
HAL Id: hal-00756112
https://hal.science/hal-00756112v1

Submitted on 23 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interoperability Analysis of Systems
Thomas Lambolais, Anne-Lise Courbis, Hong-Viet Luong, Thanh-Liem Phan

To cite this version:
Thomas Lambolais, Anne-Lise Courbis, Hong-Viet Luong, Thanh-Liem Phan. Interoperability Anal-
ysis of Systems. 18th World Congress of the International Federation of Automatic Control (IFAC
2011), Aug 2011, Milan, Italy. pp.7879-7884, �10.3182/20110828-6-IT-1002.03523�. �hal-00756112�

https://hal.science/hal-00756112v1
https://hal.archives-ouvertes.fr

Interoperability Analysis of Systems

Thomas Lambolais Anne-Lise Courbis Hong-Viet Luong
Thanh-Liem Phan

LGI2P, École des mines d’Alès, France
(e-mail: firstname.familyname@mines-ales.fr).

Abstract: This work deals with the analysis of the behavioural interoperability of systems
in a designing context. Systems to be analysed are modelled as UML architectures in terms
of assembly of components, the behaviour of which are defined by State Machines. Two
interoperability levels are identified: the absence of deadlock, and the preservation of the
required services and usage protocols. The analysis starts in automatically transforming the
behaviour of an architecture into a Labelled Transition System. A deadlock search can be
then performed through model checking tools. Relations enabling components to be substituted
without analysing again the whole system are identified, which leads to define a notion of
component compatibility. This analysis technique checks if the interoperability of the new system
is altered or preserved. Three cases are underlined: (i) the new system exhibits deadlocks: it is
not interoperable any more, (ii) it is deadlock free, (iii) it is deadlock free and moreover conforms
to the previous one. Results are illustrated through a case study.

Keywords: interoperability analysis, conformance, compatibility, architecture design.

1. INTRODUCTION

Our area of interest concerns system interoperability anal-
ysis and interoperable system design. Based on the con-
ventional approach of modelling, we assume that system
components are implemented according to standards they
have to conform to. By this way, system implementa-
tions defined by assembling conformant components are
expected to be interoperable. In the same way, when the
system implementation has to be improved, we could think
that the substitution of a component by a conformant
one leads again to an interoperable system. If we refer
to standardized definitions of conformance and interoper-
ability (ISO/IEC 9646-1 (1991); ETSI EG 202 237 (2007)),
these properties are unfortunately wrong. It appears that
the conformance of a product to a specification is a neces-
sary but not sufficient condition.

In this paper, our goal is to present a formal means to
analyse the interoperability of systems described at first
by UML architectures of components, and to propose com-
plementary relations to conformance in order to guarantee
the above properties. Our approach for conformance and
interoperability analysis is based on Labelled Transition
Systems (LTS). The system to be designed is defined by
a set of interacting components the behaviour of which
is defined by a State Machine. State Machines are auto-
matically transformed into LTS for conformance analysis.
Architecture descriptions are transformed into LTS for
interoperability analysis. The analysis is performed at a
high abstraction level: we consider interactions (exchange
of messages or signals) existing between the system and its
environment and between its components without taking
into account data operations.

The paper is organised as follows. In section 2, we in-
formally introduce concepts of conformance and inter-

operability and recall standardized definitions. Section 3
presents the conformance relation we have implemented
to check component implementation expressed by State
Machines. In section 4, we define a method to verify
interoperability of systems. We point out that substitution
of conform components do not guarantee interoperable
systems. In section 5, we present relations that are appro-
priate to build up interoperable systems. Lastly, we present
our future work. All sections are illustrated through an
example.

2. INTEROPERABILITY AND CONFORMANCE
DEFINITIONS

We refer to standardized definitions issued fromMonkewich
(2006), Wiles (2003) and Lynskey (2003) about system
interoperability and conformance of its components to
given standards.

2.1 Interoperability

The system under study is considered as a set of parts
called entities, devices or components. According to
Lynskey (2003), a system is interoperable if, under a given
set of conditions, its devices are able to successfully es-
tablish, sustain, and if necessary, tear down a link while
maintaining a certain level of performance.

If the notion of “level of performance” could be discussed,
it at least requires the system to be able to run without
blocking. So, in a restricted point of view, as defined by
Baldoni et al. (2009), a set of parts is interoperable when
it is “stuck-free”, i.e., whatever point of interaction may
be reached, communication will not be blocked, and each
part will reach one of its final states.

