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In this paper, we propose a parametric model for multivariate distributions. The model is based on distortion functions, i.e. some transformations of a multivariate distribution which permit to generate new families of multivariate distribution functions. We derive some properties of considered distortions. A suitable proximity indicator between level curves is introduced in order to evaluate the quality of candidate distortion parameters. Using this proximity indicator and properties of distorted level curves, we give a specific estimation procedure. The estimation algorithm is mainly relying on straightforward univariate optimizations, and we finally get parametric representations of both multivariate distribution functions and associated level curves. Our results are motivated by applications in multivariate risk theory. The methodology is illustrated on real examples.

Introduction

Multivariate distributions can be modeled using parametric marginal distribution functions and parametric copulas, or directly by some specific parametric expressions of the multivariate cumulative distribution function. However some problems of such parametric forms can arise. We underline, for instance, the difficulty (see for example [START_REF] Bienvenüe | On hyperbolic iterated distortions for the adjustment of survival functions[END_REF], in the univariate case) -to fit non-regular or multimodal distributions using classical unimodal distributions; -to change the number of parameters and to improve a fit to observed data; -to estimate the parameters when their number is large; -to get analytical expressions for level curves of the distribution functions.

In order to overcome these shortcomings, in this paper we will define multivariate distributions by using probability distortions. We show that using distortions has several advantages compared to using classical parametric multivariate distributions. In particular we focus on:

-the possibility to get analytical expressions both for the multivariate distribution function and for the associated level-curves;

-the huge variety of reachable distributions (multimodal, etc.), with the possibility to improve the fit by adding parameters (via distortions composition), and the possibility to converge to any target in dimension 1;

Basic notions and preliminaries

Assume that we have d underlying risks described by a d-dimensional nonnegative real-valued random vector X = (X 1 , . . . , X d ). Denote its multivariate distribution function by F : R d + → [0, 1] with univariate margins F i (x i ) = P (X i ≤ x i ), for i = 1, . . . , d. Sklar's Theorem (1959) is a well-known result which states that for any random vector X, its multivariate distribution function has the representation F (x 1 , . . . , x d ) = C(F 1 (x 1 ), . . . , F d (x d )), where C is called the copula function. Effectively, it is a distribution function on the d-cube [0, 1] d with uniform margins and it links the univariate margins to their full multivariate distribution. In the case where we have a continuous random vector, we know that U i = F i (X i ) is an uniform random variable so that we can write C(u 1 , . . . , u d ) = F (F -1 1 (u 1 ), . . . , F -1 d (u d )), to be the unique copula associated with X, with quantile functions F -1 i defined by:

F -1 i (p) = inf{x ∈ R + : F i (x) ≥ p},
for p ∈ (0, 1).

Denote F the class of d-dimensional distribution functions F such that F : R d + → [0, 1] be a continuous partially increasing function 3 of a non-negative absolutely-continuous random vector4 X = (X 1 , . . . , X d ) (with respect to Lebesgue measure λ on R d ). In the following, F ∈ F will be said to satisfy regularity conditions.

Let L(α) = {x ∈ R d + : F (x) ≥ α} be the upper α-level set of F , for α ∈ (0, 1) and d ≥ 2. Furthermore, for any set A ⊂ R d + we denote by ∂A its boundary.

Note that, under the regularity conditions, ∂L(α) = {x ∈ R d + : F (x) = α} has Lebesgue-measure zero in R d + (e.g., see Property 3 in [START_REF] Tibiletti | Gli insiemi di livello delle funzioni di ripartizione n-dimensionali: un'applicazione statistica (Level sets of n-dimensional distribution functions: a statistical application)[END_REF]). We call ∂L(α) the α-level curve of distribution F . For instance, if d = 2, each ∂L(α) for α ∈ (0, 1), is identified by a decreasing curve in the plane R 2 + (e.g., see Theorem 2 in [START_REF] Rossi | Sulle curve di livello di una superficie di ripartizione in due variabili[END_REF]; Section 2 in [START_REF] Tibiletti | Sulla quasi concavita delle funzioni di ripartizione n-dimensionali -on quasi-concavity of n-dimensional distribution functions[END_REF].

We now recall the notion of absolutely monotonic function that will be useful later. The interested reader is referred also to [START_REF] Emiliano | On the distortion of a copula and its margins[END_REF]. Assume that n is a non-negative integer. Definition 1.1 (Absolute monotony) A real function g(t) is said to be absolutely monotonic, of order n, on an interval I if the following conditions are satisfied:

• g is continuous on I; and

• g has non-negative derivatives of orders up to, and including, n, i.e., g (k) (t) ≥ 0, for all t on the interior of I and for k = 0, 1, . . . , n.

Remark 1 If g and h are both absolutely monotonic of order n on an interval I and h is defined on I such that h(t) is on the interior of I for all t on the interior of I, then the composite function g • h(t) is also absolutely monotonic of order n on I.

Considered distortions

The aim of this section is to introduce some simple transformations of a multivariate distribution function F which permit to generate new families of multivariate distribution functions. Firstly we will be interested in distortion applied to the function F (called external distortions and leading to a distorted function F ext ), secondly we will include also the distortions of marginal components of F . In this last case we will finally obtain a global distorted function F . The interested reader is referred, for instance, to Christian Genest in the conference "Distributions with Given Marginals and Statistical Modeling" (Barcelona, July [START_REF] Nelsen | An introduction to copulas[END_REF][START_REF] Obereder | Bivariate density estimation using BV regularisation[END_REF][START_REF] Rossi | Sulle curve di livello di una superficie di ripartizione in due variabili[END_REF][START_REF] Tibiletti | Sulla quasi concavita delle funzioni di ripartizione n-dimensionali -on quasi-concavity of n-dimensional distribution functions[END_REF]2000) and [START_REF] Durrleman | A simple transformation of copulas[END_REF]. Proof : Let F ∈ F. If T is absolutely monotonic function on the interval [0, 1] then in particular T is continuous and increasing. So from Definition 3.6 (using the absolutely monotonic property) and 3.4 (using the continuous and increasing property) in Valdez and Xiao (2011) we obtain that T • F ∈ F.

We remark that assumptions of Proposition 2.1 are sufficient, but not necessary.

External distortion

In this section we introduce the external distorted multivariate distribution function F ext .

Definition 2.2 (Externally distorted distribution) Let F ∈ F a d-dimensional distribution function that satisfies the regularity conditions. If T ∈ T we define the external distorted multivariate distribution function by

F ext (x) = T • F (x) with x ∈ R d + .
Furthermore we introduce the following distortion for the upper α-level set of F .

