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Abstract The effect of additional kinematic constraints on eigenfrequencies of non conser-

vative systems presenting a non symmetric stiffness matrix is investigated with the use of the

second order work criterion. It is shown that there are always additional constraints that may

soften structural systems, from both buckling and vibration points of view. The steps for build-

ing such constraints are given, consequences on stability are discussed and several illustrating

examples are presented.

Introduction

As early as 1980, Tarnai discovered a softening effect induced by kinematic constraint in elastic

systems. This softening effect was characterized by a decrease of the critical load of divergence
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instability in conservative systems with equilibrium positions depending on the loading parame-

ters [15]. Hence, it was shown to be out of the scope of the usual stability analysis of constrained

systems based on Rayleigh’s well known theory. In the present paper we show that this surprising

phenomenon can be observed in non conservative systems too even if the associated equilibrium

positions do not depend on the loading parameters. Recently, Challamel et al. [6] demonstrated

the possible softening effect of additional constraints in the buckling problem of non conservative

systems. Here we perform a similar investigation of the spectrum (within the meaning of the

set of eigenfrequencies) of the system and we generalize the approach of [6] to the vibration

analysis. Although the usual framework of investigations involving spectral analysis, vibrations,

buckling, divergence or flutter is linear elasticity as, e.g., in [3], the presented approach remains

valid in a more general setting, including, e.g., the incrementally piecewise linear evolution. We

mean for example the elasto-plasticity if this evolution takes place in a tensorial zone of a purely

constitutive problem or external dry friction forces as it was elegantly investigated in Bigoni’s

recent paper [2]. In order to be valid, the dynamic evolution has only to be described by an

equation similar to Eq.(1) of the present paper.

The effect of constraints on systems the dynamics of which is governed by a symmetric stiffness

matrix is actually well known since Rayleigh’s and Courant’s Minimax theorems: the range of

the real spectrum is reduced by a kinematic constraint and the lowest eigenfrequency is then

always increasing. We show that the effect of a constraint on systems with the dynamics, gov-

erned by any (i.e. non symmetric) stiffness matrix may not be a priori forecast. According

to the chosen constraint, the lowest eigenfrequency can either increase or decrease. The paper

obviously focuses on the decreasing effect, which we call a stiffness softening effect. Section 1

concerns generalities of the spectral analysis of constrained systems investigated with the use

of Lagrange multipliers. After performing necessary calculations in Section 2.1, the Section 2.2

presents the main result: as long as the second order work criterion is valid, there always exists

a constraint (and it may be chosen in the kernel of the corresponding operator) that leads to

a decrease of the lowest eigenfrequency of the system. Consequences on both divergence and

flutter instabilities are investigated (subsections 2.3 and 2.4) and several examples (section 3)

using Ziegler’s 2 degree of freedom column as a mechanical model illustrate the results.
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1 Statement of the problem

As it is already mentioned in the introduction, in the following we will only assume that after

having started with different possible non linear settings, convenient assumptions and approx-

imations lead to a dynamic evolution governed by the following equation of motion of the free

system Σfree:

MẌ +K(p)X = 0 (1)

where K(p) is generally a non-symmetric matrix. For circulatory systems like in [3] or more

recently in [2], we often may write K(p) = Kint − pKext and the internal elastic stiffness matrix

Kint is symmetric and positive definite. Clearly, the non-conservativeness comes from the ex-

ternal loading, meaning that Kext is generally a non-symmetric matrix. In the present general

approach, the dependency p 7→ K(p) is without any importance. M is a symmetric positive

definite matrix, p denotes the loading parameter, and X is the perturbation of dimension n.

The buckling/vibrations equation of this free system Σfree is obtained for the divergence-type

systems as:

f(p, s) = det(K(p)− s2M) = 0 (2)

We assume that for p = 0, the stiffness matrix K(0) of the free system is symmetric positive

definite (it obviously holds for circulatory systems because K(0) then reduces to a pure elastic

stiffness matrix). Let ωfree,k(p) be the 2n roots of the polynomial equation (2). If they are

real, the positive ones are the natural frequencies of the free system. Since for p = 0 (eventually

counted with their multiplicity) ωfree,k(0) ∈ R for all k = 1, . . . , n because of the above assump-

tion about K(0), then, by continuity, there is an interval [0, pmax[, such that ωfree,k(p) ∈ R for all

k = 1, . . . , n. For the rest of the paper, we assume that p ∈ [0, pmax[ and the natural frequencies

are ordered: ωfree,1(p) ≤ . . . ≤ ωfree,n(p).

