
HAL Id: hal-00756126
https://hal.science/hal-00756126v1

Submitted on 22 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heterogeneous Service Selection Based on Formal
Concept Analysis

Stéphanie Chollet, Vincent Lestideau, Philippe Lalanda, Pierre Colomb,
Diana Moreno

To cite this version:
Stéphanie Chollet, Vincent Lestideau, Philippe Lalanda, Pierre Colomb, Diana Moreno. Heteroge-
neous Service Selection Based on Formal Concept Analysis. Service 2010 - 6th World Congress on
Services, Jul 2010, Miami, Florida, United States. pp.367-374, �10.1109/SERVICES.2010.35�. �hal-
00756126�

https://hal.science/hal-00756126v1
https://hal.archives-ouvertes.fr


Heterogeneous Service Selection based on Formal Concept Analysis

Stéphanie Chollet, Vincent Lestideau, Philippe Lalanda, Diana Moreno-Garcia

Laboratoire Informatique de Grenoble

F-38041, Grenoble cedex 9, France

(Stephanie.Chollet, Vincent.Lestideau, Philippe.Lalanda, Diana-Guadalupe.Moreno-Garcia)@imag.fr

Pierre Colomb

Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes

F-63173 AUBIERE cedex, France

pierre.colomb@univ-bpclermont.fr

Abstract

In this paper, we propose an approach based on Formal

Concept Analysis in order to organize the services registry

at runtime and to allow the ”best” service selection among

heterogeneous and secured services according to a set of

specifications. This solution has been validated in the Eu-

ropean SODA project on pervasive applications.

1 Introduction

Pervasive computing is today a research field of ma-

jor importance. This computing domain is actually chang-

ing the way we envisage our environment: it relies on

smart, communication-enabled devices transparently inter-

acting with us in our living spaces. These devices tend to

disappear in the environment: they are numerous but not

always perceivable. At least, their computing capabilities

are not always apparent. In smart buildings, for instance,

many devices are integrated in the physical infrastructure in

order to offer us a number of advanced services related to

comfort, caretaking, etc.

Devices thus communicate more and more with each

other, configure or repair themselves, and perform context-

aware cognitive and physical actions. The vision of co-

ordinated or cooperating devices teaming up transparently

to provide advanced services of all sorts is actually getting

closer and closer. However, lots of research programs in

pervasive computing have focused on hardware and com-

munication protocols, wireless or not. Consequently, plenty

of devices are today available and commercialized but they

often stay isolated in ”computing islands” and very few in-

tegrated services are actually proposed. We believe that a

solid software infrastructure is needed to accomplish the

pervasive service vision. Building such an infrastructure

is a complex, often underestimated, task. Indeed, several

software engineering challenges remain to be tackled before

fulfilling the vision of a true pervasive world. Notably the

high degree of dynamism, distribution, heterogeneity and

autonomy of the devices involved raises important prob-

lems. Once again, the building environment perfectly il-

lustrates the targeted environment and the implied software

complexity. It is open to dynamic connections: devices

may enter and leave the network spontaneously, providing

context-dependent features (e.g. depending on user’s activ-

ity). It is also open to heterogeneous devices: protocols

and device types differ according to application domains

and providers.

Service-Oriented Computing (SOC) [18] is today a so-

lution of choice to implement dynamic devices and appli-

cations in pervasive environments. This new paradigm ap-

peared a few years ago. The very purpose of this reuse-

based approach is to build applications through the late

composition of independent software elements, called ser-

vices. Services are described and published by service

providers; they are chosen and invoked by service con-

sumers. SOC thus support dynamic service discovery and

lazy inter-service binding. Such characteristics are essential

when building pervasive applications with strong adaptabil-

ity requirements. A key point is the ability to select at any-

time the ”best” service available to realize an application.

Many mechanisms, often formal, have been defined to do

so [13]. An important aspect which has not been studied

that much is the organization of the services registry, that

is the place where services specifications are dynamically

stored and updated. We believe that, to tackle the building

requirements, specific mechanisms are needed to ensure an

efficient access to available services and to support decision

making in evolving environment.



