
HAL Id: hal-00756609
https://hal.science/hal-00756609v1

Submitted on 23 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic DNS update security, based on
cryptographically generated addresses and ID-based
cryptography, in an IPv6 autoconfiguration context

Jean-Michel Combes, Ghada Arfaoui, Maryline Laurent

To cite this version:
Jean-Michel Combes, Ghada Arfaoui, Maryline Laurent. Dynamic DNS update security, based on
cryptographically generated addresses and ID-based cryptography, in an IPv6 autoconfiguration con-
text. AReS ’12 : The 7th International Conference on Availability, Reliability and Security, Aug 2012,
Prague, Czech Republic. pp.206-211, �10.1109/ARES.2012.69�. �hal-00756609�

https://hal.science/hal-00756609v1
https://hal.archives-ouvertes.fr

Dynamic DNS Update security,
based on Cryptographically Generated Addresses

and ID-Based Cryptography,
in an IPv6 autoconfiguration context

Jean-Michel Combes
Orange Labs

France Telecom - Orange
Issy-Les-Moulineaux, France

Email: jeanmichel.combes@orange.com

Ghada Arfaoui∗, Maryline Laurent†
CNRS Samovar UMR 5157

Institut TELECOM, TELECOM SudParis
Evry, France

∗Email: ghada.arfaoui@it-sudparis.eu
†Email: maryline.laurent@it-sudparis.eu

Abstract—This paper proposes a new security method for pro-
tecting signalling for Domain Name System (DNS) architecture.
That is, it makes secure DNS update messages for binding a Fully
Qualified Domain Name (FQDN) of an IPv6 node and the IPv6
address of the node owning this FQDN. This method is based on
the use of Cryptographically Generated Addresses (CGA) and ID-
Based Cryptography (IBC). Combination of these two techniques
allows DNS server to check the ownership of the IPv6 address
and the FQDN, sent by the DNS client. In addition, this paper
describes how this method has been implemented.

Index Terms—IPv6; DNS update; Security; Cryptographically
Generated Addresses; ID-Based Cryptography;

I. INTRODUCTION

The DNS architecture, widely deployed in Internet, is used
to store the binding between a FQDN of an IP node (e.g.,
hostname.example.com) and information related to this
FQDN (e.g., the IP address of the node owning the FQDN).
When the node’s IP address changes, this information must
be consequently updated in the DNS server: this may be done
with the dynamic DNS update (DNS UPDATE) mechanism.
To thwart masquerading threats, security mechanisms have
been standardized, like Secret Key Transaction Authentication
for DNS (TSIG) or DNS Request and Transaction Signatures
(SIG(0)), but they still have limitations.

In this paper, we present a new method, securing the DNS
UPDATE signalling, based on CGA and IBC. Our works focus
on securing the DNS update of the binding between the name
of an IP node and its IPv6 address: our solution brings the
ownership proof of these two information elements.

Our article is organized as follows. First, the DNS architec-
ture and related security threats are presented in section II with
current countermeasures and their limitations. In section III,
our solution is described including the two techniques CGA
and IBC, and how the combination of them makes secure the
DNS UPDATE signalling. Section IV gives implementation
details of the solution, and section V an analysis of its
advantages and limitations.

II. DOMAIN NAME SYSTEM

A. Dynamic DNS update

The dynamic DNS update (DNS UPDATE) mechanism
[1] allows an IP node to modify or delete information in
the DNS server. This mechanism reuses the DNS message
format, over UDP, and the structure of the information stored
in the DNS server, known as Resource Record (RR), illustrated
respectively in Figure 1 (a) and Figure 1 (b).

Header

Zone

Prerequesite

Update

Additional Data

Name

Type

Class

TTL

RDLength

RData

(a) (b)
Fig. 1. (a) DNS message format & (b) RR format

A DNS message is identified as a DNS update message
thanks to Header field. Zone field indicates the domain zone
including the FQDN to update. Prerequisite field contains
the conditions for doing the update. Update field indicates
actions to be performed: either deleting and/or adding the
information, using RR(s) to encode these actions and the
associated information. Finally, Additional Data field contains
complementary information related to Update field.

