of LSTD, the step size
schedule for the critic should be chosen asαc,k = 1

k
. Plugging

this demand into Equations (21) and (22) two conditions on
the step size of the actor conflict, i.e.

∑

k

αa,k = ∞
∑

k

(kαa,k)
d <∞ for somed > 0.

They conflict because the first requiresαa to decay at a rate
slower than1/k, while the second demands a rate faster than
1/k. This means there is a trade-off between the actor having
too much influence on the critic and the actor decreasing
its learning rate too fast. The approach presented in [50] to
address this problem is to use the following step size schedule
for the actor. For someK >> 1, let L = ⌊k/K⌋ and

αa,k :=
1

L+ 1
α̂a(k + 1− LK),

where
∑

k(kα̂a(k))
d ≤ ∞ for somed > 0. As a possible

example,
α̂a,k(b) := ̺(C) · b−C

is provided, whereC > 1 and̺(C) > 0. The critic’s step size
schedule is redefined as

αc,k :=
1

k − κ(L,K)
.

Two extreme cases ofκ(L,K) are κ(L,K) , 0 and
κ(L,K) = LK − 1. The first alternative corresponds to
the unmodified version of LSTD and the latter corresponds
to “restarting” the LSTD procedure whenk is an integer
multiple of K. The reason for adding theκ term to the
critic update is theoretical, as it may be used to increase the
accuracy of the critic estimates fork → ∞. Nevertheless,

choosingκ(L,K) = 0 gave good results in the simulations
in [50]. These step size schedules for the actor and critic
allow the critic to converge to the policy gradient, despite
the intermediate actor updates, while constantly revivingthe
learning rate of the actor such that the policy updates do not
stop prematurely. The actor step size schedule does not meet
the requirement

∑
k(kαa)

d < ∞ for somed > 0, meaning
that convergence of the critic for the entire horizon cannotbe
directly established. Whatis proven by the authors is that the
critic converges before every time instantk = JK, at which
point a new epoch starts5. For the actor, the optimum is not
reached during each epoch, but in the long run it will move to
an optimal policy. A detailed proof of this is provided in [50].

Berenji & Vengerov [5] used the actor-critic algorithm of [1]
to provide a proof of convergence for an actor-critic fuzzy
reinforcement learning (ACFRL) algorithm. The fuzzy element
of the algorithm is the actor, which uses a parameterized fuzzy
Takagi-Sugeno rulebase. The authors show that this parame-
terization adheres to the assumptions needed for convergence
stated in [1], hence providing the convergence proof. The
update equations for the average cost and the critic are the
same as Equations (31a) and (31c), but the actor update is
slightly changed into

ϑk+1 = Γ
(
ϑk + αa,kθ

⊤
k φk(xk, uk)ψk(xk, uk)

)
,

i.e. the truncation operatorΓ is now acting on the complete
update expression, instead of limiting the step size based on
the critic’s parameter. While applying ACFRL to a power
management control problem, it was acknowledged that the
highly stochastic nature of the problem and the presence of
delayed rewards necessitated a slight adaptation to the original
framework in [1]. The solution was to split the updating
algorithm into three phases. Each phase consists of running
a finite number of simulation traces. The first phase only
estimates the average cost̂J , keeping the actor and critic
fixed. The second phase only updates the critic, based on theĴ
obtained in the previous phase. This phase consists of a finite
number of traces during which a fixedpositive exploration
term is used on top of the actor’s output and an equal number
of traces during which a fixednegativeexploration term is
used. The claim is that this systematic way of exploring is
very beneficial in problems with delayed rewards, as it allows
the critic to better establish the effects of a certain direction
of exploration. The third and final phase keeps the critic fixed
and lets the actor learn the new policy. Using this algorithm,
ACFRL consistently converged to the same neighborhood of
policy parameters for a given initial parameterization. Later,
the authors extended the algorithm to ACFRL-2 in [66], which
took the idea of systematic exploration one step further by
learning two separate critics: one for positive exploration and
one for negative exploration.

