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Abstract: In this paper, we address the problem of numerical implementation of optimal control
for switched affine systems with state constraints. In order to properly solve the problem, a
relaxed system is introduced and the connection between the solution of this system and the
solution of the initial one is established. One of the main difficulties is then related to the
fact that the optimal solution is generally singular. We show that, using slack variables, a set of
complementarity constraints can be used to take into account the singular nature of the solution.
The optimal control problem is then reformulated as a constraint optimization problem over
the Hamiltonian systems and solved via a direct method. This formulation does not require
a priori knowledge on the structure (regular/singular) of the solution. In addition, state path
constraints are included. Numerical simulations for power converters, both in continuous and
discontinuous conduction mode, illustrate the effectiveness of the proposed methodology.

Keywords: Singular optimal control, switched systems, complementarity systems, numerical
method

1. INTRODUCTION

Most of the results related to the optimal control of hybrid
systems deal with subsystems sharing zero as common
equilibrium. In this paper, we treat the case of affine
switched systems for which generally no common equilib-
rium can be defined. In this context, the referred targets,
named operating points, are defined as the equilibria of
a relaxed system - obtained by expanding the control
domain to its convex hull. As a result of the applied control
strategy, the average value of the state variables computed
on a sliding window coincides with the target (Hauroigné
et al. [to appear]).

It is worth noting that for switched systems only subopti-
mal solutions can be defined from the optimal solution of
the relaxed systems Patino et al. [2009]. Moreover, the op-
timal solution of the relaxed system is generally singular as
deduced from the Pontryagin maximum principle (PMP).
Precisely, the necessary conditions are inconclusive on the
control value when Hu = 0, ∀u. This is a well known
(Robbins [1967], Krener [1977]) difficulty encountered in
optimal control field. The search of analytic solutions is
pervasive even for low dimensional systems (Patino et al.
[2009]). In this context only few methods have been pro-
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posed to numerically solve such control problems. Indirect
shooting method requires a priori knowledge on the struc-
ture (regular/singular) of the trajectory (Bonnans et al.
[2008]). This information can be achieved using direct
methods but the determination of the control lacks of
accuracy. Once the information on the structure of the
optimal solution is available, an accurate solution can
be obtained if singular arc conditions are imposed for
the singular part of the trajectory; see for example the
Goddard rocket problem in Rao et al. [2010].

In order to overcome this inconvenient, we propose to
reformulate the control set inclusion deduced from the
necessary conditions of PMP as a set of complementarity
constraints and to add them to the Hamiltonian system
to form a complementarity system (CS). The multivalued
part of the control (corresponding precisely to the singular
cases) is then concisely expressed in these complementarity
constraints. At this stage, one may view the problem
as a boundary value problem (BVP) and try to use a
shooting method. Unfortunately, such shooting methods
are not appropriate to solve this BVP because of the non
uniqueness of the solution.

In this paper we propose to use a direct method to min-
imize the cost function subject to some complementar-
ity constraints. This approach can be classified as mixed
direct-indirect method since it uses both the necessary
condition of PMP and a large-scale nonlinear program-
ming problem (NLP) arising from the discretization of
the cost and of the resulting CS. The main advantage of
this formulation is that no information on the structure



(regular/singular) of the trajectories is a priori required
since this feature is implicitly captured by the values of
the state and the co-state through a switching function
and the set of complementarity constraints.

To improve the accuracy of numerical results, additional
constraints concerning the order of the singularity are
taken into account. Finally, the method is extended to path
constraints case.

The paper is organized as follows. In Section 2 one gives
the system description and defines the operating points.
Section 3 formulates the optimal control problem derived
from PMP. The singular nature of the solution is also
detailed and discussed. The complementarity formalism is
used to reformulate the optimal control problem in Section
4. To increase the accuracy of the control determination
we add constrains related to the order of the singularities.
Section 5 contains numerical simulation illustrating the
results of the proposed methodology on a variety of power
converters.

2. SYSTEM DESCRIPTION

The class of constraint affine systems under consideration
can be described by:

ẋ(t) = f(x(t)) +

m
∑

i=1

ui(t)gi(x(t)) (1)

x(0) = x0 (2)

c(x(t)) ≤ 0 (3)

where u(t) = (u1(t), . . . , um(t)) ∈ R
m is the control

law and x(t) ∈ R
n represents the state value at time

t. The maps f(·) : R
n 7→ R

n, c(·) : R
n 7→ R

r and
gi(·) : R

n 7→ R
n, i = 1, . . . ,m are supposed sufficiently

smooth. A vector is considered positive/negative if all its
components are positive/negative. We note that (3) defines
the unilateral state-path constraints.

