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Collision analysis for an UAV

Anna Désilles’ Hasnaa Zidanif
ENSTA ParisTech , Paris, 75015, France

Eva Criick?
Délégation Générale pour I’Armement, 75509 Paris Cedex 15, France.

The Sense and Avoid capacity of Unmanned Aerial Vehicles (UAV) is one of the key
elements to open the access to airspace for UAVs. In order to replace a pilot’s See and
Awvoid capacity such a system has to be certified ”as safe as a human pilot on-board”. The
problem is to prove that an unmanned aircraft equipped with a S&A system can comply
with the actual air transportation regulations. This paper aims to provide mathematical
and numerical tools to link together the safety objectives and sensors specifications.

Our approach starts with the natural idea of a specified ”safety volume” around the
aircraft: the safety objective is to guarantee that no other aircraft can penetrate this
volume. We use a general reachability and viability concepts to define nested sets which
are meaningful to allocate sensor performances and manoeuvring capabilities necessary to
protect the safety volume. Using the general framework of HJB equations for the optimal
control and differential games, we give a rigorous mathematical characterization of these
sets. Our approach allows also to take into account some uncertainties in the measures
of the parameters of the incoming traffic. We also provide numerical tools to compute
the defined sets, so that the technical specifications of a S&A system can be derived in
accordance with a small set of intuitive parameters. We consider several dynamical models
corresponding to the different choices of maneuvers (lateral, longitudinal and mixed). Our
numerical simulations show clearly that the nature of used maneuvers is an important
factor in the specifications of sensor’s performances.

I. Introduction

Unmanned Aerial Vehicles (UAV) are widely used in current military operations. The development of
the associated technologies has reached a point such that the question ”Is it necessary to have a pilot on
board?” can be asked for any airborne mission. However, there are several issues which need to be solved
before UAVs can be allowed to fly routinely above our heads. The use of airspace is highly regulated, and
the current regulatory structure has been inherited from a century of manned aviation. An evolution is
necessary in order to accommodate unmanned aircraft without reducing the overall level of safety both on
the ground and in the air. And such an evolution cannot be accepted if it imposes additional constraints
onto traditional airspace users.

Among the key elements (see for instance') to open the access to airspace for UAVs is the Sense and
Awoid capacity (S&A), which has to replace the human pilot See and Avoid capacity. Indeed, the absence
of a qualified pilot on-board the aircraft shall not increase the probability of collisions for other airspace
users. The design of a Sense and Avoid system likely to be certified ”as safe as a human pilot on-board”
is therefore a technological enabler for UAV operation outside segregated airspace. But the certification of
such a system is an open regulatory issue. The current rather high level of safety of air transportation has
been reached through intricate regulations under the assumption that a qualified pilot would be on-board
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each aircraft to control the flight. The problem is to prove that an unmanned aircraft equipped with a S&A
system can comply with these regulations. But what has turned out to be very difficult is to find acceptable
ways for defining a safety target for a S&A system, and for proving that this target has been reached. So
the S&A is not only a technological problem.

Several projects and working groups have provided elements for solving the S&A issue. In the US, a
workshop organized by FAA”' has established basic concepts but a lot more work is necessary to translate
them into a technological standard and the associated means of compliance. An early attempt to set
specifications for an S&A system can be found in“’ but without an associated safety target. A NATO
working group, FINAS (flight in non-segregated airspace), has also drafted a stanag. It has not been
possible to prove that compliance with these standards would be enough to gain access to unsegregated
airspace. In Europe, the ongoing MIDCAS project” is working toward a standard in close cooperation with
the EUROCAE WGT3 in an attempt to break this deadlock.

A lesson learnt from all the work so far is that a smooth way from safety objectives to sensors and
algorithms, and back with means of compliances has to be defined in a way such that all the stake holders
can understand it. In continuation of the work started in'’ , this paper aims to provide mathematical and
numerical tools towards this objective. Our ambition is to bridge the gap between technical specifications
for a S&A system and a statement such as " The UAV shall not come close to another aircraft in a way likely
to cause hazard.”. From a global safety objective, it becomes possible to allocate target performances for a
”sense” function and a "avoid” function in a tractable way.

Our approach starts with the natural idea of a specified ”safety volume” around the aircraft: the safety
objective is to guarantee that no other aircraft can penetrate this volume. Using tools from optimal control,
viability theory and differential games, we define nested sets which are meaningful to allocate sensor per-
formances and maneuvering capabilities necessary to protect the safety volume. We also provide numerical
tools to compute these sets, so that the technical specifications of a S&A system can be derived in accordance
with a small set of intuitive parameters.

The mathematical formulation of the safety (or collision) regions is related to the reachable analysis
of dynamical systems. This analysis seeks to partition the state space into two categories: those that are
reachable from the initial conditions and those that are not. In the recent years, several contribution have
been done dealing with the mathematical description of the reachable sets and their numerical compu-
tation.””> > 7% 1010 This growing interest stems from the importance for many applications to be able
to accurately represent the reachable sets. The applications include navigation, aircraft conflict resolu-
tion,” 7222227 and vehicle collision avoidance.

Several tools have been developed to describe the reachable sets. Among them the viability and Hamilton-
Jacobi approaches provide a very general framework for non-linear systems without any controllability as-
sumption. Moreover, these approaches can easily take into account state constraints and uncertainties, and
provide efficient numerical methods, see,””>"7»'=”> ' and the references therein, for more details.

This paper is organized as follows: The next section is devoted to the formal statement of the problem
we need to solve. The mathematical model of this problem is derived in Section IV. The nested sets which
are at the core of our approach are defined and characterized in Section III. A mathematical formulation
of the safety set using the optimal control and viability setting is provided in Section V. The next two
sections are devoted to numerical experiments in order to illustrate our approach. In Section VI, we study a
simplified version of the problem for which all the parameters are known. Then in Section VII, we introduce
uncertainties and we study how they modify the solutions to the simplified problem.