Bhatnagar et al. [20] introduced four algorithms. The first
one uses a regular gradient and will therefore be discussed in

5The authors use the term “episode”, but this might cause confusion with
the commonly seen concept of episodic tasks in RL, which is not the case
here.
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this section. The update equations for this algorithm are

Ĵk = Ĵk−1 + αJ,k(rk+1 − Ĵk−1) (32a)

δk = rk+1 − Ĵk + Vθk(xk+1)− Vθk(xk) (32b)

θk+1 = θk + αc,kδkφ(xk) (32c)

ϑk+1 = Γ(ϑk + αa,kδkψ(xk, uk)). (32d)

The critic update is simply an update in the direction of the
gradient∇θV . The actor update uses the fact thatδkψ(xk, uk)
is an unbiased estimate of∇ϑJ under conditions mentioned
in [20]. The operatorΓ is a projection operator, ensuring
boundedness of the actor update. Three more algorithms are
discussed in [20], but these make use of a natural gradient for
the updates and hence are discussed in Section V-C2.

V. NATURAL GRADIENT ACTOR-CRITIC ALGORITHMS

The previous section introduced actor-critic algorithms
which use standard gradients. The use of standard gradients
comes with drawbacks. Standard gradient descent is most
useful for cost functions that have a single minimum and
whose gradients are isotropic in magnitude with respect to
any direction away from its minimum [73]. In practice, these
two properties are almost never true. The existence of multiple
local minima of the cost function, for example, is a known
problem in reinforcement learning, usually overcome by ex-
ploration strategies. Furthermore, the performance of methods
that use standard gradients relies heavily on the choice of a
coordinate system over which the cost function is defined. This
“non-covariance” is one of the most important drawbacks of
standard gradients [51], [74]. An example for this will be given
later in this section.

In robotics, it is common to have a “curved” state space
(manifold), e.g. because of the presence of angles in the state.
A cost function will then usually be defined in that curved
space too, possibly causing inefficient policy gradient updates
to occur. This is exactly what makes thenatural gradient
interesting, as it incorporates knowledge about the curvature
of the space into the gradient. It is a metric based not on
the choice of coordinates, but on the manifold that those
coordinates parameterize [51].

This section is divided into two parts. The first part explains
what the concept of a natural gradient is and what its effects
are in a simple optimization problem, i.e. not considering a
learning setting. The second part is devoted to actor-critic
algorithms that make use of this type of gradient to update
the actor. As these policy updates are using natural gradients,
these algorithms are also referred to as natural policy gradient
algorithms.

A. Natural Gradient in Optimization

To introduce the notion of a natural gradient, this section
summarizes work presented in [73]–[75]. Suppose a function
J(ϑ) is parameterized byϑ. When ϑ lives in a Euclidean
space, the squared Euclidean norm of a small increment∆ϑ
is given by the inner product

‖∆ϑ‖2E = ∆ϑ⊤∆ϑ.

A steepest descent direction is then defined by minimizing
J(ϑ+∆ϑ) while keeping‖∆ϑ‖E equal to a small constant.
When ϑ is transformed to other coordinates̃ϑ in a non-
Euclidean space, the squared norm of a small increment∆ϑ̃
with respect to thatRiemannianspace is given by the product

‖∆ϑ̃‖2R = ∆ϑ̃⊤G(ϑ̃)∆ϑ̃

whereG(ϑ̃) is the Riemannian metric tensor, ann×n positive
definite matrix characterizing the intrinsic local curvature
of a particular manifold in ann-dimensional space. The
Riemannian metric tensorG(ϑ̃) can be determined from the
relationship [73]:

‖∆ϑ‖2E = ‖∆ϑ̃‖2R.

Clearly, for Euclidean spacesG(ϑ̃) is the identity matrix.
Standard gradient descent for the new parametersϑ̃ would

define the steepest descent with respect to the norm‖∆ϑ̃‖2 =
∆ϑ̃⊤∆ϑ̃. However, this would result in a different gradient
direction, despite keeping the same cost function and only
changing the coordinates. Thenatural gradient avoids this
problem, and always points in the “right” direction, by taking
into account the Riemannian structure of the parameterized
space over which the cost function is defined. So now,
J̃(ϑ̃+∆ϑ̃) is minimized while keeping‖∆ϑ̃‖R small (J̃ here
is just the original costJ , but written as a function of the new
coordinates). This results in the natural gradient∇̃

ϑ̃
J̃(ϑ̃) of

the cost function, which is just a linear transformation of the
standard gradient∇

ϑ̃
J̃(ϑ̃) by the inverse ofG(ϑ̃):

∇̃
ϑ̃
J̃(ϑ̃) = G−1(ϑ̃)∇

ϑ̃
J̃(ϑ̃).