In this paper, we investigate a solution based on Formal

Concept Analysis (FCA) in order to organize the services

registry at runtime and to allow the ”best” service selec-

tion among heterogeneous and secured services according

to a set of specifications. This solution, that has been tested

with the industrial partners of the European SODA1 project,

brings significant results in terms of efficiency and adapt-

ability. The paper is organized as follows. First, some

background about heterogeneous service composition and

existing tools adaptated to this composition are provided.

Section 3 presents our approach, based on the theoretical

foundation of Formal Concept Analysis, and its application

to the service domain. Before the related work and the con-

clusion, Section 4 presents the experiments and results ob-

tained in the case of an alarm system.

2 Background

2.1 Service-Oriented Architecture

Service-oriented computing brings software qualities of

major importance. As with any planned reuse approach, it

supports rapid, high quality development of software ap-

plications. Using existing, already tested, software ele-

ments is likely to reduce the time needed to build up an

application and improve its overall quality. Weak coupling

between consumers and providers reduces dependencies

among composition units, letting each element to evolve

separately. Late binding and substitutability improve adapt-

ability: a service chosen or replaced at runtime, based on its

current availability and properties, is likely to better fulfill

the consumer expectations.

Web Service DPWS UPnP

Publish UDDI Multicast Multicast

Discovery Registry

Service WSDL Extended UPnP

Description WSDL Device

Description

Composition WS-BPEL - -

Table 1. Comparison of service technologies.

Not surprisingly, a number of implementations have

been proposed, sometimes for different purposes. Web

Services (www.w3c.org), for instance, represent a solution

of choice for software integration. UPnP (www.upnp.org)

and DPWS [25, 11] (Devices Profile for Web Services) are

heavily used in pervasive applications in order to implement

1SODA is a European project partly funded by the French Ministry of

industry and brings together, among others, Schneider Electric, Thales and

Grenoble University.

volatile devices. OSGi [17] (www.osgi.org) and iPOJO [5]

(www.ipojo.org) provide advanced dynamic features advan-

tageously used to build pervasive gateways. As illustrated

by Table 1, different technologies use different description

languages, different notification styles, and different invo-

cation styles.

The integration of non-functional features is another

serious challenge when building service-oriented applica-

tions. In particular, security acts today as a brake to the

massive adoption of services. In some distributed environ-

ments, software services can be alarmingly vulnerable and

organizations are exposed to a considerable amount of secu-

rity risk and dependability degradation. This is why, in the

last few years, many security protocols for Web Services,

such as XML Digital Signature [23], XML Encryption [22],

SAML [15], XACML [16] and the WS-* ([14], [9],...) have

been proposed to enable secure Web Services calls.

Integrating heterogeneous, dynamic and secured ser-

vices is thus admittedly complex. As illustrated by Figure 1,

this is exactly what is required in pervasive domains. In this

field, applications frequently need to integrate UPnP-based

and DPWS-based field devices and Web Services for re-

mote applications. These services are secured using differ-

ent techniques and technologies. In addition, most services

are dynamic: smart devices join and leave the network at

unpredictable times; back office applications are regularly

updated.

Figure 1. Heterogeneous services.

In order to select a service at runtime, a number of char-

acteristics have to be considered. Of course, functional

compatibility is essential. But, a composition has also to

meet a set of transverse non-functional qualities like avail-

ability, security or cost effectiveness. It may also consider

the available implementation technologies. In domains like

pervasive, the number of available services at a given mo-

ment can be high and it becomes important to find mecha-

nisms allowing efficient multi-criteria selection.



2.2 Existing tools

Many tools have been developed to facilitate the design

and execution of applications made of dynamic, heteroge-

neous, secured services [4], [12], [24]. One of the solu-

tions to hide the complexity of technology heterogeneity is

to adopt a model-driven approach. The environment pro-

vides users with a workplace hiding technical details and

letting them define service composition at a level of abstrac-

tion in line with their concerns. This abstract composition

is then incrementally transformed into an executable one.

Figure 2. Existing approach.