We will investigate the spectral properties of such a dynamical system in the presence of

an additional kinematic constraint, given by the (linear) holonomic constraint (α is a column

vector):

αT .X = 0 (3)

The Lagrange multiplier λ can be introduced for the constrained system as:
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MẌ +K(p)X + λα = 0 (4)

Leading a similar mathematical approach as in [13] for example, the buckling/vibrations equation

of the constrained system Σcons(α) is obtained for the divergence-type systems as:

h(p, s, α) = det

 K(p)− s2M α

αT 0

 = 0 (5)

In this paper, we investigate the eventual relationship between the eigenfrequencies ωcons,k(p, α)

of Σcons(α) and the frequencies ωfree,k(p) of Σfree. More precisely, we will compare the lowest

eigenfrequencies ωcons,1(p, α) and ωfree,1(p). It should be reminded that for conservative systems,

ωcons,1(p, α) ≥ ωfree,1(p) for any constraint (defined by) α. We claim in this paper that for the

nonconservative systems with the dynamics governed by Eq.(1), there is at least one peculiar

constraint α such that ωcons,1(p, α) < ωfree,1(p) as long as the symmetric part ofKs(p) is positive

definite (second order work criterion), and we present this constraint. We stress however that

this dynamic softening effect does not mean that such a constraint leads to divergence-instability

of the constraint system. On the contrary, it has been already proved in papers like [6], [13]

that, as long as the symmetric part of Ks(p) is positive definite (second order work criterion),

no kinematic constraints may induce divergence instabilities. These points are discussed in

paragraphs 2.3 and 2.4.

2 The results

2.1 Preliminary calculations

Let α be an n- column vector. Let us choose s /∈ {±ωfree,k(p), k = 1 . . . , n} such that F (p, s) =

K(p)−s2M is not singular. Similar calculations as in [6] but for the matrix F (p, s) = K(p)−s2M

give then successively:

 F (p, s) α

αT 0


 F (p, s)−1 −F (p, s)−1α

0 1

 =

 In 0

αTF (p, s)−1 −αTF (p, s)−1α


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Calculating the determinant of each side of the previous relation leads to:

h(p, s, α)

f(p, s)
= −αTF (p, s)−1α (6)

Put β = F (p, s)−1α. (6) reads:

h(p, s, α) = −f(p, s)βTF (p, s)β

which leads, for all s, p such that f(p, s) 6= 0 (i.e. s /∈ {±ωfree,k(p), k = 1 . . . , n}) to:

h(p, s, α) = −f(p, s)βTF s(p, s))β (7)

with β = F (p, s)−1α because obviously βTF (p, s))β = βTF s(p, s))β for F s(p, s) = Ks(p)− s2M

where Ks is the symmetric part of K.

Let Σ∗ be the associated conservative system with stiffness matrix Ks(p) and mass matrix

M and let {ω∗,k(p), k = 1 . . . , n} be its spectrum which is included in R for all p. These are the

roots of the characteristic polynomial of Σ∗ defined as:

g(p, s) = det(Ks(p)− s2M) = det(F s(p, s)) = 0 (8)

This spectrum can also be calculated from the generalized Rayleigh’s quotient Rs(X) related

to the symmetric part Ks of K defined by:

Rs(X) =
XT Ks(p)X

XT MX

and the smallest positive root ω∗,1(p) of (8) is for example given by:

ω2
∗,1(p) = inf

X∈Rn

XT Ks(p)X

XT MX

For the rest of the paper, psw denotes the critical load according to the second order work

criterion: this is the smallest positive root of the equation det(Ks(p)) = 0. For p = 0, Ks(0) =

K(0) is supposed to be positive definite (as it is assumed above). Thus det(Ks(0)) > 0 and there
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is an open interval I ⊂ R+ (by continuity) such that det(Ks(p)) > 0 for all p ∈ I. By definition

psw = inf(I). If I is bounded then psw ∈ R+. If I is not bounded then psw = +∞ meaning

det(Ks(p)) > 0 for all p > 0.

