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Abstract

The reinforcement learning community has
recently intensified its interest in online plan-
ning methods, due to their relative inde-
pendence on the state space size. However,
tight near-optimality guarantees are not yet
available for the general case of stochastic
Markov decision processes and closed-loop,
state-dependent planning policies. We there-
fore consider an algorithm related to AO*
that optimistically explores a tree represen-
tation of the space of closed-loop policies,
and we analyze the near-optimality of the
action it returns after n tree node expan-
sions. While this optimistic planning requires
a finite number of actions and possible next
states for each transition, its asymptotic per-
formance does not depend directly on these
numbers, but only on the subset of nodes
that significantly impact near-optimal poli-
cies. We characterize this set by introduc-
ing a novel measure of problem complexity,
called the near-optimality exponent. Special-
izing the exponent and performance bound
for some interesting classes of MDPs illus-
trates the algorithm works better when there
are fewer near-optimal policies and less uni-
form transition probabilities.

1 Introduction

Stochastic optimal control problems arise in many
fields, including artificial intelligence, automatic con-
trol, operations research, economics, etc. They can be
modeled as Markov decision processes (MDPs) (Put-
erman, 1994), in which optimality is measured by a
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cumulative reward signal that must be maximized: the
return. In this paper, we analyze an online, optimistic
planning (OP) algorithm for discounted MDPs that
have a finite number K of actions and N of possible
random next states for every transition. This includes
finite MDPs, as well as infinite (e.g. continuous-state)
MDPs that satisfy the conditions.

At a given step of interaction with the system, OP
develops a tree starting from a node containing the
current system state and then iteratively expanding
well-chosen nodes, where each expansion adds all NK
children nodes containing all states reachable from the
chosen node, see Figure 1. To choose which node to ex-
pand, first an optimistic subtree is constructed, by re-
cursively navigating the tree along actions having the
largest upper bound on their optimal return. Then,
among the leaves of this subtree, a node is selected
that maximizes the contribution of the node to the
upper bound. After n such iterations, the algorithm
returns an action which is applied to the system. A
certain state may appear many times in the tree – as
many as the number of ways it can be reached from
the root; the simple variant of OP studied here does
not merge information from these duplicates.

The main contribution of this paper is a near-
optimality guarantee for OP as a function of the num-
ber of expansions n, in terms of the simple regret: the
loss in performance incurred by taking the action re-
turned instead of the optimal action. We show that
OP adapts to the complexity of the planning problem,
by only expanding nodes with significant contributions
to near-optimal policies. This notion is formalized so
that the quantity of nodes with ε contribution to ε-
optimal policies is of order ε−β , with β a positive near-
optimality exponent. Then, we show that the simple
regret is of order n−1/β for large n. When there are few
near-optimal policies, as well as when the transition

1Lucian Buşoniu is now with the Research Center for
Automatic Control (CRAN), University of Lorraine, 2 av-
enue Forêt de Haye, Vandoeuvre-les-Nancy, France. This
work was performed while he was with INRIA Lille.
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Figure 1: Illustration of an OP tree after three expan-
sions, for N = K = 2. The squares are state nodes
labeled by states x, and the actions u are explicitly
included as circle, choice nodes. Transition arcs to
next states are labeled by probabilities p and rewards
r. The dashed outline encloses a possible optimistic
subtree.

probabilities are nonuniform — both corresponding to
having more structure in the MDP — β is small and
the regret bound is better. To our knowledge, this
is the first simple regret bound available for closed-
loop planning in stochastic MDPs (closed-loop policies
are state-dependent, rather than open-loop action se-
quences; e.g., the dashed line in Figure 1 encloses part
of the subtree of a closed-loop policy).

The exponent β is related to other measures of com-
plexity used in the literature on bandits with many
arms (Kleinberg et al., 2008; Bubeck et al., 2009b;
Wang et al., 2008). However, a direct application of
those results would look at the closed-loop policies as
the elementary entity (arm), and would thus not take
into account essential problem structure: the fact that
a node belongs to many policies, and expanding it im-
proves knowledge about all these policies. A more re-
fined notion of complexity is needed to capture this
global structure, and β serves this purpose.

It must be noted that we consider the simple regret
(Bubeck et al., 2009a) which is different from the usual
cumulative regret in bandit theory: we look at the sub-
optimality of the action returned after a given number
of calls to the model, whereas the cumulative regret is
the loss of reward incurred while exploring the envi-
ronment (e.g., Auer et al., 2002). Our measure corre-
sponds to a numerical exploration-exploitation trade-
off, rather than an experimental one: we are interested
in making the best possible use of a given numerical
budget. Therefore, the simple regret is the appropri-
ate measure of performance, and is directly related to
the numerical complexity (i.e., number of calls to the
model needed to return a near-optimal action). Note
also that if each action returned by the algorithm is
near-optimal, then the resulting policy is near-optimal.

While the bound does not directly depend on N and

K, in practice they should not be too large, e.g.
the probability mass should be concentrated on a
few discrete next states. Fortunately this is true in
many problems of interest. For example, combining
continuous-state deterministic dynamics with random
variables that only take a few discrete values leads to
a small N . Such variables could be failure modes, job
arrivals into a resource management system (e.g., el-
evator scheduling, traffic signal control), user input,
etc.

Algorithmically, OP is rather simple, and can be seen
as an extension of classical AO* heuristic search (Nils-
son, 1980) to infinite-horizon discounted MDPs, simi-
lar to the AO* variant from (Hansen and Zilberstein,
1999). AO* builds a complete plan, which can only
be done in finite MDPs with goal states and may re-
quire arbitrarily long computation. OP finds general
near-optimal solutions while the expansion budget is
limited to n. It can actually be applied in an any-time
fashion, without fixing n in advance, which gives it
potential for online real-time control.