Proposition 2.2 (External distortion for upper α-level set) Let α ∈ (0, 1) and

L(α) = {x ∈ R d + : F (x) ≥ α}. If T ∈ T , it holds that: L ext (α) = {x ∈ R d + : F ext (x) ≥ α} = L(T -1 (α)). Proof : Since F ext (x) = T • F (x) and T is invertible in [0, 1] then L ext (α) = {x ∈ R d + : T • F (x) ≥ α} = {x ∈ R d + : F (x) ≥ T -1 (α)}.
Hence the result.

Remark 2 If T is absolutely monotonic so that it fulfils sufficient assumptions of Proposition 2.1, T -1 is a concave function. Then in particular α := T -1 (β) > β, for β ∈ (0, 1). This means the transformation T transforms the upper β-level set of F into the upper α-level set, with higher risk level α.

Furthermore, we remark that using an external distortion we are able to modify the dependence structure of the random vector X. Indeed, for simplicity in the case d = 2, we easily obtain the following property:

Remark 3 (Dependence impact of external distortion) Let X and Y be two independent real random variables (i.e., F (x, y) = F X (x) F Y (y)) and T be a distortion such that T ∈ T . Let ( X, Y ) be a vector with distribution function

F ext (x, y) = T • F (x, y). Since in general T • (F X (x)F Y (y)) = (T • F X (x)) • (T • F Y (y)
), X and Y are not necessarily independent.

Global distortion

We now include to the externally distorted distribution F ext also the distortions of marginal components of F . In this last case we will finally obtain a global distorted distribution function F .

Definition 2.3 (Distorted distribution)

Let F be a d-dimensional distribution function. Let T ∈ T and T i : [0, 1] → [0, 1] be a continuous non-decreasing function, such that T i (0) = 0, T i (1) = 1, for i = 1, . . . , d. We introduce the global distorted distribution function F of F as :

F (x 1 , . . . , x d ) = T • C(T -1 1 F 1 (x 1 ), . . . , T -1 d F d (x d )).
The interested reader is also referred to Valdez and Xiao (2011) (Definitions 3.2 and 3.6) and Charpentier (2008). They deal with the particular case T = T 1 = . . . = T d .

Proposition 2.3 (Distorted margins) Denote by F1 , . . . Fd the marginal distributions of the joint distribution F . Then,

Fi = T • T -1 i • F i , for i = 1, . . . , d.
In analogy with Proposition 2.2, we now analyze the impact of the global distortion on the α-level curves of F . 

∂ L(α) = (F -1 1 • T 1 (u 1 ), . . . , F -1 d • T d (u d )), (u 1 , . . . , u d ) ∈ (0, 1) d , C(u 1 , . . . , u d ) = T -1 (α) . (1) 
Or equivalently, as a function of marginal distorted distributions F i , i = 1, . . . , d:

∂ L(α) = ψ T (∂L(T -1 (α))), ∀ α ∈ (0, 1), (2) 
with ψ T (x) = ( F -1 1 • T • F 1 (x 1 ), . . . , F -1 d • T • F d (x d ))
, where the function

ψ T : R d → R d and x = (x 1 , . . . , x d ) ∈ R d . Proof : It sufficient to remark that L(α) = {(x 1 , . . . x d ) : C(F 1 (x 1 ), . . . , F d (x d )) ≥ T -1 (α), F 1 (x 1 ) = T -1 1 •F 1 (x 1 ), . . . , F d (x d ) = T -1 d •F d (x d )}. Hence ∂ L(α) = ψ T1,••• ,T d (∂L(T -1 (α))), ∀ α ∈ (0, 1), (3) 
where

ψ T1,••• ,T d : R d → R d , x → ψ T1,••• ,T d (x) = (F -1 1 • T 1 • F 1 (x 1 ), . . . , F -1 d • T d • F d (x d )), with x = (x 1 , . . . , x d ) ∈ R d .
For Equation (1) one can write:

∂ L(α) = ψ T1,...,T d (∂L(T -1 (α))) = (F -1 1 • T 1 • F 1 (x 1 ), . . . , F -1 d • T d • F d (x d )), (x 1 , . . . , x d ) ∈ ∂L(T -1 (α)) = (F -1 1 • T 1 • F 1 (x 1 ), . . . , F -1 d • T d • F d (x d )), C(F 1 (x 1 ), . . . , F d (x d )) = T -1 (α) = (F -1 1 • T 1 (u 1 ), . . . , F -1 d • T d (u d )), (u 1 , . . . , u d ) ∈ (0, 1) d , C(u 1 , . . . , u d ) = T -1 (α)
. For Equation (2), the result comes down from Propositions 2.3 and Equation [START_REF] Bienvenüe | Iterative adjustment of survival functions by composed probability distortions[END_REF].

If initial copula C can be inverted, that is (u 1 , . . . , u d ) ∈ (0, 1) d , C(u 1 , . . . , u d ) = T -1 (α) is given, and if F 1 , . . . , F d admit analytic expressions for inverse distributions then Equation (1) can be particular useful to get an analytic expression for α-level curves.

Proposition 2.5 (Distorted copula) Denote C(u 1 , . . . , u d ) the distorted copula such that F (x 1 , . . . , x d ) = C( F 1 (x 1 ), . . . , F d (x d )). Then copula C only depends on external distortion T , i.e.

C(u 1 , . . . , u d ) = T (C(T -1 (u 1 ), . . . , T -1 (u d ))).
Proof : The result comes down from Proposition 2.3. Proposition 2.6 (Regular condition in bivariate case) Denote by C the initial copula. In the bivariate case, assume C is twice differentiable w.r.t. x and y. Write

C x (x, y) = ∂ ∂x C(x, y), C y (x, y) = ∂ ∂y C(x, y) and C xy (x, y) = ∂ ∂x ∂ ∂y C(x, y).
Assume T is a continuous and increasing function, and that T is differentiable with respective first and second order derivatives T and T . Then T ∈ T if and only if:

T (C(x, y))C xy (x, y) + T (C(x, y))C x (x, y)C y (x, y) ≥ 0, for all x, y ∈ [0, 1].
In particular, this condition is satisfied if T is absolutely monotonic of order 2. In the case C(x, y) = xy and this condition becomes:

T (z) + zT (z) ≥ 0, for all z ∈ [0, 1]. ( 4 
)
Proof: Write C(u, v) = T (C(T -1 (u), T -1 (v))). Asking that ∂ ∂u ∂ ∂v C(u, v) ≥ 0, the condition holds.
This last condition in Equation ( 4) obviously holds when T is absolutely monotonic of order 2, i.e. when T (x) and T (x) are positive functions of x. However, this condition also holds in some cases where T (x) is a concave function of x. This theoretical aspect will be illustrated in Section 5.