If pfree,div is the divergence critical load of the free system Σfree (the smallest positive root

of det(K(p)) = 0), it has already been proved that pfree,div ≥ psw ([12] for example) but it

obviously follows from the following result proven by Ostrowski and Taussky (1951) [14]:

If A is any definite positive matrix (meaning that its symmetric part is definite positive),

then det(A) ≥ det(As) > 0.

2.2 Main results and stiffness softening effect of kinematics constraints

Preserving the same notation as in the previous sections, two results on the relation of the

spectrum of the free system and that of the constrained and associated systems are derived. The

first one is the following:

Theorem 1

ω∗,1(p) ≤ ωfree,1(p) ∀p ∈ [0, psw[ (9)

2 Suppose p ∈ [0, psw[ which means that K(p) (or equivalently Ks(p)) is positive definite and let

be s ∈ [0, ω∗,1(p)[. Thus, because g(p, 0) = det(F s(p, 0)) = det(Ks(p)), then f(p, 0) ≥ g(p, 0) >

0. Moreover, as long as g(p, s) > 0 the eigenvalues of the real symmetric matrix F s(p, s) can-

not vanish and because for s = 0 they are all > 0 (Ks positive definite), they are all > 0 for

s ∈ [0, ω∗,1(p)[ which means that F (p, s) remains positive definite for s ∈ [0, ω∗,1(p)[. Apply-

ing then the above result of Ostrowski and Taussky, we deduce that f(p, s) ≥ g(p, s) > 0 for

s ∈ [0, ωfree,1(p)[. Because ωfree,1(p) is the lowest positive root of s 7→ f(p, s) we obviously

conclude that ωfree,1(p) /∈ [0, ω∗,1(p)[ or that ω∗,1(p) ≤ ωfree,1(p). QED

Because det(F s(p, ω∗,1(p))) = 0, dimKer(F s(p, ω∗,1(p)) ≥ 1 and we may choose β = β(p)

which is nonzero in Ker(F s(p, ω∗,1(p)). Let now α = α(p) be in F (ω∗,1(p))(β(p)).

From (7), h(p, ω∗,1(p), α(p)) = 0 meaning that ω∗,1(p) lies in the spectrum of Σcons(α(p)). From

theorem 1 the second result reads as follows:
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Theorem 2 For all p ∈ [0, psw[ there is a constraint α = α(p) such that

ωcons,1(p) ≤ ωfree,1(p) (10)

where ωcons,1(p) = ωcons,1(p, α(p)) is the smallest eigenfrequency of the constrained system Σcons(α(p)).

2Let us choose the constraint α = α(p) as previously. Because ω∗,1(p) lies in the spectrum of

Σcons(α(p)) it follows that ωcons,1(p) ≤ ω∗,1(p). Thus, from (9), we get:

ωcons,1(p) ≤ ω∗,1(p) ≤ ωfree,1(p)

which allows to conclude.

Because of the last result, we say that the system is softened by the kinematics constraint

meaning stiffness softening because of the direct natural relation between the stiffness of the

structure and the lowest eigenfrequency for conservative systems through Rayleigh’s quotient.

The paradoxical effect resulting from theorem 2 means that there always exists a kinematics

constraint that makes the lowest eigenfrequency smaller in contrast to conservative systems.

Definition 1 The constraint α(p) built as above is called the critical or optimal constraint.

2.3 Divergence instability

The buckling problem is obtained as a particular case of this equation, where the divergence

buckling load pfree,div of the free system is calculated from det(K(p)) = 0 or equivalently by

ωfree,1(p) = 0 (11)

while for the critical constraint α(p), the divergence buckling load pcons,div is calculated from the

equation h(p, 0, α(p)) = 0 or equivalently from

ωcons,1(p) = 0 (12)

Thus, from (10), (11) and (12) we deduce that

pcons,div ≤ pfree,div (13)
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Thus, we reproduce by another way the result obtained in [6] showing that there always exists

a kinematic constraint such that the critical divergence load of the corresponding constrained

system is lower than that of the free system and the optimal one is given by the second order

work criterion (see e.g. figure 2).