When u(t) ∈ U = {0, 1}m equation (1) describes a
class of switched systems (SS) largely used to express
the dynamics of nonsmooth mechanical systems or electric
circuits. On the other hand when u(t) ∈ co(U) = [0, 1]m

where co(U) stands for the convex hull, equation (1)
describes a relaxed system (RS). The (SS) belongs to
the class of nonsmooth systems for which the notion of
solution can be properly defined and generalized in the
sense of Fillipov. The link between the solutions of (SS)
and (RS) is established by a density theorem in infinite
time Ingalls et al. [2003]. Let us denote L∞([0,+∞), U)
the set of all essentially bounded measurable functions
mapping [0,∞) to U . Then L∞([0,+∞), U) equipped with
the essential supremum norm (i.e. ‖f‖∞ = ess sup|f |)
becomes a Banach space. In Ingalls et al. [2003] is proven
that there exists a switching law u ∈ L∞([0,+∞), U)
such that the trajectory of (RS) is approached as close as
desired by the one of (SS). For this reason, the operating
points set of (SS) denoted by Xref , is defined as the set of
equilibrium points of (RS):

Xref =
{

xref ∈ R
n : f(xref ) +

m
∑

i=1

ui,refgi(xref ) = 0, ui,ref ∈ [0, 1]
}

. (4)

This set defines the control targets for the state of (SS).

It is worth noting that none of the controls uref ∈
co(U)\U from (4) corresponding to an equilibrium xref ,
is admissible for (SS). The outcome is that (SS) state
x cannot be maintained on xref by a control taking its
values in U (unless the time duration between switchings
tends towards 0). Consequently, if the target for (SS) is
an operating point xref , the asymptotic behavior of the
trajectories is characterized either by a cycle near xref

if a dwell time condition is applied on the switchings
(i.e. a lower limit exists for the time duration between
switchings) or by an infinite switching sequence with a
vanishing time duration between switches as t → ∞.

3. OPTIMAL CONTROL PROBLEM FORMULATION

In the sequel, we propose a methodology to numerically
solve the following optimal control problem for the affine
system defined by equations (1)-(3):

min
u(.)

∫ T

0

L(x(t), xref )dt (5)

where L is the continuously differentiable performance
function, xref stands for a chosen equilibrium point in
Xref and T refers to the strictly positive final time and
is fixed (T ∈ R

+).

When the (RS) has a bang-bang solution (i.e. ∀t, u(t) ∈
{0, 1}m), (SS) is also solved. Otherwise, it exists a non
zero measure set (in the Lebesgue sense) T such that the
optimal solution takes values u(t) ∈ co(U)\U for all t ∈ T .
Although these solutions are not admissible for (SS), pulse-
wise modulation (PWM) yields an average approximation
by high switching frequency (Ingalls et al. [2003]). Con-
sequently we relax the optimal control problem for (SS)
by searching the optimal solutions of (RS) from which
suboptimal solutions for (SS) can be derived.

Suppose in a first time that no constraint are taken into
account and let inspect the necessary conditions defined
by the PMP. The Hamiltonian function H is given by
(abnormal case is not taken into account):

H(t) = λ⊤(t)(f(x) + g(x)u(t)) + L(x(t), xref ) (6)

where λ(t) ∈ R
n depicts the co-state whose dynamic is

given by the Hamiltonian system λ̇(t) = −Hx(t) (ẋ(t) =
Hλ(t)).

Optimality condition of PMP that u minimizes the Hamil-
tonian function leads to the following inclusion,

ui(t) ∈







0 if φi(t) > 0

[0 1] if φi(t) = 0

1 if φi(t) < 0

∀ i = 1, ...,m (7)

where φ(t) = Hu(t) = λT (t)g(x(t)) defines the switching
function. When ui(t) = 0 or 1, the control is called regular.
A singularity arises when a component of φi(t) vanishes
identically on a time interval [a, b], b > a. In this case,



the PMP is inconclusive concerning the control value ui(·)
on [a, b]. This situation is referred to as singular control
(Robbins [1967], Bryson and Ho [1975]) and it corresponds
here to the case where u(t) takes values in co(U)\U,
t ∈ [a, b]. We can conclude that solution segments for
(RS), which are not admissible for (SS), involve a singular
control.

In the sequel, in order to simplify the notation we shall
often avoid to emphasize the time dependency of the
variables and controller.

