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Résumé. Cet article présente, d’une manière pédagogique, les idées mâıtresses
derrière un nouveau paradigme de synthèse optimale de l’expérience d’identification.
Ce nouveau paradigme a pour objectif de synthétiser l’expérience d’identification
la moins coûteuse tout en garantissant un modèle suffisamment précis pour
la commande. Le but de cet article est aussi d’illustrer au moyen d’exemples
bien choisis les avantages liés à la synthèse optimale du signal d’excitation
pour une identification par rapport a l’application du classique bruit blanc.
Comme on le verra dans ces exemples, le fait de faconner adéquatement le
signal d’excitation permet de réduire significativement le coût de l’identification.

Abstract. The goal of this paper is on the one hand to give a tutorial on
the main ideas of a recently introduced paradigm for optimal experiment
design whose objective is to design the least costly identification experiment
while guaranteeing a sufficiently accurate model for e.g. control. On the
other hand, the second goal is to illustrate with well chosen examples the
advantages of designing optimally the excitation signal for an identification
instead of using a classical white excitation. As we will see in these examples,
shaping appropriately the excitation signal allows one to reduce significantly
the cost of an identification experiment.

1 Introduction

Optimal identification experiment design is the scientific exercise of design-
ing the excitation signal for the identification of a real-life system in an

∗The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n 257059 (The
“Autoprofit” project, www.fp7-autoprofit.eu)
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optimal way. The typical approach to this problem has been to design the
power spectrum of the excitation signal in order to maximize the accuracy
of the identified model (possibly with a given, say, control-oriented objective
in mind) for a given experiment time and under prespecified constraints on
input power (see [21][Chapters 12 and 13] and e.g. [22, 13, 15, 11, 20, 8, 14,
17]). In [6], we introduced a new paradigm for optimal experiment design
that is somehow the dual of the classical approach. In this new paradigm,
the goal is to design the power spectrum of the excitation signal in such a
way that the corresponding identification experiment is the least intrusive
for the underlying system while guaranteeing that the identified model is
sufficiently accurate for the intended application (e.g. control). The op-
timal identification experiment is then called the least costly identification
experiment for control. The least costly paradigm has been further devel-
oped in a series of paper: [3, 4, 1, 16].

The main goal of the present paper is to give a tutorial on the main
ideas of this new optimal experiment design paradigm and to illustrate with
well chosen examples the advantages of designing optimally the excitation
signal instead of using a classical white excitation. As we will see in these
examples, shaping appropriately the excitation signal allows one to reduce
significantly the cost of an identification experiment.

The new paradigm is quite appropriate in control applications where
identification experiments entail an important economical cost (e.g. in the
case of industrial processes). In those applications, one is not really inter-
ested in obtaining the maximal accuracy, but in reducing the cost of the
identification experiment while guaranteeing that the identified model is
sufficiently accurate for its intended use. The new paradigm is also quite
appropriate in relation with robust control. Indeed, imposing, such as in
the least costly paradigm, that the modeling error remains below a certain
threshold is equivalent with imposing bounds on the size of the uncertainty
region around the identified model Ĝ(z). It is clear that a large uncertainty
around the model reduces the level of performance that a controller Ĉ(Ĝ)
designed with this uncertain model can achieve on the unknown true sys-
tem G0(z). In other words, for the controller Ĉ(Ĝ) to achieve a certain level
of performance on G0(z), the modeling error must remain below a certain
threshold radm(ω):

|Ĝ(ejω)−G0(e
jω)| < radm(ω) ∀ω (1)

The threshold radm(ω) in (1), which represents the largest admissible un-
certainty for a given level of desired performance, can be computed using
robust analysis techniques such as ν-analysis [9]. See also [6, 3] for specific
examples in the least costly setup. Note that the bound on the uncertainty
of the model can be expressed in another domain than in the frequency do-
main. The bound can also be expressed as a bound on the covariance matrix
of the identified parameter vector (see [4, 16]). However, we here choose the
frequency domain representation for its simplicity.
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Besides the desired accuracy for the identified model, another crucial
ingredient in the least costly paradigm is the definition of the cost of the
identification. If we limit attention to open-loop identification [21] with a
fixed amount of data, a possible measure for the cost of the identification is
the power of the input signal: Pu = Ēu2(t) = 1

2π

∫ π

−π
Φu(ω) dω. The power

of the output signal could also be considered or a combination of both input
and output powers. In closed-loop identification, a quite realistic definition
of the cost was introduced in [4]. In that paper, the cost is a function of the
power of the perturbations induced by the excitation signal on the normal
operation of the closed-loop system.

In the sequel, we will consider these different definitions of the identi-
fication cost as well as both the open-loop and closed-loop configurations
in the sequel. However, as a starting point, we will focus on the open-loop
configuration with a fixed amount N of data and with the cost of the iden-
tification defined as Pu. The optimal experiment design problem can thus
be formulated as follows:

Open-loop experiment design problem (fixed N). Determine the
power spectrum Φu(ω) of the input signal of minimal power such that the
model Ĝ(z) identified with this input signal satisfies the accuracy constraint (1)
for a given threshold radm(ω).