OP was proposed and empirically studied by Buşoniu
et al. (2011). It extends the earlier optimistic planning
for deterministic MDPs (OPD) of Hren and Munos
(2008), and in fact, in the deterministic case, OP and
the regret bounds we derive here reduce to OPD and
its bounds, respectively.

OP requires the full MDP model, including probabil-
ity distributions over next states, whereas the class of
sample-based planning methods only need to generate
next states according to this distribution. Kearns et al.
(2002) first proposed a “sparse-sampling” method that
builds a uniform planning tree by sampling a fixed
number of states for each action, up to some hori-
zon, without adapting to the structure of the MDP.
An adaptive-horizon extension was given by Péret and
Garcia (2004). An optimistic sample-based algorithm
is “upper-confidence-trees” (Kocsis and Szepesvári,
2006), which travels an optimistic path along the plan-
ning tree by choosing actions with maximal upper con-
fidence bounds on the returns, and sampling states
independently. UCT was extended to continuous ac-
tions by Mansley et al. (2011). UCT often works well
in practice (Wang and Gelly, 2007) but good perfor-
mance cannot be guaranteed in general since it may
exhibit pathological behavior (Coquelin and Munos,
2007). Walsh et al. (2010) avoid this problem with
an optimistic extension of sparse sampling that comes
with so-called probably-approximately-correct guaran-
tees, of a different nature from the regret bounds we
introduce here. Bubeck and Munos (2010) do pro-
vide regret bounds for optimistic planning in stochas-
tic problems, but only for open-loop sequences of ac-
tions, which are generally suboptimal.
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Next, after providing in Section 2 the necessary no-
tions concerning MDPs, we formalize the OP method
in Section 3. In Section 4 we introduce the general re-
gret bound and the insight behind it, and in Section 5
we specialize the analysis for some interesting types
of MDPs. Section 6 concludes the paper. Proofs are
collected in the supplementary material.

2 Background

Consider an MDP with state space X (taken countable
for simplicity) and action space U . The probability
that next state x′ is reached after action u is taken in
x is p(x, u, x′), where p : X × U × X → [0, 1]. After
each transition a reward r′ = r(x, u, x′) is received,
where r : X ×U ×X → R. We assume that there is a
finite number K of actions; that after applying any ac-
tion in any state, the number of reachable next states
is at most a finite N ; and that rewards are in [0, 1].
Denoting by k the discrete time index, the expected
infinite-horizon discounted return (for short, value) of
state x under policy π : X → U is:

V π(x) = Exk+1∼p(xk,π(xk),·)

{

∞
∑

k=0

γkrk+1

}

(1)

where x0 = x, rk+1 = r(xk, π(xk), xk+1), and γ ∈
(0, 1) is the discount factor. The goal is to con-
trol the system using an optimal policy π∗, so that
the value function V π : X → R is maximized for
every x ∈ X. The resulting, maximal value func-
tion is denoted by V ∗ and is unique. It is also use-
ful to consider the optimal Q-function: Q∗(x, u) =
Ex′∼p(x,u,·) {r(x, u, x′) + γV ∗(x′)}.

The quality of action uk returned at state xk by the
planning algorithm is measured by the simple regret:

R(xk) = max
u∈U

Q∗(xk, u)−Q∗(xk, uk) (2)

i.e., the loss incurred by choosing uk and only then act-
ing optimally. A smaller regret is better, and optimal
actions have 0 regret. If an algorithm achieves a sim-
ple regret of R for every state, the overall discounted
return is R

1−γ -optimal (Hren and Munos, 2008). Note
that throughout the remainder of the paper, we focus
on the algorithm when applied from some particular
state; we leave this dependence implicit most of the
time.

3 Optimistic planning algorithm

To introduce OP, we first formalize the notions of tree
and node illustrated in Figure 1. A state node is de-
noted s and is labeled by an actual state x. Many
nodes s may have the same state x. Such duplicates

could be merged which would close the tree into a
graph; however here we restrict ourselves to the sim-
pler variant of OP that ignores duplicates. By a slight
abuse of notation, introduce also a function x(s) that
returns the state label of a node. Define now the infi-
nite planning tree T∞—of which Figure 1 only shows
the first few nodes—recursively as follows. Initialize
T∞ with root s0 labeled by x0, and recursively expand
each node s ∈ T∞ that does not yet have children. A
node s is expanded by adding to it, for each u ∈ U ,
and then for each x′ ∈ X with p(x(s), u, x′) > 0, a
child node s′ labeled by x′. Thus the branching factor
of each node is NK (smaller if there are fewer than
N successors for some actions). Denote by C(s, u) the
set of children s′ corresponding to action u; and by
C(s) =

⋃

u∈U C(s, u). Note that T∞ only includes the
state nodes from Figure 1, and does not explicitly con-
sider the actions. Nevertheless the actions are implic-
itly present in the connections between adjacent state
nodes.