Estimation

Here, we aim at estimating a target-level curve of a global distorted d-dimensional distribution function.

Firstly we consider the estimation of the internal distortions. If target marginal distributions Fi , for i = 1, . . . , d, are given then the internal distortions can be easily deduced from the external one T .

Methodology Estimation of internal distortions

As a consequence of Proposition 2.3, when target distorted marginal distributions Fi are known, and when the global distortion T is given, we have:

T i = F i • F -1 i • T, for i = 1, . . . , d. (5) 
It follows that the main problem in our procedure is to estimate the external distortion T .

Estimation of external distortion

We now aim at estimating the external distortion T . When margins are perfectly fitted to given targets F i , i = 1, . . . , d, using Equation ( 2), the level-curves only depend on the external distortion T . For this reason we will denote in the following ∂ L T (β) the distorted β level-curve:

∂ L T (β) = ψ T (∂L(T -1 (β))), ∀ β ∈ (0, 1), (6) 
where the function

ψ T : R d → R d , x → ψ T (x) = ( F -1 1 • T • F 1 (x 1 ), . . . , F -1 d • T • F d (x d )), with x = (x 1 , . . . , x d ) ∈ R d .
Then, we can summarize some key-points for the estimation of the external distortion T :

-The distorted β level-curve ∂ L T (β) only depends on the external distortion T .

-Finding a good distortion T is strongly related to a good choice of level α := T -1 (β).

-Then we need an indicator of the quality of a candidate level-curve.

Following these considerations, firstly we define a suitable proximity indicator (PI) (see Section 3.2), that quantifies if a candidate level curve is good or not. An algorithm with a practical fit of these distortions in the case of piecewise linear external distortion is given in Section 3.3.

A suitable proximity indicator (PI)

Let X * a d-dimensional random vector with distribution F * that satisfies regularity conditions. Let ∂L * (α) be the α-level curve of F * . Frequently α-level curve ∂L * (α) are difficult to obtain analytically.

For this reason we will try to obtain quantities relying on F * rather than ∂L * .

In order to evaluate the proximity of a "candidate set" γ to the target-curve ∂L * (α) we introduce the following proximity indicator:

P I F * ,α (γ) = E X * [(F * (X * ) -α) 2 | X * ∈ γ]. (7) 
Trivially, if γ ⊆ ∂L * (α), then P I F * ,α (γ) = 0. As an interesting property we point out that the integral expression of formula [START_REF] Fermanian | The estimation of copulas: theory and practice[END_REF] only depends on the analytical expression of F * and not on ∂L * (α). For an illustration of the proximity indicator in [START_REF] Fermanian | The estimation of copulas: theory and practice[END_REF] the interested reader is remanded to Example 1 below.

Example 1 (An explicit proximity indicator in a bivariate setting) Let uniform marginal distributions in [0, 1] and the bivariate Farlie-Gumbel-Morgenstern copula structure, i.e., [START_REF] Nelsen | An introduction to copulas[END_REF], Example 3.12). Let the "candidate set" be [START_REF] Awanou | The multivariate spline method for scattered data fitting and numerical solutions of partial differential equations[END_REF]. In this case we can obtain a closed formula for P I F * ,α (γ), that depends only to θ ∈ [-1, 1] and α ∈ (0, 1).

F * (x, y) = xy + θ xy (1 -x) (1 -y), where θ ∈ [-1, 1] (see
γ α = {(x, y) ∈ [0, 1] 2 : x y = α}, for α ∈ (0,
Recall that Farlie-Gumbel-Morgenstern copula reduces to the independence case when θ = 0, and it can only model relatively weak dependence in the two extreme cases (θ = ±1) (e.g. Example 3.12, Nelsen, 1999). Then in particular P I F * ,α (γ) = 0, for θ = 0. In this sense, Figure 1 shows that P I F * ,α (γ) takes small values for θ close to zero (θ = 0.18). Conversely for θ close to ±1 (θ = -0.99 and θ = 0.85) we have a greater range of values of P I F * ,α (γ). Furthermore we remark that P I F * ,α (γ) = 0 for α = 0 and α = 1, P I F * ,α (γ) > 0 for all α ∈ (0, 1) and it is a continuous function with respect to α (see Figure 1). 

F * (x, y) = xy + θ xy (1 -x) (1 -y) and γ = {(x, y) ∈ [0, 1] 2 : x y = α}.
In the case where we do not dispose of an explicit formula for the proximity indicator of a candidate set, we have to estimate it. If F * is supposed to be unknown one can propose the estimated version of the proximity indicator in [START_REF] Fermanian | The estimation of copulas: theory and practice[END_REF] as:

P I F * ,α (γ) = P I F * ,α (γ),
where F * is a consistent smooth estimator of F * admitting a density function. For instance given a d-dimensional sample {x * 1 , . . . , x * n }, with corresponding empirical distribution function F * n , the smooth estimator F * could be f K * F * n , where f K is a suitable kernel density function (e.g. see Chacón and Rodríguez-Casal, 2010). Furthermore if γ is a discrete set of points, then one can write :

P I F * ,α (γ) = n i=1 x∈γ ( F * (x) -α) 2 f K x-x * i h n i=1 x∈γ f K x-x * i h ,
In order to build a discrete candidate set from parametric level curve, we introduce following notation that will be useful for numerical algorithms. Definition 3.1 (Discretization of a level curve) We denote by ∂L g (α) any finite subset of ∂L(α):

∂L g (α) = F -1 1 (α 1 ), . . . , F -1 d (α d ) , (α 1 , . . . , α d ) ∈ C g,α .
where C g,α is a finite subset of (α 1 , . . . , α d ) ∈ (0, 1) d : C(α 1 , . . . , α d ) = α . In the independence case, one can propose for example, with g ∈ N * :

∂L g (α) = F -1 1 (α p1 ), . . . , F -1 d (α p d ) , (p 1 , . . . , p d ) ∈ P g , with P g = i1 g+1 , . . . , i d g+1 , (i 1 , . . . , i d ) ∈ {1, . . . , g} d , i 1 + . . . + i d = g + 1 .
The set P g is a discrete subset of the unit simplex in (0, 1) d . Since components of its vectors are summing to one, this ensures ∂L g (α) ⊂ ∂L(α).

Estimation algorithm

Assume that T has a parametric form and belongs to the class of regular distortions T . The best fitted distorted curve for level β can be defined as

∂ L opt (β) = ∂ L T opt (β) , with T opt = arginf T ∈T P I F * ,β ∂ L T (β) ,
and using (6), we get

∂ L opt (β) = ψ T (∂L(T -1 (β))) , with T = arginf T ∈T P I F * ,β ψ T (∂L(T -1 (β))) .
If T has a lot of parameters, the optimization procedure have to face a dimensionality problem (cf. Richard E. Bellman, the curse of dimensionality). Here, the problem comes from the fact that ψ T depends on the searched distortion T .