2 Prediction Error Identification aspects (open-

loop case)

We consider the identification of a linear time-invariant single input single
output system with a model structure M = {G(z, θ), H(z, θ)}, θ ∈ Rk,
that is able to represent the true system. Thus, the true system is given by:

S : y(t) = G0(z)u(t) +

=v(t)
︷ ︸︸ ︷

H0(z)e(t)

= G(z, θ0)u(t) +H(z, θ0)e(t) (2)

for some unknown parameter vector θ0 ∈ Rk, and with e(t) a white noise of
variance σ2e . In open-loop identification, the identification experiment con-
sists of applying to (2) an input sequence u(t) (t = 1...N) and of collecting
the corresponding output y(t): ZN = {y(t) u(t) | t = 1...N}. When de-
signing this experiment, if we suppose the duration N of the identification
experiment fixed a-priori, we see that the user has to make the following
choices:

1. the power of the signal u(t) that will be applied

2. the frequency content of this signal u(t)
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These two items are encompassed in the power spectrum Φu(ω) of u(t) which
is the design variable of our optimal experiment design problem.

Once the data set ZN has been collected, prediction error identification
can be used to determine a consistent estimate θ̂N of the true parameter
vector θ0 using the following criterion:

θ̂N
∆
= arg min

θ

1

N

N∑

t=1

ǫ2(t, θ) (3)

with ǫ(t, θ)
∆
= H(z, θ)−1 (y(t)−G(z, θ)u(t)).

The identified parameter vector θ̂N is asymptotically normally distributed,
θ̂N ∼ N (θ0, Pθ) and, given the full-order model structure assumption, the co-

variance matrix Pθ has the following expression [21]: Pθ =
σ2
e

N

(
Ē
(
ψ(t, θ0)ψ(t, θ0)

T
))

−1

with ψ(t, θ) = −∂ǫ(t,θ)
∂θ

. The dependence of the covariance matrix Pθ on the
power spectrum of the selected input signal u(t) is evidenced by the following
expression of the inverse of Pθ [21]:

P−1
θ =

(
N

σ2e

1

2π

∫ π

−π

Fu(e
jω, θ0)Fu(e

jω, θ0)
∗Φu(ω)dω

)

+

(

N
1

2π

∫ π

−π

Fe(e
jω, θ0)Fe(e

jω, θ0)
∗dω

)

(4)

Here, Fu(z, θ0) = ΛG(z,θ0)
H(z,θ0)

, Fe(z, θ0) = ΛH (z,θ0)
H(z,θ0)

, ΛG(z, θ) = ∂G(z,θ)
∂θ

and

ΛH(z, θ) = ∂H(z,θ)
∂θ

.

Using the asymptotic Gaussian distribution of the estimated parameter
vector θ̂N , it is possible to define an (additive) uncertainty region Dru(θ̂N )
around the identified model and containing the unknown true system G0(z)
at any self-chosen probability level:

Dru(θ̂N ) =
{

G(z) ∈ H∞ |
∣
∣
∣G(ejω)−G(ejω, θ̂N )

∣
∣
∣ < ru(ω) ∀ω

}

(5)

Consider the following first order approximation1 of G(z, θ0): G(z, θ0) ≈
G(z, θ̂N )+ΛT

G(z, θ0)(θ0− θ̂N) with ΛG(z, θ) as defined below (4). Using this

approximation, the size ru(ω) of Dru(θ̂N ) can then be written as :

ru(ω) = α
√

λ1 (T (ejω, θ0)PθT (ejω, θ0)T ) (6)

where T (ejω, θ0)
∆
=

(
Re(ΛT

G(e
jω, θ0))

Im(ΛT
G(e

jω, θ0))

)

∈ R2×k, λ1(A) denotes the largest

eigenvalue of A and α is a real constant dependent on the chosen probabil-
ity level: if we want Pr(G0 ∈ Dru(θ̂N )) = 0.95, then α is chosen such that

1The first order approximation is not absolutely necessary to compute the function
ru(ω) (see e.g. [17, 6]). However, we have here chosen this approach for the sake of
simplicity.
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Pr(χ2(kG) < α2) = 0.95 (kG is the number of parameters in G(z, θ)).

The size ru(ω) of the uncertainty region Dru is thus a measure of the
modeling error between the identified model G(z, θ̂N ) and the unknown true
system G0(z) = G(z, θ0). We have indeed that, modulo a certain probability
level,:

|G(ejω , θ̂N )−G0(e
jω)| < ru(ω) ∀ω (7)

In the sequel, we will refer to ru(ω) as the bound on the modeling error
or, for the sake of simplicity, as the modeling error. Note that, after an
identification experiment, Pθ and ru(ω) can be estimated by replacing the
actual θ0 and σ2e by their estimate θ̂N and σ̂2e = 1

N

∑N
t=1 ǫ

2(t, θ̂N ).