Algorithm 1 Optimistic planning

1: initialize tree: T0 ← {s0}
2: for each iteration t = 0, . . . , n− 1 do

3: starting from s0, build optimistic subtree T †
t :

4: while L(T †
t ) 6⊆ L(Tt) do

5: retrieve a node s ∈ L(T †
t ) \ L(Tt)

6: find optimistic action at s:
u† = arg max

u

∑

s′∈C(s,u)

p(x(s), u, x(s′))b(s′)

7: add C(s, u†) to T †
t

8: end while

9: select leaf to expand: st ← arg max
s∈L(T †

t )

P(s) γd(s)

1−γ

10: create C(st) and add them to Tt, obtaining Tt+1

11: update b-values upwards in the new tree Tt+1:

b(s) =







R(s) + γd(s)

1−γ , if s is leaf

max
u

∑

s′∈C(s,u)

p(x(s), u, x(s′))b(s′), else

12: end for

13: output u0 maximizing lower-bound at s0

Algorithm 1 gives OP as described in the introduc-
tion, which iteratively builds a finite tree contained
at the top of T∞. The algorithm formalizes the no-
tions of optimistic subtree and leaf contribution. The
mapping L(·) provides the leaf nodes of its argument
tree, and d(s) gives the depth of a node. The b-value
b(s) is an upper bound on V ∗(x(s)). Moreover, if a
leaf s at depth d is reached from the root via the path:
s0, u0, s1, u1, . . . , sd = s, where the implicit actions are
mentioned, then s has a probability P(s) and a partial
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return R(s) as follows:

P(s) =

d−1
∏

d′=0

p(x(sd′), ud′ , x(sd′+1))

R(s) =

d−1
∑

d′=0

γd′

r(x(sd′), ud′ , x(sd′+1))

To choose the final action at the root, lower bounds
are computed similarly to the b-values, but starting
from 0 at the leaves.

The OP form given above is directly suitable for im-
plementation. Next, we reinterpret OP as a search
method in the space of tree policies, a form that is
easier to analyze. A tree policy h is an assignment of
actions to a subtree Th of T∞, h : Th → U , recursively
taking into account only the nodes reached under the
action choices made so far:

Th = {s ∈ T∞ | s = s0 or ∃s′ ∈ Th, s ∈ C(s′, h(s′))}

where actions h(s) are assigned as desired. The
branching factor of Th is N . Denote the expected
return (value) of one tree policy h by v(h), and the
optimal, maximal value by v∗.

A class of tree policies, H : TH → U , is obtained sim-
ilarly but restricting the procedure to nodes in some
finite tree Tt considered by OP, so that all action as-
signments below Tt are free. So H is a set of tree
policies, where one such policy h ∈ H is obtained by
initializing the free actions. Note that TH = Tt ∩ Th

for any h ∈ H.

Figure 1 shows a subtree corresponding to such a pol-
icy class, enclosed by the dashed line; a full tree policy
would be obtained by continuing with the action as-
signments until infinity. Tree policies h are more gen-
eral than the usual MDP policies π, which would be
stationary, i.e., would always take the same action in
a given state x. Tree policies h are allowed to take
different actions for different nodes s, even if they are
labeled by the same state x. While it is known an
optimal stationary policy always exists, searching in
a larger class does not prevent the algorithm from
achieving (near-)optimality. We will typically deal
only with tree policies and call them simply “policies”,
except where confusion with MDP policies is possible.

The value of any policy h belonging to some class H
is lower-bounded by:

ν(H) =
∑

s∈L(TH)

P(s) R(s)

because the rewards that h can obtain below the leaves
of L(TH) are lower-bounded by 0. Note that the prob-
abilities P(s) form a distribution over the leaves. Since

rewards are also upper-bounded by 1, an upper bound
on the value of h ∈ H is:

b(H) =
∑

s∈L(TH)

P(s)

[

R(s) +
γd(s)

1− γ

]

= ν(H) +
∑

s∈L(TH)

c(s) = ν(H) + diam(H)

(3)

where we introduced the notations c(s) = P(s) γd(s)
1−γ ,

the contribution of leaf s to the difference be-
tween the upper and lower bounds, and diam(H) =
∑

s∈L(TH) c(s), the diameter of H. This is indeed a

diameter, diam(H) = suph,h′∈H ℓ(h, h′), under the fol-
lowing metric on the space of policies:

ℓ(h, h′) =
∑

s∈L(Th∩Th′ )

c(s)

The sum is taken over the shallowest nodes where h
and h′ are different. The diameter formula follows by
noticing that for any s and u,

∑

s′∈C(s,u) c(s′) = γc(s)
and so the contribution decreases monotonically with
the depth, which implies that to maximize the distance
between h and h′, we should make these policies differ-
ent at the shallowest possible places in the tree. Since
the policies must be the same at inner nodes of TH , the
leaves of this tree are the shallowest nodes where we
can make h and h′ different. A useful interpretation of
diam(H) is that it represents the uncertainty on the
value of policies in the class.

With these notations, OP can be restated more con-
cisely and intuitively, as follows. The algorithm selects
at each iteration an optimistic policy class, which max-
imizes the upper bound among all classes compatible
with the current tree Tt:

H†
t ∈ arg max

H∈Tt

b(H)

where the shorthand notation H ∈ Tt indicates that
class H is compatible with Tt, i.e., that TH ⊆ Tt. The
optimistic class is explored deeper, by expanding one
of its leaf nodes (making the action choices for that
node definite). The chosen leaf is the one maximizing
the contribution:

st ∈ arg max
s∈L(T

H
†
t
)

c(s)

Under the metric ℓ, this can also be seen as splitting
the set of policies H along the longest edge, where

H is a hyperbox with
∣

∣

∣
L(TH†

t
)
∣

∣

∣
dimensions, having

a length of c(s) along dimension s. Note a crucial
property of the algorithm: expanding st also refines
many additional policy classes: all that reach st with
nonzero probability. The algorithm continues at the
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next iteration with the new, resulting tree Tt+1. After
n iterations, a near-optimal policy class is chosen, by
maximizing this time the lower bound:

H∗
n ∈ arg max

H∈Tn

ν(H) (4)

intuitively seen as making a safe choice. The action
returned by the algorithm at the root is the first ac-
tion chosen by H∗

n. Of course, the algorithm may also
return the multi-step policy H∗

n, useful for taking de-
cisions along several steps of interaction.