Regarding RR structure, Name field includes the FQDN.
Type field indicates the type of FQDN’s information (e.g.,
AAAA for an IPv6 address). TTL field includes lifetime of the
information. RData field contains the information (e.g., the
IPv6 address) and RDLength indicates RData field’s lenght.

B. Security considerations and current protection mechanisms

Allowing an IP node to update (or delete) data in the DNS
server introduces security threats. There are mechanisms to

protect data against these threats: TSIG and SIG(0). The use
of these mechanisms is strongly relying on DNS deployment
architecture, and may suffer from limitations, especially in an
environment where IPv6 autoconfiguration is deployed.

1) Threats: When an IP node updates data in the DNS
server, two information elements are critical: the node’s FQDN
and IP address. Indeed, a malicious node could usurp either
the FQDN or the IP address or both of them, when updating
data in the DNS.

In the first case (i.e., spoofed FQDN), all the communi-
cations to the FQDN are redirected to the malicious node’s
IP address because the DNS UPDATE messagee includes a
spoofed FQDN (e.g., www.mybanc.com) associated to its IP
address. This attack looks like the well-known DNS cache
poisoning attack but is more critical because all the DNS
databases (i.e., DNS master/slave servers and DNS caches) are
impacted. Moreover, the DNS Security (DNSSEC) mechanism
[3] cannot protect against this attack: indeed, DNSSEC only
guarantees the integrity and the authentication of information
sent by a DNS server but, here, the information stored in the
DNS server are already corrupted.

In the second case (i.e., spoofed IP address), all the com-
munications to the FQDN are redirected to a wrong location
because the DNS UPDATE messagee includes a spoofed IP
address associated to its FQDN. This may be an IP address
which is not assigned to an IP node and so, the victim cannot
initiate a communication with the IP node associated to the
FQDN. Or, this may be an IP address assigned to another node
and so, this last one can be potentially the target of a Denial
of Service (DoS) based on a flooding attack. Again, DNSSEC
cannot protect against this threat: as explained previously, the
information stored in the DNS server are already corrupted.

The DNS server may be updated either manually or dynam-
ically. In the last case, the security mechanisms described in
the two following sections may be used.

2) TSIG: Secret Key Transaction Authentication for DNS
(TSIG) [4] is a security mechanism providing authentication
for DNS UPDATE messages based on symmetric cryptogra-
phy: DNS client, sending DNS UPDATE messages, the DNS
server share a common secret key. TSIG uses Hash-based
Message Authentication Code (HMAC) algorithms [5] for
the authentication computation. TSIG security information are
stored in a RR structure, TSIG RR.

3) SIG(0): DNS Request and Transaction Signatures
(SIG(0)) [6] is a security mechanism providing authentication
for DNS UPDATE messages too but it is based on asymmetric
cryptography: DNS server knows DNS client’s public key,
stored in a KEY RR inside the domain zone configuration file.
DNS client, when sending DNS UPDATE messages, protects
them with its own secret key. SIG(0) can use different algo-
rithms (e.g., Diffie-Hellman, RSA/SHA-1, DSA). As TSIG,
SIG(0) security information are stored in a RR structure, SIG
RR, where (cf. Figure 1 (b)), Type field value is 24, TTL
field value is 0, RData mainly contains the signer’s FQDN,
algorithm used for the signature computation and its result.
Once computation is done over DNS UPDATE message, SIG

RR is included in Additionnal Data field of this message (cf.
Figure 1 (a)).

4) Security limitations: Currently, in most of the enterprises
and fixed cable/telecom operators IPv4 networks, the common
scenario, as illustrated in Figure 2, is that a DHCP server [10]
(acting as a DNS client too), (1) assigning an IP address to
the IP node, (2) will also update the information (i.e., binding
between the FQDN and the assigned IP address) in the DNS
server. Regarding the security between the DHCP server and
the DNS server, either none is set-up, especially when the
servers are in the same administrative domain and so the
security can be based only on layer 2 trust, or TSIG is used
because TSIG is simpler to deploy (i.e., only a pre-shared
key configured in the DHCP and DNS servers is needed) and
less expensive than SIG(0) from a computation point of view
(i.e., symmetric versus asymmetric cryptography). As such,
currently, as far as the authors know, SIG(0) is not really
deployed and TSIG is generally used.