This model-driven approach, illustrated on Figure 2, is

based on the notion of abstract services and concrete ser-

vices. An abstract service is defined in the following terms:

• A signature defining the id of the service and its inputs

and outputs in terms of products. This part corresponds

to WSDL or SCPD extracts for instance, if dealing

with Web services, respectively UPnP services. Ex-

tracts only contain implementation-independent infor-

mation.

• Target-technologies implementing the abstract service.

The expert designer knows, at design time, which tech-

nologies can implement the required functionalities.

• A set of properties, mandatory or desirable. Among

them, security properties play a major role.

A concrete service is an implementation of an abstract

service in a given service technology. For instance, a con-

crete service can be a Web Service or a UPnP service. Sev-

eral concrete services can be made available for a single

abstract service.

The runtime model maintains a view of the environment

to select appropriate and available concrete services. It is an

advanced registry containing the services technologies, the

services functional characteristics, the security characteris-

tics provided/required according to the server point of view

and other properties like cost, reputation, response time...

The concrete services are stored in a services registry. One

of the challenges for the runtime model is its evolution dur-

ing execution because services arrive and depart at anytime.

The runtime model must maintain a coherent view of the

execution environment.

The concrete services of the registry can be selected with

brute-force algorithms when the number of available ser-

vices and constraints are weak. But, this type of algorithms

is inefficient if many services are stored in the registry, such

as in the smart building domain. The purpose of this paper

is to provide a new approach to better structure the runtime

model and to improve decision making.

3 Approach

In order to better structure the services registry, we stud-

ied and adapted the Formal Concept Analysis (FCA) ap-

proach to service-oriented computing. First, we provide an

introduction to FCA.

3.1 Theoretical foundations

FCA [8] is a well-known classification tool used in many

practical cases [20], [2], [21]. The purpose of this approach

is to build a partially ordered structure, called concept lat-

tice, from a formal context.

A formal context K is a set of relations between objects

and attributes. It is denoted by K = (O,A, R) where O

and A are respectively sets of Objects and Attributes, and

R is a relation between O and A. As an example, Table 2

illustrates a formal context with O = {1, 2, 3, 4} and A =
{a, b, c, d}.

a b c d

1 x x x

2 x x x

3 x x

4 x x

Table 2. Context example.

A formal concept C is a pair (E, I) where E is a set of

objects called Extent, I is a set of attributes called Intent,

and all the objects in E are in relation R with all the at-

tributes in I . Thus, the Extent of a concept is the set of all

objects sharing a set of common attributes, and the Intent is

the set of all attributes shared by the objects of the Extent.

Formally:

• E = {o ∈ O | ∀i ∈ I, (o, i) ∈ R},



• I = {a ∈ A | ∀e ∈ E, (e, a) ∈ R}.

Consequently, a concept C = (E, I) is made of the ob-

jects in E which are exactly the set of objects sharing the

attributes in I . In the previous example, (2, 4; c, d) is a con-

cept. Indeed, objects 2 and 4 share the attributes c and d, and

no other object share c, d as attributes. Contrarily, we can

verify on Table 2 that (1, 2, 4; b, c) is not a concept because

object 4 does not own attribute b. Similarly, the attributes a

and b are shared by the objects 1 and 3 therefore (1; a, b) is

not a concept.

The set C(K) of all concepts induced by a context

can be ordered using the following partial order relation:

(E1, I1) ≤ (E2, I2) ⇔ E2 ⊆ E1 and I1 ⊆ I2. (E2, I2) is

defined as a successor of (E1, I1).
A concept lattice is defined as the ordering C(K) with

≤. It can be represented by a particular graph called Hass

Diagram as illustrated in Figure 3.

A concept (E2, I2) is an immediate successor of a con-

cept (E1, I1) if the following conditions hold :

1. (E1, I1) ≤ (E2, I2),

2. There is no concept (E3, I3) such that (E1, I1) ≤
(E3, I3) ≤ (E2, I2).

Intuitively, immediate successors of a concept (E, I) are

concepts located just above (E, I) in the Hass diagram of

the concept lattice. Given a concept (E, I) we denoted by

Succ((E, I)) the set of all its immediate successors. As an

example Succ((1, 2, 3; b)) = {(1, 3; a, b); (1, 2; b, c)}

Figure 3. Hass Diagram.