II. Problem statement

The ”see and avoid” (S&A) principle is embedded in the basis regulatory framework of airspace regulation.
In Chapter 3 General rules of the Annex 2 Rules of the Air to the convention on international civil aviation,
Section 3.2 Awoidance of collisions starts with the following:

Note. It is important that vigilance for the purpose of detecting potential collisions be not relaxed
on board an aircraft in flight, regardless of the type of flight or the class of airspace in which the
aircraft is operating, and while operating on the movement area of an aerodrome.

By law, the pilot in command of an aircraft is in charge of ensuring this vigilance; the ”type of flight” and
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the "class of airspace” determine the conditions under which this responsibility is to be exerted and the
support available from air traffic services.

It is impossible for an unmanned aircraft, whether or not a pilot is exerting control from the ground, to
apply this principle in a strict sense. The expression ”Sense and avoid” has been coined to denote a way,
yet to be defined, to comply with Article 3.2.1 Prozimity

An aircraft shall not be operated in such proximity to other aircraft as to create a collision hazard.

For about a decade, attempts have been made to translate this statement into technical specifications for
equipment of UAVs. But as for now, no aviation authority has allowed an UAV to fly without special
arrangements. Real-time imagery from cameras on-board has not been deemed sufficient. Generally, segre-
gation in time or space is enforced so that no aircraft can be in the proximity of the UAV. Alternatives are
ground-based surveillance systems covering the UAV flight range or a chase manned aircraft to ensure direct
visual control of the airspace around the UAV.

In this paper, we are interested in specifying an airborne S&A system. Starting from Article 3.2.1 above,
we define conceptual and numerical tools to describe the ”avoid problem” which are then linked to the ”sense
problem” in a tractable way.

A. The ”avoid” problem

Strategic Conflict M
* Airspace organization and management
® Demand and capacity balancing

* Traffic synchronization components

Separation Provision

Tactical process of keeping aircraft away from
hazards by at least the appropriate separation
minima

Collision Avoidance

Must activate when the separation mode' has
been compromised

(1) Separation mode is an approved set of rules,
procedures and conditions of application
associated with separation minima.

Figure 1. “See and Avoid” problem

The application of Article 3.2.1 to dense traffic has let to a layered approach which is notionally repre-
sented on Figure A. S&A is concerned with the two inner layers.”*»? All the references agree on the fact
that a S&A system should provide two functions: a separation assurance function and a collision avoidance
function. Separation assurance aims to stay ”well clear” of other aircraft; collision avoidance is the emergency
solution when separation assurance has failed. These general definitions raises two main questions:

e What does "well clear” mean in term of minimal distance between aircrafts?
e What are the conditions to declare that the collision avoidance is necessary?

It has to be noted that these notions have been inherited from the current operations of manned aviation.
Separation assurance can under some conditions be provided by air traffic control (ATC) services, but
collision avoidance is always the pilot’s responsibility. Except for separation assurance provided by ATC,
there exist no quantitative specification of the meaning of "well clear”, and when a pilots maneuveres in
order to avoid another aircraft, it is not always clear whether she is performing separation assurance or
collision avoidance.
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The questions above have not received a definite answer for UAVs yet, but the different working groups
have very similar approaches. The usual definition of a safe separation (if not provided by ATC) is the
guarantee of a distance of the order of 0.5 nautical miles in the horizontal plane, and 500ft in the vertical
dimension.” Collision avoidance is generally associated with a miss distance of 500 ft horizontally and 100 ft
vertically.

It follows that collision avoidance and separation assurance are both problems of keeping a prescribed
volume around the UAV free of aircraft. So we can define the generic Avoid problem as keeping all traffic
out of a volume denoted O centered on the UAV. In this paper, O is defined as a cylinder of radius Sep;, and
height Sep, but any 3 dimensional set can be used.

In order to be on the safe side, we shall assume that only the UAV will maneuver to avoid loss of
separation or collision. This maneuver takes into account uncertainty on the trajectory of incoming traffic.
The part of the Rules of the Air which determines which aircraft has the right of way are not taken into
account here. We are dealing will the worst case situation when the pilot of the other aircraft is unaware of
the UAV.

The range of available maneuvers depend not only on the UAV but also on the situation. Manoeuvring for
separation assurance is a normal operation, so smooth maneuvers are required. In case of collision avoidance,
sharper maneuvers are allowed since safety is at stake.

B. The ”sense problem”

Because of the dynamics involved, incoming traffic has to be detected early enough. We are interested mostly
in conflicts between fixed-wing aircraft, so the time between the initiation of an avoidance maneuver and its
effect on the miss distance cannot be neglected.

Moreover, time has to be allowed for analyzing the situation to determine whether a maneuver is necessary.
In addition, if a pilot has to decide a maneuver from a ground station, her reaction time and the transmission
time have to be taken into account.

We assume that the relative dynamics of the aircraft can be measured or estimated. The precision of
estimation is part of the parameters which can be specified using our approach.

In this paper, we are not interested in sensing technologies. Our purpose is to specify the sensing
performances which are sufficient to solve the ”avoid problem”.

C. Our approach for the S&A problem

Our aim is to be able to assess a given situation between two aircraft, given their positions and their dynamics
and their possibilities of actions. We assume that only the trajectory of the UAV is controlled in order to
avoid the collision. The incoming traffic is unaware of the UAV. For this purpose, we distinguish between
three possible situations:

e S1: the loss of separation cannot be avoided,
e S5: the loss of separation can occur if no maneuver is initiated soon enough,

e S3: the separation is guaranteed without any maneuver.

These situations can be associated with regions in the state space of the problem. The dimension of the
problem will be discussed when the dynamical models will be presented in the next section. In order to
introduce the notions, we discuss here only the relative positions.

The interpretation of these sets is the following. The set corresponding to the first situation is the set
to avoid absolutely. As it is shown on the figure 2(a) if an intruder is detected in this set (in red) then the
loss of separation is unavoidable. If an intruder is detected in the complementary of this set, the collision
can be avoided. It follows that the ”avoid” problem can be solved only outside the set corresponding to the
situation S7. The consequence on the ”sense problem” is that detection of aircraft close to the boundary of
such a set must be certain.
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Now the ”avoid” problem has been refined: it is
necessary to be able to initiate a maneuver before o Collision
entering the region of S;. But an aircraft outside ' cannot be
this region may not be on a conflicting trajectory. _
Therefore, it is important to determine the condi- e
tions under which a situation has to be considered )
as a conflict and a maneuver has to be initiated. For
this purpose, we introduce a time parameter ¢; and
we define a conflict as a situation in which an aircraft
is likely to enter S; before time t;. The associated
set is shown on the figure 2(b), in blue.