(1)

DNS
server

DHCP server
(DNS Client)

IP node
(DHCP client)

(2)

Fig. 2. DHCP use in IPv4 scenario

DHCP server
(DNS Client)

DNS
server

IPv6 node
(DNS Client)

(2)

(1)

Fig. 3. IPv6 autoconfiguration scenario

In an IPv6 environment, a DHCPv6 server [11] can become
useless when, as illustrated in Figure 3, (1) IPv6 nodes are able
to autoconfigure their own IPv6 addresses [12]. As such, (2)
these nodes will have to update by themselves the information
into the DNS server. Consequently, the DNS server needs to
check that information (i.e., FQDN and IPv6 address), sent by
a IPv6 node, are correct and really owned by this node. The
use of TSIG is not well adapted because, for each IPv6 node,
the DNS server will have to configure a pre-shared key, and
this is not really scalable when there are plenty of IPv6 nodes
(e.g., in a fixed cable/telecom operator network). Regarding
SIG(0), it doesn’t solve the address ownership issue and needs
to configure a public key in the DNS server for each IPv6 node.

III. OUR SOLUTION

The goal of our solution is to solve the two following
issues: the ownership of the IPv6 address and the ownership of

2

the FQDN. For scalability reasons, we based our solution on
asymmetric cryptography and so we decided to reuse SIG(0),
bringing two advantages: we use its authentication/integrity
feature and it needs only minor modifications to integrate our
solution.

A. IPv6 Address ownership

For this issue, the ownership property of the IPv6 Cryp-
tographically Generated Addresses is used. A new RR is
specified to transport the parameters related to these specific
addresses and a minor modification is brought to the SIG RR.

1) Cryptographically Generated Addresses: An IPv6 ad-
dress is the concatenation of two 64-bits parts where the first
part is the network prefix and the second one is the Interface
Identifier (IID). The IID is generally derived from the MAC
address [13] but other IID generation methods are existing
[14]. Cryptographically Generated Addresses (CGA) [15] are
IPv6 addresses where the IID is the hash computation over
the concatenation of a public key and specific parameters.

To generate a CGA, an IPv6 node needs first a RSA
public/private key pair [16]. After performing the standardized
algorithm [17], the IPv6 node should get an IID, associated
with the key pair. This IID results from the first 64 bits of
the SHA-1 hash function [18] applied over the data structure
called CGA Parameters, illustrated in Figure 4. In this data
structure, Modifier field and Collision Count field contain
values used by the standardized algorithm for the CGA gen-
eration. Subnet Prefix field includes the IPv6 prefix that will
be concatenated to the IID to finally build the CGA. Finally,
the Public Key field contains the public key from the RSA
public/private key pair.

Modifier (128 bits)

Subnet Prefix (64 bits)

Public Key
(variable length)

Collision Count

Extension Fields (optional, variable length)

// //

// //

Fig. 4. CGA Parameters

To verify the ownership of a CGA, an IPv6 node needs first
getting the associated CGA Parameters and data signed with
the private key related to this CGA. The IPv6 node checks that
it can regenerate the same CGA, following the standardized
algorithm [17], and if so, then it checks the validity of the
signature to confirm the node using the CGA is the real owner
of the public key related to this address.

2) CGA use: The ownership feature of CGA, with the DNS
UPDATE message, is used to certify that the message sender
is the real owner of the address (i.e., the CGA) that will be
updated in the DNS server. As illustrated in Figure 5, (1)
the IPv6 node generates its CGA (and so a public/private key
pair, KCGApub/KCGApriv) and (2) sends a DNS UPDATE

message, including the CGA Parameters, which is signed with
KCGApriv . Finally, (3) the DNS server checks the ownership
of the CGA, as explained before, and updates the information
concerning the IPv6 node if the verification is correct.

DNS
server

IPv6 node

(2)

(1)
(3)

Fig. 5. CGA use scenario

3) CGAparams RR: A new RR is specified in a DNS
UPDATE message to transport the CGA Parameters which are
needed by the DNS server for the CGA ownership verification.
The new RR is named CGAparams and its structure is strongly
closed to the CGA Parameters structure, as illustrated in Figure
6.

