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We report a demonstration of laser Doppler holography at a sustained acquisition rate of 250
Hz on a 1 Megapixel complementary metal–oxide–semiconductor (CMOS) sensor array and image
display at 10 Hz frame rate. The holograms are optically acquired in off-axis configuration, with a
frequency-shifted reference beam. Wide-field imaging of optical fluctuations in a 250 Hz frequency
band is achieved by turning time-domain samplings to the dual domain via short-time temporal
Fourier transformation. The measurement band can be positioned freely within the low radio-
frequency (RF) spectrum by tuning the frequency of the reference beam in real-time. Video-rate
image rendering is achieved by streamline image processing with commodity computer graphics
hardware. This experimental scheme is validated by a non-contact vibrometry experiment.

Though effective for single-point analysis [1], laser
Doppler measurements are more difficult to perform in
wide-field imaging configuration, because of a technolog-
ical challenge : digital image frames have to be read out
at kHz rates and beyond to perform short-time discrete
Fourier transforms (DFT) [2]. Recently, image-plane
laser Doppler recordings with a high throughput CMOS
camera in conjunction with short-time DFT calculations
by a field programmable gate array (FPGA) reportedly
enabled continuous monitoring of blood perfusion in the
mm/s range. Full-field flow maps of 480 × 480 pixels
were rendered at a rate of 14 Hz, obtained from image
recordings at a frame rate of 14.9 kHz [3]. For transient
dynamics imaging of faster phenomena, high throughput
laser Doppler schemes were designed by multipoint [4] or
time multiplexing [5] approaches. High speed holography
enabled offline vibrometry from time-resolved optical
phase measurements [6]. Heterodyne holography, as a
variant of time-averaged holography [7, 8] with a strobe
[9] or a frequency-shifted reference beam [10, 11], is
appropriate for steady-state (at the scale of the exposure
time) mechanical vibrations mapping. Advances in
reconstruction techniques of optically-measured digital
holograms with Graphics Processing Units (GPUs)
[12, 13] have led to real-time holographic screening of a
single vibration frequency, demonstrated in this regime
[14].

In this letter, we report an experimental demonstra-
tion of video-rate image reconstruction and display of
laser fluctuation spectra from high speed holographic
measurements. Sustained Fresnel reconstruction of
off-axis holograms at 250 Hz and 10 Hz rendering by
short-time DFTs is performed. Images and RF spectra
of a thin metal plate’s out-of-plane vibration modes
around 3.2 kHz are presented.

The optical setup, sketched in fig.1, is similar to the
one reported in the demonstration of video-rate vibrom-
etry at a single frequency [14], at a difference that
a high throughput CMOS camera is used to achieve
megapixel recordings at 250 frames per second. An off-

axis, frequency-shifted Mach-Zehnder interferometer is
used to perform a multipixel heterodyne detection of an
object field E beating against a separate local oscilla-
tor (LO) field ELO, in reflective geometry. The main
optical radiation field is provided by a 100 mW, single-
mode laser (wavelength λ = 532 nm, optical frequency
νL = ωL/(2π) = 5.6 × 1014Hz, Oxxius SLIM 532). The
optical frequency of the LO beam is shifted by an arbi-
trary quantity ∆ν in the low RF range by two acousto-
optic modulators (AA-electronics, MT80-A1.5-VIS). The
object studied is a thin metal plate with hexagonal holes,
shined over∼ 30mm×30mmwith∼ 50 mW of impinging
light. It is excited with a piezo-electric actuator (PZT,
Thorlabs AE0505D08F), vibrating sinusoidally, driven at
10 V. The structure’s vibrations provoke a local phase
modulation φ (eq.7) of the backscattered optical field
E. Interference patterns are measured with a Basler
A504k camera (Micron MV13 progressive scan CMOS
sensor array of 1280× 1024 pixels, quantum efficiency ∼
25 % at 532 nm). The camera is run in external trig-
ger mode at νS = ωS/(2π) = 250Hz, at 8 bit/pixel
quantization. Images of the central 1024 × 1024 pix-
els region are recorded. The image acquisition is inter-
faced with a National Instruments NI PCIe-1433 frame
grabber. Each raw interferogram digitally acquired at
time t, noted I(t) = |E(t) + ELO(t)|