2.4 Flutter instability

As mentioned in [5], there is no direct relationship between the second order work criterion psw

and the critical flutter load pfree,fl meaning that we may meet psw < pfree,fl or psw > pfree,fl

according to the considered system while psw ≤ pfree,div always holds. Thus, similar conclusions

hold with pcons = pcons,div and both following situations may occur illustrated in figures 3

and 5 obtained with two different mass matrices and two different values of γ. On figure 3

calculated for a complete follower force (γ = 1) and a uniform mass distribution, we observe that

ωcons,1(p) ≤ ω∗,1(p) ≤ ωfree,1(p) for all p ∈ [0, psw[ and pcons = pcons,div ≤ pfree,fl while on the

figure 5 calculated for a partial follower force (γ = 1
2) and another mass matrix, we observe that

ωcons,1(p) ≤ ω∗,1(p) ≤ ωfree,1(p) for all p ∈ [0, psw[ and pcons = pcons,div ≥ pfree,fl.

2.5 Constraint dependency on the load parameter

Without contradiction to the previous results, it is important to stress that the kinematic con-

straints are themselves depending on the load parameter p. This phenomenon, already investi-

gated in [7], is actually the natural consequence of the used method that leads to the optimal

constraints for each state of the system, each state precisely depending on the load parame-

ter. The question to know if there is a fixed family of kinematics constraints α not depend-

ing on p such that the corresponding constrained system Σcons(α) still satisfies the condition

ωcons,1(p) ≤ ωfree,1(p) for all p ∈ [0, psw[ is a more difficult problem although there are, by

continuity, local results in the neighborhood of each value of the load. For example, there is a

neighborhood of p = 0, i.e. an interval [0, p0[ such that ωcons,1(p) ≤ ωfree,1(p) for all p ∈ [0, p0[

for the constrained system defined by the fixed family of constraints α = α(0) we may call here

the fixed constrained system. In figure 6, which is similar to figure 4, the constrained system

with fixed p = 0 corresponds to the mixed dashed-dotted gold curve, and we observe that it

coincides with the optimal one (dotted blue) on the whole interval [0, psw[ while on figure 7 plot-

ted for γ = 3
4 , the curve of the fixed constrained system (mixed dashed-dotted gold) coincides
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only on a subinterval [0, p0[ of [0, psw[ with the optimal constrained system (dotted blue), the

eigenfrequency of the fixed constrained system being always higher than (or equal to) the one of

the optimal constrained system: this is the property of optimality.

3 Examples

3.1 The mechanical model

To illustrate the previous results, consider the following 2 dof Ziegler column (see figure 1)

([17, 4, 10]). The system Σ consists of two bars OA,AB with OA = AB = ` linked by two

elastic springs with the same stiffness k. The circulatory non conservative load ~P is such that

~̂P , y = γθ2 with 0 ≤ γ ≤ 1. For γ = 1, it is a complete follower force while for γ = 0 it is a con-

servative load. The equilibrium position is θ = (θ1, θ2) = (0, 0) and the bars are supposed to be

homogeneous according to their mass distribution except for figure 5 obtained for another mass

matrix. Adopting a dimensionless format, we use p = P`
k as loading parameter. If Ω2 = k

m`2
,

Ω is then a pure elastic frequency parameter of Σ and to simplify the presentation, we put Ω = 1.

3.2 Load-frequency boundary for the free system

The equations of motion (1) then read:

 4
3

1
2

1
2

1
3

 Ẍ +

 2− p −1 + γ p

−1 1− (1− γ) p

X = 0 (14)

and the buckling/vibrations equation (2) of this free system is:

f(p, γ, s) = det(K(p, γ)− s2M)

= 1− 3 p+ 3 γ p+ p2 − γ p2 +
(
−3 + 5

3 p−
5
6 γ p

)
s2 + 7

36s
4

and its smallest positive root is:

ωfree,1(p, γ) =
1

7

√
378− 210 p+ 105 γ p− 21

√
296− 276 p+ 96 γ p+ 72 p2 − 72 γ p2 + 25 γ2 p2
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3.3 Load-frequency boundary for the associated system