Whenever a traffic enters the set associated with
the situation S, it becomes a potential threat, and

180

0%,

: Collision can
pri]

it is necessary to be ready to initiate a maneuver. be avoided
The earlier the detection, the smoother the maneu-
ver to be taken. Therefore, the boundary of this (a) Collision analysis with the set Z1

set should be the minimum detection range for the
”sense” problem.

ITI. Mathematical characterization _ ‘ avoided with an
of different safety zones

In order to give the precise mathematical char-
acterization of all safety zones we distinguish two
situations. In the first case, more simple, we assume
that the parameters of the flight of the intruder are
well known by the UAV. In the second case, more
realistic, we assume that some parameters of the dy-
namics of the intruder are known with uncertainty.
In each case we give a precise mathematical defini-
tion of the regions concerned.

Let us introduce some notations. Let z(t) € R?
be the real vector that represents the state of an
aircraft at any time ¢ > 0 : its position and its
speed with respect to a given reference frame. Using
some classical arguments of flight mechanics one can
describe the evolution of an aircraft by a system of
differential equations:

180

The collision is
nvoidable’

collision can
e avoided
without any
maneuver

240 300

270

(b) Collision analysis with the set Z2(ty)

Figure 2. Collision analysis

2(s) = f(z(s), s,a(s), B(s)), for a.e. s €[0,¢], (1)
2(0) = 2o (2)

with a given function f corresponding to a chosen model of flight dynamics. It can depend on two vectors of
controls of different kinds. The first one, a(-) is the vector of UAV’s control variables and the second, 5(-)
represents some uncertainties that one can take into account in the model.

Let A and B be two nonempty compact subsets of R™ and R? respectively. Let A := {a : (0,t) —
A, measurable} and B := {« : (0,¢) — B, measurable}. For every zy € R? and (a, 3) € A x B, we denote
by z = 227 the associated trajectory defined as the (absolutely continuous) solution of (1).

Let O C R? be some open set that we will call ”collision zone”. All relative positions in this set are
equivalent to collision. The precise definition of this set will depend from the choice of the state space
for the dynamics. We will give it later. The collision zone O is considered here as an obstacle. Then its
complementary set X = R%\ O represents the set of state constraints.

5 of 22

American Institute of Aeronautics and Astronautics



A. Dynamics without uncertainties

In the simplest case where all flight parameters of the UAV and of the intruder are assumed to be known
precisely, the second control variable 3 is constant and then

f(Z,S,Ck,ﬁ) = f(Z,S,Ck)

The trajectory of such a dynamical system, starting at a point zy € R? with a control policy a(-) € A
will be denoted by zZ (-).

Consider the situation where the UAV can do all the possible maneuvers to avoid the collision with
infinite time horizon.

e The set Z; corresponding to the situation S; is defined as the subset of the state space where the
collision is impossible to avoid. For any choice of control strategy the system reaches the collision zone.

Zy={zek|VaeA IseR" st. 25 (s) €O} (3)

When the initial state of the system is in the set R?\ Z; we know that it is possible to maneuver to avoid
collision. But an UAV has a specific mission and some nominal trajectory to follow with a nominal control
Qp.

Then it is interesting to determine the possibilities to avoid the collision without any maneuver.

e The set Zy(ty), corresponding to the situation Ss, depends on a finite time horizon ¢ty > 0 and is
defined as the set of all initial states in R?\ Z; such that without any maneuver the system reaches
the dangerous region Z; before ty.

Zs(ty) ={z0 € K, | 3s € [0,tf] such that 22°(s)€ Z;, and Vt € [0,s], z,() e} (4)

20

B. Dynamics with uncertainties

We can consider several kinds of uncertainties in this model, such as velocity estimate errors (intruder as
well as UAV) or unexpected behavior of the intruder. The different security regions are defined as follows:

e The set Wi, corresponding to the situation S; is defined as the subset of the initial positions such
that for any choice of control policy for the UAV it is not possible de guarantee the avoidance of the
collision.

e The set Wy (ts), corresponding to the situation Sp depends of a finite time horizon ¢; > 0 and is defined
as the set of all initial states in R? \ Wy such that without any maneuver there is a risk that the
system reaches the region W before ¢.

To give more precise definitions of these sets we put our problem into the game theoretic framework
involving two players (player 1 being the UAV while the intruder plays the role of the second player),
starting at time ¢ = 0. The set W7 can be then described by the worst-case of a game when the first player
(UAV) wants to avoid the collision zone O, or equivalently to keep the system in the safe region K (set of
constraints) using his input «, while the second player tries to steer the system away from K (with his input
8).

As usual in the game theory,”" we define the set of non-anticipative strategies for the first player, as
follows:

r:= {a B — A, ¥(8,5) € B and Vs € [0, 0], (5(0) =3(0) ae. 0 € [0,5]) =
(a[m(e) = a[B](6) a.e. 0 € [0, s]) }
In the sequel, we will restrict the choices of control laws for the UAV at the set I', which amounts saying

that the strategies of this player are not influenced by the future choice of its adversary.
According to,"* we define here the victory domain for the first player (the UAV) as follows
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Definition ITI.1. We call victory domain for the first player the set V;(K) of all initial positions zg

such that exists a non anticipative strategy a € I' such that for all admissible control 5 € B the corresponding

trajectory z?im’ﬁ(t) avoids the collision set O for all ¢ € [0, 4+o0:

Vi(K) ={20 €K, | 3a€T, suchthat VB(-)€B, vt>0,22°5(t) ek}
With this definition, we can now remark that
Wy =R\ Vi (K). ()

As in the case without uncertainties, the set Wa(ty) is defined for a system without maneuver, where the
control variable « is fixed to a nominal control ag, so that

f(Z,S,Oé,B) = f(Z,S,CYQ,B)
In this case the only control present in the equations is the uncertainty variable 8. It follows that:
Wa(ty) = {20 € R, 3B() € B, Is € [0,¢4] s.t. 2207 (s) € Wi} (6)

By definition the interpretation of the sets W7 and Wy () is different from the case without uncertainties.
If an intruder is detected in the set W7 the avoidance of the collision cannot be guaranteed. For all possible
actions of the UAV there is a risk of collision, but it does’nt means that the collision will necessarily occur
as when we consider the set Z;. If an intruder is out of the set Wi it is possible to find a strategy for the
UAV that guarantee the avoidance of the collision. Also, if the intruder is in the set W5(¢y) for a given time
horizon t; then there is a risk of collision if nothing is done to avoid it.