2 is dumped to a
1024 × 1024 × 1 byte frame buffer in the GPU RAM of
a NVidia GTX 580 graphics card by a CPU thread (fig.
2). The object field of complex amplitude E is noted

E = E exp (iωLt+ iφ(t)) (1)

where ωL = 2πνL and φ(t) is the fluctuating phase, as a
result of optical path length modulation. The acousto-
optic modulators enable the optical LO field of complex
amplitude ELO to be detuned by ∆ν = ∆ω/(2π)

ELO = ELO exp (iωLt+ i∆ωt) . (2)

Holographic image rendering from each recorded inter-
ferogram is performed with a numerical Fresnel trans-
form. The hologram I, back-propagated to the object
plane, is calculated by forming the Fast Fourier Trans-
form (FFT) F of the product of I with a quadratic
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FIG. 1: Optical arrangement. The main laser beam is split
into two channels, forming a Mach-Zehnder interferometer.
In the object channel, the optical field E is backscattered
by a metal plate in vibration is phase-modulated according
to eq. (1). In the reference channel, the optical field ELO

is frequency-shifted by two acousto-optic modulators from
which alternate diffraction orders (±1) are selected, yielding
an optical LO of the form of eq. (2). Images of the metal
plate are computed numerically from the holographic mea-
surement of the diffracted object beam beating against the
frequency-shifted local oscillator beam, with standard image
rendering algorithms [15].

phase map, depending on the relative curvature of the
wavefronts of E and ELO in the sensor plane [15]. This
calculation is handled by the GPU (thread #1, Fig.
2), by an algorithm elaborated with Microsoft Visual
C++ 2008 and NVIDIA’s Compute Unified Device Ar-
chitecture (CUDA) software development kit 3.2, on sin-
gle precision floating point arrays. The practical im-
plementation of free-space propagation with a discrete
Fresnel transform [8] yields complex-valued holograms
carried by the cross-terms of the interference pattern
I = |E|2 + |ELO|

2 + E∗ELO + EE∗

LO reconstructed in
the object plane. In off-axis configuration [16], the zero-
order terms |E|2 and |ELO|

2 and the twin-image term
E∗ELO can be filtered-out. After filtering, the remaining
complex-valued contribution to the off-axis hologram is

H(t) = EE∗

LO = EE∗

LOexp(iφ(t)− i∆ωt). (3)

The heterodyne spectrum of the radiation field E is de-
tected by a short-time discrete Fourier transform (DFT)
of H(t) over N = 250 consecutive samples (fig. 2, thread
# 2), 10 times per second. The m-th Fourier component
of the DFT,

H̃m(t) =

N
∑

n=1

H (t− n/νS) exp (−2iπmn/N) (4)

is a heterodyne measurement of the laser fluctuation
spectrum at time t, at frequency ∆ν + νm

H̃m(t) = H̃(t,∆ν + νm). (5)

The discrete frequencies νm of the measured spectra
lie within the Nyquist limits of the camera bandwidth
±νS/2, while the LO detuning frequency ∆ν can be set
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FIG. 2: Algorithmic layout of holographic rendering. Raw
interferograms are recorded by the main CPU thread. Spatial
Fresnel transforms are performed by the first GPU thread.
Short-time temporal Fourier transforms are performed by the
second GPU thread.
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FIG. 3: Sketch of the spectral screening region.

arbitrarily by the acousto-optic modulators (fig. 3).