The characteristic polynomial of the associated system Σ∗ reads:

g(p, γ, s) = det(Ks(p, γ)− s2M)

= 1− 3 p+ 3 γ p+ p2 − γ p2 − 1
4 γ

2 p2 +
(
−3 + 5

3 p−
5
6 γ p

)
s2 + 7

36s
4

and its smallest positive root is:

ω∗,1(p, γ) =
1

7

√
378− 42 a− 210 p+ 105 γ p

where a = a(p, γ) =
√

74− 69 p+ 24 γ p+ 18 p2 − 18 γ p2 + 8 γ2 p2

3.4 Calculation of the optimal constraint

We follow now the algebraic procedure to find the convenient kinematics constraint given in the

previous section.

ker(F s(p, γ, ω∗,1)) = Vect

x1 =

 − 34+4 γ p−15 p−3 a
58−33 p+20 γ p−8 a

1




and thus the subspace Vect
{

(Ks − ω2
∗,1.M).x1

}
generated by the vector (Ks−ω2

∗,1.M).x1 is the

one-dimensional subspace Vect


 1

2 γ p

1
2
γ p(34+4 γ p−15 p−3 a)
58−33 p+20 γ p−8 a




so, the constraint is given by the vector:

α =

 1
2 γ p

1
2
γ p(34+4 γ p−15 p−3 a)
58−33 p+20 γ p−8 a


meaning that the constraint reads:

1

2
γ pθ1 +

1

2

γ p (34 + 4 γ p− 15 p− 3 a)

58− 33 p+ 20 γ p− 8 a
θ2 = 0

or

(58− 33 p+ 20 γ p− 8 a) θ1 + (34 + 4 γ p− 15 p− 3 a) θ2 = 0
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3.5 Load-frequency boundary of the optimal constrained system

Because for n = 2 it leads to effective and straightforward calculations, we propose here to

explicitly calculate the constrained system although obviously it is not the philosophy of the

general reasoning.

The constrained system is obviously a one dof system. The general equations of motion (1) of a

constrained 2 dof system read:



 m11 m12

m21 m22


 ẍ1

ẍ2

+

 k11 k12

k21 k22


 x1

x2

+

 λα1

λα2

 =

 0

0


(
α1 α2

) x1

x2

 = 0

By eliminating the variable x2 in order to keep only one equation in the single variable x1, we

get the remarkable following form :

(
−α2 α1

) m11 m12

m21 m22


 −α2

α1

 ẍ1 +

(
−α2 α1

) k11 k12

k21 k22


 −α2

α1

x1 = 0

(15)

or here (x1 = θ1)

which gives

Mconsθ̈1 +Kconsθ1 = 0

with

Mcons = −1288 p+ 336 p2 + 448 γ p− 336 γ p2 +
448

3
γ2p2− 140

3
γ p a+

4144

3
− 406

3
a+ 77 p a

(16)

and

Kcons = 19240− 28744 p+ 14754 p2 + 12160 γ p− 13704 γ p2 + 4000 γ2p2 − 2628 p3 − 2228 a

− 1034 γ p a+ 2278 p a+ 653 γ p2 a− 228 γ2p2 a− 2608 γ2p3 + 4068 γ p3 − 618 p2 a+ 640 γ3p3

(17)
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The buckling/vibrations equation of the constrained system is obtained for the divergence-type

systems as:

fcons(p, γ, s) = Kcons −Mcons s
2

whose the smaller positive root obviously is:

ωcons,1(p, γ) =
1

7

(√
21
((

592 + 192 γ p− 552 p+ 64 γ2p2 − 144 γ p2 + 144 p2 − 58 a− 20 γ p a+ 33 p a
)

(
19240− 28744 p+ 12160 γ p+ 14754 p2 − 13704 γ p2 + 653 γ p2 a+ 4000 γ2p2 − 2628 p3

−2228 a− 1034 γ p a+ 2278 p a− 228 γ2p2 a− 2608 γ2p3 + 4068 γ p3 − 618 p2 a+ 640 γ3p3
)) 1

