
HAL Id: hal-00756436
https://hal.science/hal-00756436

Submitted on 23 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bruhat order on plane posets and applications
Loïc Foissy

To cite this version:
Loïc Foissy. Bruhat order on plane posets and applications. J. Comb. Theory, Ser. A, 2014. �hal-
00756436�

https://hal.science/hal-00756436
https://hal.archives-ouvertes.fr


Bruhat order on plane posets and applications

Loïc Foissy

Laboratoire de Mathématiques, Université de Reims

Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France

e-mail : loic.foissy@univ-reims.fr

ABSTRACT. A plane poset is a finite set with two partial orders, satisfying a certain in-
compatibility condition. The set PP of isoclasses of plane posets owns two products, and an
infinitesimal Hopf algebra structure is defined on the vector space HPP generated by PP , using
the notion of biideals of plane posets.

We here define a partial order on PP , making it isomorphic to the set of partitions with the
weak Bruhat order. We prove that this order is compatible with both products of PP ; moreover,
it encodes a non degenerate Hopf pairing on the infinitesimal Hopf algebra HPP .
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Introduction

A double poset is a finite set with two partial orders. The set of (isoclasses of) double posets
owns several algebraic structures, as:

• a product called composition; it corresponds, roughly speaking, to the concatenation of
Hasse graphs.

• a coproduct, defined with the notion of ideals for the first partial order. One obtains in
this way the Malvenuto-Reutenauer Hopf algebra of double posets [13].
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• a pairing defined with the helph of Zelevinsky pictures. It is shown in [13] that this pairing
is Hopf; consequently, the Hopf algebra of double posets is free, cofree and self-dual.

This Hopf algebra also contains many interesting subobjects, as, for example, the Hopf algebra
of special posets, that is to say double posets such that the second partial order is total, the Hopf
algebra of plane posets [4, 8], that is to say double posets such that the two partial orders sat-
isfy an incompatibility condition (see definition 1 below), or the noncommutative Hopf algebra
of plane trees [5, 6, 9], also known as the noncommutative Connes-Kreimer Hopf algebra. In
particular, the Hopf subalgebra of plane poset turns out to be isomorphic to the Hopf algebra of
permutations introduced by Malvenuto and Reutenauer in [12], also known ad the Hopf algebra
of free quasi-symmetric functions [1, 2]. An explicit isomorphism can be defined with the help
of a bijection Ψn between the set of plane posets on n vertices and the symmetric group on n
letters, recalled here in theorem 3. This isomorphism and its applications are studied in [4].

We proceed here with the algebraic study of the links between permutations and plane posets.
As the symmetric group Sn is partially ordered by the weak Bruhat order, via the bijection Ψn

the set of plane posets is also partially ordered. This order has a nice combinatorial description,
see definition 8. It admits a decreasing bijection ι, given by the exchange of the two partial
orders defining plane posets; on the permutation side, this bijection consists of reversing the
words representing the permutations. For example, let us give the Hasse graph of this partial
order restricted to plane posets of degree 3, and the Hasse graph of the weak Bruhat order on
S3:
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This partial order is related to an infinitesimal Hopf algebra structure on plane posets. Recall
that an infinitesimal Hopf algebra H [10, 11] is both an algebra and a coalgebra, satisfying the
following compatibility: if x, y ∈ H,

∆(xy) = ∆(x)(1⊗ y) + (x⊗ 1)∆(y)− x⊗ y.

For a certain coproduct ∆1, given by biideals, the space of plane posets HPP becomes an in-
finitesimal Hopf algebra for two products, the composition m and the transformation  of m by
ι. This coproduct is a special case of the four-parameters deformation of [3]. This structure is
also self-dual, with an explicit Hopf pairing 〈−,−〉1 (theorem 23). This pairing is related to the
partial Bruhat order in the following way: if P,Q are two plane posets,

〈P,Q〉1 =

{

1 if ι(P ) ≤ Q,
0 if not.

All these results admit a one parameter deformation, which is given in this text.

The text is organised as follows: the first section deals with double and plane posets: after
some recalls, we give the definition of the infinitesimal coproduct and its one-parameter defor-
mation. The partial order on plane posets is defined in the second section; the isomorphism with
the weak Bruhat order is also proved. In the last section, the infinitesimal Hopf algebra structure
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and the partial order are related via the definition of a Hopf pairing.

Notations. K is a commutative field. All the vector spaces, algebras, coalgebras,. . . of this
text are taken over K.

1 Double and plane posets

1.1 Reminders

Definition 1 1. [13] A double poset is a finite set P with two partial orders ≤h and ≤r.

2. A plane poset is a double poset P such that for all x, y ∈ P , such that x 6= y, x and y are
comparable for ≤h if, and only if, x and y are not comparable for ≤r. The set of isoclasses
of plane posets will be denoted by PP . For all n ∈ N, the set of isoclasses of plane posets
of cardinality n will be denoted by PP(n).

3. Let P,Q ∈ PP. We shall say that P is a plane subposet of Q if P ⊆ Q and if the two
partial orders of P are the restriction of the two partial orders of Q to P .

Examples. Here are the plane posets of cardinal ≤ 4. They are given by the Hasse graph
of ≤h; if x and y are two vertices of this graph which are not comparable for ≤h, then x ≤r y if
y is more on the right than x.
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The following proposition is proved in [8] (proposition 11):

Proposition 2 Let P ∈ PP. We define a relation ≤ on P by:

(x ≤ y) if (x ≤h y or x ≤r y).

Then ≤ is a total order on P .

As a consequence, for any plane poset P ∈ PP(n), we shall assume that P = {1, . . . , n} as a
totally ordered set.

The following theorem is proved in [4] (up to a passage to the inverse):

Theorem 3 1. Let σ ∈ Sn. We define a plane poset Pσ in the following way:

• Pσ = {1, . . . , n} as a set.

• If i, j ∈ Pσ, i ≤h j if i ≤ j and σ−1(i) ≤ σ−1(j).

• If i, j ∈ Pσ, i ≤r j if i ≤ j and σ−1(i) ≥ σ−1(j).

The total order on {1, . . . , n} induced by this plane poset structure is the usual one.

2. For all n ≥ 0, the following map is a bijection:

Ψn :

{

Sn −→ PP(n)
σ −→ Pσ.
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Examples.