An important observation at this stage is also that the modeling error
ru(ω) is a function of the covariance matrix Pθ and thus, by (4), a function
of the input signal u(t) used during the identification experiment. Obvi-
ously, for signals u(t) having the same frequency content, the more powerful
u(t), the smaller the modeling error. Moreover, for signals u(t) having the
same power, different frequency contents will lead to different modeling er-
rors ru(ω). This phenomenon is crucial for optimal experiment design and
will be illustrated by the following example.

Example 1 We consider the following true system

S : y(t) =
3.6z−1

1− 0.7z−1
u(t) +

(
1− 0.9z−1

)
e(t) (8)

with σ2e = 1 and we choose the following full order model structure:

M : G(z, θ) =
bz−1

1− fz−1
H(z, θ) = 1 + cz−1 θ =





b
c
f



 (9)

In this example, we want to compare the accuracy of the model identified
in this model structure with two different input signals. The first input sig-
nal u1(t) is a realization of length N = 500 of a white noise with variance
1.7 and the second input signal u2(t) is generated as the 500 first samples
of a cosine of amplitude 0.75 at ω = 0.15 rad/s i.e. u2(t) = 0.75cos(0.15t)
(t = 1...500). The two signals are represented in Figure 1. These two input
signals have clearly a different frequency content and it is also clear that the
power of u1(t) (Pu1

= 1.7) is approximatively six times larger than the power
of u2 (Pu2

≈ 0.28). We could therefore think that the input signal u1 would
lead to a more accurate model than the input signal u2. However, it is not the
case. The model Ĝ2 identified with u2 has indeed a slightly better accuracy
than the model Ĝ1 identified with u1 at each frequency: the modeling error
ru1

(ω) obtained with u1 is, as can be seen in Figure 2, larger that the mod-
eling error ru2

(ω) obtained with u2 at each frequency: ru1
(ω) ≥ ru2

(ω) ∀ω.
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Figure 1: Two input signals: u1(t) (top) and u2(t) (bottom)

It is important to note that a cosine at another frequency than ω = 0.15
rad/s will not lead to the same accuracy. In Figure 3, the modeling error
obtained with another cosine i.e. u3(t) = 0.75cos(0.05t) (t = 1...500) is
compared with the modeling error obtained with u1(t). We see here that the
modeling error with u3 is smaller in low frequencies than the one with u1,
but much larger in high frequencies.
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Figure 2: Modeling error ru(ω) obtained after an identification with u1(t)
(red dashdot) and obtained after an identification with u2(t) (blue solid) (α
is here chosen equal to one)

3 Optimal open-loop experiment design as an op-

timization problem

3.1 Convex formulation

The previous example shows that, by shaping Φu(ω) appropriately, we can
obtain a certain model accuracy with a (much) less powerful excitation sig-
nal u(t). Finding this appropriate Φu(ω) for a given true system is the

6



10
−3

10
−2

10
−1

10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

ω

Figure 3: Modeling error ru(ω) obtained after an identification with
u1(t) (red dashdot) and obtained after an identification with u3(t) =
0.75cos(0.05t) (blue solid) (α is here chosen equal to one)

whole principle behind optimal experiment design. In this section, we will
formulate the optimal experiment design problem presented at the end of
Section 1 into a convex optimization problem.

A first step towards that end is to formulate the accuracy constraint (1)
as a function of the decision variable Φu(ω). This can be done by using the
relation (7) which gives a bound ru(ω) on the modeling error between the
identified model G(z, θ̂N ) and the true system G(z, θ0):

α
√

λ1 (T (ejω, θ0)PθT (ejω, θ0)T ) < radm(ω) ∀ω (10)

where the covariance matrix Pθ is, as shown in (4), a function of the decision
variable Φu(ω).

Using the new constraint (10), the optimal identification experiment de-
fined at the end of Section 1 is the particular experiment where the power
spectrum Φu(ω) of u(t) is the one solving:

min
Φu(ω)

1

2π

∫ π

−π

Φu(ω) dω

subject to Φu(ω) ≥ 0 ∀ω and to (11)

α
√

λ1 (T (ejω, θ0)PθT (ejω, θ0)T ) < radm(ω) ∀ω

We can observe a couple of issues when looking at this optimization prob-
lem. The first issue is that this optimization problem has an infinite number
of constraints since (10) must hold at each frequency. Even though more
elaborated solutions exist (see e.g. [3]), the easiest and more efficient way to
circumvent this issue is to grid the frequency range in order to obtain a finite
number of constraints. A second issue is the fact that the constraint (10)
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depends on the true parameter vector θ0 and the true noise variance σ2e
(via Pθ). This is the well-known chicken-and-egg problem related to each
optimal experiment design problem: the optimal input spectrum for the
identification of an unknown true system depends on this true system. Note
that this chicken-and-egg problem is not specific to the optimal experiment
design paradigm used in this paper. It is a general problem: see e.g. [21].
To circumvent this issue, the true parameter vector θ0 and the true noise
variance σ2e , which are required to compute the bound ru(ω) on the model-
ing error in (10), are generally replaced by initial estimates θinit and σ