Name

Type (16 bits): CGAPARAM

Class (16 bits): ANY

TTL (32 bits)

RDLength (16 bits)

Modifier (128 bits)

Subnet Prefix (64 bits)

Public Key
(variable length)

Collision Count

Extension Fields (optional, variable length)

RData

// //

// //

Fig. 6. CGAparams RR

4) SIG(0) modification: The SIG(0) is modified so a new
value is defined in Algorithm Field of the SIG RR to indicate
the signature is based on a CGA private key. When this new
value is set, the SIG(0) process has to proceed with a CGA
verification (i.e., CGA regeneration followed by the signature
verification).

B. FQDN ownership

For this issue, we decided to use Identity-Based Cryptogra-
phy. We had only to do a minor modification to the SIG RR.
We also defined a mechanism, which was not the main goal
of our works but needed for the proof of concept, to provide
the necessary security material between the different entities.

1) Identity-Based Cryptography: IBC [19] deals with
asymmetric cryptographic schemes (i.e., schemes involving
a public/private key pair) which public keys are derived in
a special way. While in non-IBC asymmetric schemes the
public key is usually derived from a ”randomly generated”
private key, in IBC schemes the public key is deterministically
derived from an identity chosen by the user (e.g., the email
address example@foo.com). The associated private key
is generated by an entity named the Private Key Generator
(PKG). PKG is configured with a Master public/private key

3

pair to generate the private key associated to an identity.
PKG needs to provide, to the sender or/and the receiver, the
public PKG parameters used for cryptographic computations:
Master public key, two hash functions and, with the Elliptic
Curve Cryptography (ECC) [20] [21], a random point of the
elliptic curve. This scheme can be applied either for encryption
purposes, the most common use case, or signature purposes.

2) IBC use: To secure the DNS UPDATE message, we
decided to use IBC, instead of the KEY RR [6], to certify
message’s sender is the real owner of the FQDN that will be
updated in the DNS server. As illustrated in Figure 7, (1) the
IPv6 node gets the public parameters from the PKG: PKG’s
Master public key KPKGpub, two hash functions Hash1() and
Hash2(), and a random point of the elliptic curve ECC Pt.
(2) The IPv6 node generates its identity (i.e., its public key
KFQDNpub), which is in fact the FQDN, and gets the asso-
ciated private key KFQDNpriv from the PKG. (3) Using this
private key, the IPv6 node signs the DNS UPDATE message
and sends it to the DNS server. (4) DNS server gets the public
parameters from the PKG and checks the signature’s validity.
If verification is correct, it updates information relative to the
IPv6 node.

PKG

Sender
(1)

DNS server

(3)

(4)

(2)

Fig. 7. IBC use scenario

3) SIG(0) modification: SIG(0) modification consists in
defining a new value in the SIG RR, for Algorithm Field
indicating that Signature Field includes a signature based on
IBC scheme. If this new value is set, SIG(0) process has to
get the PKG’s public parameters, when the DNS server doesn’t
already know them, and check the signature with the identity
(i.e., the FQDN).

4) Security material transport: For the proof of concept,
we had to specify how PKG communicates with the different
entities. We defined, over UDP [22], 3 types of message:
”PKG’s public parameters request” message, ”Private key
associated to an identity request” message and ”PKG reply”
message. We assume the message exchanges are secure and,
especially, PKG is trusted when sending the PKG’s public
parameters.