We recall that the equivalent OP form in Algorithm 1
is more suitable for implementation than this abstract
form.

4 Analysis of optimistic planning

The complexity of the tree policy space for a given
MDP will be characterized in terms of a constant
called near-optimality exponent. The dependence of
the regret on this exponent and the number of expan-
sions n will be studied.

Consider any node s on the complete, infinite planning
tree T∞. Define n(s) to be the largest number, for
any policy h whose subtree contains s, of leaves of the
subtree Ths ∈ Th containing only nodes with larger
contributions than s:

n(s) = sup
Th∋s

|L(Ths)| , Ths = {s′ ∈ Th | c(s
′) ≥ c(s)}

Ths is indeed a proper subtree since c(s) decreases
monotonically along paths in Th. A policy subtree
is schematically represented in Figure 2, together with
an example of subtree Ths. Define using n(s) also the
quantity α(s) = n(s)c(s). An essential property of
α is that it relates s to the diameter of some policy
classes that have it as a leaf. Specifically, the diame-
ter of any class among whose leaves c(s) is largest, is
upper-bounded by N

γ α(s).

Th

L( )Ths

s

Ths

Figure 2: An infinite policy tree Th, and a subtree Ths

for some s.

Finally, define for each ε the set of nodes:

Sε =
{

s ∈ T∞
∣

∣(i) α(s) ≥ ε and

(ii) ∃h ∋ s, v∗ − v(h) ≤
N

γ
α(s)

}

(5)

Condition (i) requires the node to have a sizable con-
tribution in terms of α, and (ii) that the node belongs
to a near-optimal policy. The following main result
holds.

Theorem 1. Let β ≥ 0 be any constant so that:

|Sε| = Õ(ε−β), i.e. |Sε| ≤ a

(

log
1

ε

)b

ε−β (6)

where a, b > 0 are some constants.2 The simple regret
Rn of the action chosen by OP after n node expansions
satisfies for large n:

Rn =

{

Õ(n− 1
β ) if β > 0

O(exp[−(n
a )

1
b ]) if β = 0

The constant β is the near-optimality exponent. It is
important to note that OP does not require knowl-
edge of the value of β, and yet, as the result shows, it
automatically adapts to this value.

The measure β is connected to other complexity mea-
sures from optimistic optimization (bandits) and plan-
ning, such as the zooming dimension (Kleinberg et al.,
2008), the near-optimality dimension (Bubeck et al.,
2009b), or the branching factor of near-optimal ac-
tion sequences for OPD (Hren and Munos, 2008) and
open-loop optimistic planning (OLOP) (Bubeck and
Munos, 2010). Characterizing the complexity of the
planning problem by using these measures would es-
sentially look at the individual tree policies as the el-
ementary entity, and the analysis could only interpret
the algorithm as a hierarchical search in the space of
such policies. OP has this hierarchical component,
which is realized by refining the optimistic policy class
H†

t . However, OP does more than just this: since the
chosen node st belongs to all the policy classes that
reach it with a positive probability, expanding it re-
fines all these classes, not just the optimistic one. This
subtler, global effect must be captured in the definition
of problem complexity, and this is achieved by intro-
ducing the quantity α(s) to describe the global impact
of a node on the policies it belongs to, and by defining
Sε and β in terms of individual nodes and not directly
policies.

2More generally, f(x) is Õ(g(x)) if f(x) ≤

a(log g(x))bg(x) for some a, b > 0. This is usually under-
stood to hold for all x, so when it only holds for large/small
values of x, we explicitly mention this restriction.
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Therefore, the analysis intuitively says that OP finds
a near-optimal policy by only expanding those nodes
that have a large impact on near-optimal policies. As
the number of such nodes decreases, the sets Sε are
smaller, which is characterized by a smaller β, and the
problem becomes easier; in particular, β = 0 means
Sε grows logarithmically instead of polynomially. The
definition (5) of Sε highlights two ways in which a
problem can be easier: the transition probabilities are
less uniform, leading to fewer nodes with large α; or
the rewards are concentrated on a few actions, lead-
ing to fewer near-optimal policies. To formalize these
intuitions, the next section will provide values of β
for several representative types of MDPs, exhibiting
varying degrees of structure in the rewards and prob-
abilities.

Proof sketch of Theorem 1. We outline here how the
result is obtained (see the supplementary material for
the complete proof). The first big step is to show that
the regret is related to the smallest α among expanded
nodes, α∗ = mint=0,...,n−1 α(st). This is true because
(a) the suboptimality of the near-optimal policy class
H∗

t (and hence the regret of the root action it would
choose) can be bounded at every iteration by the diam-

eter of the optimistic policy: v∗− ν(H∗
t ) ≤ diam(H†

t ),
and (b) using the essential property of α, this diame-
ter is in turn at most N

γ α(st). The near-optimal pol-
icy will not decrease in quality over iterations, which
means the overall regret is bounded by N

γ α∗.

The second major part of the proof is that the algo-
rithm always usefully works to decrease the value of α∗

– formally, that all the nodes it expands are in S∗
α, so

that n ≤ |S∗
α|. Connecting all this with the definition

of β, which implies |S∗
α| = Õ(α∗−β), the overall regret

bound is obtained.