IV. Dynamics models for the collision avoidance problem

A. Point mass model for flight dynamics

In this paper the Point Mass Model for general aircraft flight dynamic is used. Consider an inertial frame
attached to the Earth. The state of the system is defined by the following six variables:

e (z,y) € R? is the horizontal position of the mass center of the aircraft in the inertial reference frame.
e h € R, is the altitude

e V € [Viin, Vinaz| is the True Air Speed

e ¢ € [—m, 7] is the heading angle

e v € [—m, x| is the flight pass angle (or velocity pitch)

(a) Pitch attitude © = p + (b) Bank angle ¢ (c) Heading angle 9

Figure 3. The angles used in the models
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The trajectory of the aircraft can be controlled by means of three controls : the bank angle ¢ € [pmin, Pmaz],
the thrust angle of attack p € [tmin, hmaz] , and the thrust T € [Thin, Tmaz]- The definitions of the three
angles used in the flight dynamics models are illustrated in the figure 3.

The problems of collision avoidance considered in this paper have generally very small time horizons.
One can therefore assume that the fuel consumption is negligible and then that the mass m of the aircraft
is constant. The equations of the motion in the inertial reference frame are defined as follows:

& =V cos(7) cos(¥)
§ =V cos(y) sin()
h = Vsin(vy)
V= E(TCOS/J—D — mgsin-~y)
(7)
)= m(Tsinu—FL) sin ¢

¥ = %((Tsinu + L) cos ¢ — mg cos~)
where
_ CLSp(h)v? D_ CpSp(h)V?
2 ’ 2
are respectively the lift and drag forces, C'p and C', are respectively lift and drag coefficients, S is the surface
area of the wings and p(h) is the density of the air, g is the gravitational acceleration.

L

B. Relative coordinates formulations for collision analysis

Assume that before the detection of an intruder the UAV is in quasi-steady cruise flight. That means that
its velocity V,, is constant, the velocity vector is parallel to the ground (v = u = 0). We are interesting here
in the aircraft’s motion during a short time interval when it can do some maneuvers to avoid a collision.
For a short time horizon, the dynamics of the aircraft remains similar to a steady flight regime. Under this
assumption some approximations can be considered in (7):

o Lcos(oy) =myg

o 12 <1, cos(y) =1, sin(u,) =0
e 12 <1, cos(yy) =1, sin(y,)=~0
o T <K mg

The details and the validity of these approximations can be found in.
The velocity pitch angle 7, can be considered as a direct control instead of p. By neglecting the term

T'sin p in the equation for ¢ in (7) and tacking into account that L = m(gqs) and cos(7,) ~ 1 it yields:
cos
g =g tan(o).
The angular velocity can be introduced by:
g
=Lt
w =y tan(9)

and considered as a new control variable instead of ¢. This new control takes its values in the interval
W € [Wnim, Wmaz] With

g g
Wmin = 757 tan((ybmin)a Wmazx = 57 tan(¢mam)-

Vau Vi
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With these approximations, the simplified dynamical system for the UAV in the inertial reference frame is:

Ty = Vu COS(VU) COS(wu)
yu = Vu COS(’Vu) Sin(wu)
h.u = Vu Sin(’Yu)

Va (T — D —mgsin~y,)

m

w.u:w

On the other hand, assume that the intruder aircraft is flying with a constant velocity V,, constant heading
angle v, and constant v, = 0. His bank angle is then equal to zero: ¢, = 0. The equations of the motion
of the intruder, with respect of the inertial reference frame are:

-fa = Va COS(¢@)

Yo = Vasin(t,) (8)
he =0
Zz; v z,
Ya
x,
z,
v
Yu
x;
X; X
(a) XY projection (b) XZ projection

Figure 4. Definition of the local frame (O, zu, Yu, 2«) and of the relative position of the intruder:

From the perspective of the UAV the collision risk is evaluated based on the relative position of objects
detected from the UAV. We will attach to the UAV a local reference frame defined as follows: it is obtained
from the earth reference frame by translating its origin to the mass center of the UAV and by rotating it
around of the z-axis by the angle —,, (the heading angle of the UAV). Then the x axis of the new local
frame coincides with the projection of the UAV’s velocity vector into the XY plane.

Let (x,y,h) be now the relative coordinates of the mass center of the intruder with respect to the local
frame of the UAV. They a related to the coordinates in the inertial reference frame of two aircrafts as follows

= (g — Ty) COSYy + (Yo — Yu) SIN WYy
y=—(Tq — ) SIN Yy + (Yo — Yu) COS Uy (9)
h="hg — hy

and let ¢ = 1), — 1), be the relative heading. The figure 4(a) shows the XY projection of the new local frame.
Its axis are named (z,, Yy, z,) at the figure and the inertial reference frame axis are denoted (x;,y;, 2;). It
is shown here the relative horizontal position of the intruder (z,y) and the relative heading angle 1. The
figure 4(b) shows the X Z projection of the new local frame. It is shown here the relative vertical position
of the intruder A and the velocity pitch angles of both aircrafts v, and ~,. The dynamics equations in this
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new coordinate system become:

& ==V, cos(yy) + Vo cos(¥) + wy,
§=+Vasin(y) — wa,

. h) V2 1
2 My, My

Y= w.