2.2 Conformance

A device is said to be conformant, or compliant, to a
standard if it has properly implemented all the mandatory
portions of that standard. We refer to ISO9646 ISO/IEC
9646-1 (1991) conformance testing methodology, or IEEE
802.3. Hence, the formal definition of conformance we
adopt translates the following property: any test that the
specification must accept, must also be accepted by the
implementation. Stated otherwise, any test that the im-
plementation may refuse, may also be refused by the spec-
ification. Conformance has been formalized by Brinksma
and Scollo (1986) and Tretmans (1999).

According to this definition, a conformant implementa-
tion may implement more functions or services than its
specification, but may also implement less services when
optional services are omitted. Hence, the composition of
conformant components may lead to non interoperable
systems. Conformance is a required condition, but it does
not guarantee the system to be interoperable.

3. STATE MACHINE CONFORMANCE

We have been interested in developing a method to ver-
ify the conformance of behavioural models expressed by
UML State Machines, based on work of Brinksma and
Scollo (1986) and Tretmans (1999). The referring model
represents a specification or a standard. It is expressed at
a high abstraction level, using the state machine formal-
ism. One condition has to be respected: interfaces of the
implementation and the specification have to be the same.

The verification of conformance requires a formal support
for reasoning, underlining properties to be verified (se-
quences of events, synchronization, parallelism, deadlocks
and livelocks) and hiding those which are not significant,
such as data transformations or timing aspects.

In the following subsections, we give definitions of LTS
formalism and an overview of the conformance relation we
have implemented over LTSs. We thus give rules allowing
state machines to be automatically transformed into LTS.

3.1 Main features of LTS

We give some useful definitions to understand our ap-
proach and illustrations. For more details, refer to Milner
(1999). Let P be a set of states or process names, and Act
a set of names of actions, with Act = L ∪ {τ}, where L is
the set a visible actions and τ a silent action.

Definition 1. (LTS, Milner (1989)). A LTS 〈P,A,→, p〉 is
a tuple of a non empty set P ⊆ P of states (or processes),
a set A ⊆ Act of action names, a relation of transitions
→⊆ P ×A× P , and an initial state p ∈ P .

We designate by p the LTS 〈P,A,→, p〉. Let us note
that the term actions used in the LTS formalism may
refer to UML concepts of actions, activities and events.
It designates a visible (public) port enabling component
synchronizations.

We designate by Tr(p) the set of traces of the LTS p, where
a trace is a possibly incomplete sequence of observable

actions. The set of states which can be reached from p
after a trace σ is denoted by p after σ. Out(p, σ) is the set
of observable actions of p after the trace σ.

Definition 2. (Acceptance set, Leduc (1992)). The accep-
tance set of p after a trace σ, noted Acc(p, σ), is defined
by Acc(p, σ) = {X | ∃p′ ∈ p after σ. X = Out(p′, ε)}. It is
the set of action sets representing actions that must be
accepted by p after the trace σ.

This notion is crucial for the conformance relation because
it defines for any situation (trace concept) what the
component is supposed to accept (actions or events),
even if it is non deterministic. It captures the concepts
of mandatory and optional actions. For instance, the
acceptance set {{a, b}, {b}} (after a trace σ) means that
actions a and b can be accepted by the component after
σ, and that b is a mandatory action but action a may be
refused after σ.

3.2 The conformance relation

Definition 3. (Conformance, Brinksma and Scollo (1986)).
q conf p if ∀σ ∈ Tr(p), Acc(q, σ) ⊂⊂ Acc(p, σ).

The relation ⊂⊂ is an inclusion relation defined over sets
of sets: A ⊂⊂ B if, for all a in A, there exists b in B such
that b ⊆ a.

If q conf p, the process q is more deterministic than process
p.

No algorithm of formal checking of conformance had been
proposed. The algorithm we have developed to check
conformance is based on the notion of process merging.
The theorem on which it is based can be found in Luong
et al. (2008). It has been implemented in a Java tool,
called IDCM (Incremental Development of Conformant
Models) which provides, as we will see in the following,
other comparison relations.

3.3 Transformation of State Machines into LTS

We now consider a component described in UML, whose
provided and required interfaces are known. It is synchro-
nized with its environment through methods defined in
interfaces. Its behaviour is defined by a State Machine the
evolution of which depends on call events, signal events,
time events, change events and complete events. Actions
occurring on transitions or activities associated with states
can be internally performed (using private methods) or
delegated to other components using methods defined in
its required interfaces. The internal actions are translated
using the τ notation of LTS. Other actions are labelled
in the LTS using their UML name. UML guards are
represented from an abstract point of view, using again
the τ notation. It is interpreted as an internal decision
which is not under control of the environment. Time is
also modelled by internal transitions τ . It is interpreted
by the fact that, whatever the delay is, the component
will eventually reach a given state.