2

)/
(
592 + 192 γ p− 552 p+ 64 γ2p2 − 144 γ p2 + 144 p2 − 58 a− 20 γ p a+ 33 p a

)
(18)

3.6 Discussion and analysis of results

3.6.1 Comparison of frequencies at fixed loading parameter p

The validity of the results is restricted to the interval [0, psw[. As already done in [6], the critical

value psw of the loading parameter according to the second order work criterion is the lowest

root of

det(Ks(p)) = det

 2− p −1 + 1
2 γ p

−1 + 1
2 γ p 1− (1− γ) p

 = 0

which leads here to

psw =
2 (−3 + 3 γ +

√
5− 14 γ + 10 γ2)

−4 + 4 γ + γ2
.

For γ = 1, the system is Ziegler’s model with complete follower load. In this case, the free system

loses its stability by flutter. Let us then choose p < psw = 2, for example p = 3
2 . We then find

the corresponding numerical values of the lowest frequencies

ω∗,1

(
3

2
, 1

)
≈ 0.5073 ≤ ωfree,1

(
3

2
, 1

)
≈ 0.7830

More precisely, the positive roots of det(F s(32 , 1, s) = 0 are
√

3 − 1
2

√
6 ,
√

3 + 1
2

√
6 and thus,

with previous notations ω∗,1(32 , 1) =
√

3− 1
2

√
6 ≈ 0.5073.
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We obviously conclude that

ωcons,1

(
3

2
, 1

)
≈ 0.5073 ≤ ω∗,1

(
3

2
, 1

)
≈ 0.5073 ≤ ωfree,1

(
3

2
, 1

)
≈ 0.7830

This is illustrated on figure 2 where the characteristic polynomials and their lowest positive

roots (the optimal constrained system in dotted blue line (unique root ωcons,1
(
3
2 , 1
)
≈ 0.5073)

are plotted, the associated system in plain green line (lowest root ω∗,1
(
3
2 , 1
)
≈ 0.5073) and for

the free system in dashed red line (lowest root ωfree,1
(
3
2 , 1
)
≈ 0.7830).

For γ = 1
2 . Let us choose p < psw = 12−4

√
2

7 ≈ 0.9061, for example p = 1
2 .

Corresponding numerical values are

ωcons,1

(
1

2
,
1

2

)
≈ 0.3914 ≤ ω∗,1

(
1

2
,
1

2

)
≈ 0.3914 ≤ ωfree,1

(
1

2
,
1

2

)
≈ 0.3999

It is worth mentioning that any kinematic constraint changes a two degree-of-freedom circula-

tory non-conservative system into a one-degree-of-freedom conservative system. Especially for

γ ∈ [12 , 1[ the critical load by divergence of the constrained system pcons,div (for any kinematic

constraint) is necessarily strictly lower than the critical load by divergence of the free system

pfree,div = +∞!!! (see [5] for example). Viewed as the decreasing of the critical divergence load,

any additional kinematic constraint has then a destabilizing or a sort of stiffness softening effect.

This stiffness softening effect however may fail if it is viewed as the decreasing of the lowest

eigenfrequency of the system for a given constraint. For example with the constraint θ1 = θ2

and for the loading p = 1
2 , γ = 1

2 , we find ωcons,1(12 ,
1
2) =

√
3
4 ≈ 0.4330 > ωfree,1

(
1
2 ,

1
2

)
≈ 0.3999.

3.6.2 Frequencies as functions of the loading parameter. Comparison. Stability.

Concerning the flutter instability, because it depends on the considered system, it has been

already discussed in 2.4.

For γ = 1, we then find

ωfree,1(p, 1) =
1

7

√
378− 21

√
296− 180 p+ 25 p2 − 105 p

ωfree,2(p, 1) =
1

7

√
378 + 21

√
296− 180 p+ 25 p2 − 105 p
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and

ωcons,1(p, 1) =
1

7

√
21
((

19240− 16584 p+ 5050 p2 − 528 p3 − 2228
√

74− 45 p+ 8 p2
)

+1244 p
√

74− 45 p+ 8 p2 − 193 p2
√

74− 45 p+ 8 p2
)/

(
592− 360 p+ 64 p2 − 58

√
74− 45 p+ 8 p2 + 13 p

√
74− 45 p+ 8 p2

)) 1
2 (19)

leading to figure 3 where, as mentioned in 2.4:

ωcons,1(p) ≤ ωfree,1(p) and pcons = pcons,div = 2 ≤ pfree,fl =
18

5
− 2

5

√
7 ≈ 2.5416

The non-constrained pendulum is stable at positive p when p < pfree,fl and unstable by flutter

when p > pfree,fl.