As an example of optimization with a standard gradient
versus a natural gradient, consider a cost function based on
polar coordinates

JP (r, ϕ) =
1

2
[(r cosϕ− 1)2 + r2 sin2 ϕ]. (33)

This cost function is equivalent toJE(x, y) = (x− 1)2 + y2,
wherex andy are Euclidean coordinates, i.e. the relationship
between(r, ϕ) and (x, y) is given by

x = r cosϕ y = r sinϕ.

Fig. 3a shows the contours and antigradients ofJP (r, ϕ)
for 0 ≤ r ≤ 3 and |ϕ| ≤ π, where

−∇(r,ϕ)JP (r, ϕ) = −

[
r − cosϕ
r sinϕ

]
.

The magnitude of the gradient clearly varies widely over
the (r, ϕ)-plane. When performing a steepest descent search
on this cost function, the trajectories from any point(r, ϕ)
to an optimal one will be far from straight paths. For the
transformation of Euclidean coordinates into polar coordinates,
the Riemannian metric tensor is [73]

G(r, ϕ) =

[
1 0
0 r2

]
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Fig. 3. Standard and natural gradients of the cost functionJP (r, ϕ) in polar
coordinates.
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Fig. 4. Trajectories for standard gradient (dashed) and natural gradient (solid)
algorithms for minimizingJP (r, ϕ) in polar coordinates.

so that the natural gradient of the cost function in (33) is

−∇̃(r,ϕ)JP (r, ϕ) = −G(r, ϕ)−1∇(r,ϕ)JP (r, ϕ)

= −

[
r − cosϕ
sinϕ

r

]
.

Fig. 3b shows the natural gradients ofJP (r, ϕ). Clearly, the
magnitude of the gradient is now more uniform across the
space and the angles of the gradients also do not greatly vary
away from the optimal point(1, 0).

Fig. 4 shows the difference between a steepest decent
method using a standard gradient and a natural gradient on the
cost JP (r, ϕ) using a number of different initial conditions.
The natural gradient clearly performs better as it always finds
the optimal point, whereas the standard gradient generates
paths that are leading to points in the space which are not even
feasible, because of the radius which needs to be positive.

To get an intuitive understanding of what the effect of a
natural gradient is, Fig. 5 shows trajectories for the standard
and natural gradient that have been transformed onto the
Euclidean space. Whatever the initial condition6 is, the natural

6The exemplified initial conditions are not the same as in Fig. 4.
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Fig. 5. Trajectories for standard gradient (dashed) and natural gradient (solid)
algorithms for minimizingJP (r, ϕ), transformed to Euclidean coordinates.

gradient ofJP (r, ϕ) always points straight to the optimum and
follows the same path that the standard gradient ofJE(x, y)
would do.

When J(ϑ) is a quadratic function ofϑ (like in many
optimization problems, including for example those solvedin
supervised learning), the HessianH(ϑ) is equal toG(ϑ) for
the underlying parameter space, and there is no difference
between using Newton’s method and natural gradient opti-
mization. In general however, natural gradient optimization
differs from Newton’s method, e.g.,G(ϑ) is always positive
definite by construction, whereas the HessianH(ϑ) may not
be [73]. The general intuition developed in this section is
essential before moving on to the natural policy gradient in
MDPs, explained next.

B. Natural Policy Gradient

The possibility of using natural gradients in online learning
was first appreciated in [75]. As shown above, the crucial
property of the natural gradient is that it takes into account
the structure of the manifold over which the cost function is
defined, locally characterized by the Riemannian metric tensor.
To apply this insight in the context ofpolicy gradient methods,
the main question is then what is an appropriate manifold, and
once that is known, what is its Riemannian metric tensor.

Consider first just the parameterized stochastic policy
πϑ(x, u) at a single statex; a probability distribution over
the actionsu. This policy is a point on a manifold of
such probability distributions, found at coordinatesϑ. For a
manifold of distributions, the Riemannian tensor is the so-
called Fisher information matrix (FIM) [75], which for the
policy above is [51]

F (ϑ, x) = E
[
∇ϑlnπϑ(x, u)∇ϑlnπϑ(x, u)

⊤
]

=

∫

U

πϑ(x, u)∇ϑlnπϑ(x, u)∇ϑlnπϑ(x, u)
⊤du.