The transformation of UML State Machines into LTS
is defined by compositional rules. Every UML state is
transformed into a LTS state. Every output transition is

Fig. 1. Rules to transform State Machines into LTS

transformed according to a pattern defined in Fig. 1. Rules
are compositional because transitions with a common
input state are transformed into LTS transitions starting
from the state labelled as compositional (see Fig. 1). Let
us comment on case 9 dealing with a transition of type
event [guard]/action. It is transformed into a LTS where
the main node corresponds with the input state of the
UML transition. The τ transitions mean that the system
may stay in the same state (if that guard is false) or
may change of state (if that guard is true). In this latter
case, the reached state must thus accept action. If there
are other transitions leaving the UML state, they are
transformed by applying again one of the defined cases
starting from the composition node of the already built
up LTS graph.

The transformation has been implemented in Java in the
TopCased environment (Farail et al. (2006)). Results of
transformation are written in the LTS ASCII-based for-
mat of CADP (Construction and Analysis of Distributed
Processes, Garavel et al. (2007)), in order to be analysed
in the CADP toolbox.

3.4 Illustration of component modelling and conformance
checking

Let us consider a specification of a component named
TaskManagement whose goal is to perform a task received
from its environment and to send it back. The task can
be processed internally by TaskManagement or sent to
an outsourced component. The condition of this choice is
not defined by the specification. The component and its
interfaces can be seen in Fig. 6 representing the context in
which the component will be used. Its expected behaviour
is defined by a UML State Machine given in Fig. 2.

This specification is implemented in a component whose
interfaces are the same. They differ in behavioural aspects
(see State Machine in Fig. 3). In this implementation, the
choice of internal or external processing is done according

Fig. 2. TMSpecSM : TaskManagement specification State
Machine

to the criteria easyJob that is supposed to be evaluated by
the component itself in the jobAnalysis activity.

Fig. 3. TMImpSM : TaskManagement implementation
State Machine

The two State Machines are transformed into LTS by
IDCM (see Fig. 4, where action i corresponds to τ). The
conformance of the implementation to its specification is
verified using IDCM and concludes that “TMImpLTS conf
TMSpecLTS”.

17

0 18

1

19

2 3

4 5 6

7

8

9

10

11

12

13

1415

16

ENDJOB

i

i

INP

ENDJOB

i

i

i

i

ii

i

i

OUTP

i

CLOSE

i

i

i

OPEN

OUTP

ACCEPT

i

i

ACCEPT

STARTJOB

17

0

18

1

20

19

2

21

3

22

4 5

6

7

8

9

10

11

12

13

14

15

16

OUTP

i

ACCEPT

INP

i

i

i

ACCEPT

i

STARTJOB

i

ENDJOB

i

i

i

i

i

ENDJOB

INP

i

i

i

i

i

OUTP i

i

CLOSE

i

i

i

OPEN

Fig. 4. TMSpecLTS and TMImpLTS .

4. INTEROPERABILITY ANALYSIS

We now deal with the interoperability analysis of an
assembly of components. We give formal definitions of
deadlock and interoperability of systems. Our goal is at
first to analyse the interoperability of specifications, and
then, the interoperability of a system, the components
of which conform to specifications. Here, we consider
specifications like standards, which should be conceived
to work together. At first, it is necessary to verify that an
assembly of such specifications is interoperable. When the
interoperability of the real system is considered, this will
raise up the problem of component substitutability. This
will be discussed in last subsection.

4.1 Formal definition of interoperability

Definition 4. (Deadlock). A process defined by a LTS p
deadlocks after a trace σ if Acc(p, σ) = ∅.

In order to distinguish a final state from a deadlock, we
introduce the concept of stuck free process.

Definition 5. (Stuck free). A system s of components p1,
p2, . . . , pn is stuck free, if all its deadlocks correspond to
common final states of p1, p2, . . . , and pn: for any trace
σ of s corresponding to subtraces σ1 of p1, . . . , σn of pn,
Acc(s, σ) = ∅ ⇒ Acc(p1, σ1) = · · · = Acc(pn, σn) = ∅.

A system is interoperable if it is stuck free.