For γ = 1
2 , we then find

ωfree,1(p,
1

2
) =

1

7

√
378− 21

√
296− 228 p+

169

4
p2 − 315

2
p

ωfree,2(p,
1

2
) =

1

7

√
378 + 21

√
296− 228 p+

169

4
p2 − 315

2
p

and

ωcons, 1
2
(p,

1

2
) =

1

7

√
21
((

19240− 22664 p+ 8902 p2 − 1166 p3 − 2228
√

74− 57 p+ 11 p2

+1761 p
√

74− 57 p+ 11 p2 − 697

2
p2
√

74− 57 p+ 11 p2
)

(
592− 456 p+ 88 p2 − 58

√
74− 57 p+ 11 p2 + 23 p

√
74− 57 p+ 11 p2

)−1) 1
2

(20)

leading to figure 4 where, as mentioned in 2.3:

ωcons,1(p) ≤ ωfree,1(p) and pcons = pcons,div =
12

7
− 4/7

√
2 ≈ 0.906 ≤ pfree,div = 1
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Finally, calculations for the following mass matrix

M =

 3 0

0 1


lead to figure 5 where, as mentioned in 2.4:

ωcons,1(p) ≤ ωfree,1(p) and pcons = pcons,div = 2 ≥ pfree,fl = 5− 2
√

(3) ≈ 1.536

3.6.3 Dependency on p

As already discussed in (2.5), the variety of the loading dependency of the constraints is illustrated

here on figures 6 and 7. Comparison of the loading dependency optimal constraint and the fixed

constraint is done with the fixed p = 0 constraint by adding the curve of the fixed constraint

(mixed dashed-dotted gold line) on previous figures 3 and 4. In the first case the added curve

coincides with the curve of the optimal constrained system: the optimal constraint is exactly the

fixed p = 0 constraint on the whole interval [0, psw[. In the second one, the added curve does

not coincide with the curve of the optimal constrained system and is obviously over the optimal

one because precisely the optimality of the constraint.

3.7 A singular surface

Finally, we study the frequency of the constrained pendulum as a function of the coefficients of

the constraints, α1 and α2 in the assumption that γ = 1. According to Eqs. (14) and (15), this

frequency is a root of the polynomial

(
4

3
α2
2 − α2α1 +

1

3
α2
1

)
ω2 = 2α2

2 − α2
2p+ 2α2α1 − α2α1p+ α2

1.

Since the roots depend only on the ratio of the two coefficients, then, introducing α1 = cos(φ)

and α2 = sin(φ), we find

ω2
cons =

−2− 2 sin(φ) cos(φ) + sin(φ) cos(φ)p+ cos(φ)2 + p− cos(φ)2p

sin(φ) cos(φ)− 4/3 + cos(φ)2
.

In the (φ, ω) plane let us plot the two frequencies, ωfree,1 and ωcons, for different values of p
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that are inside the stability interval of the free system, see Fig. 8. The horizontal lines in Fig. 8

show ωfree,1 for a given p, whereas the curves show the frequencies of the constrained pendulum

±ωcons.

The frequency ωcons,1
(
3
2 , 1
)
≈ 0.5073 is achieved at a unique constraint that corresponds to

the minima visible in the panels (a) and (b) of figure 8. On the panel (a) the minimum is the

frequency ωcons,1
(
3
2 , 1
)
≈ 0.5073. For p = 2 it is zero. For p > 2 there is a divergence interval,

and the minimal frequencies are zero at its ends, see the panel (c) of figure 8.

Therefore, at every p from the stability interval of the free pendulum there is a continuum

of the ratios of α1 to α2 that yields the effect of softening. The constraint that is found from

the general theory developed above is the optimal one, because it gives the minimal possible

frequency.