Ψ((1)) = q , Ψ2((12)) = q
q
, Ψ2((21)) = q q ,

Ψ3(123)) = q
q
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qq

, Ψ3(213)) =
q

∧qq ,
Ψ3((231)) = q q

q
, Ψ3(312)) = q

q
q , Ψ3((321)) = q q q ,

Ψ4(1234)) = q
q
q
q

, Ψ4((1243)) =
q∨
qq

q , Ψ4((1342)) = q∨
qq

q
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Ψ4((1324)) = q∨
qq

q

∧
, Ψ4((1423)) = q∨

qq

q
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qq q

,
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q

∧qq
q

, Ψ4((2143)) = q q

q q
�� , Ψ4((2314)) =

q

∧qq
q ,

Ψ4((2341)) = q
q
q

q , Ψ4((2413)) = q q

q q
� , Ψ4((2431)) = q∨

qq

q ,

Ψ4((3124)) =

q

∧qq
q , Ψ4((3142)) = q q

q q
� , Ψ4((3214)) =

q

∧qq q ,

Ψ4((3241)) =
q

∧qq q , Ψ4((3412)) = q
q
q
q
, Ψ4((3421)) = q

q
q q ,

Ψ4((4123)) = q q
q
q

, Ψ4((4132)) = q q∨
qq

, Ψ4((4213)) = q

q

∧qq ,
Ψ4((4231)) = q q

q
q , Ψ4((4312)) = q q q

q
, Ψ4((4321)) = q q q q .

We shall use three particular families of plane posets:

Definition 4 Let P ∈ PP .

1. We shall say that P is a plane forest if it does not contain
q

∧qq as a plane subposet. The
set of plane forests is denoted by PF .

2. We shall say that P is a plane forest if it does not contain
q

∧qq as a plane subposet. The
set of plane forests will be denoted by PF , and the set of plane forests of cardinality n will
be denoted by PF(n).

Remark. In other words, a plane poset is a plane forest if, and only if, its Hasse graph is a
rooted forest.

1.2 Algebraic structures on plane posets

We define two products on PP . The first is called composition in [13] and is denoted by  in
[8]. We shall shortly denote it by m in this text.

Definition 5 Let P,Q ∈ PP .

1. The double poset PQ is defined as follows:

• PQ = P ⊔Q as a set, and P,Q are plane subposets of PQ.

• For all x ∈ P , for all y ∈ Q, x ≤r y.

2. The double poset P Q is defined as follows:

• P Q = P ⊔Q as a set, and P,Q are plane subposets of PQ.

• For all x ∈ P , for all y ∈ Q, x ≤h y.

Examples.

1. The Hasse graph of PQ is the concatenation of the Hasse graphs of P and Q.

2. Here are examples for  : q q
q
= q

q
q

, q
q
 q = q

q
q

, q q q = q∨
qq

, q q q =
q

∧qq .

The vector space generated by PP is denoted by HPP . These two products are linearly
extended to HPP ; then (HPP , .) and (HPP , ) are two associative, unitary algebras, sharing the
same unit 1, which is the empty plane poset. Moreover, they are both graded by the cardinality
of plane posets.
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1.3 Infinitesimal coproducts

Definition 6 [13]. Let P = (P,≤h,≤r) be a plane poset, and let I ⊆ P .

1. We shall say that I is a h-ideal of P , if, for all x, y ∈ P :

(x ∈ I, x ≤h y) =⇒ (y ∈ I).

2. We shall say that I is a r-ideal of P , if, for all x, y ∈ P :

(x ∈ I, x ≤r y) =⇒ (y ∈ I).

3. We shall say that I is a biideal of P if it both a h-ideal and a r-ideal.

Remark. If P is a plane poset and I ⊆ P , I is a biideal of P if, for all x, y ∈ P :

(x ∈ I, x ≤ y) =⇒ (y ∈ I).

Theorem 7 Let q ∈ K. We define a coproduct on HPP in the following way: for all P ∈ PP,

∆q(P ) =
∑

I biideal of P

q
hI
P\I (P \ I)⊗ I,

where, for all I, J ⊆ P , hJI = {(x, y) ∈ I × J | x <h y}. Then ∆q is coassociative and for all
x, y ∈ HPP , using Sweedler notations:

∆q(xy) =
∑

x(1) ⊗ x(2)y +
∑

xy(1) ⊗ y(2) − x⊗ y,

∆q(x y) =
∑

q|x
(1)||y|x(1) ⊗ x(2) y +

∑

q|x||y
(2)|x y(2) ⊗ y(1) − q|x||y|x⊗ y.

Hence, (HPP ,m,∆q) is an infinitesimal Hopf algebra, as well as (HPP , ,∆1).

Notation. For all nonempty P ∈ PP , we put ∆̃q(P ) = ∆q(P )− P ⊗ 1− 1⊗ P .

Proof. Let P be a double poset. Let I be a biideal of P and let J be a biideal of I; then J
is a biideal of P . Let I be a biideal of P and let J be a biideal of P \ I; then I ⊔ J is a biideal
of P . Hence:

(Id⊗∆q) ◦∆q(P ) =
∑

J ⊆ I biideals of P

q
hI
P\I

+hJ
I\JP \ (I ∪ J)⊗ J \ I ⊗ I,

(∆q ⊗ Id) ◦∆q(P ) =
∑

J ⊆ I biideals of P

q
hJ
P\J

+h
I\J
P\IP \ (I ∪ J)⊗ J \ I ⊗ I.

Moreover:

hIP\I + hJI\J = hJP\I + h
I\J
P\I + hJI\J = hJP\J + h

I\J
P\I ,

so ∆q is coassociative. Let us prove the compatibility of the products and the coproducts. We
restrict ourselves to x = P, y = Q ∈ PP . The result is obvious if P = 1 or Q = 1. Let us assume
that P,Q 6= 1. The nontrivial biideals of PQ are the nontrivial biideals of Q, Q, and the biideals
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IQ, where I is a nontrivial biideal of P . Consequently:

∆̃q(PQ) =
∑

I nontrivial biideal of Q

q
hI
PQ\IPQ \ I ⊗ I

+
∑

I nontrivial biideal of P

q
h
IQ

P\IP \ I ⊗ IQ+ qh
Q

PP ⊗Q

=
∑

I nontrivial biideal of Q

q
0+hI

Q\IPQ \ I ⊗ I

+
∑

I nontrivial biideal of P

q
hI
P\I

+0
P \ I ⊗ IQ+ q0P ⊗Q

∆q(PQ) = PQ⊗ 1 + 1⊗ PQ+ (P ⊗ 1)∆̃q(Q) + ∆̃q(P )(1 ⊗Q) + P ⊗Q

= PQ⊗ 1 + 1⊗ PQ+ (P ⊗ 1)∆q(Q)− P ⊗Q− PQ⊗ 1

+∆q(P )(1 ⊗Q)− P ⊗Q− 1⊗ PQ+ P ⊗Q

= (P ⊗ 1)∆q(Q)− P ⊗Q+∆q(P )(1 ⊗Q)− P ⊗Q.