2
e,init

of those quantities. These initial estimates can be obtained by performing,
prior to the design of the optimal experiment, a short identification experi-
ment with e.g. white noise. For more elaborated techniques to circumvent
the chicken-and-egg problem, we refer the reader to [4] and [12]. A third
issue with the optimization problem (11) is that the constraint (10) is as
such not linear in the decision variable Φu(ω). However this constraint can
easily be linearized using the Schur complements [7]. Indeed, as proven in
the appendix, the constraint (10) can be rewritten as follows:

P−1
θ > Radm(ω) ∀ω (12)

with Radm(ω) = α2

r2
adm

(ω)
T T (ejω, θ0)T (e

jω, θ0). The constraint (12) is now

affine in the decision variable Φu(ω) since P
−1
θ has this property (see (4)).

Based on the above considerations, we can thus rewrite the optimization
problem (11) as the following LMI (Linear Matrix Inequality) optimization
problem:

min
Φu(ω)

1

2π

∫ π

−π

Φu(ω) dω

subject to Φu(ω) ≥ 0 ∀ω and to (13)

(
N

σ2e

1

2π

∫ π

−π

Fu(e
jω, θ0)Fu(e

jω, θ0)
∗Φu(ω)dω

)

+ ...

...

(

N
1

2π

∫ π

−π

Fe(e
jω, θ0)Fe(e

jω, θ0)
∗dω

)

> Radm(ω) ∀ω

where, as mentioned above, the last constraint will only be evaluated in a
given frequency grid and where σ2e and θ0 are replaced by their initial esti-
mates.

Remark 1. As mentioned in the introduction, we have chosen in this paper
to express the accuracy constraint (1) for control by a bound on the modu-
lus of the modeling error between the identified model and the true system.
The accuracy constraint for control can be formulated in various other ways
as shown in e.g. [4, 16]. However, it is important to note that they all
eventually lead to a constraint which is very close to (12). For example, in
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[16], the constraint is P−1
θ > Iapp where Iapp is a (frequency-independent)

matrix which is determined based on the desired control objectives.

Remark 2. Until now, we have considered the duration N of the identifi-
cation experiment as fixed a-priori. If this is not the case, a good approach
is to determine, with the optimization problem (13), the optimal spectrum
Φu(ω) for different values of the length N . Since, for increasing values of N ,
the optimal cost function Pu decreases, such approach allows one to find the
optimal combination for the duration of the identification and the induced
cost Pu.

Remark 3. The cost of the identification experiment in (13) is measured
using the power Pu of the input signal. This is of course not the only
way to measure the cost of the identification. The power Py of the output
signal could also be used instead since it can also be formulated as an affine
function of the decision variable Φu(ω). A combination of both Pu and Py

could also be considered.

3.2 Parametrization of the power spectrum Φu(ω)

The optimization problem (13) is an LMI optimization problem with a de-
cision variable Φu(ω) of infinite dimension. To be able to solve (13) using
e.g. LMI optimization [7], a finite linear parametrization of Φu(ω) should
be used. A common parametrization is the following one [20, 19]:

Φu(ω) =
m∑

r=−m

cr e
jω r ≥ 0 (14)

with cr = c−r. If we replace Φu(ω) by this parametrization in the opti-
mization problem (13), this problem remains a LMI optimization problem2

for which the decision variables are the parameters cr (r = 0...m) of this
parametrization [20, 4].

The scalar m is an user choice. We observe that the larger m is chosen,
the more flexible is the parametrization of the spectrum and that choosing
m = 0 is equivalent to restrict attention to a flat spectrum (white noise):
Φu(ω) = c0 ∀ω.

2The positivity of the spectrum Φu(ω) parametrized by (14) can be guaranteed by the
existence of a symmetric matrix Q satisfying the following LMI constraint that can be
added to (13) [20, 4]):

(

Q− ATQA CT
−ATQB

C −BTQA D +DT −BTQB

)

≥ 0

with the following definitions of A,B,C,D:

A =

(

0 0
Im−1 0

)

B =
(

1 0 ... 0
)

C =
(

c1 c2 ... cm
)

D = c0
2
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It is also important to note that the set of signals u(t) whose spectrum
can be described as (14) is the set of signals that can be generated by a white
noise of unit variance passing through an arbitrary FIR filter of length m+1.
The parameters cr (r = 0...m) of this parametrization are indeed by con-
struction the finite auto-correlation sequence of the signal corresponding to
Φu(ω). As such, it is also very easy to generate an input sequence u(t) hav-
ing the desired spectrum when using this parametrization: see [20, 19] for
details.