Assume that at a step ν of the algorithm, we have a suitable approximation ψ T ν of ψ T , where T ν is a known distortion. One can define at this step ν the corresponding fitted level-curve:

∂ L ν opt (β) = ψ T ν (∂L(T -1 (β))), with T = arginf T ∈T P I F * ,β ψ T ν (∂L(T -1 (β))) (8) = ψ T ν (∂L(α ν )), with α ν = arginf a∈(0,1) P I F * ,β [ψ T ν (∂L(a))] . (9) 
The optimization in Equation ( 9) is far more easier to solve because it is a one-dimensional optimization, whereas optimization in Equation ( 8) is an optimization relying on all parameters of T .

This trick simply rely on the fact when ψ T ν is known, finding the best distortion T is equivalent to find the best level α ν , simply by setting α ν = T -1 (β). As a consequence, the distortion T is then assumed to pass through the point (α ν , β).

As a summary, given chosen distorted levels β j , we aim at finding optimal corresponding levels α j , and thus the optimal distortion T passing through of all points (α j , β j ), j = 1, . . . , m. Such a distortion passing through all points of a set Ω will be written T Ω , as detailed in following definition.

Definition 3.2 (Piecewise linear distortion)

Let Ω = {ω 1 , . . . , ω m }, ω j ∈ (0, 1) 2 , j = 1, . . . , m, m ∈ N * . We denote by T Ω (x) a given nonparametric function linking point (0, 0), points of Ω, and point (1, 1). Typically, T Ω (x) can be piecewise linear, or piecewise linear after a change of scale.

Starting from these considerations and Equation ( 9), we can now introduce the procedure of estimation of T Ω (x), detailed in Algorithm 1.

A necessary condition for this algorithm to be applied is that T Ω (x) is an increasing function for x, that is for all i ∈ {1, . . . , m}, α ν i ≥ α ν i-1 , where α ν 0 = 0 and ν = ν max . This algorithm is motivated by the following consideration. In the case where the levels of Ω ν converge to the respective levels of a set Ω, then the distortion T ν converges toward a distortion T .

To summarize, Algorithm 1 gives a fitted nonparametric external distortion T , and corresponding fitted internal distortions T 1 , . . . , T d .

Hyperbolic conversion functions

In this section we consider this particular class of conversion function, which correspond to functions that are defined in Bienvenüe and Rullière (2012).

Definition 4.2 (A class of hyperbole)

The considered hyperbole H is

H m,h,ρ1,ρ2,η (x) = m -h + (e ρ1 + e ρ2 ) x -m -h 2 -(e ρ1 -e ρ2 ) x -m -h 2 2 + e η-ρ 1 +ρ 2 2 . ( 10 
)
with m, h, ρ 1 , ρ 2 ∈ R, and one smoothing parameter η ∈ R.

After some calculations, one can check that

H -1 m,h,ρ1,ρ2,η (x) = H m,-h,-ρ1,-ρ2,η (x).
In the following we illustrate with some examples the hyperbolic conversion functions proposed in Definition 4.2. 

F (x, y) = T • C(T -1 F 1 (x), T -1 F 2 (y)),
where T = T f , with f = H m,h,ρ1,ρ2,η . We denote f the associated density function to F . For graphical illustration see Figure 2. In the following we illustrate a global distortion in the case of a 3-dimensional distribution function.

Example 3 (Global distortion: a 3-dimensional case) We provide an illustration of a 3-dimensional global distorted distribution F (x, y, z) (see Definition 2.3). We follow the same approach to the bivariate example above. As internal distortion we consider the hyperbolic conversion functions proposed in Definition 4.2 with m = 0.5, h = 0, ρ 1 = -ρ 2 = 0.91, η = 3. We remark that with this choice of parameters we deal with an absolutely monotonic external distortion, of order 3. Using Definition 2.3, we consider the 3-dimensional distorted distribution function :

F (x, y, z) = T • C(T -1 F 1 (x), T -1 F 2 (y), T -1 F 3 (z)),
where T = T f , with f = H m,h,ρ1,ρ2,η . For graphical illustration see Figure 3. 

Smooth estimation algorithm

We consider the generic hyperbolic conversion function defined in Equation [START_REF] De | Large quantile estimation in a multivariate setting[END_REF]. First remark that when the smoothing parameter η tends to -∞, the hyperbole H tends to the angle function:

A m,h,ρ1,ρ2 (x) = m -h + (x -m -h) e ρ1 1 {x<m+h} + e ρ2 1 {x>m+h} . (11) 
As remarked in Bienvenüe and Rullière (2012), it thus appears that hyperbolic distortions have the advantage of being smooth versions of angle functions. They show in their paper that initial parameters for the estimation are easy to obtain with angle compositions. 

= (m, h, ρ 1 , ρ 2 , a 1 , r 1 , . . . , a k , r k ) if k ≥ 1, or θ = (m, h, ρ 1 , ρ 2 ) if k = 0.
We define the angle composite distortion A θ as:

A θ = T f θ , with f θ = A a k ,0,0,r k • • • • • A a1,0,0,r1 • A m,h,ρ1,ρ2 if k ≥ 1, A m,h,ρ1,ρ2 if k = 0,
and the hyperbolic composite distortion H θ,η as:

H θ,η = T f θ,η , with f θ,η = H a k ,0,0,r k ,η • • • • • H a1,0,0,r1,η • H m,h,ρ1,ρ2,η if k ≥ 1, H m,h,ρ1,ρ2,η if k = 0,
where A m,h,ρ1,ρ2 is given in Equation [START_REF] Di Bernardino | Plug-in estimation of level sets in a non-compact setting with applications in multivariable risk theory[END_REF], and where H m,h,ρ1,ρ2,η is defined in Definition 4.2.