The nontrivial ideals of P Q are:

• nontrivial ideals I of Q. In this case,

hIP Q\I = hIQ\I + hIP = h+
Q\I + |I|.|P |.

• Q. In this case:
hQP = |P |.|Q|.

• ideals of the form I Q, where I is a nontrivial ideal of P . In this case:

hI Q
P\I = hQ

P\I + hQ
P\I = hQ

P\I + |P \ I|.|Q|.

∆̃q(P Q) =
∑

I nontrivial biideal of Q

q|I|.|P |q
hI
PQ\IP Q \ I ⊗ I

+
∑

I nontrivial biideal of P

q|P\I|.|Q|q
h
IQ

P\IP \ I ⊗ I Q+ q|P |.|Q|qh
Q

PP ⊗Q

∆q(PQ) = PQ⊗ 1 + 1⊗ PQ+
∑

q|P |.|Q(1)|P Q(1) ⊗Q(2) − P Q⊗ 1− q|P |.|Q|P ⊗Q

+
∑

q|P
(1)|.|Q|P (1) ⊗ P (2) Q− 1⊗ P Q− q|P |.|Q|P ⊗Q+ q|P |.|Q|P ⊗Q

=
∑

q|P |.|Q(1)|P Q(1) ⊗Q(2) +
∑

q|P
(1)|.|Q|P (1) ⊗ P (2) Q− q|P |.|Q|P ⊗Q.

In particular, if q = 1, we recover the axiom of an infinitesimal Hopf algebra. 2

Remarks.

1. Obviously, both (HPP ,m,∆q) and (HPP , ,∆q) are graded by the cardinality of the double
posets.

2. The coproduct ∆q restricted to HPP is the coproduct ∆(q,0,1,0) of [3].

Examples.

∆̃q( q
q
) = q ⊗ q , ∆̃q( q q) = q q ⊗ q ,

∆̃q( q
q
q

) = q ⊗ q
q
+ q

q
⊗ q , ∆̃q( q∨

qq

) = q ⊗ q q + q q
q
⊗ q ,

∆̃q(
q

∧qq ) = q q ⊗ q
q
+ q q ⊗ q , ∆̃q( q

q
q) = q q ⊗ q q + q2 q

q
⊗ q ,

∆̃q( q q
q
) = q2 q ⊗ q

q
+ q q q ⊗ q , ∆̃q( q q q) = q2 q ⊗ q q + q2 q q ⊗ q .
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2 Bruhat order on plane posets

2.1 Definition of the partial order

Definition 8 Let P,Q be two plane posets of the same cardinality. We denote by θP,Q the
unique increasing bijection (for the total order) from P to Q.

Remark. If P,Q,R are plane posets of the same cardinality, then obviously, θQ,P = θ−1
P,Q

and θP,R = θQ,R ◦ θP,Q.

Lemma 9 Let P,Q ∈ PP(n). The following assertions are equivalent:

1. ∀x, y ∈ P , (θP,Q(x) ≤h θP,Q(y) in Q) =⇒ (x ≤h y in P ).

2. ∀x, y ∈ P , (x ≤r y in P ) =⇒ (θP,Q(x) ≤r θP,Q(y) in Q).

If this holds, we shall say that P ≤ Q.

Proof. 1 =⇒ 2. Let us assume that x ≤r y in P . As θP,Q is increasing, θP,Q(x) ≤h θP,Q(y)
or θP,Q(x) ≤r θP,Q(y) in Q. If θP,Q(x) ≤h θP,Q(y), by hypothesis, x ≤ hy in P . As P is a plane
poset, x = y, so in both cases θP,Q(x) ≤r θP,Q(y).

2 =⇒ 1. Similar proof. 2

Proposition 10 For all n ≥ 1, the relation ≤ is a partial order on PP(n).

Proof. Let us assume that P ≤ Q and Q ≤ P . As θQ,P = θ−1
P,Q, it satisfies the following

assertion:

∀x, y ∈ P, (x ≤h y in P ) ⇐⇒ (θP,Q(x) ≤h θP,Q(y) in Q).

Moreover, if x ≤r y in P , then, as θP,Q is increasing, θP,Q(x) ≤h θP,Q(y) or θP,Q(x) ≤r θP,Q(y)
in Q. If θP,Q(x) ≤h θP,Q(y), then x ≤h y in P . By the incompatibility condition between ≤r

and ≤h, x = y, so θP,Q(x) = θP,Q(y), and θP,Q(x) ≤r θP,Q(y). In any case, θP,Q(x) ≤r θP,Q(y).
Working with θ−1

P,Q, we obtain:

∀x, y ∈ P, (x ≤r y in P ) ⇐⇒ (θP,Q(x) ≤r θP,Q(y) in Q).

So θP,Q is an isomorphism of plane posets. As a consequence, P = Q.

Let us assume that P ≤ Q and Q ≤ R. As θP,R = θQ,R ◦ θP,Q, if θP,R(x) ≤h θP,R(y) in R,
then θP,Q(x) ≤h θP,Q(y) in Q, so x ≤h y in P . So P ≤ R.

Let P ∈ PP(n). The unique increasing bijection from P to P is IdP , so, clearly, P ≤ P . 2

Examples. Here are the Hasse diagrams of (PP(2),≤), (PP(3),≤) and(PP(4),≤):
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2.2 Isomorphism with the weak Bruhat order on permutations

Lemma 11 Let σ ∈ Sn and let P = Ψn(σ). Let 1 ≤ i < j ≤ n. Then σ is of the form
(. . . ij . . .) if, and only if, the three following conditions are satisfied:

• i <h j in P .

• If x <h j in P , then x ≤h i or x ≥r i.

• If x >h i in P , then x ≥h j or x ≤r j.

Proof. =⇒. By definition of P , indeed i <h j in P .
If x <h j in P , then x < j and σ−1(x) < σ−1(j). If x = i, then x ≤h i and x ≥r i. If x 6= i,

then x appears before j in the word representing σ, so it appears before i. So if x < i, then
x ≤h i and if x > i, x ≥r i.

If x >h i, then x > i and σ−1(x) > σ−1(i). If x = j, then x ≥h j and x ≤r j. If x 6= j, then
x appears after i in the word representing σ, so it appears after j. If x > j, then x ≥h j and if
x < j, then x ≤r j.

⇐=. As i <h j, i appears before j in the word representing σ. If there is a letter x between
i and j in this word, three cases are possible.

• x < i < j. Then x <h j and x <r i, so we do not have x ≤h i nor x ≥r i. This contradicts
the second condition.