4.2 Architecture specification: modelling and analysis

Let us consider TaskManagement specification given in
Fig. 2. TaskManagement is designed to work with an out-
sourced component, named TaskTreatment. TaskTreat-
ment specification State Machine is given in Fig. 5.

Fig. 5. TTSpecSM : TaskTreatment specification State Ma-
chine

Let us consider the architecture composed of these two
components (Fig. 6). Its provided interface offers one ser-
vice: INP representing an input task. Its required interface
delivers the performed task through OUTP method. The
interoperability of Arch0 is expected. Hereafter, we aim at
verifying this formally.

Fig. 6. Architecture Arch0 composed with TaskManage-
ment and TaskTreatment

Analysing interoperability requires a formal semantics of
architectures. We chose the language Lotos nt (Sighire-
anu et al. (2004)), and map UML components onto Lotos

nt processes. The Lotos nt language is translated into
Lotos language whose operational semantics is given in

LTS. The example of Fig. 7 illustrates the Lotos de-
scription corresponding to the architecture Arch0. Despite
UML and Lotos concepts are different, some correspon-
dences can be done: UML components are associated with
Lotos nt processes ; the different types of UML events
correspond to Lotos actions ; component connections
correspond to Lotos parallel composition operators. In
the example, the two components are modeled by LTS
processes, TMSpecLTS and TTSpecLTS , the interfaces of
which are defined in terms of lists of actions ; the syntax
|[OPEN, START, CLOSE, ACCEPT, ENDJOB]| means that the two pro-
cesses are synchronized on all actions of the list. A way to
model asynchronous communication would have been to
add another component modelling a kind of communica-
tion channel.

specification Arch0[INP, OUTP]:noexit

behaviour

hide OPEN, START, CLOSE, ACCEPT, ENDJOB in

(TMSpecLTS[INP, OUTP, OPEN, START, CLOSE, ACCEPT, ENDJOB]

|[OPEN, START, CLOSE, ACCEPT, ENDJOB]|
TTSpecLTS[OPEN, START, CLOSE, ACCEPT, ENDJOB])

endspec

Fig. 7. Lotos description of architecture Arch0

Since the two LTS TMSpecLTS and TTSpecLTS are au-
tomatically generated by IDCM State Machine transfor-
mation, the CADP toolbox can generate the LTS of the
architecture according to Lotos semantics. The result is
a graph made up of about 70 states and 150 transitions.

The analysis performed with CADP concludes that this
architecture specification is deadlock free.

4.3 Architecture realization: modelling and analysis

Let us now consider again architecture of Fig. 6, the
components of which are now implementation models. We
call Arch1 this new architecture. The State Machine imple-
mentation model of TaskManagement is given in Fig. 3. To
simplify, we assume that TaskTreatment implementation
has the same State Machine as its specification, given in
Fig. 5. State Machine of TaskManagement implementation
is translated into LTS, named TMImpLTS .

As previously, a Lotos nt description is associated with
this architecture. It is the same as the architecture speci-
fication, except that specification models are replaced by
implementation models. The generated LTS of the realiza-
tion architecture is made up of about 125 states and 270
transitions.

Analysis of the implementation architecture through
CADP toolbox concludes that this architecture is dead-
locked. So, the architecture realization is not interoperable.

One sequence of events leading to a deadlock, given by the
tool, is: INP; OPEN; ACCEPT; STARTJOB; ENDJOB; OUTP;

INP; OUTP; INP. Its analysis points out that first task
received by TaskManagement is sent to TaskTreatment.
The second one is internally processed by TaskManage-
ment. The last one is sent to TaskTreatment by request-
ing an OPEN transaction but the request fails. It is ex-
plained by the fact that TaskTreatment is in state 2nd-
JobAnalysis and is waiting for a transaction closing. It

can not receive any OPEN order, which is the reason of
deadlock. TaskManagement is wrong: it does not emit
a CLOSE action at the end of the first outsourced task.
Such a behaviour is possible although TaskManagement
implementation conforms TaskManagement specification.
Indeed, every sequence of actions that the specification
must do, must be done by the implementation. But the
implementation may also do more. It does not prevent the
implementation from receiving new jobs (action INP) in
the EndOutProcess state. Such a new trace is not under
the scope of the conformance relation. The implementation
must indeed do a CLOSE action like before, but only if the
new INP has not been received. So, the fact that com-
ponent implementations conform their specifications does
not guarantee the interoperability of the new system. The
analysis of the error enables us to correct TaskManage-
ment State Machine: an action CLOSE is added from state
2ndJobAnalysis to state Processing (see Fig. 8). With this
new implementation, called TMImpCSM , the architecture
is deadlock free.