Since a concept lattice can have an exponential size, it

is often more interesting to build relevant concepts only. In

other words, given an attribute set X ⊆ A, the purpose is

to compute the concept with the smallest Intent containing

X . This work is carried out using two operators, f and g

defined as follows:

• f(X) = {o ∈ O | a ∈ X, (o, a) ∈ R},

• g(Y ) = {a ∈ A | o ∈ Y, (o, a) ∈ R}.

Intuitively, given a set of attributes, f returns the set of

objects that share these attributes. Similarly, g returns the

set of attributes shared by a given set of objects. Taking

a set of attributes X , we define the concept associated to

X by (f(X), g(f(X)). Note that f and g play a symmetric

role, consequently the concept induced by a set of objects Y

can be defined by (f(g(Y )), g(Y )). These composite func-

tions f(g()) and g(f()) are called the closure operators of

the concept lattice. Hence, for a set X ⊆ A (resp. Y ⊆ O),

the set g(f(X)) (resp. f(g(Y ))) is called the closed set of

X (resp. Y ). For instance, we can consider the set {a}
from the previous example. We have f({a}) = {1, 3} and

g({1, 3}) = {a, b}, we deduce the concept with the small-

est Intent containing {a}: (1, 3; a, b). As another example,

given the set {b, d}, the associated concept is (2; b, c, d), in-

deed f({b, d}) = {2} and g({2}) = {c, b, d}.

Algorithm 1 [7] computes the concept with the smallest

Intent containing an attribute set X.

Algorithm 1: ClosureK(X): closure algorithm.

Input: A formal context K = (O,A, R)
Input: A set of attributes X ⊆ A

Output: The formal concept (f(X), g(f(X)))
begin1

E = ∅ ;2

I = A ;3

for o ∈ O do4

if X ⊆ g(o) then5

I = I ∩ g(o) ;6

E = E ∪ o7

return (E, I)8

end9

Algorithm 2 computes the interesting concepts only, that

is a fragment of the concept lattice. This algorithm, inspired

from [19], enables to construct a set S containing succes-

sors particularly immediate successors of a given concept

(E, I). It is based on the previous closure algorithm called

ClosureK(X).

Algorithm 2: Successors algorithm.

Input: A formal concept (E, I)
Output: A set Succ((E, I)) ⊆ S

begin1

S = ∅ ;2

for a ∈ A \ I do3

S = S ∪ ClosureK(I ∪ a) ;4

return S5

end6



The closure algorithm has a complexity of O(m ∗ n)
where m is the number of objects and n the number of at-

tributes. The successors algorithm costs O(n2 ∗ m). Note

that Algorithm 2 computes at most n concepts. The two pre-

vious algorithms allow to compute relevant concepts with-

out having to build the concept lattice.

FCA is a classification method allowing to organize ob-

jects according to their attributes. The Extent of a for-

mal concept (E, I) defines an equivalence class of objects

which share the same set of attributes I . The closure al-

gorithm computes this class from a subset of I . Compared

to brute-force approaches for selection, we can construct

equivalence classes without knowing exactly all the shared

attributes. The equivalence class E can be refined using the

successors algorithm, which returns a set of immediate suc-

cessors of (E, I). This set forms a subset of the concept lat-

tice and it can be ordered as a tree. This tree can be used as

a decision-making tool for selection.

3.2 Application

The main challenge of our approach is to select at run-

time the concrete services, given a design model. The avail-

able services are stored in a dynamic runtime model (arrival

and departure of services). The idea is to adapt the theoret-

ical framework of FCA to service domain.

To do so, the services registry can be viewed as a formal

context, as illustrated by Table 3, where:

• the concrete services are the objects,

• and, the service types, functional and non-functional

properties, QoS, reputation are the attributes.

t1, ..., ti f1, ..., fj nf1, ..., nfk

s1

...

sn

Table 3. Runtime Model.