• i < x < j. Then x <h j and x >h i, so we do not have x ≤h i nor x ≥r i. This contradicts
the second condition.

• i < j < x. Then x >h i and x >r j, so we do not have x ≥h j nor x ≤r j. This contradicts
the third condition.

As a consequence, i and j are two consecutive letters of the word representing σ. 2

Notation. Let P be a double poset. We put E(P ) = {(i, j) ∈ P 2 | i <h j}.
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Remark. By definition of the partial order on PP(n), P ≤ Q if, and only if, E(Q) ⊆ E(P ).
Consequently, P = Q if, and only if, E(P ) = E(Q).

Lemma 12 Let 1 ≤ i < j ≤ n and σ be a permutation of the form (. . . ij . . .). We put τ =
(ij) ◦ σ = (. . . ji . . .) (the other letters being unchanged). Then E(Ψn(τ)) = E(Ψn(σ))−{(i, j)}.

Proof. We put P = Ψn(σ) and Q = Ψn(τ).

E(Q) ⊆ E(P ) − {(i, j)}. If (k, l) ∈ E(Q), then k < l and τ−1(k) < τ−1(l), so (k, l) 6= (i, j).
If k, l 6= i, j, then τ−1(k) = σ−1(k) and τ−1(l) = σ−1(l), so (k, l) ∈ E(P ). If k = i or j, then l
appears in the word representing τ after i or j, so after i and j, so it also appears in the word
representing σ after i and j. As a consequence, (k, l) ∈ E(P ). If l = i or j, we can prove in the
same way that (k, l) ∈ E(P ).

E(P )− {(i, j)} ⊆ E(Q). Similar proof. 2

Notation. Let P,Q ∈ PP(n). We assume that P = Q = {1, . . . , n} as totally ordered sets.
We shall say that P � Q if there exists (i, j) ∈ E(P ) such that E(Q) = E(P )− {(i, j)}.

Lemma 13 Let P ≤ Q in PP(n). There exists P0 = P, . . . , Pk = Q, such that P = P0 �
P1 � . . . � Pk = Q.

Proof. By definition of the partial order of PP(n), if i <h j in Q, then i <h j in P . So
E(Q) ⊆ E(P ). We proceed by induction on k = E(P ) − E(Q). If k = 0, then P = Q and
the result is obvious. Let us assume that k ≥ 1. We put σ = Ψ−1

n (P ) and τ = Ψ−1
n (Q). We

choose (i, j) ∈ E(P ) − E(Q), such that the distance d between the letters i and j in the word
representing σ is minimal. Let us assume that d ≥ 2. As i <h j in P , there exists a letter x such
that σ = (. . . i . . . x . . . j . . .). Three cases are possible.

• If x < i < j, then, in P , x <r i, x <h j and i <h j. Hence, (x, i) /∈ E(P ), so (x, i) /∈ E(Q)
and x <r i in Q ; as (i, j) /∈ E(Q), i <r j in Q ; finally, x <r j in Q. Consequently,
(x, j) ∈ E(P ) − E(Q): contradicts the minimality of d.

• If i < x < j, then, in P , i <h x, x <h j and i <h j. By minimality of d, i <h x and x <h j
in Q, so i <h j in Q: contradicts that (i, j) ∈ E(P )− E(Q).

• If i < j < x, then, in P , i <h x, j <r x and i <h j. By minimality of d, i <h x in Q. As
(j, x) /∈ E(P ), (j, x) /∈ E(Q), so j <r x in Q ; as (i, j) /∈ E(Q), i <r j in Q, and finally
i <r x in Q: contradicts i <h x in Q.

We deduce that d = 1: i and j are two consecutive letters in σ. We then take P1 = Ψ−1
n ((ij)◦σ).

By lemma 12, E(P1) = E(P ) − {(i, j)}. We then apply the induction hypothesis to the couple
(P1, Q). 2

Lemma 14 Let P,Q ∈ PP(n), such that P � Q. We put E(Q) = E(P ) − {(i, j)}. Then
i, j are two consecutive letters in Ψ−1

n (P ). Moreover, Ψ−1
n (Q) is obtained by permuting the two

consecutive letters ij in Ψ−1
n (P ).

Proof. Let us prove that i, j satisfy the three conditions of lemma 11. As (i, j) ∈ E(P ),
i <h j in P . If x <h j in P , three cases are possible.

• If x = i, then x ≤h i and x ≥r i in P .

• If x < i, let us assume that x <r i in P . Hence, (x, i) /∈ E(P ), so (x, i) /∈ E(Q) and x <r i
in Q. As i <r j in Q, x <r j in Q. As E(P ) = E(Q) ∪ {(i, j)}, (x, j) /∈ E(P ) and x <r j
in P : contradiction. So x <h j.
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• If x > i, let us assume that x >h i in P . As E(Q) = E(P )− {(i, j)}, i <h x and x <h j in
Q, so i <h j in Q: contradiction, (i, j) /∈ E(Q). So x >r i.

Let us now prove the third condition. If x >h i in P , three cases are possible.

• If x = j, then x ≥h j and x ≤r j in P .

• If x < j, let us assume that x <h j in P . As E(Q) = E(P ) − {(i, j)}, x <h j and i <h x
in Q, so i <h j in Q: contradiction, (i, j) /∈ E(Q). So x <r j in Q.

• If x > j, let us assume that x >r j in P . As E(Q) = E(P )− {(i, j)}, x >r j and j >r i in
Q, so x >r i in Q. As E(P ) = E(Q) ∪ {(i, j)}, x >r i in P : contradicts x >h i in P . So
x >h j in P .

Finally, the three conditions of lemma 11 are satisfied.

We put Ψ−1
n (P ) = σ and Ψ−1

n (Q) = τ . By lemma 11, ij are two consecutive letters in the
word representing σ. Let ς be the permutation obtained by permuting these two letters. By
lemma 12, E(Ψn(ς)) = E(P )− {(i, j)} = E(Q), so Ψn(ς) = Q and τ = ς. 2

Theorem 15 We partially order Sn by the weak Bruhat order [14, 15]. For all n ≥ 0, the
bijection Ψn is an isomorphism of posets, that is to say: for all σ, τ ∈ Sn, σ ≤ τ if, and only if,
Ψn(σ) ≤ Ψn(τ) in PP(n).

Proof. We consider σ, τ ∈ Sn. We put Ψn(σ) = P and Ψn(τ) = Q.

Let us assume that σ ≤ τ in Sn. By definition of the weak Bruhat order, there exists
σ0 = σ, . . . , σk = τ , such that σp+1 is obtained from σp by permuting two consecutives letters
ij, with i < j, in the word representing σp. By lemma 12, for all p, E(Ψn(σp+1)) ⊆ E(Ψn(σp)).
Consequently, E(Q) ⊆ E(P ), so P ≤ Q.