Fig. 8. TMImpCSM : Corrected TaskManagement imple-
mentation State Machine

This case study raises two problems. Which conformance
relation guarantees the interoperability of systems? Is
there another way to guarantee the interoperability of a
system in which a component is substituted by another
one, without computing the behaviour of the whole sys-
tem?

5. BUILD-UP OF INTEROPERABLE SYSTEMS

We have studied how to analyse a system in order to check
its interoperability. In this section, the goal is to identify
relations between implementations and interoperable spec-
ifications that could guarantee the interoperability of the
system. Moreover, during a redesign process, it is necessary
to know not only if the new system is still interoperable,
but also if services offered by the old system are preserved.
Extension relations are good supports to doing that.

5.1 Substitutability

If a component C has to be replaced by a component R,
we must not only check that R must do what C must do
(what conformance checks), but also that R does not offer
any new observable behaviors. Indeed, R must be able to
provide what C provides, and R must not require any new
service which may interfere with its environment. That
is the reason why conformance is not enough. Relations

which satisfy such substitutability properties in any con-
text are congruence relations. Congruence relation defined
over the the conformance relation are cext and cred.

Definition 6. (cred, cext Brinksma and Scollo (1986)). Let
p and q be two LTS,

q cred p ⇔ for any context C[.], C[q] red C[p],
q cext p ⇔ for any context C[.], C[q] ext C[p].

The context refers to the set of components interacting
with the component under analysis. Relations red and ext
are defined as conformance relations combined with trace
inclusion and trace extension. These relations have been
implemented in IDCM, as well as cext and cred.

For instance, the State Machine TMImp2SM presented in
Fig. 9 is such that TMImp2LTS cred TMSpecLTS : indeed,
TMImp2SM has no more traces than TMSpecLTS and
conforms to TMSpecLTS . The cred relation also checks
that all stable states are preserved. A state is stable if the
machine may not leave it by itself (after a complete event,
change event or time event for instance).

Fig. 9. TMImp2SM : Second TaskManagement implemen-
tation State Machine

Hence, the architecture of Fig. 6 where TaskManage-
ment is replaced by a component whose State Machine
is TMImp2SM , is still interoperable. We call Arch2 this
architecture.

Congruence relations are appropriate to evaluate interop-
erability. Nevertheless, they are strong and we would want
to define a weaker relation. For this reason, we introduce
the notion of compatibility.

5.2 Compatibility

If the new component is not in relation with the for-
mer one by a known congruence relation, as it is the
case for TMImpCSM (Fig. 8), it is possible to verify its
compatibility with its context. Since the architecture is
translated into a Lotos nt expression, all interactions are
expressed by binary parallel composition operators. That
means it is always possible to consider the context as a
set of components that can be modelled by a unique LTS.
By this way, the notion of compatibility of a component
according to its context, is expressed by a compatibility
relation between two LTS.

Definition 7. (LTS compatibility). Two LTS p and q are
compatible on a set of actions S, written p compS q, if for
any trace σ ∈ S∗, Acc(p/S, σ) comp Acc(q/S, σ), where

p/S is the LTS obtained from p by hiding any action not
in S.

Definition 8. (Set compatibility). Two sets of sets A and
B are compatible, written A comp B, if ∀x ∈ A, ∀y ∈
B, x ∩ y 6= ∅. Note that, due to indeterminism, a set may
be incompatible with itself.

Theorem 1. If p compS q, then p|[S]|q is stuck free.

Indeed, after any trace σ ∈ S∗, Acc(p/S, σ) 6= ∅ and
Acc(p/S, σ) comp Acc(q/S, σ) ⇒ Acc(q/S, σ) 6= ∅. So,
for any trace σp and σq such that p′ ∈ p after σp ⇔
p′ ∈ p/S after σ and q′ ∈ q after σq ⇔ q′ ∈ q/S after σ,
Acc(p, σp) 6= ∅ ⇒ Acc(q, σq) 6= ∅.

For instance, we can demonstrate that TMImpCLTS is
compatible with the context of an architecture composed
with TTImpLTS . Actions which are not hidden are those
belonging to InOutSourcing and OutOutsourcing inter-
faces: S = {OPEN, CLOSE, STARTJOB, ACCEPT, ENDJOB}.
Their acceptance sets are the same (and are singletons, so
compatible with themselves), except after trace t = OPEN;

ACCEPT; STARTJOB; ENDJOB:
Acc(TMImpCLTS/S, t) = {{CLOSE}, {STARTJOB}, {CLOSE,

STARTJOB}}, and
Acc(TTImpLTS/S, t) = {{CLOSE, STARTJOB}}. These two
acceptance sets are compatible. So, the two components
are compatible.