In the design model, the user expresses the specifications

with two categories of properties (attributes): mandatory

and optional. The mandatory attributes are the characteris-

tics required in the specifications: functionality, list of fea-

sible technologies, and some non-functional properties. For

example, the selected service Temperature must give tem-

peratures, be implemented with UPnP or DPWS technolo-

gies and require an authentication by login/password.

We propose to compute the concept associated to this

specification with the Closure Algorithm 1. The set of

mandatory characteristics is an input of the algorithm. As

result, we obtain a formal concept (g(X), f(g(X))) where:

• g(X) is the set of services that share the mandatory

properties,

• and f(g(X)) is the set of properties that are shared by

the service(s) obtained by g(X). In this set of prop-

erties, there is at least the mandatory properties and

eventually some other properties.

The set of services g(X) can be viewed as an equiva-

lence class. Each service can be a substitute for all other

of this set. In the case of a selected service departure, it is

easy to substitute it without examining the runtime model

again. As previously explained, the equivalence class can

be refined with the successors computation. The set of suc-

cessors is an extract of the concept lattice which can be used

as a decision-making tool. The selection of a concrete ser-

vice is made according to the user preferences by pruning

the branches non-relevant.

4 Experiments and results

We present in this section a use case developed by Thales

inc. in the European SODA project. It deals with alarm

management in emergency situations. The alarm manage-

ment system can be viewed as a service composition. The

system collects data from sensors such as temperatures.

These data are gathered, and then recorded. Finally, accord-

ing to the value of the gathered data, an action is triggered

on the system. This alarm management system is a service

composition with four activities, illustrated by Figure 4:

• Temperature is in charge of collecting temperatures

from available sensors;

• Analysis performs a computation on the gathered data;

• Storage records the data in a database or XML file;

• Action triggers the appropriate action when abnormal

data are received.

On this alarm system, we add security properties. In-

tegrity and confidentiality properties are added to Analysis

and integrity property is required to store the analyzed data.

Figure 4. Alarm system.

Table 4 represents the runtime model such as defined in

the previous section. Columns are divided into three groups:



• technologies: Web Services (WS), UPnP and DPWS;

• functionalities: Temperature Sensor (TS), Switch

Power (SP), Fan Speed (FS), Analysis (A) and Stor-

age (S);

• security properties: Authentication by Username and

password (AU), Authentication by X.509 Certificate

(AC), Integrity (I) and Confidentiality (C).

W
S

U
P

n
P

D
P

W
S

T
S

S
P

F
S

A S A
U

A
C

I C

S1 X X X

S2 X X X X X

S3 X X X

S4 X X X

S5 X X X X X

S6 X X X X X X

S7 X X X X

S8 X X X X

S9 X X

S10 X X X

S11 X X X

S12 X X X X X

S13 X X X X

Table 4. Example of runtime model.

In this example, the runtime model does not evolve in

order to simplify the example. With this (pre-)defined run-

time model , the selection of concrete services consists in

running the selection algorithm for each abstract service of

the design model. The expected results are presented as a

formal concept and its possible successors.

All temperature sensors. The selection consists in the

computation of a formal concept, which defines an equiv-

alence class. With the closure algorithm, we obtain the for-

mal concept (S1, S4, S5, S9, S12;TS) containing the set of

services that have the temperature functionality.

Analysis with integrity and confidentiality. The clo-

sure algorithm takes as input the set of attributes: Anal-

ysis, Integrity and Confidentiality. The formal concept is

(S6, S7;A, I, C,WS). Note that all services (S6 and S7)

are Web Services. The difference between the services S6

and S7 is that S6 has an additional functionality: Storage.

This additional functionality is deduced from the results of

the successors algorithm.

(S6 ; S, I, WS,A, AU, C)

(S6, S7 ; I, WS, A,C)

Figure 5. ”Analysis” partial lattice.

Storage with integrity. As previously, the formal con-

cept is computed: (S6, S8;S, I, WS). Two Web Services

provide the storage functionnality with integrity. The suc-

cessors of this concept are (S6;S, I, WS,A, AU, C) and

(S8;S, I, WS, AC). This two services provide additional

functionalities and security properties. The security proper-

ties are disjoint: the authentication mechanism is by user-

name for S6 while by X.509 Certificate for S8. This dif-

ference aids into the selection of an appropriate service be-

cause the user has not all the security information.