Let us assume that P ≤ Q. From lemma 13, there exists P = P0 � . . . � Pk = Q. We put
σp = Ψ−1

n (Pp) for all 0 ≤ p ≤ k. From lemma 14, we obtain σp+1 from σp by permuting two
consecutives letters ij, with i < j, in the word representing σp. By definition of the weak Bruhat
order, σ ≤ τ . 2

2.3 Properties of the partial order

Proposition 16 Let P1, Q1 ∈ PP(k), P2, Q2 ∈ PP(l). The following conditions are equiva-
lent:

1. P1P2 ≤ Q1Q2.

2. P1 P2 ≤ Q2 Q2.

3. P1 ≤ Q1 and P2 ≤ Q2.

Proof. We put θi = θPi,Qi
, i = 1, 2. It is clear that the unique increasing bijection from

P1P2 to Q1Q2 and the unique increasing bijection from P1 P2 to Q1 Q2 are both θ = θ1 ⊗ θ2.
As an immediate consequence, 1 or 2 implies 3.

3 =⇒ 1. Let us assume that θ(i) <h θ(j) in Q1Q2. Two cases are possible.

• i, j ∈ P1. Then θ1(i) <h θ1(j) in Q1, so i <h j in P1, so i <h j in P1P2.

• i, j ∈ P2. Then θ2(i) <h θ2(j) in Q2, so i <h j in P2, so i <h j in P1P2.
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So P1P2 ≤ Q1Q2.

3 =⇒ 2. Let us assume that θ(i) <h θ(j) in Q1 Q2. Three cases are possible.

• i, j ∈ P1. Then θ1(i) <h θ1(j) in Q1, so i <h j in P1, so i <h j in P1 P2.

• i, j ∈ P2. Then θ2(i) <h θ2(j) in Q2, so i <h j in P2, so i <h j in P1 P2.

• i ∈ P1 and j ∈ P2. Then i <h j in P1 P2.

So P1 P2 ≤ Q1 Q2. 2

Definition 17 Let P = (P,≤h,≤r) be a plane poset. We put ι(P ) = (P,≤r,≤h). Note that
ι is an involution of PP.

Proposition 18 For any P,Q ∈ PP(n), P ≤ Q if, and only if, ι(Q) ≤ ι(P ).

Proof. Let P,Q ∈ PP(n). As the total orders on R and ι(R) are identical for any R ∈
PP(n), the unique increasing bijection from ι(Q) to ι(P ) is θQ,P . Hence:

P ≤ Q ⇐⇒ ∀x, y ∈ P, (θP,Q(x) ≤h θP,Q(y) in Q) =⇒ (x ≤h y in P )

⇐⇒ ∀x, y ∈ ι(P ), (θP,Q(x) ≤r θP,Q(y) in ι(Q)) =⇒ (x ≤r y in ι(P ))

⇐⇒ ∀x′, y′ ∈ ι(Q), (x′ ≤r y
′ in ι(Q)) =⇒ (θQ,P (x

′) ≤r θQ,P (y
′) in ι(P ))

⇐⇒ ι(Q) ≤ ι(P ).

2

Remark. Let P ∈ PP(n). We put σ = Ψ−1
n (P ). Then Ψ−1

n (ι(P )) = σ ◦ (n . . . 1).

2.4 Restriction to plane forests

Let us consider the restriction the partial order to the set of plane forests.

Definition 19 Let F be a plane forest and let s be a vertex of F which is not a leaf. The
transformation of F at vertex s is the plane forest obtained in one of the following way:

If s is not a root: t

t

t@@ ��

s

...

XXX ���... ...

XXX @
@@...

−→
t�
�

A
A
t ts

XXX ���... ...

J
J

JJ
...

T
TT

XX
...

,

If s is a root: t�
�

A
A
t t

s
XXX ...

J
J

JJ
...

T
TT

XX
...

−→
t

t

t
s

T
TT

XX
...

L
L
L
L
LL

...

PP... ,

the part of the forest outside the frame being unchanged.

Remark. Up to a vertical symmetry, these transformation are used in [7] in order to define
a partial order on the set of plane forests, making it isomorphic to the Tamari poset.

Proposition 20 Let F,G be two plane forests of degree n. Then F ≤ G if, and only if, G
is obtained from F by a finite number of transformations of definition 19.
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Proof. =⇒. By induction on n. If n = 1, then F = G = q and the result is obvious. Let us
assume that n ≥ 2.

First case. Let us assume that F is a plane tree F = q F ′. We put G = ( q G′)G′′, where
F ′, G′, G′′ are plane forests. The increasing bijection from F ′ to G′G′′ is (ΘF,G)|F ′ , as the root
of F and the root of q F ′ are the smallest elements for their total orders. By the induction
hypothesis, one can obtain G′G′′ from F ′ by a finite number of transformations. So q (G′G′′)
can be obtained from F by a finite number of transformations. Applying transformations to the
left root of q (G′G′′)), one can obtain G from q (G′G′′) by a finite number of transformations.

Second case. Let us assume that F is not a tree. We put F = ( q F ′)F ′′, where F ′, F ′′ are
plane forests, F ′′ 6= 1. We put ΘF,G( q F

′) = G′ and ΘF,G(F
′′) = G′′. Let us consider x ∈ G′

and y ∈ G′′. Then Θ−1
F,G(x) ≤r Θ−1

F,G(y) in F , so x ≤ y in G. Moreover, if x <h y in G, then

(x, y) ∈ E(G). As F ≤ G, (Θ−1
F,G(x),Θ

−1
F,G(y)) ∈ E(F ), so Θ−1

F,G(x) <h Θ−1
F,G(y) in F : contradic-

tion. So x <r y in G. Consequently, G = G′G′′. By proposition 16, q F ′ ≤ G′ and F ′′ ≤ G′′.
By the induction hypothesis, one can obtain G′ from q F ′ and G′′ from F ′′ by a certain number
of transformations. Hence, we can obtain G = G′G′′ from F = ( q F ′)F ′′ by a certain number
of transformations.

⇐=. By transitivity, It is enough to prove it if G is obtained from F by a transformation. It is
clear that this transformation does not affect the total order on the vertices of F , so the increas-
ing bijection from F to G is the identity. Obviously, if x ≤h y in G, then x ≤h y in F , so F ≤ G.2

From [7], we recover the injection fo the Tamari poset into the Bruhat poset:

Corollary 21 The poset of plane forests of degree n is isomorphic to the Tamari poset on
plane binary trees with n+ 1 leaves (or n internal vertices).