C. Global solution

Finally, we integrated together the 2 previously described
components, CGA and IBC parts, to reach our goal. As illus-
trated in Figure 8, (1) the IPv6 node generates its CGA (related
to a public/private key pair, KCGApub and KCGApriv). (2) The
IPv6 node gets PKG’s public parameters: PKG’s Master public
key KPKGpub, two hash functions Hash1() and Hash2(), and

a random point of the elliptic curve ECC Pt. (3) The IPv6
node generates its identity (i.e., its public key KFQDNpub,
which is in fact the FQDN, and gets the associated private
key KFQDNpriv from the PKG. (4) The IPv6 node generates
the DNS UPDATE message, includes the CGA RR, computes
the two signatures of the DNS UPDATE message, respectively
with KFQDNpriv and KCGApriv , and includes them (i.e., one
SIG RR per signature) in the DNS UPDATE message before

PKG

(1)
(6)

Sender
(2)

DNS server

(4)

(5)

(3)

Fig. 8. Global solution

(5) When receiving the message, the DNS server gets the
public parameters from the PKG, checks the validity of the
signature based on the FQDN. (6) The DNS server checks the
ownership of the CGA and, if the two verifications are correct,
updates the information concerning IPv6 node.

IV. PROOF OF CONCEPT

To demonstrate the validity of our solution, a proof of
concept was implemented and deployed on a testbed.

A. Testbed

The testbed, as illustrated in Figure 9, is composed of 3
entities: an IPv6 node which acts as DNS client, a router
which acts as PKG and a DNS server. The operating system on
these entities is Debian 2.6.32. All the testbed is only running
over IPv6. DNS server is based on BIND 9.7.31 from ISC.
PKG implementation is based on Pairing-Based Cryptography
(PBC) library2 from Stanford university.

(2)

IPv6 node
(DNS

Client)

Router
(PKG) DNS Server

Client component Server component

(1) (3)

(4)

PKG component

Fig. 9. PoC Testbed and Implementation architecture

B. Implementation

We decided to implement our solution into 3 components:
a ”Client” component, a ”Server” component and a ”PKG”
component. As illustrated in Figure 9, ”Server” component,
located on the DNS server, (4) has only to send locally a
nsupdate command to BIND daemon when (3) the security
of the DNS UPDATE message is correct. This avoids doing

1http://www.isc.org/software/bind
2http://crypto.stanford.edu/pbc/

4

any modification to BIND. (1) ”Client” component has to
generate the CGA, secure the DNS UPDATE message based
on our solution and (2) send it. ”PKG” component provides the
needed security material to ”Client” and ”Server” components.

For the CGA part of our solution, we reused NDProtector3,
a Python based SEND/CGA implementation and especially
CGA generation/validation module which is based on scapy64,
a fork of the well-known packet manipulation program scapy5.

For the IBC part of our solution, we reused PBC library
and for signature model, we used the Hess method [23].

All functions of our solution, illustrated in Figure 10, are
described in the following sections.

Client component

Dyndns_add.py

gen_signature

getPKGparams.py

Kpriv_request.py Server component

Verify_signature

dns_server.py

PKG component

pkg_init

pkg_server.py

getPKGparams.py

Kpriv_generation

CPython

Fig. 10. Functions of our solution

1) ”PKG” component: It has to provide needed security
material to ”Client” and ”Server” components: the private key
associated to a FQDN and the PKG’s public parameters. This
component is composed of 3 functions.

The C function pkg_init initializes the PKG: generation
of the PKG’s public parameters (i.e., KPKGpub, Hash1(),
Hash2() and ECC Pt) and the PKG’s Master private key. The
C function Kpriv_generation allows the generation of
the private key (i.e., KFQDNpriv) associated to an identity
(i.e., the FQDN in our context). Finally, the Python function
pkg_server.py is the main part of the PKG component:
at first, this one launches the function pkg_init and then,
listens for any request (i.e., either PKG’s public parameters
or private key associated to an identity using the function
Kpriv_generation) and replies to them.

2) ”Client” component: It has to generate the CGA, get
the public paramaters and the private key associated to the
FQDN from the PKG, generate and sign the DNS UPDATE
message, and finally send it. This component is composed of
4 functions.

The Python function getPKGparams.py allows the
”Client” component to request and get the PKG’s public
parameters. The Python function Kpriv_request.py is
used by the ”Client” component to request and get the private
key (i.e., KFQDNpriv) associated to an identity (i.e., the

3http://amnesiak.org/NDprotector/
4http://natisbad.org/scapy/
5https://secdev.org/projects/scapy/

FQDN in our context). The C function gen_signature
allows the signature of the DNS UPDATE message based on
the private key (i.e., KFQDNpriv) associated to the FQDN.
Finally, the Python function Dyndns_add.py is the main
part of the ”Client” component: it generates the CGA, requests
and gets the PKG’s public parameters using the function
getPKGparams.py, requests and gets the private key asso-
ciated to a FQDN using the function Kpriv_request.py,
generates the DNS UPDATE message including the CGA
RR, signs this message, respectively with KFQDNpriv and
KCGApriv , using the function gen_signature, and sends
it to the DNS server.