C. Simplified models

When an intruder is detected, the UAV can use three control variables to avoid collision:
e the angular velocity w defines the horizontal maneuvers,
e the velocity pitch -, defines the vertical maneuvers,
e and the trust T defines the acceleration.

To study the importance of each of these control variables in the collision avoidance process we consider
three simplified models.

e Model 1: Only vertical maneuvers are allowed. The heading angle ¥ = vy is assumed to be
constant. The control T is used by the pilot to maintain the velocity constant. Then the aircraft’s
state is defined only by three variables: (z,y,h) and the motion is described by the following system
of equations.

& = =V, cos(yu) + Vo cos(tbp)

y = Vg sin(thg) (11)

h ==V, sin(vy)

The system is then controlled only by one variable, that is the velocity pitch ~,.

e Model 2: Only horizontal maneuvers are allowed. One can assume that the aircraft is flying at
a constant altitude h and constant speed. Then ~, = 0 and In this context, the state of the system is
reduced to the 3D vector (z,y,%), and the equations of motion are

&= -V, + Vg cos(y)) + wy
§ = Vasin(y) - wz (12)

b= -w
where the control variable is the angular velocity w.

e Model 3: Both vertical and horizontal maneuvers are allowed at constant speed. The
control T is used by the pilot to maintain the velocity constant. Then the aircraft’s state is defined
only by four variables: (z,y, h,v) and the motion is described by the following system of equations.
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D.

Here, the aircraft trajectory is controlled by the velocity pitch ~,, and the angular velocity w €
[Wmin; Wmaw] .

&= =V, cos(vy) + Vo cos(v) + wy
y = Vgsin(y) —wz

h = -V, sin(v,)
-

where the system is controlled by two variables: w and ~.

Taking into account some uncertainties

Some measures can be uncertain in our model. Likely the parameter that is most uncertain is the value of
the intruder’s speed. We will assume that it can be measured with an error v € [Upin, Umaz| that will be
considered as an additive uncertainty. The model equations are then modified as follows.

e Model 1. Here 1/) =0, V, =0, ¢ = 0 then there are no angular velocity terms in the first two motion
equations.

&= =V, cos(vu) + (Vo + v) cos(thg)

= (Vo + v)sin(to) (14)

h = -V, sin(v,)

e Model 2.
t=-Vy+ (Vo +v)cos(¢yp) +wy
g = (Vo +v)sin(y) —wz (15)
Y =—w

e Model 3. Here 1/) = 0 then there are no angular velocity terms in the first two motion equations.

z ==V, cos(y) + (V + v) cos(v) + wy

§ = (Va + ) sin(y) —wa (16)

h = —V, sin(y)
b= —w

V. Optimal control theory: formulation of the S& A problem

In this paper, we propose to use the “level set” approach in order to characterize the safety sets Z1, Z5

or Wy, Wy. For each of these sets, we will consider a suitable control problem for which the value function

can indicate for any position zq if it belongs to the safety set or not. The dynamical systems modeling the
relative position of the intruder and the UAV are all of the form:

g = fy(t),alt),5(t)), (17)

where y denotes the state variable (which is of dimension 3 in the models 1 and 2 and in dimension 4 for
the model 3). The control variable for the UAV is denoted «, while 5 the uncertainty of the model plays the
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role of the control for the second player. In the sequel, when the model is considered without uncertainties,
B will be set to 0. In all our simplified models, the dynamics satisfies the following properties:
(H1) there exists Ly > 0, such that for every (x,2’,a,b) € R? x R? x A x B,

|f(a:,a,b) - f(x’,a,b)| < Lf|$ - I/|,

where Ly > 0 is the Lipschitz constant.
(H2) For every y € R?, and every b € A, f(y, A,b) is a convex set of R%.

A. Problem without uncertainties

In view of the properties of the dynamics, for any control variable @ € A and for any initial condition
r € R, there is a unique absolutely continuous trajectory y2 satisfying the system (17) with y(0) = =. For
t € [0, +0o¢], denote Slo,¢[ the set of all these trajectories starting at x:

Sjo.4(z) = {y : [0,#] = R? absolutely continuous, y satisfying (17) for some a € A, and y(0) = z}.

Moreover using the Ascoli-Alaoglu theorem,’ one can show that for any ¢ € [0, +-00], Sjp 4 is a compact set
in WH1(0,t;e~(©0tDt) (which is the space of functions z € L'(0,t;e~(Ls+Dtdt) integrable for the measure
e~ (st and such that the weak derivative z € L*(0,¢; e~ (Ls+Dtdt)) endowed with topology of C/([0,1]).

1. Characterization of Z;

Following some ideas introduced in,”> " we consider a given parameter A > 0 and a Lipschitz continuous
function ¢ : R? — R such that
g(z) <0 < =zxzek. (18)

Note that such a function always exists since we can choose g(x) := dx(z), where di is the signed distance
function (dix(x) = —d(z,0K) whenever z € OK and di(x) = d(x,0K) if not). In the sequel, we choose A
such that:

A > Lf,

where L is the Lipschitz constant of f (as given in H1). Now, consider the control problem:

Iz) = inf{ max (e/\eg(yg‘(ﬂ))>, oY GA}. (19)

0€[0,400]

Problem (19) is an infinite horizon control problem with supremum cost function. Here the term GH[IaX | g(ys(0))
€[0,00
plays a role of a penalization that a trajectory y< would pay if it violates the state-constraints. We will

see in Theorem 2, that the advantage of considering (19) is that ¥ can be now characterized as the unique
continuous solution of an HJB equation.

Theorem 1 (Characterization of the set Z1). Let g be Lipschitz continuous function defined by (18). Let ¢
be the value function defined by (19). The the following statements hold:

(i) the unsafety set Zy is given by
Zy = {z e R, 9(x) > 0}. (20)

(1) if ¥(z) < 0 and K= {z, g(x) < 0}, then there exists an admissible trajectory yS which stays in the

safe region K and never touches the boundary 0K .