Note that other parametrizations can also be used to obtain a finite di-
mension optimization problem e.g. Φu(ω) =

∑m
r=1 cr (δ(ω − ωr) + δ(ω + ωr))

corresponding to a multisine signal u(t), or Φu(ω) =
∑m

r=−m crBr(e
jω) where

Br(e
jω) are preselected basis functions [17].

4 Optimal experiment design in closed loop

Besides open-loop identification, the optimal experiment design problem can
also be formulated for direct closed-loop identification [4]. Direct closed-loop
identification follows the same procedure as in Section 2 [21]. The main
difference is nevertheless that the set ZN = {y(t) u(t)|t = 1...N} of input-
output data are collected when the true system (2) is operated in closed
loop (see Figure 4). Due to the closed-loop configuration, the system can no
longer be excited via the input signal u(t). The excitation signal is in this
case an external signal r(t) that can be applied at the reference or at the
control input. In the latter case, we have thus that: u(t) = −Cid(z)y(t)+r(t)
(as shown in Figure 4). The decision variable is here consequently the power
spectrum Φr(ω) of this external signal r(t).

Cid G0

v(t)

y(t)

u(t)
set point

 = 0

r(t)

Figure 4: Direct closed-loop identification: the data set ZN is collected by
exciting the closed loop made up of the true system and a controller Cid

using an external signal r(t)

Once the data set ZN has been collected, the identified parameter vec-
tor can be identified and has the same statistical properties as in open-
loop identification. The covariance matrix Pθ is also here given by: Pθ =
σ2
e

N

(
Ē
(
ψ(t, θ0)ψ(t, θ0)

T
))

−1
. The inverse of this covariance matrix can also

be expressed as an affine function of the design variable Φr(ω) [4]:

P−1
θ =

(
N

σ2e

1

2π

∫ π

−π

Fr(e
jω, θ0)Fr(e

jω, θ0)
∗Φr(ω)dω

)
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+

(

N
1

2π

∫ π

−π

Fv(e
jω, θ0)Fv(e

jω, θ0)
∗dω

)

(15)

with Fr(z, θ0) = Sid

H0
ΛG(z, θ0), Fv(z, θ0) = ΛH (z,θ0)

H0
− CidSidΛG(z, θ0) and

Sid = (1 + CidG0)
−1 the sensitivity function of the closed loop [Cid G0].

The cost of the direct closed-loop identification experiment can be e.g.
measured by the power Pr of the external signal r(t). However, we will con-
sider in the sequel an alternative definition which seems closer to the actual
cost of a closed-loop experiment. Suppose that the closed-loop presented
in Figure 4 represents a production unit with a product y(t). In normal
operation the signals u(t) (control signal) and y(t) (the product) are given
by: y(t) = Sidv(t) and u(t) = −CidSidv(t) (v(t) = H0(z)e(t)). By applying
an external signal r(t) to the loop during the identification, we introduce
disturbances yr(t) and ur(t) on top of the normal operation signals:

y(t) =

yr(t)
︷ ︸︸ ︷

G0Sidr(t)+Sidv(t) (16)

u(t) =

ur(t)
︷ ︸︸ ︷

Sidr(t)−CidSidv(t) (17)

Those disturbances induce a loss of production quality. Consequently, we
can measure the cost caused by the application of a signal with power spec-
trum Φr(ω) using the following cost function:

Jr = βyPyr + βuPur

= βy

(
1

2π

∫ π

−π

Φyr(ω) dω

)

+ βu

(
1

2π

∫ π

−π

Φur(ω) dω

)

(18)

where the scalars βu and βy can be e.g. chosen both equal to one. As we
can see, this cost function is a linear function of the decision variable Φr(ω).

Let us now formulate the least costly identification problem for the
closed-loop configuration:

Closed-loop experiment design problem (fixed N). Determine the
power spectrum Φr(ω) of the excitation signal r(t) corresponding to the
smallest cost Jr while guaranteeing that the model Ĝ(z) identified with this
excitation signal satisfies the accuracy constraint (1) for a given threshold
radm(ω).

The accuracy constraint (1) can here also be replaced by the constraint (10)
which is in turn also equivalent with the constraint (12). Using now the fact
that both P−1

θ and Jr are affine in the decision variable Φr(ω). The optimal
closed-loop experiment design problem can be solved by the following LMI
optimization problem.

11



min
Φr(ω)

Jr(θ0)

subject to Φr(ω) ≥ 0 ∀ω and to (19)

N

σ2e

(
1

2π

∫ π

−π

Fr(θ0)F
∗

r (θ0) Φr(ω) + Fv(θ0)F
∗

v (θ0) σ
2
e dω

)

> Radm(ω) ∀ω

where, similarly as for the open-loop case, the last constraint will only be
evaluated in a given frequency grid and where σ2e and θ0 are replaced by
their initial estimates. Since Jr is also function of θ0, the initial estimate
θinit will also be used to evaluate the cost function.