We assessed the thin metal plate’s out-of-plane vibra-
tion modes around 3.2 kHz with the presented holo-
graphic approach. The metallic structure was excited
sinusoidally at one (P = 1) or two (P = 2) frequencies
νM1

and νM2
. In either case, the resulting out-of-plane

motion at a given point of the surface of the plate, con-
sidered as a linear medium for acoustic waves, is

z(t) =

P
∑

p=1

zp sin
(

ωMp
t
)

(6)

where ωMp
= 2πνMp

and zp are the angular frequency
and the local amplitude of each component, respectively.
The phase modulation of the backscattered light is

φ(t) =
4π

λ
z(t) =

P
∑

p=1

φp sin
(

ωMp
t
)

(7)

where φp = 4πzp/λ. The temporal part of the field un-
dergoing sinusoidal phase modulation can be decomposed
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FIG. 4: Short-time Fourier transform vibration maps and
spectra of a metal structure excited sinusoidally. No ex-
citation (a). Excitation at P = 2 frequencies : νM1

=
3200 + 100Hz and νM2

= 3200 − 70Hz (b-c,e-f). Exci-
tation at P = 2 frequencies : νM1

= 3200 + 50Hz and
νM2

= 3200 + 45Hz (d,g). LO detuning : ∆ν = 3200Hz;
The movie of the experiment is reported in media 1.

in a basis of Bessel functions with the Jacobi–Anger iden-
tity. If P = 1, the object field is

E = E exp (iωLt)

∞
∑

n=−∞

Jn (φ1) exp (inωM1
t) (8)

where Jn is the Bessel function of the first kind of rank n.
The only remaining low frequency, camera-filtered term
in eq. 3 beating around ∆ν, within the Nyquist domain
(i.e. for |νM1

−∆ν| < νS/2) is

HLF(t) = E∗

LOEJ1(φ1) exp (iωM1
t− i∆ωt) . (9)

This modulated hologram yields a single component in
the short-time DFT spectrum H̃m(t), at the frequency

νm = νM1
−∆ν. In the first part of the movie (media 1,

when P = 1), the excitation frequency νM1
was swept

from 3210 Hz to 3290 Hz, and the LO was detuned by
∆ν = 3200Hz; the measurement frequency νm of the
short-time DFT was swept concurrently from 10 Hz to
90 Hz, in 5 Hz steps. The reported spectra result from
the magnitude |H̃(t,∆ν + νm)| averaged within the red
square superimposed on the vibration maps.

The metallic structure was then excited sinusoidally at
two frequencies : νM1

, and νM2
. The object field under-

going phase modulation from a double excitation (P = 2
in eq. 7) takes the form

E = E exp (iωLt)

2
∏

p=1

∞
∑

n=−∞

Jn (φp) exp
(

inωMp
t
)

. (10)

The terms of eq. 3 modulated at frequencies within the
camera bandwidth ±ωS/2 are actually measured. The
others are filtered out. The temporal part of the camera-
filtered hologram reduces to the low frequency compo-
nent

HLF(t) = E∗

LOEe
−i∆ωt

∞
∑

n=−∞

cn,1c−n+1,2 (11)

where

cn,p = Jn(φp) exp
(

inωMp
t
)

. (12)

Eq.11 yields the frequency comb observed in fig.4(g),
whose peaks are separated by |νM2

− νM1
| = 5Hz. In

the second part of the movie reported in media 1, the
first excitation frequency was set to νM1

= 3290Hz,
the second one was swept from νM2

= 3290Hz to
νM2

= 3250Hz, in 5 Hz steps. The frequency comb
broadened with |νM2

−νM1
| in accordance with equations

11 and 12. For a larger frequency difference |νM2
− νM1

|,
only two lines of the comb are visible (fig.4(e,f)).

In conclusion, we performed laser Doppler imaging
from sustained sampling of 1 Mega pixel interferograms
at a throughput of 250 Mega bytes per second, and ren-
dering of 0.25 Mega pixel off-axis heterodyne holograms
by short-time discrete Fourier transform with a refresh-
ment rate of 10 Hz. This demonstration was made with
commodity computer graphics hardware. We reported
video-rate optical monitoring of out-of-plane vibration
amplitudes in a frequency band of 250 Hz, shifted by
3.2 kHz from DC. This demonstration opens the way
to high bandwidth laser Doppler holography in real time.
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