3) ”Server” component: When receiving a DNS UPDATE
message, ”Server” component has to get the public paramaters
from the PKG, check the security validity of the DNS UP-
DATE message, and finally, if the verification is correct, notify
the DNS server daemon about the corresponding update. This
component is composed of 3 functions.

The Python function getPKGparams.py allows the
”Server” component to request and get the PKG’s public
parameters. The C function Verify_signature allows the
signature’s verification generated with the private key (i.e.,
KFQDNpriv) associated to the FQDN. The Python function
dns_server.py is the main part of the ”Server” com-
ponent: when a DNS UPDATE message is received, this
function requests and gets the PKG’s public parameters using
the function getPKGparams.py, checks the FQDN owner-
ship using the function Verify_signature and the CGA
ownership (i.e., CGA regeneration and signature verification
with KCGApub). Finally, if verification is correct, this function
generates and sends locally a DNS UPDATE message (i.e.,
binding between the FQDN and the CGA) to the DNS server
daemon.

V. ADVANTAGES AND LIMITATIONS

Advantages and limitations of our solution are given below,
and, for each limitation, possible solutions, when any, are
given.

A. Advantages

First of all, upon receiving a DNS update, server is able to
check the FQDN’s ownership like TSIG and SIG(0). Moreover
it allows to check the IPv6 address’s ownership,included in
the DNS UPDATE message and that will be associated to the
FQDN in the DNS server. To the best of our knowledge, there
is no alternative solution today for such a security feature.

Unlike SIG(0), our solution doesn’t require anymore the
storage of the public key for each IPv6 node, included in a
KEY RR, in the DNS server. Thus, when DNSSEC is deployed
too, as the domain zone configuration file is smaller, the time
to sign the zone should be reduced too.

Our solution is more scalable than the use of TSIG which
requires to provide a pre-shared key for each IPv6 node willing
to update information in the DNS server.

5

B. Limitations and potential solutions

The main limitation of our solution is the revocation. Indeed,
a CGA provides a strong relationship between an address
and its owner but nothing prevents a malicious host to use
it in the future when the CGA has been compromised by
a collision. Unlike X.509 certificates using a Public Key
Infrastructure (PKI), where either a Certificate Revocation List
(CRL) [24] or Online Certificate Status Protocol (OCSP) [25]
can be deployed, a CGA is infrastructureless and so cannot be
revoked. Concerning the IBC, revoking the public key would
mean revoking the identity and so the FQDN in our context.
A solution could be to concatenate a specific data (e.g., a date)
to the identity, as already proposed in previous studies [26].

Finally, the last limitation is that the PKG becomes a point
of failure: if this one is compromised, all the public/private
key pairs used by the IPv6 nodes are compromised. To solve
this, previous studies [27] recommend that the PKG generates
only one part of the private key related to an identity and the
final user finalizes the private key’s generation.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a new security method, based
on CGA and IBC, allowing a DNS server to check the
ownership of the received information (i.e., the IPv6 address
and the FQDN), and we described how this mechanism
was implemented. Currently, for an environment where the
IPv6 autoconfiguration is deployed, as far as we know, no
alternative solutions exist with the same security properties as
the mechanism presented in this paper.

First, the next step regarding our solution would be to secure
the exchanges between the PKG and the other entities, for
example, with classical methods like TLS. The analysis of the
performances in a real DNS environment should be useful to
determine the right cryptographic algorithms (e.g., ECC, RSA)
for the different parts of our solution. Finally, our solution
could be submitted to the IETF as a standard solution.

ACKNOWLEDGMENT

The authors would like to thank Johan Clier (Telecom
SudParis), Matthieu Coudron (Telecom SudParis) and Henri
Gilbert (ANSSI) for their help.