Definition 1. If a component of φ vanishes identically on
the time interval [a, b], b > a we say that x belongs to a
singular arc for all t ∈ [a, b]. These arcs are characterized
by:

Hu(x, λ, u) = 0, ∀u ∈ co(U), ∀t ∈ (a, b). (8)

To determine these arcs, successive time differentiations:
dq

dtq
Hu(x, λ, u) = 0, ∀u ∈ co(U), ∀t ∈ (a, b), (9)

are required. The differentiation has to be done until at
least a component of the control appears. The smallest
positive integer q∗ such that

∂

∂u
(

dq∗

dtq∗
Hu(x, λ, u)) 6= 0, (10)

if it exists, is called the order of singularity (or index of the
DAE). As we have shown in Patino et al. [2009], for low
dimensional systems (i.e. n ≤ 3), the analytic expression of
u can be explicitly determined by using the set of algebraic
equations (9) and a second order necessary condition given
by the generalized Legendre-Clebsh condition (Robbins
[1967], Krener [1977]):

(−1)
∂

∂u
(

dq∗

dtq∗
Hu(x, λ, u)) ≥ 0. (11)

On one hand, to determine analytically the optimal solu-
tions including singular arcs is a particularly hard problem
and only low dimensional systems (i.e. n=2,3) have been
treated (Patino et al. [2009]). On the other hand, stan-
dard indirect numerical methods such as multiple shooting
methods are not appropriate to deal with singular arcs
without a priori information on the structure of the tra-
jectories. Knowledge on the singular arcs are of few help in
determination of the junction time between singular and
regular arcs. Furthermore their number may be infinite.
In this context, we propose to use direct method and
an ad hoc formulation that enable a numerical treatment
in presence of singular arcs that do not require a priori
information.

4. OPTIMAL CONTROL USING CS FORMALISM

Definition 2. A linear complementarity problem (LCP) is
a system given by:







y ≥ 0
Ay + b ≥ 0
yT (Ay + b) = 0

(12)

which is compactly rewritten as

0 ≤ y ⊥ Ay + b ≥ 0 (13)

Such an LCP has a unique solution for all b if and only
if A is a P-matrix, i.e. all its principal minors are positive
(Facchinei and Pang [2003]).

4.1 Relay inclusion as a complementarity constraint

Let us recall (Schumacher [2004]) that the relay-type func-
tion (7) can be rewritten as a complementarity constraint
and an algebraic equation as follows:

0 ≤ s1 ⊥ u ≥ 0 (14)

0 ≤ s2 ⊥ (1 − u) ≥ 0 (15)

0 = s1 − s2 − φ (16)

where s1 and s2 define the positive and the negative part of
φ(x, λ). In other words, the components of the two vectors
s1 and s2 are defined by:

s1i(t) =

{

0 if φi(t) < 0

φi(t) if φi(t) ≥ 0

∀ i = 1, . . . ,m

s2i(t) =

{

−φi(t) if φi(t) < 0

0 if φi(t) ≥ 0

It is important to note that as long as s1i > 0 or s2i > 0 the
component ui of the control law u is uniquely determined.
When s1i = 0 & s2i = 0 the uniqueness of ui is lost and
the choice of its value is a matter of optimization. We also
observe that the situation s1i · s2i > 0 cannot occur since
this will contradict either (14) or (15).

4.2 Path constraints

Until now, no consideration has been made on the path
constraints (3). Like for singular controls, the index q∗

of the state constraint is the first time where u appears
explicitly in the successive time differentiation of c along
the trajectories.This index allows to define the mixed
control-state path constraints:

p(x, u) =
dq∗

dtq∗
c(x) ≤ 0. (17)

and the Lagrangian function:

L(x, u, λ, µ) = H(x, u, λ) + µT p(x, u) (18)

where µ ≥ 0 represents the vector of Lagrange multipliers.

Theorem 1. If u∗ is the optimal control for the state
constraint affine system (1-3) when the cost is defined by
(5) then u∗ satisfies the following constraint optimization
problem:

COP : min
u(·)

∫ T

0

L(x(t), xref )dt (19)

s.t. ẋ = Lλ λ̇ = −Lx (20)

x(0) = x0 λ(T ) = 0 (21)

0 ≤ s1 ⊥ u ≥ 0 (22)

0 ≤ s2 ⊥ (1 − u) ≥ 0 (23)

0 = s1 − s2 − Lu(x, λ, µ) (24)

0 ≤ µ ⊥ (s1 + s2) ≥ 0 (25)

0 ≤ µ ⊥ −c(x) ≥ 0 (26)

Proof. These necessary conditions are directly deduced
from PMP in case of state constraint in presence of
complementary constraints as explained in the following
comments:



• Generally when path constraints are considered,
jumps occur on the co-state at junction time τ . They
are characterized by λ+(τ) = λ−(τ) + α∇c(x(τ)). In
fact, α can be taken equals to zeros when the motion
follows the border c(x) = 0 for t ≥ τ as proven in the
pioneer work of Pontryagin et al. [1964].