(S8 ; S, I, WS, AC) (S6 ; S, I, WS,A, AU, C)

(S6, S8 ; S, I, WS)

Figure 6. ”Storage” partial lattice.

Action. The action requires a Fan Speed service. The

formal concept is (S3, S10, S13;FS, AC) and its successors

are (S3;FS, AC,UPnP ) and (S10, S13;FS, AC,DPWS).

The selected service necessarily require an authentication

by certificate; the user must have a valid certificate to act

with the fan. The selected service is an UPnP or a DPWS

service. The successor of (S10, S13;FS, AC,DPWS) is

(S13;FS, AC,DPWS, I). The service S13 ensures the in-

tegrity data (received and emitted).

(S3 ; FS, AC,UPnP )

(S13 ; FS, AC,DPWS, I)

(S10, S13 ; FS, AC,DPWS)

(S3, S10, S13 ; FS, AC)

Figure 7. ”Action” partial lattice.

We believe that benefits of our approach are:

• Avoid negative answers of the selection. If we search,

in the context Table 4, an Analysis Web Service with

no security properties, it does not exist. The for-

mal concept gives a precision. The formal concept

is (S6, S7;WS, A, I, C). There are two services with

the functionality analysis implemented by Web Ser-

vice and these services require/provide security prop-

erties (integrity and confidentiality).

• Equivalence classes. The formal concept contains in

the left part an equivalence class of services, i.e. all



services have the same characteristics. If one service

is required for the application, when a service depar-

ture occurs, the others service of the class can also be

used. Consequently, reaction time is reduced: the run-

time model is queried juste one time per activity spec-

ification. This search is done in the size of the runtime

model (O(n ∗ m)).

• Optimization of the search tree building. The search

tree is not built in depth. The nodes are computed dy-

namically during the search. The aim of selection is

to find one or more services meeting given character-

istics. In the case of many appropriate services (i.e.

they are in the same equivalence class), the succes-

sors are built to remove selected services offering ad-

ditional features which can be prohibitive, e.g. in our

example the formal concept is (S3, S10, S13;FS, AC)

and its successors are (S3;FS, AC,UPnP ) and

(S10, S13;FS, AC,DPWS). One of these two

branches can be pruned according to the options spec-

ified by the user and thus limit the choice of selected

services.

• Minimize the security constraints. The formal concept

contains the set of services which have the same char-

acteristics. But these services can have more charac-

teristics. In the case of security, it is interesting to be

only limited to security specifications. The computa-

tion of successors allows defining the difference be-

tween services. For example, the computation of the

successors of the formal concept for the activity Ac-

tion of the alarm system shows that the service S13

requires/provides more security concepts (integrity).

5 Related work

There are many approaches to select services based on

criteria and constraints of QoS. Conventional approaches

propose to use brute-force-like algorithms to obtain the best

service composition (according to QoS utility functions).

Channa et al. [3] propose to solve the selection problem

by using an approach based on constraint satisfaction. They

present a discovery engine associated to a constraint opti-

mizer which selects Web Services that are optimal and sat-

isfy client’s constraints. Another approach [10] uses ge-

netic algorithms. These algorithms define some QoS util-

ity functions and try to maximize them. One disadvantage

of this kind of algorithm is that it can run indefinitely. To

avoid this, some constraints must be predefined. Therefore

these algorithms don’t take into account some constraints

inherent in the context of dynamic service environments. A

selected composition can be unusable at runtime (service

unavailable, change in QoS...). Other approaches propose

to consider this dynamic aspect by not selecting a configu-

ration but a description from which the best composition is

selected at runtime. Estublier et al. [6] propose to extend the

concept of composite (configuration) to represent the appli-

cation along the different life-cycle phases (from design to

execution). Mabrouk et al. [13] present an algorithm tak-

ing account into the concept of dynamic binding allowing

composition with on-the fly services.