5 Numerical illustrations

5.1 Illustration 1

In the sequel, we will present two illustrations of optimal experiment design.
For the first illustration, we will consider the same true system as in the ex-
ample of Section 2. This true system is given in (8) and the full order model
structure for this system is given in (9).

The optimal experiment design problem we wish to solve for this true
system is the following one: determine, for an open-loop experiment of du-
ration N = 500, the power spectrum Φu(ω) of the least powerful excitation
signal u(t) which leads to an identified model G(z, θ̂N ) with a relative mod-
eling error of less than 1 % at each ω i.e.,

|G(ejω, θ̂N )−G(ejω, θ0)| < 0.01 |G(ejω, θ̂N )| ∀ω (20)

Even though it is not directly related to control objectives, the above accu-
racy constraint has the form (1) considered in this paper with radm(ω) =
0.01 |G(ejω , θ̂N )|. This problem can thus be easily transformed into the LMI
optimization problem (13).

In order to be able to solve this problem, we will need an initial estimate
of the true system. Here, this initial estimate has been obtained using open-
loop identification with a white noise u(t) of length 100 and variance 0.1.
This initial estimate is required to replace θ0 and σ2e in the expression (6)
of the bound ru(ω) on the modeling error, but also to replace θ̂N in the
expression of radm(ω):

radm(ω) ≈ 0.01 |G(ejω, θinit)|

Note that we here choose α = 2.45 in the expression (6) of the bound
ru(ω) on the modeling error. By doing so, we ensure that this bound is
valid at a probability of 95 %. The chosen parametrization for the power
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spectrum Φu(ω) is the parametrization (14). We have then solved the opti-
mization problem (13) for two choices of m in this parametrization: m = 20
(flexible spectrum) and m = 0 (flat spectrum). The optimal spectra Φu(ω)
under these circumstances are denoted by Φu,opt,flex(ω) when m = 20 and
Φu,opt,white(ω) when m = 0 and are depicted in Figure 5. The spectrum
Φu,opt,flex(ω) corresponds to a signal of power Pu = 0.25 while the spec-
trum Φu,opt,white(ω) corresponds to a signal of power Pu = 1.7. This means
that, if we want to identify a model of the true system satisfying (20) with
a white noise input signal u(t) of length N = 500, the power of this white
noise should be of at least 1.7. On the other hand, if we shape the spectrum
of the input signal appropriately such as done in Φu,opt,flex(ω), the power of
u(t) required to achieve this accuracy can be reduced to 0.25 i.e. a reduction
by a factor 6.
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Figure 5: Optimal spectra Φu,opt,flex(ω) i.e. when m = 20 (blue solid) and
Φu,opt,white(ω) i.e. when m = 0 (red dashed)

This result is based on the initial estimate θinit. Using this initial es-
timate instead of the true parameter vector could lead to errors. We will
verify that it is not the case here. To remain short, we do that uniquely
in the case of Φu,opt,flex(ω). We have thus generated a realization of length
N = 500 having the optimal spectrum Φu,opt,flex(ω). This realization is
depicted in Figure 6. This realization is applied to the true system (8)
and a model G(z, θ̂N ) is identified. The bound ru(ω) on the modeling error
that can be computed with the covariance matrix of θ̂N must be by con-
struction the largest possible while remaining at each ω under the threshold
0.01 |G(ejω, θ̂N )| (i.e. radm(ω)). It is indeed the case as can be Figure 7.
At a first sight, it could be surprising that ru(ω) ≈ radm(ω) only in high
frequencies and not over the whole frequency range. However, the latter is
in fact not possible since ru(ω) cannot take any possible shape due to its
dependence on the parametrization of the system via Pθ.

Let us now finally spend some time analyzing why the optimal spectrum
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Figure 6: Realization of length N = 500 of the optimal spectrum
Φu,opt,flex(ω)
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Figure 7: Modulus of G(ejω, θ̂N ) (red dashdot) with its modeling error ru(ω)
(black solid) as well as radm(ω) = 0.01 |G(ejω, θ̂N )| (back dotted)
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Φu,opt,flex(ω) concentrates its power around ω = 0.15 for this true system
(see Figure 5). In fact, this can be explained by looking at the frequency re-
sponse of G0 and H0 (see Figure 8). We see there that the optimal spectrum
concentrates its power at a frequency in between the pole of G0 (located at
ω = 0.35) and of the zero of H0 (located at ω = 0.1). As shown in the
example of Section 2, a cosine at ω = 0.15 rad/s is also a good choice.
The optimal spectrum is thus dependent on the true system: this is the
chicken-and-egg problem. Note however that we have determined this opti-
mal spectrum without using the knowledge of the true system, but instead
by using an initial estimate obtained after a short3 identification experiment
(N = 100) with relatively low input signal power (= 0.1).