Regarding the time complexity of OP, at the expense
of some extra memory, each iteration can be brought
down to O(d(st)), the depth of the expanded node.
Depths generally depend on β, but to obtain a range
notice they are between O(log n) when the tree is de-
veloped uniformly and O(n) when a single path is de-
veloped (see also next section). So the overall com-
plexity is between O(n log n) and O(n2). Furthermore,
while here we focus on the near-optimality perspec-
tive, our result can also be interpreted the other way
around: to achieve ε regret, a budget n on the order
of ε−β should be spent.

5 Some interesting values of β

To add meaning to the near-optimality exponent β,
in this section we provide its value for several inter-

esting special cases. We obtain smaller values when
the MDP has “more structure”, namely when there
are non-uniform probabilities or rewards. The earlier
OPD regret bounds (Hren and Munos, 2008) are re-
covered in the deterministic case, showing that the OP
guarantees encompass those of OPD as a special case.

5.1 Uniform rewards and probabilities

In this case, the rewards of all transitions are equal,
and for any action, the probability of reaching one of
the N next states is 1

N .

Proposition 2. In the uniform case, βunif = log NK
log 1/γ

and Rn = O(n−
log 1/γ
log NK ).

One interpretation of β is that the argument of the
logarithm at the numerator is an equivalent branching
factor of the tree that OP must explore. A branching
factor of NK means that OP will have to explore the
whole planning tree in a uniform fashion, expanding
nodes in the order of their depth. So the uniform MDP
is an interesting worst case, where β is the largest pos-
sible. (Notice also that in this case the bounds do not
have a logarithmic component, so O is used instead of
Õ.)

In fact, the regret bound of OP in uniform MDPs is the
same as that of a uniform planning algorithm, which
always expands the nodes in the order of their depth.
However, the uniform algorithm can guarantee only
this regret bound for any problem, whereas in non-
uniform problems, OP adapts to the value of β to ob-
tain better guarantees.

Proving the regret of the uniform algorithm helps in
understanding the upcoming discussion on worst-case
regret, so it is done here. Consider the uniform algo-
rithm has expanded all nodes at depth D − 1, after n
expansions. Then:

v∗≤ maxH∈Tn
b(H)

= maxH∈Tn
[ν(H) +

∑

s∈L(TH) P(s) γd(s)

1−γ ]

≤ maxH∈Tn
[ν(H) +

∑

s∈L(TH) P(s) γD

1−γ ]

= maxH∈Tn
ν(H) + γD

1−γ = ν(H∗
n) + γD

1−γ

where H∗
n is the policy class returned by (4). So Rn ≤

v∗ − ν(H∗
n) ≤ γD

1−γ , and from n ≥ (NK)D−1
NK−1 after some

calculation Rn = O(n−
log 1/γ
log NK ).

This regret is also the smallest achievable in a worst-
case sense, which means that for any planning algo-
rithm and value of n, one can construct a problem for

which the regret is Rn = Ω(n−
log 1/γ
log NK ). To see this,

choose the largest D so that n ≥ (NK)D−1
NK−1 , assign uni-

form probabilities everywhere, rewards of 1 for some
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arbitrary policy h∗ but only starting from level D + 1
onward, and rewards of 0 everywhere else. Then, both
OP and uniform planning have uniformly expanded
all nodes up to D − 1 but none at D + 1, so they
have no information and must make an arbitrary ac-
tion choice, which may not be optimal, leading to a

regret of γD+1

1−γ = Ω(n−
log 1/γ
log NK ). An algorithm that does

not expand uniformly may miss the optimal policy for
an even larger number of expansions n, so their regret
is at least as large. This fact also shows that OP be-
haves correctly in the uniform case: as long as only
uniform rewards and probabilities are observed, the
tree must be expanded uniformly, and this behavior is
reflected in the regret bound.

Finally, note that in the deterministic case, when N =
1, the regret bound of OPD for the uniform-reward

case is recovered: Rn = O(n−
log 1/γ
log K ).

5.2 Structured rewards

In this case, probabilities are uniform but a single pol-
icy has maximal rewards (equal to 1) for all transitions,
and all other transitions have a reward of 0, see Fig-
ure 3. So, there is a “maximal” amount of structure
in the reward function.

. . .        . . .        . . . . . .         . . .         . . .

Figure 3: Illustration of a planning tree for structured
rewards, up to depth 2, for N = K = 2. Thick lines:
subtree of optimal policy, where each transition is as-
sociated with a reward of 1. Thin lines: the rest of the
tree, associated with 0 rewards.

Proposition 3. In the case of structured rewards, if
N > 1, βrew = log N

log 1/γ (1 + log K
log N/γ ), whereas if N = 1,

βrew = 0 and Rn = O(exp(−n
a )) for some constant a.

The values of βrew are smaller than βunif , so the guar-
antee takes advantage of the additional structure in-
troduced in the problem by the reward function.

In the deterministic case, βrew = 0, the problem be-
comes easy and the regret is exponential in n, having
the form in the second branch of Theorem 1 for b = 1.
This is the same bound that OPD obtains when a sin-
gle policy is optimal (Hren and Munos, 2008).

Examining the algorithm reveals that it will only ex-

plore the optimal policy’s subtree, with branching fac-
tor N , so the ideal value for β is log N

log 1/γ . Improving the

analysis to avoid this dependency is a topic for future
work.