Remark 5 (Inverse composite distortions) Let k ∈ N. Consider η ∈ R and a given parameter vector

θ = (m, h, ρ 1 , ρ 2 , a 1 , r 1 , . . . , a k , r k ) if k ≥ 1, or θ = (m, h, ρ 1 , ρ 2 ) if k = 0. Since T -1 f = T f -1 , the angle composite distortion A -1
θ is such that:

A -1 θ = T f θ , with f θ = A m,-h,-ρ1,-ρ2 • A a1,0,0,-r1 • • • • • A a k ,0,0,-r k if k ≥ 1, A m,-h,-ρ1,-ρ2 if k = 0.
The hyperbolic inverse composite distortion H θ,η is such that:

H -1 θ,η = T f θ,η , with f θ,η = H m,-h,-ρ1,-ρ2,η • H a1,0,0,-r1,η • • • • • H a k ,0,0,-r k ,η if k ≥ 1, H m,-h,-ρ1,-ρ2,η if k = 0, Definition 4.4 (Suited parameters from Ω) Let k ∈ N.
Consider one given set Ω = {ω 1 , . . . , ω 3+k }, ω j ∈ (0, 1) 2 . Denote by u j and v j the two respective components of each ω j in the logit scale, such that ω j = (logit -1 u j , logit -1 v j ), j ∈ {1, . . . , 3 + k}. Assume that u j and v j are increasing sequences of j. We define:

Θ(Ω) = (m, h, ρ 1 , ρ 2 , a 1 , r 1 , . . . , a k , r k ) if k ≥ 1, (m, h, ρ 1 , ρ 2 ) if k = 0. where m = u2+v2 2 , h = u2-v2 2 , ρ 1 = ln v2-v1 u2-u1 , ρ 2 = ln v3-v2 u3-u2 , r k = ln v 3+k -v 2+k u 3+k -u 2+k u 2+k -u 1+k v 2+k -v 1+k , a k = v 2+k , k ≥ 1.
Proposition 4.1 (Suited composite distortions) Let k ∈ N. Consider one given set Ω = {ω 1 , . . . , ω 3+k }, ω j ∈ (0, 1) 2 and a smoothing parameter η ∈ R. Set θ = Θ(Ω), then -the distortion A θ (x) is piecewise linear in the logit scale and will be called logit-piecewise linear. It links point (0, 0), points of Ω, and point (1, 1), so that it fulfils conditions of Definition 3.2.

-the distortion H θ,η converges pointwise to A θ as η tends to -∞. It results that the continuous and differentiable distortion H θ,η can fit as precisely as desired the set of points Ω when η tends to -∞.

Proof: The first result is proved in Bienvenüe and Rullière (2012). It simply comes from the fact that A Θ(Ω) (u j ) = v j for all j ∈ {1, . . . , 3 + k}, where ω j = (logit -1 u j , logit -1 v j ). The convergence of the hyperbole composite distortion toward the angle composite distortion is straightforward and also evoked in Bienvenüe and Rullière (2012).

Using Algorithm 1, one can find a piecewise or logit-piecewise linear distortion for the external distortion and corresponding set Ω. Furthermore, using Proposition 2.3, one can build the corresponding internal distortions and easily propose suited piecewise or logit-piecewise linear internal distortions and corresponding sets Ω i , for i = 1, . . . , d.

The corresponding parameters of these sets Ω and Ω 1 , . . . , Ω d are given by Definition 4.4. These parameters θ = Θ(Ω) and θ 1 = Θ(Ω 1 ), . . . , θ d = Θ(Ω d ) constitute initial values for distortions of smoothed hyperbolic external and internal distortions. Choosing a convenient smoothing parameter η, one can define a complete vector parameter:

- → Θ = (θ 1 , . . . , θ d , θ, η).
As seen previously, from now, the estimation of -→ Θ relies exclusively on univariate optimizations.

From estimated vector -→ Θ , the corresponding estimated distribution is:

F-→ Θ (x 1 , . . . , x d ) = H θ,η • C(H -1 θ1,η • F 1 (x 1 ), . . . , H -1 θ d ,η • F d (x d )). ( 12 
)
and the parametric α level-curves are given by Proposition 2.4

∂ L-→ Θ (α) = {(F -1 1 • H θ1,η (u 1 ), . . . , F -1 d • H θ1,η (u d )), (u 1 , . . . , u d ) ∈ (0, 1) d , C(u 1 , . . . , u d ) = H -1 θ,η (α)}. ( 13 
)
Since initial parameters of -→ Θ are usually close to optimal values, all these parameters can be improved using standard local optimization algorithm, like gradient descent methods:

- → Θ * = argmax-→ Θ ln L( - → Θ ), ( 14 
)
with L the likelihood on the considered data.

Remark 6 Since these initial values are usually close to optimal values, the numerical optimization easily converges. It is important to notice that this optimization could be done directly in theory. However in practice, starting from piecewise linear distortions is necessary to ensure that the optimization converges.

In the following we detail the algorithm-procedure to get smoothed version of distortions obtained in Algorithm 1.

Algorithm 2 Smooth estimation algorithm

Piecewise linear external distortion Let 0 < β 1 < . . . < β m < 1 be a set of levels, Obtain distortion levels Ω from Algorithm 1, Obtain suited parameters θ = Θ(Ω) from Definition 4.4 and parametric distortion T = A θ .

Piecewise linear internal distortions for i varying from 1 to d Let 0 < α

(i) 1 < . . . < α (i)
m i < 1 be a set of levels associated to the ith-marginal F i , Obtain distortion levels Ω i = (α

(i) j , T i (α (i) j )) j=1,...,m i , from Equation (5), Obtain suited parameters θ i = Θ(Ω i ) from Definition 4.

and distortions T

i = A θ i . end for

Smoothed distortions

Choose a smoothing parameter η, Improve all parameters including η by Equation ( 14), Check validity condition T ∈ T , Get parametric expression for F and ∂ L by Equations ( 12) and ( 13).

Refinements

In some particular numerical cases, the choice of the input values of the algorithms may be difficult to do. This section presents some propositions to ease this choice.

Choice of initial levels:. Concerning the choice of initial levels β j , a problem is that if T is very concave or convex, then levels α j = T -1 (β j ) may be concentrated on a small interval of (0, 1), e.g. (0.90, 1), even for values of β j spread quite uniformly on (0, 1). Proposed solution: One can modify levels β j in order to ensure that both α j and β j are reasonably spread over the whole interval (0,1). Let ∆ be the diagonal of equation y = x. Assuming that the projection of (α j , β j ) on ∆ is (δ j , δ j ), one gets β j = -α j + 2δ j . Given a distortion T and a set of levels 0 < δ 1 < . . . < δ m < 1, e.g. δ j = j/(m + 1), one can define

α j (T ) = a such that T (a) = -a + 2δ j , β j (T ) = -α j (T ) + 2δ j .
Replacing initial levels β j by β j (T ν ) at the beginning of each step ν in Algorithm 1 allows to get a better distribution of elements of the final set Ω into (0, 1) 2 . Similar considerations can be applied to each internal distortion T i : initial levels α (i) j can be replaced by α j (T i ) in Algorithm 2, for j = 1, . . . , m i .