In the (α1, α2, ωcons) space we plot the surfaces of frequencies of the constrained system as

functions of α1 and α2, see figure 9. The panel (a) corresponds to p = 1.5 and shows two

Plücker conoids of degree 2 [1, 11]. The panel (b) shows one Plücker conoid of degree 1. The

right panel shows the conical wedge of Wallis known in the physical literature under the name of

the double coffee-filter [1, 11]. The three classical ruled surfaces demonstrate how the constraints

introduce singularities in the behavior of eigenfrequencies which explains their high sensitivity

to the variation of the constraints coefficients.

4 Conclusion

In this paper, we generalized the possible paradoxical softening effect that originates after kine-

matic constraints are applied to a system. We investigated this stiffness softening effect by means

of the spectral analysis of the free and constrained systems. With the use of the second order

work criterion, it is established that, for each value of the load parameter, there always exists

a (family of) constraint(s) allowing to make the lowest eigenfrequency of the system smaller.

Moreover, the second order work criterion provides, in a certain sense, the optimal kinematic

constraint. The consequences for the divergence and flutter instabilities are discussed and nu-

merous examples illustrating the results are considered. The behavior of eigenfrequencies as

functions of both the load parameter and constraints are also studied. It shows a variety of

possible situations for occurrence of flutter and reveals the typical singularities on the eigenfre-

quency surfaces. The important and difficult problem of finding a global (meaning independent
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on the load parameter) stiffness softening kinematic constraint is still open.
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Figure 1: 2 dof Ziegler’s column with partial follower force;γ = 1 corresponds to complete follower
force
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Figure 2: Comparison of the lowest eigenfrequencies for the free system characteristic polynomial
f(32 , 1, s) (dashed red), the associated system characteristic polynomial g(32 , 1, s) (plain green)
and the (optimal) constrained system characteristic polynomial h(32 , 1, s, α) (dotted blue): as-
sociated and constrained systems characteristic polynomials have the same lowest root that is
lower than the one of the free system

Figure 3: γ = 1 Eigenfrequencies ω as functions of the load parameter p: lowest eigenfrequency
of the free system (plain red), highest eigenfrequency of the free system (dashed green) and
(optimal) constrained system (dotted blue): the free system has no divergence instability but
only flutter instability and the constrained system has a divergence load which is smaller than
the flutter load of the free system
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Figure 4: γ = 1
2 Eigenfrequencies ω as functions of the load parameter p: lowest eigenfrequency

of the free system (dashed green), highest eigenfrequency of the free system (plain red) and
(optimal) constrained system (dotted blue): the free system has no flutter instability but only
flutter instability and the constrained system has a divergence load which is smaller than the
divergence load of the free system

Figure 5: γ = 1 and another mass matrix. Eigenfrequencies ω as functions of the load parameter
p: lowest eigenfrequency of the free system (dashed green), highest eigenfrequency of the free
system (plain red) and (optimal) constrained system (dotted blue): the free system has no
divergence instability but only flutter instability and the constrained system has a divergence
load which is larger than the flutter load of the free system
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Figure 6: Eigenfrequencies ω as functions of the load parameter p: lowest eigenfrequency of
the free system (dashed green), highest eigenfrequency of the free system (plain red) , optimal
constrained system (dotted blue) and fixed (p = 0) constrained system (mixed dashed-dotted
gold): the optimal constraint and the fixed constraint give the same curve.

Figure 7: Eigenfrequencies ω as functions of the load parameter p: highest eigenfrequency of
the free system (dashed green), lowest eigenfrequency of the free system (plain red), optimal
constrained system (dotted blue) and fixed (p = 0) constrained system (mixed dashed-dotted
gold): the optimal constraint curve is lower than the fixed constraint curve.

22

in : International Journal of Solids and Structures, vol 50, n°2, 2013. p.363-370 



Figure 8: In the (φ, ω) plane the frequencies ωfree,1 (horizontal lines) and ωcons for (a) p = 1.5,
(b) p = 2, and (c) p = 2.1

Figure 9: In the (α1, α2, ωcons) space the surfaces of frequencies of the constrained system plotted
for (a) p = 1.5, (a) p = 2, (c) p = 2.1
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