5.2 Ilustration 2
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Figure 9: |G0(e
jω)| (red solid) and |Ginit(e

jω)| (blue dashed)

In the second illustration, we will consider the closed-loop optimal ex-
periment design problem of Section 4. The considered true system is the
following ARX system [18]:

y(t) = G0(z)u(t) +H0(z)e(t) =
z−3B0(z)

A0(z)
u(t) +

1

A0(z)
e(t) (21)

with B0(z) = 0.10276+0.18123z−1 , A0(z) = 1− 1.99185z−1 +2.20265z−2 −
1.84083z−3 + 0.89413z−4 , and e(t) a realization of a white noise process of
variance σ2e = 0.5. The true system operates in closed loop with a controller
Cid which has been designed using the 4-block H∞ control design method of
[10] and an initial estimate of the true system. This initial estimate of the
true system originates from an open-loop experiment (N = 100, Pu = 10)
and is equal to:

y(t) = Ginit(z)u(t) +Hinit(z)e(t) =
z−3Binit(z)

Ainit(z)
u(t) +

1

Ainit(z)
e(t) (22)

3This short initial identification experiment is not sufficient to obtain the accuracy
radm(ω) considered in this example. Indeed, when N = 500, the minimal white noise
power for this purpose is already equal to 1.7. Consequently, Pu = 0.1 is certainly not
sufficient when N = 100.
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with Binit(z) = 0.06413+0.2006z−1 and Ainit(z) = 1−1.975z−1+2.249z−2−
1.907z−3 + 0.9223z−4. The estimate σ2e,init of σ

2
e is here 0.4893.

From a look at the parameters of Ginit and G0, we can see that Ginit

is not a particularly good model of G0. This is also confirmed by looking
at their Bode diagram in Figure 9. The bound ru(ω) on the modeling error
(see (6)) that can be computed from the covariance matrix corresponding
to the initial estimate of the true system is represented in blue dashed in
Figure 10. Note that we here choose α = 3.55 to compute (6). By doing so,
we ensure that this bound is valid at a probability of 95 %.

We want to improve the performance of the controller by re-identifying
a model using a direct closed-loop experiment of duration N = 500. The
desired accuracy radm(ω) for the to-be-identified model is based on robust
control specifications on the sensitivity function and is represented in red
solid in Figure 10. We observe that the initial estimate (22) is not accurate
enough to respect this accuracy constraint.
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Figure 10: Modeling error ru(ω) corresponding to the initial estimate (blue
dashed) and accuracy threshold radm(ω) (red)

In order to shape optimally the spectrum Φr(ω) of the excitation sig-
nal and obtain the spectrum inducing the lowest cost Jr = Pur + Pyr , we
consider the LMI optimization problem (19). The initial estimate of the
true system required to solve this LMI optimization problem is here the
initial estimate given in (22). The parametrization for the power spectrum
Φu(ω) is here chosen similarly as in (14). We have solved the optimiza-
tion problem (13) for two choices of m in this parametrization: m = 10
(flexible spectrum) and m = 0 (flat spectrum). The optimal spectra Φr(ω)
under these circumstances are denoted by Φr,opt,flex(ω) when m = 10 and
Φr,opt,white(ω) when m = 0 and are depicted in Figure 11.

Realizations r(t) of length N = 500 of these two spectra are depicted in
Figure 12. These signals r(t) have been applied to the closed-loop [Cid G0]
and the induced disturbances yr(t) corresponding to these two signals r(t)
are depicted in Figure 13. We observe that the induced perturbation yr(t)
is much smaller when Φr,opt,flex(ω) is used i.e. when the spectrum is shaped
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appropriately. These observations in the time-domain are of course also con-
firmed when looking at the cost function Jr = Pur +Pyr of the optimization
problem (19). When m = 10, the cost Jr induced by the application of an
external signal having the spectrum Φr,opt,flex(ω) is equal to 9.27 while, with
Φr,opt,white(ω), Jr = 22. Consequently, if we want to identify a model of the
true system having the desired accuracy with a white noise excitation signal
r(t) of length N = 500, the induced performance degradation Jr is more
than two times larger than when we shape the spectrum Φr(ω) appropriately.

We have also used the two realizations of Figure 12 to identify a model
using direct closed-loop identification and we observe that, as expected, the
bound ru(ω) on the modeling error of these two models satisfy the accuracy
threshold radm(ω) (see Figure 14). However, recall that the signal corre-
sponding to Φr,opt,flex(ω) induced a performance degradation Jr which is
two times smaller than the performance degradation induced by one corre-
sponding to Φr,opt,white(ω).