5.3 Structured probabilities

Finally, we consider problems where the rewards for
all transitions are equal, but the transitions have sig-
nificantly different probabilities. Take for simplicity
identical Bernoulli transitions: N = 2 and the two suc-
cessors of any state (and thus state node) have proba-
bilities p and 1− p, so that p is close to 1.

Proposition 4. In the Bernoulli case, for p close

to 1, βprob = log Kη′

log 1/(pγη′) , where η′ =
(

e
η

)η

and

η = log 1/(pγ)
log 1/(γ(1−p))

In the deterministic case, when p→ 1, η →∞ leading
to η′ → 1, and βprob →

log K
log 1/γ , recovering the uniform-

case bound for N = 1 (i.e., the uniform-reward case).
Nearby, when p is large, β ≈ log K

log 1/γ , and OP expands

“almost” only a tree with branching factor K. When
the probabilities are uniform, η = 1 would lead to
βprob = log eK

log 2/eγ , and βunif , which was developed specif-

ically for that case, is better.

6 Conclusions

We have analyzed the regret of a planning algorithm
for stochastic MDPs, which optimistically explores the
space of closed-loop planning policies. The core feature
of this method is that it adapts to the complexity of
the planning problem, encoded in the near-optimality
exponent β. An immediate topic for further research
is the form of this exponent for an MDP with arbitrary
transition probabilities. Based on the special cases for
β studied, we expect it to decrease as the distribution
becomes less uniform.

The basic form of OP studied here can benefit from
many algorithmic improvements, and analyzing their
effect on the regret would be very interesting. For ex-
ample, since OP is similar to AO*, improvements orig-
inally developed for classical AO* can almost directly
be applied, such as closing the tree into a graph upon
encountering duplicate states (Hansen and Zilberstein,
1999). In online control, an essential improvement
is reusing information across interaction steps. This
could be done by maintaining an approximate value
function (for the b- and/or ν-values), used to initial-
ize leaf values and updated with tree data. In this
context, near-optimality guarantees for approximate
value iteration could be useful to improve the regret
bounds under smoothness assumptions on the MDP
(Szepesvári, 2001; Rust, 1996).
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OP does not assume any knowledge about the com-
plexity of the problem, e.g. it does not require to know
β. Deriving algorithms that, when such prior knowl-
edge is available, exploit it to obtain better perfor-
mance guarantees is an important open issue.
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Supplementary material to

“Optimistic planning for Markov decision processes”: Proofs

Proof of main result

Recall that to prove Theorem 1, it must first be shown
that the regret of the algorithm is related to the small-
est α among expanded nodes (which will be done in
Lemma 6), and then that the algorithm always works
to decrease this smallest α (done in Lemma 7). A
preliminary result is also needed.

Lemma 5. The ν-values of the near-optimal policy
classes increase over iterations: ν(H∗

t+1) ≥ ν(H∗
t ),

where H∗
t ∈ arg maxH∈Tt

ν(H).

Proof. Consider first one policy class H, split by ex-
panding some leaf node s ∈ L(TH). One child class H ′

is obtained for each action u, and we have L(TH′) =
(L(TH) \ {s}) ∪ C(s, u). By easy calculations, since
the rewards are positive, the terms that nodes C(s, u)
contribute to ν(H ′) add up to more than the term
of s in ν(H), and the other terms remain constant.
Thus ν(H ′) ≥ ν(H). Then, among the policy classes
Ht ∈ Tt, some are split in Tt+1 and some remain un-
changed. For the children of split classes ν-values are
larger than their parents’; while ν-values of unchanged
classes remain constant. Thus, the maximal ν-value
increases across iterations. Note it can similarly be
shown that b(H†

t+1) ≤ b(H†
t ).

Lemma 6. Define αt = α(st), the α value of the node
expanded at iteration t; and α∗ = mint=0,...,n−1 αt.
The regret after n expansions satisfies Rn ≤

N
γ α∗.

Proof. We will first bound, individually at each itera-
tion t, the suboptimality of ν(H∗

t ), by showing:

v∗ − ν(H∗
t ) ≤ diam(H†

t ) ≤
N

γ
αt (7)

To this end, observe that:

ν(H†
t ) ≤ ν(H∗

t ) ≤ v∗ ≤ b(H†
t ) (8)

The inequality ν(H∗
t ) ≤ v∗ is true by definition (ν(H∗

t )
is a lower bound on the value of some policy, itself
smaller than v∗). For the leftmost inequality, H∗

t max-
imizes the lower bound across all policy classes com-
patible with the current tree, so its lower bound is
at least as large as that of the optimistic policy class
H†

t . Similarly, for the rightmost inequality, since H†
t

maximizes the upper bound, its upper bound is imme-
diately larger than the true optimal value. Using this

string of inequalities, we get:

v∗ − ν(H∗
t ) ≤ b(H†

t )− ν(H†
t )

= diam(H†
t ) =

∑

s∈L(T
H

†
t
)

c(s) (9)

We now investigate the relationship between this di-
ameter and αt. Consider the subtree TH†

t
of policy

class H†
t , represented schematically in Figure 4 using

a black continuous outline (this subtree has a branch-
ing factor of N). We are thus interested in finding
an upper bound for

∑

s∈L(T
H

†
t
) c(s) as a function of

αt. Consider the tree Thst
, as introduced earlier in the

definition of n(s), which is included in TH†
t

and is the

same for any h ∈ H†
t . To see this, recall that st max-

imizes c among the leaves of TH†
t
. Since additionally

c strictly decreases along paths, any node with a con-
tribution larger than c(st) must be above these leaves,

and this holds for any h ∈ H†
t .