Proof. First, since the set of controls is compact and the function g is Lipschitz, by Filippov theorem,
for any =z € K, the control problem admits an optimal solution. On the other hand, for x in I such that
d(x) <0, it follows that:

9(x) <0 & IYp € Sjo,400/(7), max e*)‘eg(yz(é)) <0,
0€[0,4+00]
< dus € S[O,+oo[(x)a yz(a) eK VOl e [07 +OO[7
< ¢ Z1.
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The proof of the statement (ii) is straightforward and can be obtained by the same arguments as for (i). O

As mentioned before, the function ¥ can be characterized as the unique solution of a Hamilton-Jacobi
equation. More precisely, considering the Hamiltonian

H(z,p) := max (= f(z,@) - p), (21)

we have

Theorem 2. Under the property (H1), for any A > Ly and for any Lipschitz continuous g satisfying (18),
the value function ¥ is the unique continuous viscosity solution of the variational inequality (obstacle problem)

min(A\Y + H(x,VY), ¥ —g(z)) =0, =R (22)

Proof The proof will be split into three parts.
Part 1: First, let us prove that the value function 9 is Lipschitz continuous. For this, consider z, 2’ € R<.
By using the simple inequalities:

max (4, B) — max(C, D) < max(A - C,B — D), and inf(A, B)—inf(C,D) <sup(A — B,C — D),
we get:

Iz) —d(') < | g(y2(0)) — g(yar (6
(2) = 9") < max wmax ™ g(ya(9)) = g(var (O]

< max max e MLgelrfz -2/,
a€A 6€[0,+oo|

where Ly and L, are the Lipschitz constants respectively of f and g. Therefore,

9 -9 ! < (Lf*)\)oL A
@ =i < s dBNL o)

which with the condition A > L; yields to

9(x) — d(a")

IN

Lyllz — /|| Vo, 2’ € RY.

This concludes the Lipschitz continuity of ¥.
Part 2: Dynamic programming principle (DPP). For definition of ¥, for any € R? and 7 > 0, the
following holds:

o= _min (s e a0 0)) Vool 0))

a=(ay,a)€EA 0elo,7] O[T, +oo|

By classical arguments, we conclude that:

o) =i (w0908 (0) ) Ve 000) ) v 20,

ach 0€[0,7]

Part 3: We now check that 9 is a solution of the HJB equation. By the DPP (see Part 2), we get that
for any 7 > 0
I(z) > inf e NI(y2 (1)).

ach
Hence, with classical arguments, we can obtain
A0+ H(z, V) >0,

in the viscosity sense. Moreover, by definition of 1, for every x € R%, we have

> inf A0 (g > )
I(z) > inf max e 9(yz (0)) > g(z)
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Combining these two inequalities, we get
min(Ad + H(z, VY),dz) — g(x)) >0

in the viscosity sense, i.e., ¥ is a supersolution of (22).
Let us now prove that 1 is a subsolution. Let z € R%. If ¥(x) = g(z), it is obvious that ¥ satisfies:

min(AY + H(x, V9),9(z) — g(z)) < 0.

Now, assume that 9(x) > g(z). By continuity of g and 1, there exists some 7 > 0 such that e~ (y%(6)) >
e M g(y2(9)) for all € [0,7] (since y2(#) will stay in a neighborhood of = which is controlled uniformly
with respect to «). Hence, by using the DPP, we get that

I(z) = jgg e MY(y%(h)), forany 0<h <.

We then deduce by classical arguments® that A\d(z) + H(z, Vi (z,t)) < 0 in the viscosity sense. Therefore,
9 is a viscosity subsolution of (22).

The fact that ¥ is the unique solution of the equation (22) follows from the comparison principle for the
equation (22) (see for instance”"), and the fact that the Hamiltonian function H satisfies

[H (22,p) — H(x1,p)| < C(1+|p|) |w2 —21], (23)
|H(z,p2) — H(z,p1)| < Clp2 — p1l, (24)
for some constant C' > 0 and for all 2;, p;, « and p in R%. d

Remark 1. Inequalities such as (22) appear also in the framework of exit time problems where the obstacle
g represent the exit cost that should be paid for exit. Here, g is a “fictitious cost” that a trajectory would
pay if it leaves K.

It is worth mentioning that theorem 2 is valid for any choice of a Lipschitz function g satisfying (18) and
for any A > Ly. Of course, the value function ¥ is dependent on g and A, while the set {x € R? 9(z) < 0}
does not depend neither on g not on A.

In view of theorem 2, the set Z; can be fully described if we are able to compute the value function ¢. And
indeed, ¥ is the unique solution of a HJB equation and it can be obtained by numerical approximation of (22).
A huge literature is devoted to the numerical schemes for the discretionary of HJB equations. 7> '~ ' 2% <%
Here in our computation experiments, we shall use a classical scheme based on fixed point algorithm and
ENO scheme. More precisely, we shall approximate ¥ by the following algorithm (where h plays a fictitious
time step and G is a given grid on R%):

Algorithm 1 for Z:

e For k = 0, consider v° a given function on the domain of computation G

e For k > 1, compute v* by:

v*(z) = max((1 — Ah)v* 1 — WU (. DTk (z), D~ (2)), g(z)) for x € G,

where H* (2, p, ¢) is a numerical Hamiltonian which approximate the true Hamiltonian H, and D*o*(z), D~ v*(z)
are respectively the finite differences on the grid G decentralized respectively to the right and to the left.”