3 Link with the infinitesimal structure

3.1 A lemma on the Bruhat order

Lemma 22 Let P,Q,R be three double posets.

1. P Q ≤ R if, and only if, there exists a biideal I0 of R, such that P ≤ R \ I0 and Q ≤ I0.
Moreover, if this holds, I0 is unique and I0 = θPQ,R(Q).

2. PQ ≤ R if, and only if, there exists a plane subposet I0 of R, such that R = (R \ I0)I0,
P ≤ R \ I0 and Q ≤ I0. Moreover, if this holds, I0 is unique and I0 = θP Q,R(Q).

3. ι(PQ) ≤ R if, and only if, there exists a biideal I0 of R, such that ι(R \ I0) ≤ P and
ι(I0) ≤ Q. Moreover, if this holds, I0 is unique and I0 = θPQ,R(Q).

4. ι(P Q) ≤ R if, and only if, there exists a plane subposet I0 of R, such that R = (R \ I0)I0,
ι(R \ I0) ≤ P and ι(I0) ≤ Q. Moreover, if this holds, I0 is unique and I0 = θP Q,R(Q).

Proof. 1. =⇒. We consider I0 = θP Q,R(Q). If x ∈ I0 and y ∈ R satisfy x ≤ y, then
θ−1
P Q,R(x) ∈ Q and θ−1

P Q,R(x) ≤ θ−1
P Q,R(y), so θ−1

P Q,R(y) ∈ Q and y ∈ I0: hence, I0 is a biideal.
Moreover, θP,R\I0 is the restriction of ΘP Q,R to P and θQ,I0 is the restriction of ΘP Q,R to Q;
as P Q ≤ R, P ≤ R \ I0 and Q ≤ I0.

1. ⇐=. Let I be a such a biideal. As ι(Q) ≤ I, |I| = |Q| = |I0|. As I is a biideal, |I| is made
of the |Q| greatest elements of R. As θP Q,R is increasing and as the |Q| greatest elements of P Q
are the elements of Q, I = θP Q,R(Q) = I0. Let x, y ∈ P Q, such that θP Q,R(x) ≤h θP Q,R(y).
As I = I0 is a biideal, three cases are possible:

• x, y ∈ P . As P ≤ R \ I0, then x ≤h y in P , hence in P Q.
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• x, y ∈ Q. As Q ≤ I0, then x ≤h y in Q, hence in P Q.

• x ∈ P , y ∈ Q. Then x ≤h y in P Q.

So P Q ≤ R.

2. =⇒. We consider I0 = θPQ,R(Q). If x ∈ R \ I0 and y ∈ I0, then θ−1
PQ,R(x) ∈ P and

θ−1
PQ,R(y) ∈ Q, so θ−1

PQ,R(x) ≤r θ−1
PQ,R(y). As PQ ≤ R, x ≤r y, so R = (R \ I0)I0. Moreover,

θP,R\I0 is the restriction of ΘPQ,R to P and θQ,I0 is the restriction of ΘPQ,R to Q; as PQ ≤ R,
P ≤ R \ I0 and Q ≤ I0.

2. ⇐=. Let I be such a subposet. As Q ≤ I, |Q| = |I| = |I0|. Moreover, R = (R \ I)I, so
the elements of I are the |Q| greatest elements of R. Hence, I = I0 = θPQ,R(Q). Let x, y ∈ PQ,
such that θPQ,R(x) ≤h θPQ,R(y). As R = (R\I)I, x, y are both in P or both in Q. As P ≤ R\I
and Q ≤ I, x ≤h y in P or in Q, hence in PQ. So PQ ≤ R.

3 and 4. Reformulations of the first two points, with the observations that ι(PQ) =
ι(P ) ι(Q), ι(P Q) = ι(P )ι(Q) and ι is decreasing for the Bruhat order ≤. 2

3.2 Construction of the Hopf pairing

Notations. Let P,Q ∈ PP(n). We put:

φ(P,Q) = ♯{(x, y) ∈ P 2 | x <r y and θP,Q(x) <h θP,Q(y)}

+♯{(x, y) ∈ P 2 | x <h y and θP,Q(x) <r θP,Q(y)}.

Theorem 23 Let P,Q ∈ PP . We put:

〈P,Q〉q =

{

qφ(P,Q) if ι(P ) ≤ Q,
0 if not.

This pairing is bilinearly extended to HPP . Then 〈−,−〉q is a symmetric Hopf pairing on
(HPP ,m,∆q). It is nondegenerate if, and only if, q 6= 0.

Examples.

q

q 1

q
q

q q

q
q

0 q
q q q 1

q
q
q

q∨
qq q

∧qq q
q
q q q

q
q q q

q
q
q

0 0 0 0 0 q3

q∨
qq

0 0 0 0 q3 q2
q

∧qq 0 0 0 q3 0 q2

q
q
q 0 0 q3 0 q2 q

q q
q

0 q3 0 q2 0 q
q q q q3 q2 q2 q q 1

Proof. Let P,Q ∈ PP . If ι(P ) ≤ Q, then ι(Q) ≤ ι2(P ) = P . Moreover, as θP,Q is bijective,
of inverse θQ,P :

♯{(x, y) ∈ P 2 | x <r y and θP,Q(x) <h θP,Q(y)}

= ♯{(x′, y′) ∈ Q2 | θQ,P (x
′) <r θQ,P (y

′) and x′ ≤h y′};

♯{(x, y) ∈ P 2 | x <h y and θP,Q(x) <r θP,Q(y)}

= ♯{(x′, y′) ∈ Q2 | θQ,P (x
′) <h θQ,P (y

′) and x′ ≤r y
′}.
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So φ(P,Q) = φ(Q,P ), and this pairing is symmetric.

Let P,Q,R ∈ PP . Let us prove that 〈PQ,R〉q = 〈P ⊗Q,∆q(R)〉q.
First case. Let us assume that ι(PQ) ≤ R. By lemma 22, there exists a unique biideal I0 of

R, such that ι(P ) ≤ R \ I0 and ι(Q) ≤ I0. Hence:

〈P ⊗Q,∆q(R)〉q =
∑

I biideal of R

q
hI
R\I 〈P,R \ I〉q〈Q, I〉q

= q
h
I0
R\I0 〈P,R \ I0〉q〈Q, I0〉q + 0

= q
h
I0
R\I0

+φ(P,R\I0)+φ(Q,I0).