Choice of initial smoothing parameter:. Consider a given angle function A m,h,ρ1,ρ2 with apex in (m + h, m -h). Replacing this angle by a smooth hyperbole H m,h,ρ1,ρ2,η causes some problems. First, the hyperbole is not passing trough the point (m + h, m -h) as the angle function. Second, when η is large, the hyperbole gets far from the angle function. In summary, the angle is set to pass through a well chosen point (m + h, m -h), but the hyperbole gets far from this point when smoothing parameter η increases. In numerical illustrations, the optimization of parameter η thus leads to small values of this parameter, high absolute derivatives of distribution functions at some points, and an insufficient smoothing of the final distortions. Proposed solution: Define a new hyperbole H * as

H * m,h,ρ1,ρ2,η = H m,h+δ(ρ1,ρ2,η),ρ1,ρ2,η with δ(ρ 1 , ρ 2 , η) = e ρ 2 -e ρ 1 √ (1+e ρ 1 )(1+e ρ 2 ) e -ρ 1 +ρ 2 4 e η/2 .
One can check after some calculations that:

-H * m,h,ρ1,ρ2,η (m+h) = m-h, so that the new hyperbole H * is passing trough the point (m+h, m-h).

-

δ(-ρ 1 , -ρ 2 , η) = -δ(ρ 1 , ρ 2 , η), so that H * -1 m,h,ρ1,ρ2,η = H * m,-h,-ρ1,-ρ2,η .
Given a smoothing parameter η, the proposed improvement is to choose H * m,h,ρ1,ρ2,η as a smooth version of the angle A m,h,ρ1,ρ2 , instead of H m,h,ρ1,ρ2,η . Corresponding distortion composition will be denoted H * instead of H. Using H * instead of H, an univariate maximization of the log-likelihood on the data leads to a good choice of the parameter η.

Choice of interpolation function TΩ :. Piecewise linear distortion TΩ is used in Algorithm 1. It gives interpolations of T , when T is passing through all points of Ω. The most simple solution is to choose a simple linear interpolation of points of Ω. The problem is that when T is very concave or convex, a simple linear interpolation may be quite far from the real value of T . Proposed solution: The proposed solution consists in replacing TΩ by A Θ(Ω) , or eventually by a smoothed version H * Θ(Ω),η for a given parameter η.

Numerical applications

A simple bivariate model

In the following numerical illustrations we consider a very basic independent exponential model where:

F (x 1 , x 2 ) = F 1 (x 1 )F 2 (x 2 ), with F 1 (x) = F 2 (x) = 1 -e -x , x ∈ R + .
We aim at distorting this basic bivariate distribution in order to fit real data. Once distortions T , T 1 , . . . , T d estimated, we obtain analytical expressions for F and ∂ L(α):

F (x 1 , x 2 ) = T (T -1 1 (1 -e -x1 ) • T -1 2 (1 -e -x2
)), for x 1 , x 2 ≥ 0, and for any α ∈ (0, 1), from Proposition 2.4,

∂ L(α) = -log (1 -T 1 (u)) , -log 1 -T 2 T -1 (α) u , u ∈ (T -1 (α), 1) . (15) 
Distorted marginals in this simple bivariate model are given by:

F1 (x) = T • T -1 1 (1 -e -x ) and F2 (x) = T • T -1 2 (1 -e -x ),
and corresponding distorted copula is

C(u, v) = T T -1 (u) • T -1 (v) .
In this independent case the regular condition of Proposition 2.6 becomes:

T (x) + x T (x) ≥ 0, for any x ∈ [0, 1]. (16) 
This simple initial independent exponential multivariate distribution is very far from the data that will be considered. It has been chosen to demonstrate the ability of the estimation procedure to fit real data even when starting with a very poor initial distribution.

Real case study: Loss-ALAE data

In this section we present a real case for which we illustrate the behavior of our algorithm, presented in Sections 3 and 4. We consider the uncensored Loss-ALAE data in the logarithmic scale (for details see [START_REF] Frees | Understanding relationships using copulas[END_REF]. The data size is n = 1500. Each claim consists of an indemnity payment (the loss, X) and an allocated loss adjustment expense (ALAE, Y ). Examples of ALAE are the fees paid to outside attorneys, experts, and investigators used to defend claims. We now implement Algorithm 1 and 2 on Loss-ALAE data.

External distortion T :

From Algorithm 1 we obtain the piecewise linear external distortion T Ω (x), for x ∈ [0, 1] (see Figure 4, black line). Furthermore, from set Ω, by applying Proposition 4.4, the suited angle composition-distortion is: Red line is bisectrix of the first quadrant. We get Ω = {(0.00987, 0.1), (0.24935, 0.5), (0.80883, 0.9)} .

A θ , with θ = Θ(Ω),
For a graphical representation of A θ see Figure 4, green line. We check that despite the concavity of T , it satisfies the regular condition of Equation ( 16) on points such that T is differentiable. Internal distortions T i : From Proposition 4.4 we obtain that the estimated marginal distortions T 1 and T 2 can be represented using angle compositions T Including smoothing parameters:

We now include smoothing hyperbolic distortions indeed of angle compositions. For these data we use the hyperbolic function:

H * m,h,ρ1,ρ2,η = H m,h+δ(ρ1,ρ2,η),ρ1,ρ2,η with δ(ρ 1 , ρ 2 , η) = e ρ2 -e ρ1 (1 + e ρ1 )(1 + e ρ2 ) e -ρ 1 +ρ 2 4 e η/2 , (17) 
and H m,h,ρ1,ρ2,η as in [START_REF] De | Large quantile estimation in a multivariate setting[END_REF]. In this case we choose a smoothing parameter for the external distortion (i.e. η) and two smoothing parameters the internal ones (i.e. η 1 and η 2 ). Using the global optimization presented in Equation ( 14) we get: η = 0.18, η 1 = η 2 = -2. This value was chosen as the initial value for a global maximization with respect to the whole vector -→ Θ (see Equation ( 14)). In this case we obtain: We check that the smoothed distortion T satisfies the regular condition of Equation ( 16) on all points of (0, 1). For a graphical representation of the smoothed distortion T , i.e. H * θ,η , with η = 0.18, see Figure 4, blue line. The log-likelihood of this model on the Loss-ALAE data is -21804.01. In the literature the fit of Loss-Alae data has received some attention. For instance [START_REF] Frees | Understanding relationships using copulas[END_REF] fit on these data a Gumbel-Hougaard copula with parameter θ = 1.453; Loss ∼ Pareto with parameter (14.036, 1.122) and ALAE ∼ Pareto with parameter (14.219, 2.118). The obtained log-likelihood on the Loss-Alae data of the Frees and Valdez's model is : -49075.82. Furthermore in [START_REF] Klugman | Fitting bivariate loss distributions with copulas[END_REF], they propose a fitted model on Loss-Alae data such that the log-likelihood is -31767.9. Firstly, we remark that these results belong to the same order of magnitude. However, our model seems best fit the considered data.