Denote in this context Thst
more simply by T ′, shown

in gray in the figure, and its leaves by L′, shown as a
gray outline. Denote the children of L′ by L′′, shown
as a dashed line.

T '

L"
L'

xt

THt
†

Figure 4: Tree of the optimistic policy class and vari-
ous subtrees.

Recall that for any h and s ∈ Th,
∑

s′∈C(s,h(s)) c(s′) =

γc(s). This also means the sum of contributions for
the leaves of any subtree of Th having some s as its
root is smaller than c(s). Using these properties, we
have:

∑

s∈L(T
H

†
t
)

c(s) ≤
∑

s′∈L′

c(s′) =
1

γ

∑

s′′∈L′′

c(s′′) ≤
1

γ

∑

s′′∈L′′

c(st)

≤
1

γ
N |L′| c(st) ≤

1

γ
Nn(st)c(st) =

N

γ
αt
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where we additionally exploited the facts that c(s′′) ≤
c(st) (otherwise s′′ would have been in T ′), that each
node in L′ has N children in L′′, and that by the defi-
nition of n(s) |L′| ≤ n(st). From this and also (9), the
desired intermediate result (7) is obtained.

Using now (8) and (7), as well as Lemma 5, we have:

Rn = max
u

Q∗(x0, u)−Q∗(x0,H
∗
n(s0))

≤ v∗ − ν(H∗
n) ≤ b(H†

t∗)− ν(H†
t∗)

= diam(H†
t∗) ≤

N

γ
α∗

where H∗
n(s0) is the action chosen by OP at the

root (i.e., in state x0), and t∗ ∈ arg mint=0,...,n−1 αt.
The first inequality is true because maxu Q∗(s0, u) =
v∗ and Q∗(s0,H

∗
n(s0)) ≥ ν(H∗

n) (the return
Q∗(s0,H

∗
n(s0)) is obtained by choosing optimal actions

below level 0, whereas H∗
n may make other suboptimal

choices). The proof is complete.

Lemma 7. All nodes expanded by the algorithm belong
to Sα∗ , so that n ≤ |Sα∗ |.

Proof. We show first that st ∈ Sαt
at any iteration t.

Condition (i) in the definition (5) of Sαt
is immedi-

ately true. For condition (ii), an N
γ αt-optimal policy

h whose tree Th contains st is needed. Choose any
h ∈ H†

t , then st ∈ Th and:

v∗ − v(h) ≤ b(H†
t )− ν(H†

t ) = diam(H†
t ) ≤

N

γ
αt

where we used some of the inequalities derived in the
proof of Lemma 6. Thus st ∈ Sαt

. Furthermore, α∗ ≤
αt implies Sαt

⊆ Sα∗ , and we are done.

Proof of Theorem 1. Exploiting Lemma 7 in combina-
tion with (6):

• if β > 0, n = Õ(α∗−β), thus for large n, α∗ =

Õ(n− 1
β );

• if β = 0, n ≤ a
(

log 1
α∗

)b
, thus α∗ ≤ exp[−(n

a )
1
b ].

By Lemma 6, Rn ≤
N
γ α∗ which immediately leads to

the desired results.

Proofs for values of β in special cases

Proof of Proposition 2 (uniform case). We study the
size of Sε. Due to the equal rewards all the poli-
cies are optimal, and condition (ii) in (5) does not
eliminate any nodes. The contribution of a node is

c(s) = P(s) γd(s)

1−γ = ( γ
N )d(s) 1

1−γ since the probability

of reaching a node at depth d(s) is ( 1
N )d(s). This also

means that, for any policy h, the tree Ths consists of all
the nodes s′ up to the depth of s. The number of leaves
of this tree is Nd(s) (recall that a policy tree has only
branching factor N), and since this number does not
depend on the policy, n(s) is also Nd(s). Therefore,

α(s) = n(s)c(s) = γd(s)

1−γ and condition (i) eliminates

nodes with depths larger than D = log ε(1−γ)
log γ . The re-

maining nodes in the whole tree, with branching factor
NK, form Sε, which is of size:

|Sε| = O((NK)D) = O((NK)
log ε(1−γ)

log γ ) = O(ε−
log NK
log 1/γ )

yielding for β the value: βunif = log NK
log 1/γ . So, for large

n the regret Rn = Õ(n−
log 1/γ
log NK ). In fact, as can be

easily checked by examining the proof of Theorem 1,
the logarithmic component disappears in this case and

Rn = O(n−
log 1/γ
log NK ) .

Proof of Proposition 3 (structured rewards). Since
α(s) depends only on the probabilities, condition (i)

leads to the same D = log ε(1−γ)
log γ as in the uniform

case. However, now condition (ii) becomes important,
so to obtain the size of Sε, we must only count
near-optimal nodes up to depth D.

Consider the set of nodes in T∞ which do not belong
to the optimal policy, but lie below nodes that are
at depth d′ on this policy. An example is enclosed
by a dashed line in Figure 3, where d′ = 1. All these
nodes are sub-optimal to the extent of the loss incurred
by not choosing the optimal action at their parent,
namely: ( γ

N )d′ 1
1−γ . Note these nodes do belong to a

policy that is near-optimal to this extent, one which
makes the optimal choices everywhere except at their
parent. Looking now from the perspective of a given
depth d, for any m ≤ d there are NdKm nodes at this
depth that are ( γ

N )d−m 1
1−γ -optimal. Condition (ii),

written ( γ
N )d−m 1

1−γ ≤
N
γ

γd

1−γ , leads to m ≤ d log N
log N/γ +

1. Then:

|Sε| ≤

D
∑

d=0

NdKd log N
log N/γ

+1 ≤ K

D
∑

d=0

(

NK
log N

log N/γ
)d

If N > 1:

|Sε| = O
((

NK
log N

log N/γ )D
)

= O
(

(NK
log N

log N/γ )
log ε(1−γ)

log γ
)

= O
(

ε−
log N

log 1/γ
(1+ log K

log N/γ
))

yielding the desired value of βrew = log N
log 1/γ (1+ log K

log N/γ ).