Moreover:

Φ(PQ,R) = ♯{(x, y) ∈ P 2 | x <r y and φPQ,R(x) <h φPQ,R(y)}

+♯{(x, y) ∈ P 2 | x <h y and φPQ,R(x) <r φPQ,R(y)}

+♯{(x, y) ∈ Q2 | x <r y and φPQ,R(x) <h φPQ,R(y)}

+♯{(x, y) ∈ Q2 | x <h y and φPQ,R(x) <r φPQ,R(y)}

+♯{(x, y) ∈ P ×Q | x <r y and φPQ,R(x) <h φPQ,R(y)}

+♯{(x, y) ∈ P ×Q | x <h y and φPQ,R(x) <r φPQ,R(y)}

+♯{(x, y) ∈ Q× P | x <r y and φPQ,R(x) <h φPQ,R(y)}

+♯{(x, y) ∈ Q× P | x <h y and φPQ,R(x) <r φPQ,R(y)}.

As I0 = θPQ,R(Q), θP,R\I0 is the restriction to P of θP Q,R and θQ,I0 is the restriction to Q of
θP Q,R, so:

φ(P,R \ I0) = ♯{(x, y) ∈ P 2 | x <r y and φPQ,R(x) <h φPQ,R(y)}

+♯{(x, y) ∈ P 2 | x <h y and φP,R\I0(x) <r φP,R\I0(y)},

φ(Q, I0) = ♯{(x, y) ∈ Q2 | x <r y and φPQ,R(x) <h φPQ,R(y)}

+♯{(x, y) ∈ Q2 | x <h y and φP,R\I0(x) <r φP,R\I0(y)}.

If x ∈ P and y ∈ Q, then x <r y. So:

0 = ♯{(x, y) ∈ P ×Q | x <h y and φPQ,R(x) <r φPQ,R(y)}

= ♯{(x, y) ∈ Q× P | x <r y and φPQ,R(x) <h φPQ,R(y)}

= ♯{(x, y) ∈ Q× P | x <h y and φPQ,R(x) <r φPQ,R(y)},

and:

hI0
R\I0

= ♯{(x, y) ∈ P ×Q | φPQ,R(x) <h φPQ,R(y)}

= ♯{(x, y) ∈ P ×Q | x <r y and φPQ,R(x) <h φPQ,R(y)}

Finally, φ(PQ,R) = φ(P,R \ I0) + φ(Q, I0) + hI0
R\I0

+ 0. Hence:

〈P ⊗Q,∆q(R)〉q = qφ(PQ,R) = 〈PQ,R〉q.

Second case. Let us assume that we do not have ι(PQ) ≤ R. By lemma 22, for any biideal
I of R, 〈P,R \ I〉q〈Q, I〉q = 0, So 〈P ⊗Q,∆q(R)〉q = 〈PQ,R〉q = 0.
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Let us now study the degeneracy of this pairing. If q = 0, the examples below show that q
q
is

in the orthogonal of the pairing 〈−,−〉0, so this pairing is degenerate. Let us assume that q 6= 0.

First step. Let P ∈ PP(n). By definition of the pairing, 〈ι(P ), P 〉q = qφ(P,ι(P )). Moreover,
as θP,ι(P ) = IdP :

φ(P, ι(P )) = ♯{(x, y) ∈ P 2 | x <r y and x <r y}+ ♯{(x, y) ∈ P 2 | x <h y and x <h y}

= ♯{(x, y) ∈ P 2 | x <r y}+ ♯{(x, y) ∈ P 2 | x <h y}

= ♯{(x, y) ∈ P 2 | x < y}

=
n(n− 1)

2
.

So 〈P, ι(P )〉q = q
n(n−1)

2 6= 0.
Second step. Let us fix n ≥ 0. We index the elements of PP(n) in such a way that if ι(Pi) < ι(Pj)
for the Bruhat order, then i < j. Let x ∈ PP(n), nonzero. Let i be the smallest integer such
that Pi appears in x. Let a be the coefficient of Pi in x. If j > i, then it is not possible to have
ι(Pj) ≤ ι(Pi), so 〈Pj , ι(Pi)〉q = 0. Consequently:

〈x, ι(Pi)〉q = 〈aPi, ι(Pi)〉q + 0 = aq
n(n−1)

2 6= 0.

So x is not in the orthogonal of HPP : the pairing is nondegenerate. 2

Remark. This pairing is the pairing 〈−,−〉q,0,1,0 of [3].

Proposition 24 We define a coproduct ∆′
q on HPP in the following way: for all P ∈ PP,

∆′
q(P ) =

∑

P1P2=P

q|P1||P2|P1 ⊗ P2.

Then for all x, y, z ∈ HPP , 〈x y, z〉q = 〈x⊗ y,∆′
q(z)〉q.

Proof. Let P,Q,R ∈ PP . Let us prove that 〈P Q,R〉q = 〈P ⊗Q,∆′
q(R)〉q.

First case. Let us assume that ι(P Q) ≤ R. By lemma 22, there exists a unique I0 ⊆ R,
such that R = (R \ I0)I0, ι(P ) ≤ R \ I0 and ι(Q) ≤ I0. Hence:

〈P ⊗Q,∆′
q(R)〉q =

∑

R=R1R2

q|R1||R2|〈P,R \ I〉q〈Q, I〉q

= q|R\I0||I0|〈P,R \ I0〉q〈Q, I0〉q + 0

= q|R\I0||I0|+φ(P,R\I0)+φ(Q,I0).

Moreover:

Φ(P Q,R) = ♯{(x, y) ∈ P 2 | x <r y and φP Q,R(x) <h φP Q,R(y)}

+♯{(x, y) ∈ P 2 | x <h y and φP Q,R(x) <r φP Q,R(y)}

+♯{(x, y) ∈ Q2 | x <r y and φP Q,R(x) <h φP Q,R(y)}

+♯{(x, y) ∈ Q2 | x <h y and φP Q,R(x) <r φP Q,R(y)}

+♯{(x, y) ∈ P ×Q | x <r y and φP Q,R(x) <h φP Q,R(y)}

+♯{(x, y) ∈ P ×Q | x <h y and φP Q,R(x) <r φP Q,R(y)}

+♯{(x, y) ∈ Q× P | x <r y and φP Q,R(x) <h φP Q,R(y)}

+♯{(x, y) ∈ Q× P | x <h y and φP Q,R(x) <r φP Q,R(y)}.
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As I0 = θP Q,R(Q), θP,R\I0 is the restriction to P of θP Q,R and θQ,I0 is the restriction to Q
of θP Q,R, so:

φ(P,R \ I0) = ♯{(x, y) ∈ P 2 | x <r y and φP Q,R(x) <h φP Q,R(y)}

+♯{(x, y) ∈ P 2 | x <h y and φP,R\I0(x) <r φP,R\I0(y)},

φ(Q, I0) = ♯{(x, y) ∈ Q2 | x <r y and φP Q,R(x) <h φP Q,R(y)}

+♯{(x, y) ∈ Q2 | x <h y and φP,R\I0(x) <r φP,R\I0(y)}.