In Figure 6, we compare our method with the empirical level curves defined by {(x, y) ∈ R 2 + : F n (x, y) = α}, where F n is the bivariate empirical estimator of F , for α = 0.5, 0.8. We have drawn the level curves ∂ L A θ (α) obtained using a composition of angles (as described by Algorithm 1) and ∂ L H * θ,η (α), using smoothed hyperbolic external and internal distortions in [START_REF] Nelsen | An introduction to copulas[END_REF], (as described by Algorithm 2), see Equation [START_REF] Chacon | A note on the universal consistency of the kernel distribution function estimator[END_REF]. Note that the smoothing parameter η is not really crucial with respect to the quality of our estimation, even if it improves the estimation of the level-curves. However it is important in order to obtain differentiable representations of level curves ∂ L(α). In Figure 7(left) we draw the final distorted distribution F (x 1 , x 2 ) and its level-curves; in Figure 7(right) we present the level-curves of distorted density function f (x 1 , x 2 ). In particular Figure 7(right) illustrates the good quality of the fit of proposed model on the bivariate Loss-ALAE data. 

Real case study: Old Faithful Geyser Data

In this section we study a second real case that presents an interesting bimodal behavior. This data concern 272 eruptions of the Old Faithful geyser in Yellowstone National Park. Each observation consists of two measurements: the duration (in min) of the eruption (X), and the waiting time (in min) before the next eruption (Y ). This waiting time has been divided by 20 in order to get the same order of magnitude on both axis. The interested reader is referred for instance to [START_REF] Obereder | Bivariate density estimation using BV regularisation[END_REF], Biernacki et al. (2007). We following the same estimation procedure presented in Section 5.2 above, for Loss-Alae data. From Algorithm 1 we obtain the piecewise linear external distortion T Ω (x), for x ∈ [0, 1] (see Figure 8, black line) and the suited angle composition-distortion is: A a4,0,0,r4 • A a3,0,0,r3 • A a2,0,0,r2 • A a1,0,0,r1 We remark how our distortions can be able to capture the bimodal behavior of these data (see Figure 10, right). Despite its observable complexity, the proposed parametric fit also allows to get a relatively simple parametric expression for level curves, using Equation (15) (see Figure 10, left). 

Conclusion

Probability distortions allow to build new classes of multivariate distribution functions. Impacts of such distortions on multivariate level curves have been studied. Among interesting properties, we have seen that external distortions are only acting on the univariate level of a level curve. Finding the best distorted levels on a particular data directly gives external distortion point values, and only requires univariate optimizations. Following this idea, we have proposed two algorithms: Algorithm 1 gives estimated piecewise linear distortions to fit a given data, and Algorithm 2 gives smoothed version of these distortions by using hyperbolic compositions in the logit scale.

The theoretical properties of considered distortions are thus very helpful for fitting distorted multivariate distributions. Applications on real data have emphasis the advantages of this methodology. First, despite the variable and possibly high number of parameters, the estimation is straightforward and only relying on univariate optimizations. Second, the methodology benefit from the theoretical (and practical) possibility to fit marginal distributions as precisely as desired. Third, it leads to parametric expressions of both cumulative distribution functions and level curves, which can be useful for risk measures. Fourth, numerical results on real data easily lead to a better likelihood than other parametric representations of the same data in some recent studies.

Some interesting perspectives would be a better characterization of necessary and sufficient conditions for regular external distortions, some work on the optimal initial levels to be chosen for the proposed algorithms, and on how to choose or reduce the number of parameters. The use of the parametric level curves for risk measures also opens a large research field.
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 21 Regular external distortions) Let T : [0, 1] → [0, 1] be a continuous and increasing function on the interval [0, 1], with T (0) = 0, T (1) = 1, such that ∀ F ∈ F, T • F ∈ F. Denote by T the set of such functions T . Proposition 2.1 (A sufficient regular condition) If T is an absolutely monotonic function of order d on the interval [0, 1], such that T (0) = 0 and T (1) = 1, then T ∈ T .

Proposition 2 . 4 (

 24 Distorted α-level curves) Let F be a d-dimensional distribution function and F be as in Definition 2.3. Let ∂ L(α) = {x ∈ R d + : F (x) = α}. A parametric expression for this distorted α-level curve is:

Figure 1 :

 1 Figure 1: P I F * ,α (γ), for θ = -0.99 (dashed line), θ = 0.18 (dotted line), θ = 0.85 (full line), with F * (x, y) = xy + θ xy (1 -x) (1 -y) and γ = {(x, y) ∈ [0, 1] 2 : x y = α}.

Example 2 (

 2 Global distortion: a bivariate case) We provide an illustration of a bivariate global distorted distribution F (x, y) (see Definition 2.3). As internal distortion we consider the hyperbolic conversion functions proposed in Definition 4.2 with m = 0.536, h = 0, ρ 1 = -ρ 2 = 0.321, η = 5. Let now C(u, v) = u v and F 1 (x) = F 2 (x) = 1 -e -x . Then F (x, y) = (1 -e -x )(1 -e -y ). Using Definition 2.3, we consider the bivariate distorted distribution function :

Figure 2 :

 2 Figure 2: (Left) level curves of distorted density f (x, y); (Center) level curves of non-distorted independent density f (x, y) = e -x e -y ; (Right) level curves for α = 0.2, 0.4, 0.7 of the distorted distribution F (x, y) (full curves) and the non-distorted independent distribution (i.e., F (x, y) = (1 -e -x ) (1 -e -y )) (dashed curves). Parameters: m = 0.536, h = 0, ρ 1 = -ρ 2 = 0.321, η = 5.

Figure 3 :

 3 Figure 3: (Left) level curves for α = 0.1, 0.4, 0.7 of the 3-dimensional distorted distribution F (x, y, z), for parameters m = 0.5, h = 0, ρ 1 = -ρ 2 = 0.91, η = 3. (Right) level curves for α = 0.1, 0.4, 0.7 of the 3-dimensional non-distorted independent distribution with exponential marginals with parameter 1.