If N = 1 (deterministic case), βrew = 0 and:

|Sε| =
D

∑

d=0

1 ·K = (D + 1)K =

(

log ε(1− γ)

log γ
+ 1

)

K

≤ a log 1/ε
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for small ε and some constant a, which is of the
form (6) for b = 1. From Theorem 1, the regret is
O(exp(−n

a )).

Proof of Proposition 4 (structured probabilities). We
will show that the quantities of nodes with sizable
contributions on the subtree of one policy, and
respectively on the whole tree, satisfy:

n(λ) = |{s ∈ T∞ | c(s) ≥ λ}| = Õ(λ−δ)

nh(λ) = |{s ∈ Th | c(s) ≥ λ}| = Õ(λ−δh)

for constants δh and δ; and we will find values for these
constants. (Note nh(λ) is not a function of h, since all
policies have the same probability structure.) Then,
since condition (ii) always holds and nodes in Sε only
have to satisfy condition (i):

|Sε| = |{s ∈ T∞ |n(s)c(s) ≥ ε}|

≤ |{s ∈ T∞ |nh(c(s))c(s) ≥ ε}|

≤
∣

∣

{

s ∈ T∞
∣

∣ a[log 1/c(s)]bc(s)1−δh ≥ ε
}∣

∣

= Õ(ε
− δ

1−δh )

where we used n(s) ≤ nh(c(s)) and nh(c(s)) =
Õ(c(s)−δh). Thus β = δ

1−δh
.

Consider now nh(λ). The nodes at each depth d cor-
respond to a binomial distribution with d trials, so
there are Cm

d nodes with contribution c(s) = pd−m(1−

p)m γd

1−γ , for m = 0, 1, . . . , d. Since these contributions
decrease monotonically with d, as well as with m at a
certain depth, condition c(x) ≥ λ eliminates all nodes
above a certain maximum depth D, as well as at every
depth d all nodes above a certain m(d), where:

(pγ)d

1− γ
≥ λ ⇒ d ≤

log 1/(λ(1− γ))

log 1/(pγ)
= D

m ≤
log 1/(λ(1− γ))

log p/(1− p)
− d

log 1/(pγ)

log p/(1− p)
= m(d)

Note in the condition for D we set m = 0 to ob-
tain the largest probability. So, m(d) decreases lin-
early with d, so that up to some depth m∗, m(d) ≥ d
and we count all the nodes up to m = d; while
above m∗, m(d) < d and we count fewer nodes. The
depth m∗ is obtained by solving m(d) = d, leading

to m∗ = log 1/(λ(1−γ))
log 1/(γ(1−p)) = log 1/(pγ)

log 1/(γ(1−p))D = ηD with

the notation η = log 1/(pγ)
log 1/(γ(1−p)) . The structure of the

subtree satisfying c(s) ≥ λ is represented in Figure 5.

D

m*

m d(  )

depth d

Figure 5: Schematic representation of the subtree sat-
isfying c(s) ≥ λ, shown in gray. Nodes with larger
probabilities are put to the left. The thick line repre-
sents the fringe m(d) where nodes stop being counted.

Now:

nh(λ) =
D

∑

d=0

min{m(d),d}
∑

m=0

Cm
d ≤

D
∑

d=0

min{m(d),d}
∑

m=0

(

de

m

)m

≤
D

∑

d=0

m∗

∑

m=0

(

De

m∗

)m∗

= Dm∗

(

De

m∗

)m∗

= ηD2

(

e

η

)ηD

= Õ
(

(

e

η

)ηD
)

where we used Cm
d ≤

(

de
m

)m
as well as

(

de
m

)m
≤

(

De
m

)m
≤

(

De
m∗

)m∗

. The latter inequality can be shown

by noticing that
(

De
m

)m
, as a function of m, increases

up to m = D, and m∗ ≤ D is on the increasing part.

Denoting now η′ =
(

e
η

)η

and continuing:

nh(λ) = Õ(η′D) = Õ(η′
log 1/(λ(1−γ))

log 1/(pγ) ) = Õ(λ− log η′

log 1/(pγ) )

leading to the value for δh = log η′

log 1/(pγ) .
3

Similarly, it is shown that n(λ) = Õ(λ− log Kη′

log 1/(pγ) ) and

thus δ = log Kη′

log 1/(pγ) , where the extra K comes from

the fact we count the nodes corresponding to all Kd

policies rather than just one.

The desired result is immediate: βprob = δ
1−δh

=
log Kη′

log 1/(pγη′) . Note throughout, we silently used the

fact that p is close to 1; indeed, this is required for
some of the steps to be meaningful, such as having
log 1/(pγη′) > 0.

3The definition of n(s) in fact only requires counting the
leaves of the subtree corresponding to nh(λ) (thick line in
Figure 5), while we counted all the nodes (gray area). Ex-
ploiting this property is unlikely to be helpful, however,
since in the upper bound derived for nh(λ) the inner term
in the sum (corresponding to Cm

d , the number of nodes
having a certain probability) is dominant. The fact that
the whole tree is taken into account only enters the loga-
rithmic component of the bound.