Azmeh et al. propose a tool named WSPAB [1] that aims

to define a complete solution for facilitating the task of find-

ing the most pertinent Web Service. The WSPAB tool select

automatically services by filtering Web Services according

to certain aspects of QoS and certain user requirements. It

classifies the filtered services using the FCA approach, en-

abling users to easily select their needed service. It is pos-

sible with their approach to also identify potential service

substitutes and to keep trace of them for future use. The

principle of this method is very similar to our approach,

but it is only applied to Web Services. However, the fil-

tration criteria are hardly applicable to domains where the

selection is based on the maximum number of service op-

erations for each Web Service. Web Services signatures are

extracted from WSDL and sorted according to the number

of input parameters. This gives groups of operation sig-

natures to construct the concept lattice and the equivalent

concepts. So, the similarity factor between the operations is

the number of input parameters. It is not always relevant to

use this criterion because the functionality of the service is

lost while it is a necessary element to use for selecting the

appropriate service.

6 Conclusion

In pervasive environments, the selection of the right ser-

vices to achieve desired functions, expressed in abstract

terms, is a major issue. Solving it requires to select the most

appropriate service given a set of available services but also

to do it in time. Indeed, in many pervasive applications,

time is an important parameter.

In previous works, we observed that, in many industrial

use cases, brute force like algorithms for services selection

are not effective. They are too costly and not adapted to

situations where constraints may be released. In this pa-

per, we propose to structure the services registry with an

approach based on Formal Concept Analysis. Our purpose

is to speed up the selection process and to improve decision

making through the building of a concept lattice. The com-

plexity of such computation is in the order of brute force

algorithms. But, it can be reused to perform more complex

searches, where constraints are changed. In this situation,

the equivalence classes and successors avoid reiterate each

time the selection algorithm which significantly improves

performance at runtime.



In the current version, the concept lattice is re-built on

every service departure or arrival. We are currently working

on an improved version where the lattice is built only on

relevant changes in the environment, that is services implied

in current applications.

References

[1] Z. Azmeh, M. Huchard, C. Tibermacine, C. Urtado, and

S. Vauttier. WSPAB: A Tool for Automatic Classification

& Selection of Web Services Using Formal Concept Analy-

sis. In ECOWS ’08: Proceedings of the 2008 Sixth European

Conference on Web Services, pages 31–40, Washington, DC,

USA, 2008. IEEE Computer Society.

[2] P. Cellier. Formal concept analysis applied to fault local-

ization. In Robby, editor, International Conference on Soft-

ware Engineering (ICSE 2008) Companion, pages 991–994.

ACM, 2008.

[3] N. Channa, S. Li, A. W. Shaikh, and X. Fu. Constraint sat-

isfaction in dynamic web service composition. Database

and Expert Systems Applications, International Workshop

on, 0:658–664, 2005.

[4] S. Chollet and P. Lalanda. An Extensible Abstract Service

Orchestration Framework. In ICWS ’09: Proceedings of the

2009 IEEE International Conference on Web Services, pages

831–838, Washington, DC, USA, 2009. IEEE Computer So-

ciety.

[5] C. Escoffier, R. S. Hall, and P. Lalanda. iPOJO: an Exten-

sible Service-Oriented Component Framework. IEEE In-

ternational Conference on Services Computing (SCC 2007),

pages 474–481, July 2007.

[6] J. Estublier, I. Dieng, E. Simon, and G. E. Vega Baez.

Flexible composites and automatic component selection for

service-based applications. In Proceedings of the 4th Inter-

national Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE), Milan, Italy, may 2009. IN-

STICC Press.

[7] B. Ganter and K. Reuter. Finding all closed sets: A general

approach. Order, 8(3):283–290, 1991.

[8] B. Ganter and R. Wille. Formal Concept Analysis - Mathe-

matical Foundations. Springer, 1999.

[9] IBM. Web Services Atomic Transaction

(WS-AtomicTransaction), November 2004.

http://download.boulder.ibm.com/

ibmdl/pub/software/dw/library/

ws-atomictransaction200411.pdf.

[10] M. C. Jaeger and G. Mhl. Qos-based selection of services:

The implementation of a genetic algorithm. In In KiVS 2007

Workshop: Service-Oriented Architectures und ServiceOri-

ented Computing (SOA/SOC, pages 359–370, 2007.