REFERENCES

[1] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, “Dynamic
Updates in the Domain Name System (DNS UPDATE),” Internet
Engineering Task Force, RFC 2136, Apr. 1997. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2136.txt

[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“DNS Security Introduction and Requirements,” Internet Engineering
Task Force, RFC 4033, Mar. 2005. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc4033.txt

[3] P. Vixie, O. Gudmundsson, D. E. 3rd, and B. Wellington, “Secret
Key Transaction Authentication for DNS (TSIG),” Internet Engineering
Task Force, RFC 2845, May 2000. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc2845.txt

[4] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” Internet Engineering Task Force, RFC 2104,
Feb. 1997. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2104.txt

[5] D. Eastlake, “DNS Request and Transaction Signatures (SIG(0)s),”
Internet Engineering Task Force, RFC 2931, Sep. 2000. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2931.txt

[6] ——, “Storage of Diffie-Hellman Keys in the Domain Name System
(DNS),” Internet Engineering Task Force, RFC 2539, Mar. 1999.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2539.txt

[7] ——, “RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System
(DNS),” Internet Engineering Task Force, RFC 3110, May 2001.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3110.txt

[8] ——, “DSA KEYs and SIGs in the Domain Name System (DNS),”
Internet Engineering Task Force, RFC 2536, Mar. 1999. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2536.txt

[9] R. Droms, “Dynamic Host Configuration Protocol,” Internet Engineering
Task Force, RFC 2131, Mar. 1997. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc2131.txt

[10] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney,
“Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” Internet
Engineering Task Force, RFC 3315, Jul. 2003. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3315.txt

[11] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration,” Internet Engineering Task Force, RFC 4862, Sep.
2007. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4862.txt

[12] M. Crawford, “Transmission of IPv6 Packets over Ethernet Networks,”
Internet Engineering Task Force, RFC 2464, Dec. 1998. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2464.txt

[13] T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for
Stateless Address Autoconfiguration in IPv6,” Internet Engineering
Task Force, RFC 4941, Sep. 2007. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc4941.txt

[14] T. Aura, “Cryptographically generated addresses (cga),” in Information
Security, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, vol. 2851, pp. 29–43.

[15] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, pp. 120–126, February 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

[16] T. Aura, “Cryptographically Generated Addresses (CGA),” Internet
Engineering Task Force, RFC 3972, Mar. 2005. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3972.txt

[17] N. institute of standards and technology, “FIPS 180-2, Secure
Hash Standard, Federal Information Processing Standard (FIPS),
Publication 180-2,” DEPARTMENT OF COMMERCE, Tech. Rep.,
August 2002. [Online]. Available: http://csrc.nist.gov/publications/fips/
fips180-2/fips180-2withchangenotice.pdf

[18] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Proceedings of CRYPTO 84 on Advances in cryptology. New York,
NY, USA: Springer-Verlag New York, Inc., 1985, pp. 47–53. [Online].
Available: http://dl.acm.org/citation.cfm?id=19478.19483

[19] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, 1987. [Online].
Available: http://www.jstor.org/stable/2007884

[20] V. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology CRYPTO 85 Proceedings, ser. Lecture Notes in Computer
Science, H. Williams, Ed. Springer Berlin / Heidelberg, vol. 218, pp.
417–426.

[21] J. Postel, “User Datagram Protocol,” Internet Engineering Task Force,
RFC 0768, Aug. 1980. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc768.txt

[22] F. Hess, “Efficient identity based signature schemes based on pairings,”
in SAC 2002, LNCS 2595. Springer-Verlag, 2002, pp. 310–324.

[23] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” Internet Engineering
Task Force, RFC 5280, May 2008. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc5280.txt

[24] M. Myers and H. Tschofenig, “Online Certificate Status Protocol
(OCSP) Extensions to IKEv2,” Internet Engineering Task Force, RFC
4806, Feb. 2007. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc4806.txt

[25] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing.” Springer-Verlag, 2001, pp. 213–229.

[26] S. S. Al-riyami, K. G. Paterson, and R. Holloway, “Certificateless public
key cryptography.” Springer-Verlag, 2003, pp. 452–473.

6