• When µ equals zeros (18) allows us to retrieve the
unconstraint version of PMP. The complementarity
relation (26) assures that µ = 0 when c(x) is not
active (i.e. c(x) > 0).

• The constraint c(x) is activated (i.e. c(x) = 0) when µ
becomes positive and modifies the co-state dynamics.

• The complementarity condition 0 ≤ µ ⊥ (s1+s2) ≥ 0
is necessary to ensure Lu = 0 on the constraint
c(x) = 0.

It has to be mentioned here two important features of
the above formalism. Firstly, this formulation clearly takes
into account both singular arcs and path constraints. Sec-
ondly, no assumption is made on the structure (singu-
lar/regular) of the trajectories. This is implicitly captured
by the values of x and λ through the switching function
φ and the complementarity constraints. Consequently, we
do not requires any initial information on the existence of
singular arcs entering in the optimal trajectory.

The optimization problem (COP) can be solve using direct
method i.e. by minimizing the cost function (19) subject
to the complementarity system (20-26). Of course, in order
to determine accurate solution, recall that it is important
to scaling the problem and to use code that use multiple
phase formulation to reduce the sensitivity and that enable
grid refinement procedure. For example, the promising
beta version GPOPS Toolbox (Garg et al. [2010]) for
Matlab has been used for all the examples given in the next
section. From a practical point of view, complementary
constraints is achieved by penalization term in the cost.

A practical and significant improvement in minimizing
the cost function (19) subject to the complementarity
system (20-26) can be obtained by including the algebraic
constraints (9) for q = 1, · · · , q∗. The last constraint when
q = q∗ is particularly beneficial since the control appears in
it explicitly. Of course, as these constraints correspond to
the case where the control is singular, these additions are
only possible when path constraints are not active (that is

when µ = 0 and λ̇ = −Hx = −Lx). If the path constraints
are active, they are unnecessary since u appears this time
in the path constraints.

Theorem 2. If u∗ is the optimal control of problem defined
by cost (5) and state constraint affine system (1-3) then u∗

satisfies COP of Theorem 1 and the following additional
constraints related to the order of the singularity (9):

0 = s2q+1 − s2q+2 −
dq

dtq
φ, q = 2, · · · , q∗ (27)

0 ≤

p
∏

i=1

ci(x)u(1 − u) ⊥ (s2q+1 + s2q+2) ≥ 0 (28)

0 ≤ s2q+1 ⊥ s2q+2 ≥ 0 (29)

where s2q+1, s2q+2 q = 2, · · · , q∗ are additional slack
variables.

Proof. It is easy to show from equation (27) and (29)
that s2q+1 and s2q+2 are respectively the positive and the

E
C2 C1

U3 U2 U1

L

R

Vc1Vc2

i_L

Fig. 1. Fying capacitor converter

negative part of dq

dtq φ. Then, (28) imposes that the ith

component of | dq

dtq φ| equals zero when ui is singular and
the state x does not satisfy one of the constraints given
by (3). Following singular arc definition, these relations
are fulfilled and their inclusion in (OCP) improves the
numerical solution notably in the control determination
as we will show in the next section.

5. APPLICATION TO POWER CONVERTERS

DC-DC converters such as buck, boost, buck-boost, flying
capacitor converters enter clearly in the class of constraint
affine switched systems. We have applied our numerical
approach for all these converters and we present in the
sequel two selected cases to illustrate the effectiveness of
the proposed procedure.

5.1 FCC converter

In the case of a few megawatt industrial power appli-
cations, the classical power converters have a very high
voltage in the switching components (several kilovolts). To
compensate this one uses a new class of power converters
called Flying Capacitor Converters (FCC). The structure
of the FCC converter reduces the voltage throughout the
switches. It is composed of serial connections between
semiconductor switching devices and passive storage ele-
ments to achieve the target operating voltage as illustrated
in Figure 1.

Three switching cells can be isolated, each of them being
able to operate in two complementary mode. The behavior
of each cell can be described using only one boolean control
variable ui ∈ {0, 1} with i = 1, 2, 3. ui = 1 means that the
upper switch is closed and the lower switch is open whereas
ui = 0 means that the upper switch is open and the lower
switch is closed (Figure 1).