(34)

The single-state policy is directly related with the expected
immediate reward, over a single step fromx. However, it does
not tell much about the overall expected returnJ(π), which is
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defined over entire state trajectories. To obtain an appropriate
overall FIM, in the average reward case, Kakade [51] made
the intuitive choice of taking the expectation ofF (ϑ, x) with
respect to the stationary state distributiondπ(x)

F (ϑ) =

∫

X

dπ(x)F (ϑ, x)dx. (35)

He was, however, unsure whether this was the right choice.
Later on, the authors of [52] and [74] independently showed

that Equation (35) is indeed a true FIM, for the manifold of
probability distributions over trajectoriesin the MDP. When
used to control the MDP with stochastic dynamicsf , πϑ(x, u)
gives rise to different controlled trajectories with different
probabilities, so each value of the parameterϑ yields such
a distribution over trajectories. To understand how this distri-
bution is relevant to the valueJ(π) of the policy, observe that
this value can be written as the expected value of the infinite-
horizon return over all possible paths, where the expectation
is taken with respect to precisely the trajectory distribution.
Furthermore, [52] and [74] show that this idea also extends
to the discounted reward case, where the FIM is still given
by Equation (35), only withdπ(x) replaced by the discounted
state distributiondπγ (x), as defined in Section II-A.

Examples of the difference in performance between regular
policy gradients and natural policy gradients are provided
in [51], [52], [74].

C. Natural Actor-Critic Algorithms

This section describes several representative actor-critic
algorithms that employ a natural policy gradient. Again, a
distinction is made between algorithms using the discounted
return and the average return.

1) Discounted return setting:After the acknowledgement
by [75] that using the natural gradient could be beneficial
for learning, the aptly called Natural Actor-Critic algorithm
in Peters et al. [52] was, to the best of our knowledge,
the first actor-critic algorithm that successfully employed a
natural gradient for the policy updates. Together with [51],
they gave a proof that the natural gradient∇̃ϑJ(ϑ) is in fact
the compatible feature parameterw of the approximated value
function, i.e.

∇̃ϑJ(ϑ) = w.

Consequently, they were able to use a natural gradient without
explicitly calculating the Fisher Information Matrix. This turns
the policy update step into

ϑk+1 = ϑk + αa∇̃ϑJ(ϑ) (36a)

= ϑk + αawk+1. (36b)

For the policy evaluation step of the algorithm, i.e. the
calculation of the critic parameterw, LSTD-Q(λ) was used,
which was their own extension to LSTD(λ) from [3]. The
Natural Actor-Critic outperformed standard gradient policy
gradient methods on a cart-pole balancing setup. Later, the
work was extended in [16], where it was shown that several
well-known reinforcement algorithms (e.g. Sutton and Barto’s
actor-critic [7] and Bradtke’s Q-learning [23]) are strongly

related to natural actor-critic algorithms. Furthermore,the
paper presents the successful application of an episodic variant
of Natural Actor-Critic (eNAC) on an anthropomorphic robot
arm. For another example of a natural-actor critic algorithm
with a regression-based critic, see [76].

Park et al. [60] extend the original work in [52] by using
a recursive least-squares method in the critic, making the
parameter estimation of the critic more efficient. They then
successfully apply it to the control of a two-link robot arm.

Girgin and Preux [61] improve the performance of natural
actor-critic algorithms, by using a neural network for the actor,
which includes a mechanism to automatically add hidden
layers to the neural network if the accuracy is not sufficient.
Enhancing the eNAC method in [16] with this basis expansion
method clearly showed its benefits on a cart-pole simulation.

Though a lot of (natural) actor-critic algorithms use so-
phisticated function approximators, Kimura showed in [62]
that a simple policy parameterization using rectangular coarse
coding can still outperform conventional Q-learning in high-
dimensional problems. In the simulations, however, Q-learning
did outperform the natural actor-critic algorithm in low-
dimensional problems.