The set Z; can be computed also using the viability algorithms. Indeed, the definition of this set given
in (3) can be rewritten as follows

Zi =R\ {znek|FaecA VseR" 22 (s) € K} =R*\ Viab(K) (25)

This defines the set Z; as a complementary set of the viability kernel, mboxViab(KC), of the constraints set
K = R4\ O (see for example® for the definitions of the viability theory). One can compute the viability
kernel using the set-valued algorithms defined in"" and take it’s complementary set as an approximation of
the set Z;. In the case of the dynamics without uncertainties the differential equation (1) can be written as

a differential inclusion of the form
2 (t) € F(z(t)), €K (26)
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with a set-valued function F' defined by
F(z) ={f(z,a), a€A}

Let p > 0 be a discretization step with respect to the time variable t. We associate with the differential
inclusion (26) the explicit Euler scheme:

@ € F(z,), an €K (27)
Let G, be the application defined as follows:
Gy(z) =x+ pF(x) +(p)B (28)

where B is a unit ball in R? and (p) is a constant that is chosen to assure the convergence of the algorithm.
The viability kernel algorithm is defined as follows:

Algorithm 2 for Z;:

e For k=0, Ko =K
e For k > 1, compute:

Kn-‘,—l - Gi

JHK)NK ={z € K,, tq G,(z)€K,}

2. Characterization of Za(ts)

For t; > 0, the set Z5(ts) corresponds to all the initial positions from which the system reaches the dangerous
region Z; if no maneuver is undertaken (see the definition 4). Here the control variable is @ = 0, and the
dynamics of the systems is f(z,0,0) =: fo(z). For each initial position there is only one trajectory that will
be denote y/° satisfying

y(t) = fo(y(®),  y(0) = .
Then the set Zy(ty) is known also as the capture basin of Z; under the dynamics fy. This capture basin can
also be computed by a level-set approach, see.”"

B. The game theoretical approach for dynamics with uncertainties
1. Characterization of W1

As for the characterization of the set Z7, it is also possible to construct a control problem for which the
value function allows to characterize the set W;. The later consists of all initial positions from which for
any control policy for the UAV, there exists a risk of collision. This risk comes from the fact that the model
of the intruder contains some uncertainties. So the set of Wj is the set of the “worst cases”. It can be
represented by the value function of a two-player game problem, where the player 1 (UAV) uses his control
policies and the second player is the intruder using the uncertainties as inputs. As mentioned in section B,
the admissible strategies for the UAV are non-anticipative.

As in (19), we consider any Lipschitz continuous function g satisfying (18) and any A > Ly. The control
problem is:

Y€ (2) := min max { max (wf’g(y;lﬁw(e))) } . (29)

acl’ BeB 0€[0,+00]

This setting includes of course the one-player game (it suffices to take B = {0} , then any o € A represents
an admissible non-anticipative strategy).

Theorem 3 (Characterization of Wy).

Under the properties (H1)-(H2). Let 94" be the value function defined by (29). We have:
Wy = {z e R, 9"“"(z) > 0}.

YU s the unique continuous viscosity solution of the Hamilton-Isaac equation:

min (MU + HY(z, VU (), 9" (2) — g(z)) =0 for z € RY, (30)

Moreover

where HYC(z, p) = max,e4 mingeg(—f(x,a,b) - p).
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The proof of this theorem fellows the same arguments as for (2). The consequence of this result is that
an approximation of set Wi can be obtained by computing an approximation of the value function WC.
For this, a discrete approximation of (30) can be done by using efficient numerical algorithms known in the
literature.

The viability procedure to compute the set W7 is similar to the algorithm for the set Z;. We define the
set-valued map

U flz,o,B), fz ek

acA

Co[{o}u U f@,a, ﬁ)}, otherwise

a€A

and it’s Euler approximation (for some time step p:
Go(z, ) =z + pF(x,8) +e(p)B (31)

where B is a unit ball in R? and £(p) is a constant that is chosen to assure the convergence of the algorithm.
The algorithm to compute the set Wy is defined as follows:

Algorithm 3 for Wy:

e For k=0, Ko =K
e For k > 1, compute:

KnJrl = {IE e K,

VB € B (Gy(z, ) N Kn) # w}

2. Characterization of Wa(ty)

For t; > 0, the set Ws(ts) corresponds to all the initial positions from which the system reaches the region
W1 if no maneuver is undertaken (see the definition 6). Here the control variable is & = 0, and the dynamics
of the systems is f(x,0,8) =: fi(x, 8). The system is controlled only by the uncertainty variable 5 € B. Then
the set Wa(ty) can be described as the capture basin under the dynamics f; with the target set ;. This
capture basin can also be computed by a level-set approach, see’">"" or a corresponding viability algorithm,
see.

VI. Numerical simulations for the case without uncertainties

To compute and analyze all the defined sets corresponding to different levels of security we use two
numerical approaches. The first one is based on the viability theory (see’’). The second approach is based
on the numerical resolution of the HJB equations corresponding to the problem as described in previous
sections.

A. Data for the case study

In all numerical simulations that are presented here we consider a MALE type UAV with following aerody-
namic characteristics:

Table 1. Flight dynamics parameters

Parameter 1% Omaz | S m | Cr| Cp h | Thom Wmnaa Ymaz
Value 150 18 15 | 4000 | 0.3 | 0.029 ) 4000 24 5
Units nm/h m? | kg nm N rad/min

where ¢4z is the maximum bank angle and T,,,,, is the nominal thrust. For the numerical simulations
we take for time unit one minute and for distance unit a nautical mile (nm). The maximum angular velocity
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is derived from the bank angle as follows:
Wmaz = % tan ¢maz

The parameters defining the computational domains for the different models are given in the following table:

Table 2. Flight dynamics parameters

Parameter | Tmin | Tmaz | Ymin | Ymaz R | heep iy
Value -6 6 -6 6 0.5 | 0.1 | 0.25

Units nm nm nm nm nm | nm | min

All the computations was performed on a Intel Core i5 CPU, 2.8 GHz, under Windows or Linux 64bit
operating systems. For the models without uncertainties we show the results obtained with the viability
algorithms. And the numerical study of the uncertain model is illustrated with the results from HJB codes.

B. Lateral avoidance

In all considered examples the speed of the UAV is fixed to V,, = 150 knots. The dynamics used here is
defined in (12). The system is controlled by w, the angular speed of the UAV. The control set A = [—2.4,2.4].
The collision zone for this model is the cylinder @ = Bgy(R) x [0,27] where By(R) is the disc in the plane
XY of radius R centered at the origin.