Note that the reduction of the induced cost could be even larger in prac-
tice. Indeed, the white noise r(t) in Figure 12 is a white noise of power
Pr = 7.6 and this power is the smallest power for a white noise that leads to
a model satisfying the accuracy constraint. In practice, if we do not perform
the optimal experiment design and perform an identification with an arbi-
trary white noise r(t), two situations can occur: either we choose a white
noise with a power larger than 7.6; which means that the induced cost Jr

will even be larger than Jr = 22 or we choose a white noise with a power
smaller than 7.6; which means that the identified model will be too inaccu-
rate for the design of an enhanced controller and that a new experiment will
have to be performed.
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Figure 11: Optimal spectra Φr,opt,flex(ω) i.e. when m = 10 (blue solid) and
Φr,opt,white(ω) i.e. when m = 0 (black dashed)
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Figure 12: Realizations r(t) corresponding to Φr,opt,flex(ω) (top) and to
Φr,opt,white(ω) (bottom)
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Figure 13: Induced output perturbation yr(t) corresponding to Φr,opt,flex(ω)
(top) and to Φr,opt,white(ω) (bottom) for N = 500
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Figure 14: Comparison of radm(ω) (red solid) with the modeling error ru(ω)
obtained with Φr,opt,flex(ω) (blue dotted) and with Φr,opt,white(ω) (black
dashed)
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In order to illustrate in another way the advantage of shaping the power
spectrum Φr(ω) for the identification, we once again solve the optimization
problem (19) with m = 0, but now for N = 1000 i.e. an identification
two times longer than the previous one. The obtained optimal spectrum
in this case is Φr(ω) = 3.21 ∀ω and corresponds thus to a white noise of
power Pr = 3.21. We have generated a realization of length N = 1000 of
a such a white noise and compares it in Figure 15 with the realization of
length N = 500 of the optimal spectrum Φr,opt,flex(ω) (i.e. the realization
in the top of Figure 12). The identification with the white noise lasts two
times longer than the identification experiment with Φr,opt,flex(ω), but both
experiments will lead by construction to a model satisfying the accuracy
constraint. Now, let us compare, in Figure 16, the perturbations yr induced
by these two experiments. In both experiments, the perturbations have
a similar amplitude, but these perturbations disappears after 600 samples
when Φr,opt,flex(ω) is applied while they only disappears after 1100 samples
when the white noise of power 3.21 is used. Shaping the power spectrum
Φr(ω) allows thus to obtain here the desired accuracy in a shorter time than
when using just white noise. Note that the fact that the perturbations yr do
not stop directly after the end of the excitations r(t) is due to the dynamics
of the (closed-loop) system.
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Figure 15: Excitation signal r(t) of length N = 500 corresponding to to
Φr,opt,flex(ω) (top) vs. white noise r(t) of power 3.21 and of length N = 1000
(bottom)

Let us now finally spend some time analyzing why the flexible spectrum
having the shape of Figure 11 induces a much smaller cost than a white
noise signal. The reason for that has to be found in the resonating nature of
G0(z). The transfer function G0(z) has one important resonance peak at 0.4
rad/s (and a smaller one at 1.5 rad/s): see Figure 9. These resonances are
also present in the transfer function G0Sid generating the perturbation yr(t)
from the external signal r(t) (see (16)). A white noise excitation r(t) excites
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Figure 16: Induced output perturbation yr(t) corresponding to the signals
r(t) in Figure 15

these two resonant modes while the optimal flexible spectrum Φr,opt,flex(ω)
does not excite these modes since, as we can see in Figure 11, Φr,opt,flex(ω)
is quite small at the resonance frequencies. The optimal spectrum is thus
once again dependent on the true system (chicken-and-egg problem). Note
however that we have determined this optimal spectrum without using the
knowledge of the true system, but instead by using a relatively poor initial
estimate presenting the resonating behaviour of the system.

6 Concluding remarks

In this paper, we have presented the main ideas behind the least costly
paradigm as well as illustrative examples. In order to conclude, we would
like to give an overview of the different extensions. In the paper [4], the least
costly paradigm is entirely developed in the parametric domain to avoid any
conservatism and approximations. In this paper, the admissible uncertainty
(represented by the threshold radm(ω) in this paper) is expressed based on
(robust) control objectives in the H∞ framework. These H∞ results are
extended to the multivariable case in [1]. Using the results in [5], the frame-
work can be extended to H2 formulations. The results in [16] allows to
determine the admissible uncertainty for a large variety of other control ob-
jectives.

The assumption that the identification is performed in a full order model
structure is relaxed in [2] where the bias contribution is also taken into ac-
count in the computation of ru(ω).
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A Linearisation of the constraint (10)

The constraint (10) is equivalent to: T (ejω)PθT (e
jω)T <

r2
adm

(ejω)

α2 I2. This
new constraint can be rewritten as follows using the Schur complements [7]:

(
r2
adm

(ejω)

α2 I2 T (ejω)

T (ejω)T P−1
θ

)

> 0 ∀ω

The latter is also equivalent with:

(

P−1
θ T (ejω)T

T (ejω)
r2
adm

(ejω)

α2 I2

)

> 0 ∀ω

Another application of the Schur complement leads now to the result (12).
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