2) Average reward setting:Bhatnagar et al. [20] intro-
duced four algorithms, three of which are natural-gradient
algorithms. They extend the results of [1] by using temporal
difference learning for the actor and by incorporating natural
gradients. They also extend the work of [16] by providing the
first convergence proofs and the first fully incremental natural
actor-critic algorithms. The contribution of convergenceproofs
for natural-actor critic algorithms is important, especially
since the algorithms utilized both function approximationand
a bootstrapping critic, a combination which is essential to
large-scale applications of reinforcement learning. The second
algorithm only differs from the first algorithm, described at
the end of Section IV-B with Equation (32), in the actor
update (32d). It directly substitutes the standard gradient with
the natural gradient.

ϑk+1 = Γ(ϑk + αa,kF
−1
k (ϑ)δkψ(xk, uk)), (37)

whereF is the Fisher Information Matrix. This requires the
actual calculation of the FIM. Since the FIM can be written
using the compatible featuresψ as

F (ϑ) =

∫

X

dπ(x)

∫

U

π(x, u)ψ(x, u)ψ⊤(x, u)dudx

sample averages can be used to compute it:

Fk(ϑ) =
1

k + 1

k∑

l=0

ψ(xl, ul)ψ
⊤(xl, ul).

After converting this equation to a recursive update rule,
and putting the critic’s learning rate in place, the Sherman-
Morrison matrix inversion lemma is used to obtain an iterative
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update rule for the inverse of the FIM7.

F−1
k (ϑ) =

1

1− αc,k

·

[
F−1
k−1 − αc,k

(F−1
k−1ψk)(F

−1
k−1ψk)

⊤

1− αc,k(1− ψ⊤
k F

−1
k−1ψk)

]
,

where the initial valueF−1
0 is chosen to be a scalar multiple of

the identity matrix. This update rule, together with the adjusted
update of the actor then form the second algorithm.

The third algorithm in [20] uses the fact that the compatible
approximationw⊤ψ(x, u) is better thought of as an advantage
function approximator instead of a state-action value function
approximator, as mentioned in Section III-D. Hence, the
algorithm tunes the weightsw, such that the squared error
Eπ(w) = E

[
(w⊤ψ(x, u)−Aπ(x, u))2

]
is minimized. The

gradient of this error is

∇wE
π(w) = 2

∑

X

dπ(x)
∑

U

π(x, u)·

[
w⊤ψ(x, u)−Aπ(x, u)

]
ψ(x, u).

As δk is an unbiased estimate ofAπ(xk, uk) (see [77]), the
gradient is estimated with

∇̂wEπ(w) = 2(ψkψ
⊤
k w − δkψk) (38)

and the gradient descent update rule forw (using the same
learning rate as the critic) is

wk+1 = wk − αc,k(ψkψ
⊤
k wk − δkψk). (39)

Furthermore, the natural gradient estimate is given byw (as
shown by Peters and Schaal [16]), and an explicit calculation
for the FIM is no longer necessary. Therefore, the third
algorithm is obtained by using Equation (39) and replacing
the actor in Equation (37) with

ϑk+1 = Γ(ϑk + αa,kwk+1). (40)

The fourth algorithm in [20] is obtained by combining the
second and third algorithm. The explicit calculation ofF−1

k

is now used for the update of the compatible parameterw.
The update ofw now also follows its natural gradient, by
premultiplying the result in Equation (38) withF−1

k , i.e.

̂̃
∇wEπ(w) = 2F−1

k (ψkψ
⊤
k w − δkψk),

turning the update ofw into

wk+1 = wk − αc,kF
−1
k (ψkψ

⊤
k wk − δkψk)

= wk − αc,k F
−1
k ψkψ

⊤
k︸ ︷︷ ︸

I

wk + αc,kF
−1
k δkψk

= wk − αc,kwk + αc,kF
−1
k δkψk,

where clever use is made of the fact thatFk is written as the
squaredψ’s. The actor update is still Equation (40).

Although most natural actor-critic algorithms use the natural
gradient as defined in Section V, the generalized Natural

7For readability,ψ(xk, uk) is replaced byψk for the remainder of this
section.