[11] F. Jammes, A. Mensch, and H. Smit. Service-Oriented De-

vice Communications Using the Devices Profile for Web

Services. In MPAC’05: Proceedings of the 3rd international

workshop on Middleware for pervasive and ad-hoc comput-

ing, pages 1–8, New York, NY, USA, 2005. ACM.

[12] P. Lalanda and C. Marin. A Domain-Configurable Develop-

ment Environment for Service-Oriented Applications. IEEE

Software, 24(6):31–38, 2007.

[13] N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas,

and V. Issarny. Qos-aware service composition in dynamic

service oriented environments. In Middleware ’09: Pro-

ceedings of the 10th ACM/IFIP/USENIX International Con-

ference on Middleware, pages 1–20, New York, NY, USA,

2009. Springer-Verlag New York, Inc.
[14] OASIS. Web Services Security: SOAP Mes-

sage Security 1.0, March 2004. http:

//docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-soap-message-security-1.

0.pdf.
[15] OASIS. Assertions and Protocols for the OASIS

Security Assertion Markup Language (SAML) V2.0,

March 2005. http://docs.oasis-open.org/

security/saml/v2.0/saml-core-2.0-os.pdf.
[16] OASIS. eXtensible Access Control Markup Lan-

guage (XACML) Version 2.0, February 2005. http:

//docs.oasis-open.org/xacml/2.0/access_

control-xacml-2.0-core-spec-os.pdf.
[17] OSGi Alliance. OSGi Service Platform Core Specification,

Release 4, Version 4.1, April 2007. http://www.osgi.

org/download/r4v41/r4.core.pdf.
[18] M. P. Papazoglou. Service-Oriented Computing: Concepts,

Characteristics and Directions. In WISE’03: Proceedings

of the Fourth International Conference on Web Information

Systems Engineering, pages 3–12, Washington, DC, USA,

2003. IEEE Computer Society.
[19] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Dis-

covering frequent closed itemsets for association rules. In

ICDT ’99: Proceedings of the 7th International Conference

on Database Theory, pages 398–416, London, UK, 1999.

Springer-Verlag.
[20] D. Poshyvanyk and A. Marcus. Combining formal concept

analysis with information retrieval for concept location in

source code. In Proceedings of the 15th IEEE Int’l Conf.

on Program Comprehension, pages 37–48. IEEE CS, June

2007.
[21] V. Snasel, Z. Horak, J. Kocibova, and A. Abraham. Ana-

lyzing social networks using fca: Complexity aspects. In

WI-IAT ’09: Proceedings of the 2009 IEEE/WIC/ACM In-

ternational Joint Conference on Web Intelligence and In-

telligent Agent Technology, pages 38–41, Washington, DC,

USA, 2009. IEEE Computer Society.
[22] W3C. XML Encryption Syntax and Processing, December

2002. http://www.w3.org/TR/xmlenc-core/.
[23] W3C. XML Signature Syntax and Processing (Sec-

ond Edition), June 2008. http://www.w3.org/TR/

xmldsig-core/.
[24] J. Yu, P. Lalanda, and S. Chollet. Development Tool for

Service-Oriented Applications in Smart Homes. In SCC

’08: Proceedings of the 2008 IEEE International Confer-

ence on Services Computing, pages 239–246, Washington,

DC, USA, 2008. IEEE Computer Society.
[25] E. Zeeb, A. Bobek, H. Bohn, and F. Golatowski. Service-

Oriented Architectures for Embedded Systems Using De-

vices Profile for Web Services. In AINAW ’07: Proceedings

of the 21st International Conference on Advanced Informa-

tion Networking and Applications Workshops, pages 956–

963, Washington, DC, USA, 2007. IEEE Computer Society.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-atomictransaction200411.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-atomictransaction200411.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-atomictransaction200411.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.osgi.org/download/r4v41/r4.core.pdf
http://www.osgi.org/download/r4v41/r4.core.pdf
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

	Introduction
	Background
	Service-Oriented Architecture
	Existing tools

	Approach
	Theoretical foundations
	Application

	Experiments and results
	Related work
	Conclusion