If x ∈ P and y ∈ Q, then x <h y. So:

0 = ♯{(x, y) ∈ P ×Q | x <r y and φP Q,R(x) <r φP Q,R(y)}

= ♯{(x, y) ∈ Q× P | x <r y and φP Q,R(x) <h φP Q,R(y)}

= ♯{(x, y) ∈ Q× P | x <h y and φP,R\I0(x) <r φP,R\I0(y)}.

Moreover:

|R \ I0||I0| = ♯{(x′, y′) ∈ (R \ I0)× I0 | x
′ <r y

′}

= ♯{(x, y) ∈ P ×Q | φP Q,R(x) <r φP Q,R(y)}

= ♯{(x, y) ∈ P ×Q | x <h y and φP,R\I0(x) <r φP,R\I0(y)}.

Finally, φ(P Q,R) = φ(P,R \ I0) + φ(Q, I0) + |R \ I0||I0|+ 0. Hence:

〈P ⊗Q,∆′
q(R)〉q = qφ(P Q,R) = 〈P Q,R〉q.

Second case. Let us assume that we don’t have ι(P Q) ≤ R. By lemma 22, if R = (R \ I)I,
then 〈P,R \ I〉q〈Q, I〉q = 0, So 〈P ⊗Q,∆′

q(R)〉q = 〈P Q,R〉q = 0. 2

Remark. The coproduct ∆′
q is the coproduct ∆(0,0,q,0) of [3].

Let us conclude this section by the case q = 0.

Proposition 25 1. For all plane poset P :

∆0(P ) =
∑

P1P2=P

P1 ⊗ P2.

2. For any plane posets P,Q, 〈P,Q〉0 6= 0 if, and only if, there exists n ∈ N such that
P = Q = q

n. Consequently, the kernel of the pairing 〈−,−〉0 is the ideal generated by plane
posets which are not equal to q .

Proof. 1. By definition of ∆0 :

∆0(P )
∑

I biideal of P ,

hI
P\I

=0

(P \ I)⊗ I.

Let I be a biideal of P such that hI
P\I = 0. Let x ∈ P \ I and y ∈ I. As I is a biideal, x > y

is not possible, so x < y. As hI
P\I = 0, x <h y is not possible, so x <r y: finally, P = (P \ I)I.

Conversely, if P = P1P2, then P2 is a biideal of P , and hP2

P\P2
= hP2

P1
= 0.

2. ⇐=. We obviously have ι( qn) ≤ q
n and φ( qn, qn) = 0, so 〈 qn, qn〉0 = 1.
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=⇒. Let us assume that 〈P,Q〉q 6= 0. Then P and Q have the same degree, which we
denote by n. Moreover, ι(P ) ≤ Q and φ(P,Q) = 0. Let x′, y′ ∈ Q. We put x′ = θP,Q(x) and
y′ = θP,Q(y). If x′ <h y′ in Q, as ι(P ) ≤ Q necessarily x <r y ∈ P , so:

φ(P,Q) ≥ ♯{(x, y) ∈ P 2 | x <r y and θP,Q(x) <h θP,Q(y)} > 0.

This is a contradiction. Hence, if x′, y′ are two different vertices of Q, they are not comparable
for ≤h: Q = q

n. Symmetrically, P = q
n. 2

3.3 Level of a plane poset

Definition 26 Let P be a plane poset. Its level is the integer:

ℓ(P ) = ♯{(x, y) ∈ P 2 | x <r y}.

Examples. Here are the level of plane posets of cardinality ≤ 3:

P q q
q

q q q
q
q

q∨
qq q

∧qq q
q
q q q

q
q q q

ℓ(P ) 0 0 1 0 1 1 2 2 3

Proposition 27 Let P and Q be two plane posets. If P ≤ Q, then any path in the Hasse
(oriented) graph of the poset (PP ,≤) from P to Q has length ℓ(Q)− ℓ(P ).

Proof. First step. Let R be a plane poset of cardinality n. Then:

ℓ(R) = ♯{(x, y) ∈ R2 | x < y} − ♯{(x, y) ∈ R2 | x <h y} =
n(n− 1)

2
− ♯E(R). (1)

Consequently, if R < S in PP(n), then E(S) ( E(R), so ℓ(R) < ℓ(S).

Second step. Let R and S be two plane posets of the same cardinality n, such that there is
an edge from R to S in the Hasse graph of (PP(n),≤). Then R < S, so E(S) ( E(R). Let us
put k = ♯E(R)− ♯E(S). Note that k ≥ 1. By the first step, ℓ(S)− ℓ(R) = k. If k ≥ 2, by lemma
13, there exists P1, . . . , Pk−1 ∈ PP(n), such that R � P1 � . . . � Pk−1 � S. Consequently,
R < P1 < . . . < Pk1 < S, so there is no edge from R to S in the Hasse graph: contradiction. So
k = 1.

Conclusion. Let P = P0 < P1 < . . . < Pk−1 < Pk = Q be a path from P to Q in the Hasse
graph. For all 0 ≤ i ≤ k − 1, there is an edge from Pi to Pi+1, so ℓ(Pi+1) = ℓ(Pi) + 1 from the
second step. Finally, ℓ(S) = ℓ(R) + k. 2

Proposition 28 Let P,Q ∈ PP(n), such that ι(P ) ≤ Q. Then:

〈P,Q〉q = qn(n−1)−ℓ(P )−ℓ(Q).

Proof. As ι(P ) ≤ Q, for all x, y ∈ P , θP,Q(x) <h θP,Q(y) in Q implies that x <r y in P . So,
with the help of (1):

♯{(x, y) ∈ P 2 | x <r y and θP,Q(x) <h θP,Q(y)} = ♯{(x, y) ∈ P 2 | θP,Q(x) <h θP,Q(y)}

= ♯{(x′, y′) ∈ Q2 | x′ <h y′}

=
n(n− 1)

2
− ℓ(Q).

Moreover, ι(Q) ≤ ι2(P ) = P , so, for all x, y ∈ P , x ≤h y in P implies that θP,Q(x) <r θP,Q(y) in
Q. So, with the help of (1):

♯{(x, y) ∈ P 2 | x <h y and θP,Q(x) <r θP,Q(y)} = ♯{(x, y) ∈ P 2 | x <h y}

=
n(n− 1)

2
− ℓ(P ).

Summing, we obtain φ(P,Q) = n(n− 1)− ℓ(P )− ℓ(Q). 2
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