The state equations of the converter have an affine form
given by

[

ẋ1

ẋ2

ẋ3

]

=







0
0

−
R

L
x3






+













−
x3

C1

x3

C1
0

0 −
x3

C2

x3

C2
x1

L

x2 − x1

L

E − x2

L













[

u1

u2

u3

]

(30)

where x1, x2 are the voltage on each capacitor and x3

the load current. The chosen parameters are E = 30 V ,
R = 10 Ω, C1 = C2 = 40µF and L = 10 mF .

The capacitor voltages must be balanced to 2E/3 and E/3,
while the demanding load current is fixed to 0.6 A. Then,

xref = [2E/3 E/3 0.6]
T
.

The optimization problem consists in minimizing the
quadratic criteria:
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min
u(·)

∫ T

0

(x − xref )′Q(x − xref )dt.

The weight matrix Q is taken to: Q =

[

2 −1 0
−1 1 0
0 0 200

]

Figure 2 and 3 show the control and state trajectories
starting from the origin. As expected, the control are
totally singular and are properly determined using the pro-
posed formulation. In comparison, a direct transcription
of equation (5) and (1-3) using the same GPOPS toolbox,
yields the results provided in Figure 4 and Figure 5. The
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Fig. 5. Numerical results in a naive transcription : state
tarjectories

Fig. 6. Boost converter

solver returns a flag indicating that the optimization has
finished successfully and that the optimality conditions are
satisfied. In fact, we can observe that the trajectories are
similar but the control is far from being accurate due to
Hamiltonian singularities. All these simulations have been
done with the same parameters: 3 phases formulations, 3
mesh iterations, analytic derivative provided and the same
mesh tolerance (1e-3).

5.2 Boost converter

The topology of a boost converter is given in Figure (6).
In continuous conduction mode, following the position of
the switch u, two subsystems ẋ = Aix + Bi, i = 1, 2

can be considered with matrices A1 =







−R

L
0

0
−1

R0C






,

A2 =







−R

L

−1

L
1

C

−1

R0C






, B1 =

(

E

L
0

)

and B2 = B1.

Generally the control strategies proposed in the literature
do not take into account the discontinuous mode that
may appears when the demanding current in the load is
low. In this case, the current in the diode vanishes and
produces an autonomous switch. Few results concerning
optimal control of hybrid systems are related to the case
of autonomous switches. The third subsystem is then
described by

A3 =

(

0 0

0
−1

R0C

)

, and B3 =

(

0
0

)

.

In fact, it is not necessary to add this last subsystem since
it is not difficult to show that this subsystem matches the
dynamics of ẋ = u(A1x + B1) + (1 − u)(A2x + B2) for a
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control ueq(x) ∈ [0 1]. So, the optimal control problem is
solved with path constraint corresponding to x1 ≥ 0.

The parameters are chosen as follow: E = 20V , R0 = 50 Ω,
R = 1 Ω, L = 2 mH and C = 100 µF .

The optimization problem consists in minimizing, for a
given equilibrium xref , the quadratic criteria:

min
u(.)

∫ T

0

(x − xref )′Q(x − xref )dt.

We have applied the following scenario: Starting from
zero initial condition, the state is steered to equilibrium
xref = (2.2, 44.4) obtained for uref = 0.6 then, after
5ms a new reference xref = (0.78, 27.46) corresponding
to uref = 0.3 is applied.

Figures 8 and 7 show the state trajectories and the optimal
control as well as the Lagrange multiplier obtained for
the weight matrix Q = diag(1, 10). The time scale is
expressed in ms. The numerical results show that just at
the beginning of the simulation the control switches from
1 to 0 before the optimal trajectory reaches the singular
arc which happens after approximatively 1ms. When a
new reference is applied at time t = 5ms, control switches
to zero and the system enters in discontinuous conduction
mode when the current vanishes. The value of the Lagrang-
ien multiplier clearly indicates when the control values met
the constraint ẋ1 = 0. The system returns in continuous
conduction mode with a short activation of mode 2 at
time t = 7.5ms. The control becomes singular once the
reference is reached.

6. CONCLUSION

In this paper we have proposed a numerical framework to
solve optimal control problem for affine switched systems.
The contribution of the proposed methodology is twofold:

an accurate optimal control is determined without any
additional information concerning the existence and the
number of the singular arcs belonging to the optimal
trajectory and, the optimal control is determined even
in the presence of autonomous switches. The first contri-
bution is an important relaxation since generally in the
provided singular control examples in the literature, an a
priori knowledge of the number of singular arcs is required
(see the Godart rocket example). The second contribu-
tion allows to complete the simulation of electric circuits
containing switching elements, including the discontinuous
conduction mode. It is noteworthy that a direct transcrip-
tion of the optimal control problem as a nonlinear program
leads to poor results as the FCC converter example has
shown.
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