Definition 4 . 3 (

 43 Composite distortions) Let k ∈ N. Consider η ∈ R and a given parameter vector θ

m h ρ 1 ρ 2 θ

 2 with the following vector of parameters θ = (m, h, ρ 1 , ρ 2 ): Parameters -0.541 -0.551 -0.467 -0.146

Figure 4 :

 4 Figure4: T (x) = T Ω (x) (black line) and A θ (x) (green line), H * θ,η (x) (blue line), with η = 0.18. Red line is bisectrix of the first quadrant. We get Ω = {(0.00987, 0.1), (0.24935, 0.5), (0.80883, 0.9)}

1 = 1 = A -1 θ1 and T - 1 2=

 111 A θ1 and T 2 = A θ2 with associated parameters: A -1 θ2 can be directly obtained by Remark 5.

1 i•

 1 Proposition 2.3, we get Fi = T • T -F i , for i = 1, 2,, where T , T -1 i are obtained above and F i are the known initial marginals (in this case F 1 (x) = F 2 (x) = 1 -e -x ). The results are drawn in Figure 5 below.

Figure 5 :

 5 Figure 5: (Left) F1 (red) and the empirical distribution function of Loss data (black). (Right) F2 (red) and the empirical distribution function of ALAE data (black).

Figure 6 :Figure 7 :

 67 Figure 6: ALAE versus Loss data (in logarithmic scale). ∂ L A θ (α) (red curves); ∂ L H * θ,η (α) (green curves); Empirical level

Figure 8 : 1 i•

 81 Figure 8: T (x) = T Ω (x) (black line), A θ (x) (green line), H * θ,η (x) (blue line). Red line is bisectrix of the first quadrant.Furthermore, from Proposition 2.3, we get Fi = T• T -1 i • F i , for i = 1, 2,, where T , T -1 i are obtained above and F i are the known initial marginals (in this case F 1 (x) = F 2 (x) = 1 -e -x ). The results are drawn in Figure9below.

Figure 9 :

 9 Figure 9: (Left) F1 (red) and the empirical distribution function of the duration (in min) of the eruption data (black). (Right) F2 (red) and the empirical distribution function of the waiting time (in min) data (black).

Finally, in Figure 10

 10 (left) we draw the final distorted distribution F (x 1 , x 2 ) and its level-curves; in Figure10(right) we present the level-curves of distorted density function f (x 1 , x 2 ). In particular Figure10(right) illustrates the good quality of the fit of proposed model on the bivariate Old Faithful geyser data.

E r u p ti o n ti mFigure 10 :

 10 Figure 10: Distorted distribution F (x 1 , x 2 ) whit associated distorted level curves (red curves) (left); Level curves of distorted density f (x 1 , x 2 ) and Old Faithful geyser data (red points) (right).

  • A m,h,ρ1,ρ2 , with θ = Θ(Ω) the following vector of parameters:For a graphical representation of A θ see Figure8, green line. The estimated marginal distortions T 1 and T 2 can be represented using angle compositions T 1 = A θ1 and T 2 = A θ2 with associated parameters:As in the Loss-ALAE model (see Section 5.2) we now include the smoothing hyperbolic distortions indeed of angle compositions. For these data we use the hyperbolic function in Equation[START_REF] Nelsen | An introduction to copulas[END_REF]. Using the global optimization presented in Equation (14) we get: η = 1, η 1 = η 2 = -7.5. The log-likelihood of our final smoothed model on the Old Faithful geyser data is -1072. In the literature the fit of Old Faithful geyser data has received some attention (see for instance[START_REF] Obereder | Bivariate density estimation using BV regularisation[END_REF].Biernacki et al. (2007) fit on these data a Gaussian mixture model. In this case, they obtain a log-likelihood equal to -1124. As in Section 5.2, we remark that these results belong to the same order of magnitude. However, our model seems best fit the considered data. For a graphical representation of the smoothed distortion T , i.e. H * θ,η , with η = 1, see Figure8, blue line.

	Parameters	m	h	ρ 1	ρ 2	a 1	a 2	a 3	a 4	r 1	r 2	r 3	r 4
	θ	-6.081 5.328 0.863 2.061 -3.915 -2.251 -0.754	0	-1.614 -1.216 -0.391 0.661
	Parameters	m	h	ρ 1	ρ 2	a 1	a 2	a 3	a 4	r 1	r 2	r 3	r 4
	θ 1	2.526 0.651 -2.213 -1.169 2.314 2.317 3.808 4.556 0.115 1.039 -1.474 -0.785
	θ 2	2.509 -0.067 -1.683 -2.011 2.631 2.665 2.966 3.623 0.215 0.353 0.491 -1.014

A function F (x 1 , . . . , x d ) is partially increasing on R d + \ (0) if the functions of one variable g(•) = F (x 1 , . . . , x j-1 , •, x j+1 , . . . , x d ) are increasing. About properties of partially increasing multivariate distribution functions we refer the interested reader to[START_REF] Rossi | Sulle curve di livello di una superficie di ripartizione in due variabili[END_REF] and[START_REF] Tibiletti | Sulla quasi concavita delle funzioni di ripartizione n-dimensionali -on quasi-concavity of n-dimensional distribution functions[END_REF].

We restrict ourselves to R d + because, in our applications, components of d-dimensional vectors correspond to random losses and are then valued in R + . However extensions of our results in the case of multivariate distribution function on the entire space R d are possible.
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Algorithm 1 Fit of piecewise linear distortions

Let 0 < β 1 < . . . < β m < 1 be a set of levels.

Set Ω 0 = {(β j , β j ), j = 1, . . . , m}. for ν varying from 1 to ν max Compute external fitted distortion of step ν, T ν (x) = T Ω ν-1 (x).

for j varying from 1 to m Compute α ν j = arginf a∈(0,1)

). end for Set Ω ν = {(α ν j , β j )} j∈{1,...,m} . end for

Remark 4 We summarize here some advantages of Algorithm 1:

1. Using this procedure our d-dimensional problem is decomposed in a sequence of univariate optimization problems. We just have to optimize separately m univariate parameters α i , corresponding to the levels of the level-curves.

2. Once distortions T , T 1 , . . . , T d estimated, one can provide analytical expressions for both F and L. This is an interesting aspect of the procedure above because, frequently, the analytical expression of L is quite difficult to obtain.

3. Algorithm 1 gives a non parametric estimation of T and corresponding internal distortions T 1 , . . . , T d . Smoothed parametric version of these distortions will be easy to find (see Section 4.3).

In order to get smooth fitted distortions satisfying regular conditions, we propose hereafter some numerical applications using hyperbolic distortions.

Smooth estimation

A particular class of distortion functions

We take back from Bienvenüe and Rullière (2012) the following key notion of conversion function and distortion function : 

Remark that the distortions function are chosen in a way to be easily invertible. In particular in a way such that T f • T g = T f •g , T -1 f = T f -1 . These readily invertible distortions help simulation of the distorted distributions (see [START_REF] Bienvenüe | On hyperbolic iterated distortions for the adjustment of survival functions[END_REF].