5.3 Interoperability performance level

We have defined relations to check if a system is deadlock
free. That is the first level of performance required for the
interoperability. In case of redesigning, we could expect
more from an interoperability relation: under the same
conditions, the system should offer the same services as
the previous one. This is a property checked by the con-
formance relation. Having defined a referring architecture,
any new architecture can be checked according to it, from
an external point of view (the user point of view) by hiding
internal interactions. For example, the conformance of the
two architectures Arch1 and Arch2 according to Arch0 can
be proved, by hiding InOutsourcing and OutOutsourcing
interfaces.

6. CONCLUSION

Based on standard definitions, we have formally defined
interoperability of systems defined by UML architectures,
where component behaviours are described by State Ma-
chines. We have implemented transformations from UML
to LTS, and defined relations to check interoperability.
We have shown that replacing in a system a component
by another conform one, does not guarantee the system
interoperability. Interoperability has thus to be checked
following two ways: analysing the whole behaviour of the
architecture or comparing the new substituted compo-
nent according to its first implementation or its context.
All relations useful for interoperability and conformance
checking have been implemented in our prototype IDCM,
developed in the TopCased environment.

An interesting application of this work is to develop an
automatic procedure to select components from a library.

Having defined an architecture specification, interoperable
and conform architectures could be automatically built-
up. One feature to be developed is an optimizing unit
that could choose from candidate architectures the most
promising. Criteria of optimization could be: resource con-
suming (number of components of the implementation),
the use of critical components, the number of interactions,
the use of reliable components, etc.

REFERENCES

Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti,
V., and Singh, M.P. (2009). Choice, interoperability,
and conformance in interaction protocols and service
choreographies. In S. Decker Sichman and Castelfranchi
(eds.), 8th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009). Budapest, Hungary.

Brinksma, E. and Scollo, G. (1986). Formal Notions of
Implementation and Conformance in LOTOS. Tech-
nical Report INF-86-13, Dept. of Informatics, Twente
University of Technology.

ETSI EG 202 237 (2007). Generic approach to interoper-
ability testing.

Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma,
D., Michel, P., Crégut, X., and Pantel, M. (2006).
The TOPCASED project: a toolkit in open source for
critical aeronautic systems design. Embedded Real Time
Software (ERTS).

Garavel, H., Lang, F., Mateescu, R., and Serwe, W.
(2007). CADP 2006: A Toolbox for the Construction
and Analysis of Distributed Processes. In Proceedings
of the 19th International Conference on Computer Aided
Verification CAV 2007.

ISO/IEC 9646-1 (1991). Information technology –
Open Systems Interconnection – Conformance testing
methodology and framework – Part 1: General concepts.

Leduc, G. (1992). A framework based on implementation
relations for implementing LOTOS specifications. Com-
puter Networks and ISDN Systems, 25(1), 23—41.

Luong, H., Lambolais, T., and Courbis, A. (2008). Imple-
mentation of the conformance relation for incremental
development of behavioural models. In K. Czarnecki
(ed.), MoDELS 2008, volume 5301/2009 of LNCS, 356–
370. Springer-Verlag.

Lynskey, E. (2003). Importance of last mile interoper-
ability. OptiCom 2003, 1st Internation Workshop on
Community Networks and FTTH/P/x.

Milner, R. (1989). Communication and concurrency.
Prentice-Hall, Inc.

Milner, R. (1999). Communicating and Mobile Systems:
the π-Calculus. Cambridge University Press, 1st edition.

Monkewich, O. (2006). Conformance and interoperabil-
ity testing tutorial. UIT-T SG17, Telecommunication
Languages and Softwares. Second Informal Workshop.
Switzerland, Genève.

Sighireanu, M., Chaudet, C., Garavel, H., Herbert, M.,
Mateescu, R., and Vivien, B. (2004). LOTOS NT User
Manual. INRIA, june.

Tretmans, J. (1999). Testing concurrent systems: A formal
approach. In S.M. Jos C.M. Baeten (ed.), CONCUR99
Concurrency Theory, volume 1664 of LNCS, 46–65.
Springer-Verlag, Berlin Heidelberg.

Wiles, A. (2003). Relevance of conformance testing for
interoperability testing. ACATS ATS-CONF. Stuttgart.