Actor-Critic (gNAC) algorithm in [68] does not. Instead, a
generalizednatural gradient (gNG) is used, which combines
properties of the Fisher Information Matrix and natural gra-
dient as defined before with the properties of a differently
defined Fisher Information Matrix and natural gradient from
the work in [78]. They consider the fact that the average
reward J(ϑ) is not only affected by the policyπ, but also
by the resulting state distributiondπ(x) and define the Fisher
Information Matrix of the state-action joint distributionas

FSA(ϑ) = FS(ϑ) + FA(ϑ), (41)

whereFS(ϑ) is the FIM of the stationary state distribution
dπ(x) andFA(ϑ) the FIM as defined in Equation (35). In [78],
the use ofFSA(ϑ) as the FIM is considered better for learning
than using the original FIM because of three reasons: (i) Learn-
ing with FSA(ϑ) still benefits from the concepts of natural
gradient, since it necessarily and sufficiently accounts for
the probability distributions that the average reward depends
on. (ii) FSA(ϑ) is analogous to the Hessian matrix of the
average reward. (iii) Numerical experiments have shown a
strong tendency of avoiding plateaus in learning.

Nevertheless, the original FIMFA(ϑ) accounts for the
distribution over an infinite amount of time steps, whereas
FSA(ϑ) only accounts for the distribution over a single time
step. This might increase the mixing time of the Markov
chain drastically, making it hard for the RL learning agent to
estimate a gradient with a few samples. Therefore, the authors
suggest to use a weighted average, using a weighting factorι,
of both FIM’s defined in Equations (34) and (41). The gNG is
then calculated by using the inverse of this weighted average,
leading to the policy gradient

∇̃ϑJ(ϑ) = (ιFS + FA)
−1

∇ϑJ(ϑ).

The implementation of the algorithm is similar to that of NAC,
with the slight difference that another algorithm,LSLSD [79],
is used to estimate∇ϑd

π(x). If ι = 0, gNAC is equivalent to
the original NAC algorithm of Peters et al. [52], but now opti-
mizing over the average return instead of the discounted return.
In a numerical experiment with a randomly synthesized MDP
of 30 states and 2 actions, gNAC withι > 0 outperformed the
original NAC algorithm.

VI. A PPLICATIONS

This section provides references to papers that have applied
actor-critic algorithms in several domains. Note that the list
of applications is not exhaustive and that other application
domains for actor-critic algorithms and more literature onthe
applications mentioned below exists.

In the field of robotics, early successful results of using
actor-critic type methods on real hardware were shown on a
ball on a beam setup [80], a peg-in-hole insertion task [81]
and biped locomotion [82]. Peters and Schaal showed in [16]
that their natural actor-critic method was capable of getting
an anthropomorphic robot arm to learn certain motor skills
(see Fig. 6). Kim et al. [63] recently successfully applied
a modified version of the algorithm in [60] to motor skill
learning. Locomotion of a two-link robot arm was learned
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Fig. 6. The episodic Natural Actor-Critic method in [16] applied to an
anthropomorphic robot arm performing a baseball bat swing task.

using a recursive least-squares natural actor-critic method
in [60]. Another successful application on a real four-legged
robot is given in [58]. Nakamura et al. devised an algorithm
based on [16] which made a biped robot walk stably [64].
Underwater cable tracking [65] was done using the NAC
method of [16], where it was used in both a simulation
and real-time setting: once the results from simulation were
satisfactory, the policy was moved to an actual underwater
vehicle, which continued learning during operation, improving
the initial policy obtained from simulation.

An example of a logistics problem solved by actor-critic
methods is given in [50], which successfully applies such a
method to the problem of dispatching forklifts in a warehouse.
This is a high-dimensional problem because of the number of
products, forklifts and depots involved. Even with over 200
million discrete states, the algorithm was able to convergeto
a solution that performed 20% better in terms of cost than a
heuristic solution obtained by taking the exact solution ofa
smaller problem and expanding this to a large state space.

Usaha & Barria [67] use the algorithm from [1] described
in Section IV-B, extended to handle semi-Markov decision
processes8, for call admission control in lower earth orbit satel-
lite networks. They compared the performance of this actor-
critic semi-Markov decision algorithm (ACSMDP) together
with an optimistic policy iteration (OPI) method to an existing
routing algorithm. While both ACSMDP and OPI outperform
the existing routing algorithm, ACSMDP has an advantage in
terms of computational time, although OPI reaches the best
result. Based on the FACRLN from [54] in Section IV-A,
Chun-Gui et al. [57] devised a way to control traffic signals
at an intersection and showed in simulation that this method
outperformed the commonly seen time slice allocation meth-
ods. Richter et al. [2] showed similar improvements in road
traffic optimization when using natural actor-critic methods.