(a) Vo=90 knots, projection in XY plan (b) V, = 150 knots, projection in XY plan (c) V, = 210 knots, projection in XY plan

(d) V4=90 knots, section with ¢y = 7/2 (e) Vo, = 150 knots, section with ¢y = 7/2 (f) V, = 210 knots, section with ¢ = 7/2

Figure 5. Z; sets for different values of the intruder’s speed

The figure 5 presents the representations of the unsafety region Z; in the flight plan (z,y) for different
values of the intruder’s speed V,,. The collision zone O is in green. The subfigures (a), (b) and (c) represent
the projections of the sets Z; into the flight plan. Such a projection is particularly important to calibrate the
sensors. It contains all the initial relative horizontal positions of the intruder for which the collision cannot
be avoided, for all possible relative heading angle. The range of detection of the sensors may be determined
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using these projections. In a real situation, when the relative heading is known the corresponding set Z; can
be refined as it is shown on the subfigures (d), (e) and (f).

The study of different values of the intruder’s speed is also important here. The examples shown on the
figure 5 on the previous page confirm the sensitivity of the region Z; with respect to the relations between
the speeds of two aircrafts. When the intruder is faster then the UAV ( see (c) ) the region Z; is the largest
one. When defining the range of the sensors of the UAV it is necessary to take into account different classes
of aircrafts that it can meet during its mission.

(a) Detection of an intruder (b) Estimation of the relative heading (c) The collision can be avoided

Figure 6. Analysis of a conflict situation

When an aircraft is detected by the UAV the first two values that are used to appreciate the importance
of the danger are the distance and the speed of the intruder (see figure 6(a)). The XY projection of set Z;
corresponding to the measured speed value V, can be used to determine if the collision can be avoided. If
the intruder is in this set (see figure 6(b)) then the relative heading is used to make a more precise analysis.
In the example shown on the figure 6(c) the relative heading is v = 7/2 and the intruder is out of the
corresponding region Z; ( in blue). In this case the collision can be avoided.

When the intruder’s position is out of the set Z; one can refine the analysis using the set Zo(T"). The
figure 7 shows an example of the set Z3(T) for V, =V = 210 knots and T' = 0.25min.

(a) Projection in XY plan: Z; in red, Z2(0.25) in yellow (b) Section with ¢ = 7w/2 : Z; in blue, Z2(0.25) in cyan

Figure 7. The set Z3(T) with T'=0.25 and V, = 3.5

The figure 8 on the following page illustrates the interpretation of the set Zs(T') in different situations.
On the subfigure (a) the relative heading is ¢ = /2 and the intruder is out of the region Zy(T) for T = 0.25
min. That means that the collision can be avoided without any maneuver before the time T'. At the figure
(b) the intruder is in the set Zy(T'). In this situation it is possible to avoid the collision but the UAV must
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engage avoidance maneuvers to do it. At the figure (c) the intruder is out of the projection of the set Zs(T)
into the flight plan. That means that for any relative heading the collision can be avoided without any
maneuver.

(a) Collision can be avoided without ma- (b) Collision can be avoided with some (c) Collision can be avoided without ma-
neuver if ¢ = 7/2 maneuver if ¢ = 7/2 neuver for any 1

Figure 8. Collision analysis with different relative positions of the intruder

C. Other models for the avoidance maneuvers

One can do the same detailed analysis of the sets Z; and Z5 with other models for the dynamics of the
aircrafts. In this section we focus on the comparison of the results obtained with different models. Let us
consider the case when the intruder has the same speed that the UAV: V,, = V = 150 knots. The figure 9

I

LU

180

210

270

(a) Lateral avoidance, projection in XY (b) Vertical avoidance, projection in XY  (c) 4D model, projection in XY plan
plan plan

(d) Lateral avoidance, section with ¢ = (e) Vertical avoidance, section with p = (f) 4D avoidance model, section with ¢ =
w/2 w/2 w/2n

Figure 9. Z; sets for different dynamics models

shows the sets Z; calculated with different assumptions about the choice of maneuvers. The figures (a), (b),
(c) present the projections of the corresponding sets for the models 1,2 and 3 respectively into the plane
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XY (all values of the relative heading v and all values of the relative altitude h for the models with vertical
avoidance). The figures (d), (e), (f) show the corresponding set (for the models 1,2 and 3 respectively ) with

the relative heading fixed to ¢ = /2.

One can conclude here that the choice of the allowed ma-
neuvers is an important factor in the definition of the unsafety
sets around the UAV and then in the definition of the range of
detection of the sensors. The smallest regions Z; correspond to
the case when both vertical and lateral avoidance maneuvers
can be used. This result can also allow to refine the conflict
analysis by taking into consideration an additional maneuver.

The figure 10 shows the sets Zi%%m@ (in blue), Zyertical(
in red) and Z%" (in cyan). When an intruder is detected in
the set Zlateral it is impossible to avoid the collision by using
only the lateral maneuvers. But if the intruder is in the set
Zlateral\ Zboth it is steel possible to avoid the collision by using
more maneuvers.

VII. Numerical
simulations for the case with uncertainties

Consider now the case of lateral avoidance when some pa-
rameters of the dynamics are known with uncertainty. The
numerical results presented here are obtained using finite dif-

+ Vertical avoidance
+ Horizontal avoidance
Both vertical and
horizontal maneuvers
e

270

Figure 10. Comparison of the sets Z; of
three models for ¢ = 7/2

ference scheme for two player HJB equations. We take here the reference example parameters and we suppose
that the intruder velocity is known with some uncertainty v € [—vmaz, Vmaz]. For the lateral avoidance the
dynamics of the system is defined in (15). To study the sensitivity of the set W; with respect to the range
of the uncertainty we compare the results obtained with of different maximum amplitudes, vy,4, = 0.1 and

VUmaz = 0.D.

L= A . ]

(a) W1 in 3D, vmae = 0.1 (b) Projection in XY plan:vmaez = 0.1

Figure 11. The set W; for vmas = 0.1

The figure 11 shows the set W7 when v € [—0.1,0.1].

Let now v € [—0.5,0.5]. The figure 13 on the following page shows the comparison of the projections of

the set Wy for different values of the intruder speed.
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(a) W1 in 3D, vpae = 0.5 (b) Projection in XY plan:vmaes = 0.5

Figure 12. The set W; for vmas = 0.5

Figure 13. Comparison of three projections, when vy,qz = 0.5
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