Finally, an application to the finance domain was described
in [59], where older work on actor-critic algorithms [83] was
applied in the problem of determining dynamic prices in an

8Semi-Markov decision processes extend regular MDPs by taking into
account a (possibly stochastically) varying transition time from one state to
another.

electronic retail market.

VII. D ISCUSSION ANDOUTLOOK

When applying reinforcement learning to a certain problem,
knowing a priori whether a critic-only, actor-only or actor-
critic algorithm will yield the best control policy is virtually
impossible. However, a few rules of thumb should help in
selecting the most sensible class of algorithms to use. The
most important thing to consider first is the type of control
policy that should be learned. If it is necessary for the control
policy to produce actions in a continuous space, critic-only
algorithms are no longer an option, as calculating a control
law would require solving the possibly non-convex optimiza-
tion procedure of Equation (11) over the continuous action
space. Conversely, when the controller only needs to generate
actions in a (small) countable, finite space, it makes sense to
use critic-only methods, as Equation (11) can be solved by
enumeration. Using a critic-only method also overcomes the
problem of high-variance gradients in actor-only methods and
the introduction of more tuning parameters (e.g. extra learning
rates) in actor-critic methods.

Choosing between actor-only and actor-critic methods is
more straightforward. If the problem is modeled by a
(quasi-)stationary MDP, actor-critic methods should provide
policy gradients with lower variance than actor-only methods.
Actor-only methods are however more resilient to fast chang-
ing non-stationary environments, in which a critic would be
incapable of keeping up with the time-varying nature of the
process and would not provide useful information to the actor,
cancelling the advantages of using actor-critic algorithms. In
summary, actor-critic algorithms are most sensibly used ina
(quasi-)stationary setting with a continuous state and action
space.

Once the choice for actor-critic has been made, the issue of
choosing the right features for the actor and critic, respectively,
remains. There is consensus, though, that the features for
the actor and critic do not have to be chosen independently.
Several actor-critic algorithms use the exact same set of
features for both the actor and the critic, while the policy
gradient theorem indicates that it is best to first choose a
parameterization for the actor, after whichcompatible features
for the critic can be derived. In this sense, the use of compat-
ible features is beneficial as itlessensthe burden of choosing
a separate parameterization for the value function. Note that
compatible features do noteliminate the burden of choosing
features for the value function completely (see Section III-D).
Adding state-dependent features to the value function on top
of the compatible features remains an important task as this
is the only way to further reduce the variance in the policy
gradient estimates. How to choose these additional features
remains a difficult problem.

Choosing a good parameterization for the policy in the first
place also remains an important issue as it highly influences
the performance after learning. Choosing this parameterization
does seem less difficult than for the value function, as in
practice it is easier to get an idea what shape the policy has
than the corresponding value function.
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One of the conditions for successful application of rein-
forcement learning in practice is that learning should be quick.
Although this paper focuses on gradient-based algorithms and
how to estimate this gradient, it should be noted that it is
not only the quality of the gradient estimate that influences
the speed of learning. Balancing the exploration and exploita-
tion of a policy and choosing good learning rate schedules
also have a large effect on this, although more recently
expectation-maximization (EM) methods that work without
learning rates have been proposed [84], [85]. With respect
to gradient type, the natural gradient seems to be superior
to the standard gradient. However, an example of standard
Q-learning on low-dimensional problems in [62] and relative
entropy policy search (REPS) [44] showed better results than
the natural gradient. Hence, even though the field of natural
gradient actor-critic methods is still a very promising area for
future research, it does not always show superior performance
compared to other methods. A number of applications which
use natural gradients are mentioned in this paper. The use
of compatible features makes it straightforward to calculate
approximations of natural gradients, which implies that any
actor-critic algorithm developed in the future should attempt
to use this type of gradient, as it speeds up learning without
any real additional computational effort.
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Fundaç̃ao para a Cîencia e Tecnologia, Portugal.
Starting in 2005 he spent 3 years at the GRASP

laboratory at the University of Pennsylvania, USA. In 2008 he joined the
Delft Center for Systems and Control at the Delft University of Technology,
Netherlands, as a Postdoctoral fellow. Since 2010, he is an Assistant Professor
in that institution. He was a finalist for the Best Student Paper Award at the
2000 IEEE Conference on Decision and Control.

His research interests include geometric control, learningcontrol, and
discrete-event systems.
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